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Pivotal Statistics for testing Structural Parameters in
Instrumental Variables Regression

Frank Kleibergen®
June 29, 2000

Abstract

We propose a novel statistic for testing the structural parameters in Instrumental
Variables Regression. The statistic is straightforward to compute and has a limiting
distribution that is pivotal with a degrees of freedom parameter that is equal to the
number of tested parameters. It therefore differs from the Anderson-Rubin statistic,
whose limiting distribution is pivotal but has a degrees of freedom parameter that is equal
to the number of instruments, and the Likelihood based, Wald, Likelihood Ratio and
Lagrange Multiplier, statistics, whose limiting distributions are not pivotal. We analyze
the relationship between the statistic and the concentrated likelihood of the structural
parameters and show that its’ limiting distribution is not affected by weak instruments.
We discuss examples of the non-standard shapes of the asymptotically pivotal confidence
sets that can be constructed using the statistic and investigate its power properties. To
show its importance for practical purposes, we apply the statistic to the Angrist-Krueger
(1991) data and find similar results as in Staiger and Stock (1997).

1 Introduction

Instrumental variables regression is commonly applied. Appropriately conducting inference
on the parameters of this model has therefore traditionally been an important research topic.
Initially, the focus of this research was on constructing the distribution of estimators of the
structural parameters, see e.g. Mariano and Sawa (1972), Anderson et. al. (1979,1983) and
Phillips (1983,1989). More recently, this focus has shifted more towards testing the structural
parameters, see e.g. Staiger and Stock (1997), Dufour (1997), Nelson and Startz (1990) and
Zivot, Nelson and Startz (1998), although also the early literature contains contributions to
this topic, see, for example, Anderson and Rubin (1949). This paper belongs to the second
stream of papers.

The problem with conducting inference on the structural parameters in Instrumental vari-
able regression results as they appear as a product in the (restricted) reduced form. Hence,
the inference on the structural parameters is conditional on the other parameters in the prod-
uct which are the reduced form parameters of the second (set of) endogenous variable(s).

*I thank Peter Boswijk, Geert Ridder and participants of the Tinbergen Institute Labor Economics
Seminar for helpful comments and discussion. Department of Quantitative Economics, University of Am-
sterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands, Email:kleiberg@fee.uva.nl. Homepage:
http://www.fee.uva.nl/ke/kleibergen.htm.



When these latter parameters are equal to zero, inference on the structural parameters breaks
down and estimators converge to random variables, see Phillips (1989). Statistics that test
hypothezes on the structural parameters are also hampered by these problems such that,
for example, the limiting distributions of the Likelihood based, Wald, Likelihood Ratio and
Lagrange Multiplier, statistics assume a fixed non-zero full rank value of the reduced form
parameter of the second (set of) endogenous variable(s), see e.g. Staiger and Stock (1997) and
Dufour (1997). Staiger and Stock (1997), see also Wang and Zivot (1998), therefore propose
an alternative testing procedure that is based on the dependence of the estimator of the struc-
tural parameters on a statistic that indicates the significance of the reduced form parameters,
i.e. the concentration parameter, and use Bonferonni’s inequality. The Anderson-Rubin statis-
tic, see Anderson and Rubin (1949), can also be used for conducting tests on the structural
parameters. Its limiting distribution is pivotal but has a degrees of freedom parameter that
is equal to the number of instruments and is therefore larger than or equal to the number of
structural parameters. This affects the power of the statistic. In the paper we propose a novel
statistic for testing the structural parameters whose limiting distribution is pivotal and has
a degrees of freedom parameter that is equal to the number of structural parameters. The
statistic results from the specification of the maximum likelihood estimators in Instrumental
Variable Regression as invertible functions of orthogonal statistics from Kleibergen (2000).

The paper is organized as follows. In section 2, we propose the statistic for conducting tests
on the structural parameters. We construct its limiting distribution and show that is pivotal
and has a degrees of freedom parameter that is equal to the number of structural parameters.
Its’ limiting distribution is therefore not affected by weak instruments. In section 4, we discuss
the relationship of the statistic with the concentrated likelihood of the structural parameters.
Section 5 shows the different shapes, as discussed by e.g. Dufour (1997) and Staiger and
Stock (1997), of the confidence sets that can be constructed using the asymptotically pivotal
statistic. In section 6, we conduct a power comparison of different statistics for conducting
tests on the structural parameters. Section 7 contains an application to the Angrist-Krueger
(1991) data. Finally, the eight section concludes.

2 Instrumental Variable Regression Model

The instrumental variables regression model in structural form can be represented as a limited

information simultaneous equation model, see e.g. Hausman (1983) and Kleibergen and Zivot
(1998),

() :}/Qﬁ‘i'zf)/'i'gl: (1)
Yo = XII + ZT + V4,

where y; and Ys are a T'x 1 and T x (m — 1) matrix of endogenous variables, respectively, Z is
a T X k; matrix of included exogenous variables, X is a T’ X ks matrix of excluded exogenous
variables (or instruments), €1 is a T x 1 vector of structural errors and V; is a T' x (m — 1)
matrix of reduced form errors. The (m — 1) x 1 and k; x 1 parameter vectors 5 and -y contain
the structural parameters. The variables in X and Z are assumed to be of full column rank,
uncorrelated with 1 and V3, and to be weakly exogenous for § and II, see Engle et. al. (1983).
The error terms €1, and V5, where 1, denotes the ¢-th observation on £; and Vy; is a column
vector denoting the t-th row of V5, are assumed to be uncorrelated over time, to have finite
moments up to at least the fourth order and the finite m x m (unconditional) covariance



matrix is represented by

€1t o1 212
Z-var(VZt)—<221 222)’ @)
and is assumed to be unknown. The degree of endogeniety of Y5 in (1) is determined by
the vector of correlation coeflicients defined by p = 22_21/ 2’22101_11/ ? and the quality of the
instruments is captured by II.
Substituting the reduced form equation for Y; into the structural equation for y; gives the
non-linearly restricted reduced form specification

Y = XTIB+ ZV +V, (3)

whereY = (41 Y2 ), B=(8 In1 ), V=TB+(v 0),V=_v1 Va),o=6e+V38
and, hence, (vy; V3,)' has covariance matrix

U1t Wil Wiz
Q) =wvar = , 4
< Vo ) < war Sl ) (4)
Note that W is a unrestricted k1 X m matrix.

The unrestricted reduced form of the model expresses each endogenous variable as a linear
function of the exogenous variables and is given by

Y = X0+ ZU 4V, (5)

where ® : ky x m, & = ( p; Do ), w1 ¢ k2 x 1, @3 : ky x (m — 1). Since the unrestricted
reduced form is a multivariate linear regression model, all of the reduced form parameters
are identified. It is assumed that ky > m — 1 so that the structural parameter vector (3
is “apparently” identified by the order condition. We call the model just-identified when
ks = m — 1 and the model over-identified when ky > m — 1. ks — m + 1 is therefore the
degree of over-identification. 3 is identified if and only if rank(Il) = m — 1. The extreme case
in which f is totally unidentified occurs when II = 0 and, hence, rank(Il) = 0, see Phillips
(1989). The case of “weak instruments”, as discussed by Nelson and Startz (1990), Staiger
and Stock (1997), Wang and Zivot (1998), and Zivot, Nelson and Startz (1998), occurs when
IT is close to zero or, as discussed by Kitamura (1994), Dufour and Khalaf (1997) and Shea
(1997) when II is close to having reduced rank.

The parameter 3 is typically the focus of the analysis. We can therefore simplify the
presentation of the results without changing their implications by setting vy = 0 and I' = 0
(¥ = 0) so that Z drops out of the model. In what follows, let & = ky denote the number
of instruments. We note that the form of the analytical results for § in this simplified case
carry over to the more general case where v # 0 and I' # 0 by interpreting all data matrices
as residuals from the projection on Z.

3 Pivotal Statistic for the Structural Parameters

3.1 Motivation

The first order condition (foc) for § in the restricted reduced from (3) reads as

II'X'(y1 — XIIB) = 0. (6)



We can replace the unknown II by its least squares estimate such that the foc becomes
LN X (P — $28) = 0 (7)

where ® = (», ®;) = (X'X)~'X'Y, and which results in the 2SLS estimator for 3. Under
Hy : 8 =0 and for a full rank value of II, we then obtain that
1 A fa -\~ .
—PX'X, (@’2X'X<I>2) X X, = Pm — 1), 8)
11
where s11 = =i Mxy1, My = Ir — V(V'V)7'V'. In the extreme case of a zero value of II,
however,

VI®= (u Uy )~N(0,Q0Q7"), (9)
withu; : kX1, Us: bk x (m—1) and Q = plimy_., LTX We can then specify u; as
uy = Uspy war + U 2

where w115 = w11 — w15 war, Urs ~ N(0,w12 ® Q1) and stochastic independent of U,
such that

o o ~ -1,
Lol X' X, (cI>'2X'X<I>2) SN Xp, = (UyQwar +urs) QU (U3QU) ™ U4Q (

10)
(U2 war + u12)

which is not equal to a x*(m—1) random variable. This shows that the 2SLS ¢-statistic doesnot
have a standard normal limiting distribution in case of invalid instruments, see e.g. Phillips
(1989). A similar argument as the above one can also be used in case of weak instruments, see
Staiger and Stock (1997), and to show that also the limiting distributions of the Likelihood
based, Wald, Likelihood Ratio and Lagrange Multiplier, statistics differ in case of weak or
invalid instruments, see e.g. Dufour (1997).

Instead of projecting (; on ®,, with which it is (asymptotically) correlated such that the
limiting distribution in (8) breaks down in case of weak or invalid instruments, we project ¢,
on a specific variable that is, under Hy, both a consistent estimator of IT and (asymptotically)
stochastic independent of ¢,. This variable orginates from the specification of the maximum
likelihood estimators of the parameters of the restricted and unrestricted reduced forms as
invertible functions of orthogonal statistics that is constructed in Kleibergen (2000). We use
it instead of ®, in (8). The specification of the variable is

o, — (P Hﬁ)wl_llwu (11)
such that it is under Hy : § = 0 equal to
by — Prwty Wz (12)

and we can use the consistent estimator © = <i>2 — @131_11312 instead of <i>2 in (8), with s15 =
i MxYo.



3.2 Asymptotically Pivotal Statistic

A statistic with an asymptotic distribution that is independent of nuisance parameters can be
constructed for conducting tests on the structural parameter 5. We construct this statistic to
test the hypothesis Hy : § = 0 against the alternative hypothesis H; : § # 0 but the statistic
can as well be used to test for other values of 3.

Under Hjp and the assumptions made for the disturbances, the joint limiting distribution
of the least squares estimators ¢, and ®; is normal

VT (<i> — (0 H)) = N(0,20Q7"), (13)

where “ = 7

This implies the marginal and conditional limiting distributions of ¢, and &5, see Kleibergen
(2000),

stands for weak convergence, see Billingsley (1986), and @ = plimr_. LTX

VTp, = N(0,w1 ®Q71),

A o 14
VT (<I>2 — prwilwia — H) = N(0,Q2:®Q71), (4

where Qg1 = Qoy — worwlwiz, and VT'¢, and /T ((i)g - gblwl_llwlg) are asymptotically

stochastic independent. The expression in (14) contains the unobserved parameters wq; and
w12 which we need to replace by observable ones. When S is the (consistent) estimator of the
covariance matrix €2,

_ 1 ’ o $11 S12
S = ﬁY MxY, S = < 91 Sy |’ (15)

where My = Ir — V(V'V)7WWV' V = X; 511 : 1 X1, 812, 8h; : 1 x (m — 1) and Ss :
(m — 1) x (m — 1), S is (asymptotically) stochastic independent from ® and syisy; is a
consistent estimator of wiwis. We can therefore replace wijwiz by s77 812 in (14) and obtain
that, see Kleibergen (2000),

VT (6-1) = N(0,01©Q7) (16)

where © = &, — {571 812 and VTO is asymptotically stochastic independent of VT, !
Consequently, since s17 is a consistent estimator of wq;

. A\"3 - _1
(6/X'X6) " X' X537 = N(0, L) (17)
and
F(HolH1) = a1 X (X'X) 71X (Ya — yisiy s12) [(Ye — yrs7y s12) X (X'X) 71X

_ -1 _
(Yz — 913111312)] (Yz — 913111312)IX(XIX)_1XI2911
XX (Ba—prsiitsiz) ((Ba—prsiiisie) X X (Ba—pusTlsiz)) (®2—pisiiisi) XXy

(18)

. (m—1)s11
tfo’lX’X(;)((;)’X’Xé)_ &X' X,
(m—1)811
x*(m—1)
m—1 7

1(16) results as T@, = N(0,I;) and s;j's;2 = whwie. Hence, VT (@ - H) =
VT (@2 — gblwl_llwlg — H) + (ﬁcﬁl) (wl_llwlg - 31_11312) = VT (@2 - gblwl_llwlg - H) as
(\/chol) (wiiwiz — siy's12) = 0 since @; and sii'si2 are (asymptotically) stochastic independent and
VT$, = N(0,I};) and s3i's12 = wijwia.



which shows that the asymptotic distribution of (18) is completely characterized by the pa-
rameters under Hy and doesnot depend on unobserved nuisance parameters. The difference
between the limiting distribution in (18) and the limiting distributions of Likelihood Ratio,
Wald and Lagrange Multiplier statistics, is that the limiting distribution (18) is independent
of nuisance parameters. The limiting distribution of the other statistics is based on the as-
sumption of a fixed full rank value of II, see e.g. Dufour (1997), Staiger and Stock (1997) and
Wang and Zivot (1998). Another asymptotically pivotal statistic that can be used to test H is
the Anderson-Rubin statistic, see Anderson and Rubin (1949). The degrees of freedom of the
limiting distribution of (18) is exactly equal to the number of parameters pre-specified in Hy
while it is equal to the sum of this number of parameters and the degree of over-identification,
k —m + 1, for the Anderson-Rubin statistic. The difference results as the Anderson-Rubin
statistic conducts a joint test of Hy and of the restricted reduced form against the unrestricted
reduced form and affects the power of the statistic when it is used as a statistic to only test
Hy. In section 6, we therefore analyze the power of the Anderson-Rubin statistic and statistic
(41) for a few simulated datasets.

In the just-identified case k is equal to m — 1 and © in (18) is invertible. The statistic (18)
and the Anderson-Rubin statistic are then identical. This further shows that statistic (18) is
the appropriate generalization of the Anderson-Rubin statistic from the just-identified to the
over-identified case as a statistic to only test Hp.

3.3 Distribution Functions

To illustrate that the statistic (18) is an asymptotically pivotal statistic under Hy, we computed
its empirical distribution function for two data generating processes with weak instruments and
strong endogeneity. Figure 1 contains the distribution functions for a data generating process
with m = 2 and m = 3 in figure 2. Figures 1 and 2 contain the empirical distribution functions
of (18) jointly with the asymptotic distribution function and also the empirical distribution
function of the likelihood ratio statistic. As (18) is an asymptotically pivotal statistic, its
empirical distribution function coincides with its asymptotic distribution function. Figures 1
and 2 also show that the distribution of the likelihood ratio statistic differs from its asymptotic
distribution as its’ limiting distribution depends on nuisance parameters.

3.4 Weak Instruments

To functionalize the in practice frequently observed combination of a large sample size and a
small but significant “F-statistic” for instrument relavence, Staiger and Stock, see Staiger and
Stock (1997), specify the reduced form parameter matrix II such that it decreases with the
sample size, i.e. I[1 = %\Il with U a fixed full rank parameter matrix. The limiting expression

in (14) then changes to

VTP, = N(0,wy; ® Q1)

) o 19
VT (‘I’z - %wnlww) = N(¥, 02,0 Q™) 1)

and VT, and /T (Cf)z - gblwl_llwlg) are asymptotically stochastic independent. When we
replace wl_llwlg by 81_11812, (19) still holds

\/Tgbl = N(vall ® Q_1)7

VTO = NP, Q1 0 Q™) (20



0.1+ .

Figure 1: Distribution pivotal statistic (18), m = 2, k = 20, T' = 100, weak instruments and
strong endogeneity, asymp. dis. (..), pivotal stat. (-), LR stat (-.-).

Figure 2: Distribution pivotal statistic (18), m = 3, k = 20, T' = 100, weak instruments and
strong endogeneity, asymp. dis. (..), pivotal stat. (-), LR stat/2. (-.-).



where © = &, — (.87 812, with asymptotically stochastic independent VT, and VT6 and
A A\"3 A _1
(6/X'X6) " X' X817 = N(O, ). (21)

The limiting distribution of (18) is therefore not affected by the specification of IT which further
shows that, its’ limiting distribution is independent of unobserved nuisance parameter as, it
is an asymptotically pivotal statistic.

4 Relationship Pivotal Statistic and LIML estimator

By using yi = y1 — Y50, instead of y; in all the elements of the statistic (18) that contain
y1, (18) can also be used to test the hypothesis H} : § = [, for various values of §;. The
expression for (18) then becomes

F(H()k’Hl) = yllX(XIX)_lXI(YZ yisiy 312) [(Y2 yisi 13?2) X(XIX)_IXI

(m—1)st, 1)3
* * -1 * k—1 %
(Y2 y1§11k1812)] (Y2 Y1811 1312)X(X X) IXI%
e Mt age W1 — Y2B0) Pty ixive—ui-vasy)sir i) 1 — Y2Po)
(22)

where si) = 71 (41 — YaBo) Mx (1 — YaBy) , 812 = 725 (1 — YaBy)' MxYs = s12 — 892 and
Py =V(V'V)" W'V = X(X'X)'X'(Yz — (11 — YaB,) 817" 8%,). Instead of maximizing the
likelihood function to obtain the limited information maximum likelihood (liml) estimator of
B, we also obtain an estimator of 5 by minimizing (22) over ,. We analyze the similarities and
differences between the resulting estimators. We therefore first briefly discuss the construction
of the liml estimator.

The mle of 3, B, is obtained from the concentrated log-likelihood, under independently
normal distributed disturbances with a fixed covariance matrix, that results when we have
concentrated out IT and ¥ from the log-likelihood of the parameters of model (1), see e.g.
Hausman (1983),

log(L(B|X,Y)) = 3T log (y1y1Y252)ﬂ])\4€;5y1y;;2)5)‘

_ 1 _ (i =YeB) X(X' X)X (11 —Yaf) 23
- ?Tlog ! 1 2(?!1—Y25)'(y1—Y25)1 - ( )
= 3T log |1 — 7],

where 1 = (1= YQZ/ )1 ngﬁ;;é%’; ¥28) Since the concentrated log-likelihood of 3 is a monotonic

decreasing function of 77, maximizing with respect to 3 is identical to finding the minimal value
of 7,

- Y58 X (X' X)X (y, - Vs
n = min (1 — YaB8)'X( / )X (11 25)} , (24)
3 (y1 — Ya8) (y1 — Y2P3)
which is identical to solving the eigenvalue problem,
Y'Y = Y'X(X'X)'X'Y|=0«< (25)

I, — (YY) 1dX'X®| =0,
n



and to use the smallest root of (25), see Anderson and Rubin (1949) and Hood and Koopmans

(1953). The liml estimator of 3, £, is then contructed such that the eigenvector associated

with 7 equals a(1 —BI)’ , where a is the first element of the eigenvector associated with 7.
Maximizing the log-likelihood (23) is identical to minimizing minus the log-likelihood

_ (y1=Y2B8) (11— Y2
—log(L(AIX,Y)) = 3T log | gt (26)

—1 (1 —Y28) X (X' X)~ 1 X" (31~ Y20)
= 2T10g 1+ (y1—Y28) Mx (y1—Y28)

which is again identical to minimizing

(y1 — Y2B) A(y1 — Ya)
(y1 — Y28)' Mx (y1 — Y21)
with A = Py = X(X'X)™'X’'. The statistic (22) is identical to (27) multiplied by Z=% and
using the specification of A = Pxp« with D* = (X' X)) X"(Yz — (11 — Y28) 3’{1_13’{2). Pxp~ is
a projection on X D* which is a sub-space of X on which Px projects. It shows that the liml
estimator of 3 and the estimator that results by minimizing (22) are closely related. This can
be further verified by analyzing the derivative of K (/) (27) with respect to

K(8) = (27)

IKB) _ -YoB)MxYe _ _ (n-Ysp)AYs
2K (p) [(yl—Yéﬂ)’MX(y)l(—Yzﬂ) (yl—Yzﬂ)’A(yl—Yzﬂ)} +
dvec(A)

(28)
/
(y1—Yzﬂ)’J\/1lx(y1—Y2[3) ((yl - }/2/6)/ ® (yl - }/2/6) ) 6/3’

Since A is a projection matrix, for A = Pxp-, a”g;(,A) is very small and is equal to zero for

A = Px. As a consequence, the value of § that is such that the first part of (28) is equal
to zero, which approximately holds for the liml estimator since A = Pxp+ is a projection
on a sub-space of X, is also the value that satisfies the first order condition. Thus the liml
estimator more or less coincides with the estimator that minimizes the statistic (22).

5 Confidence Regions

By using y; = y1 — Y20, instead of y; in all the elements of the statistic (18) that contain y;,
(18) can also be used to test the hypothesis Hj : § = (3, for various values of 3. By specifying
a grid of values for (3,, we can then construct a a% asymptotic confidence set for 5 that is
independent of the value of the other parameters. These asymptotic pivotal confidence sets
can have peculiar shapes that differ from the standard symmetric asymptotic «% confidence
sets, see e.g. Dufour (1997) and Zivot et. al. (1998). Possible shapes that can occur are infinite
confidence sets, discontinuous confidence sets and empty confidence sets. We show examples
of these kind of asymptotically pivotal confidence sets by simulating data from pre-specified
Data Generating Processes (DGPs). As shown before, the minimal value of the statistic (18)
lies at the liml estimator. An empty confidence set can therefore occur when the true DGP
doesnot correspond with the estimated model and the statistic (18) is even significant when
it is used to test the hypothesis that 3 is equal to its maximum likelihood estimate.

For each of the asymptotic p-value plots that we show in figures 3-8, we have artificially
sampled data from the model

Y1 = Py + &1
Yo = X7+ vy, (29)
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Figure 3: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 1, k = 1. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls t-statistic (..).

where y1, yo : T X1, X : T xk, (1 v2) ~ N(0,2® I7); X ~ N(0, I, ® I7), T =100, 7 : k x 1,
1 0.99
099 1
a weak instrument, and 1, i.e. a valid instrument, and values of k equal to 1, 5 and 20. The
data that are simulated from the DGP therefore only differ over the value of 7; and are the
same for the different values of k. Hence, for a fixed 71, we only add superfluous instruments
to the model when we increase k and the generated endogenous variables stay the same. In
this manner, we visualize the robustness of the statistics to adding superfluous instruments.

= (m..m), ma=..=m,=0,=0%X= ; for values of 71 equal to 0.1, i.e.

k=1 Since m is equal to 2, the model is just-identified when k is equal to one. Hence, the
Anderson-Rubin statistic and statistic (18) are identical. Also the 2SLS and liml estimators
in this case coincide. Figures 3 and 4 show asymptotic p-value plots of the 2SLS ¢-statistic,
statistic (18), the Anderson-Rubin statistic and the Likelihood Ratio statistic that test the
hypothesis Hy : 8 = [, for artificial datasets with 71 = 1, figure 3, and 7m; = 0.1, figure 4. The
figures also contain a straight line at 0.95 that enables us to construct the 95% asymptotic
confidence set in a straightforward way. The instrument in figure 3 is thus a valid instrument
while it is a weak one in figure 4.

Because the Anderson-Rubin statistic is identical to statistic (18) in the just-identified case,
the p-value plots of both statistics are indistinguishable. Also the p-value plot of the Likelihood
Ratio statistic is hard to distinguish from the p-value plot of the Anderson-Rubin statistic.
These statistics are closely related in the just-identified case as the test on 3 is essentially
a linear test then. The 2SLS and liml estimators are identical in the exact identified case
which explains why the different p-value plots have values of § in common at the zero p-value.
The 2SLS t-statistic and LR-AR-pivotal statistics p-value plots are very similar for the valid
instrument, case but very different for the weak instrument case. The 95% confidence set that
results from the LR-AR-pivotal statistics is even discontinuous and infinite for the latter case

10
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Figure 4: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 0.1, k = 1. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls ¢-statistic (..).

while it is (always) finite and symmetric for the 2SLS t-statistic.

k =5 For a number of instruments that is equal to 5, kK = 5, figures 5 and 6 show asymptotic
p-value plots of the 2SLS t-statistic, statistic (18), the Anderson-Rubin statistic and the Like-
lihood Ratio statistic that test the hypothesis Hy : § = 3, for artificial datasets with = = 1,
figure 5, and m; = 0.1, figure 6.

In both figures the Anderson-Rubin statistic leads to larger asymptotic confidence sets than
statistic (18). This results as the degrees of freedom parameter of the limiting distribution of
the Anderson-Rubin statistic is equal to the number of instruments for the Anderson-Rubin
statistic while it is equal to the number of tested parameters for statistic (18). The figures also
show that the confidence sets that result from statistic (18) are larger than those that result
from the Likelihood Ratio statistic and that they are closely related as discussed in section 4.

Figure 6 nicely shows that the 95% confidence set that results from the 2SLS t-statistic
has hardly any relationship with the other confidence sets anymore when the instruments are
weak. The 95% confidence set that results from the 2SLS t-statistic is finite and symmetric
while the other statistics lead to discontinuous infinite 95% confidence sets. In case of valid
instruments, as in figure 5, the confidence sets that result from the different statistics are quite
similar.

k =20 For a number of instruments that is equal to 20, £ = 20, figures 7 and 8 show
asymptotic p-value plots of the 2SLS ¢-statistic, statistic (18), the Anderson-Rubin statistic
and the Likelihood Ratio statistic that test the hypothesis Hy : § = 3, for artificial datasets
with 71 = 1, figure 7, and m; = 0.1, figure 8.

For the valid instrument case, figure 7, the Anderson-Rubin statistic leads to a much
larger 95% confidence set than the other statistics. This results from the larger degrees of
freedom parameter of its limiting distribution. Since the 2SLS estimator converges to the least
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Figure 5: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 1, k = 5. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls t-statistic (..).
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Figure 6: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 0.1, k = 5. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls ¢-statistic (..).
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Figure 7: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 1, k = 20. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls t-statistic (..).
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Figure 8: p-value plots of statistics that test the hypothesis Hy : 8 = (3, for dataset with
m = 0.1, k = 20. statistic (18) (-), Anderson-Rubin (- -), LR (-.-), 2sls t-statistic (..).
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squares estimator when the number of instruments increases, see Nelson and Startz (1990),
the difference between the liml estimator and the 2SLS estimator has increased compared to
the previous figures. This can be concluded from the areas with zero p-values of the different
p-value plots. Also the difference between the confidence sets that result from statistic (18)
and the Likelihood Ratio statistic has increased compared to the previous figures.

For the weak instrument case, figure 8, there is again a strong difference between the
confidence sets that result from the 2SLS t-statistic, finite and symmetric, and the confidence
sets that result from the other procedures, discontinuous and infinite. The confidence sets that
result from statistic (18) are also distinctly larger than those that result from the Likelihood
Ratio statistic but smaller, as expected, than those that result from the Anderson-Rubin
statistic. Also a small decrease of the p-values from statistic (18) occurs at the location of the
non-significant p-values from the 2SLS t-statistic.

When we compare the p-value plots from figures 3-4 with those from figures 5-8, we see
the robustness of the statistical inference from the different statistics to adding superfluous
instruments. The p-value plots from statistic (18) are clearly the most robust while those from
the 2SLS t-statistics are the least robust.

6 Power Comparison

Using DGP (29), we conducted a power comparison of a few different statistics that can be
used to test the hypothesis Hy : 8 = 0. We therefore simulated datasets from DGP (29) for
various values of 3 and computed the frequency of rejecting Hy using the 95% asymptotic
critical value of the statistic under Hy. The involved statistics are (18), the Anderson-Rubin
statistic, the Likelihood Ratio statistic and the 2SLS ¢-statistic. The instruments are kept
fixed over the (5000) simulations and we used the same values of k and m; as in figures 3-8,
t.e. k=1,5 and 20 and 7; =1 and 0.1.

k=1 Figures 9 and 10 show plots of the rejection frequencies (power curves) of the hy-
pothesis Hy : § = 0 for various values of 5 in DGP (29) where Hj is tested using (18), the
Anderson-Rubin statistic, the Likelihood Ratio statistic and the 2SLS t¢-statistic. In both
figures the estimated model is just-identified, Kk = m — 1 = 1, and m; = 1 in figure 9 while
m = 0.1 in figure 10. Figure 9 is thus the case of a valid instrument while the instrument is a
weak one in figure 10. As the model is just-identified, the power curves of the Anderson-Rubin
and statistic (18) coincide. Also because of the just-identification, the test on 3 is a linear test
and the Likelihood Ratio statistic is therefore closely related to the Anderson-Rubin statistic.

The power of the Anderson-Rubin statistic, statistic (18) and the Likelihood Ratio statistic
are equal to the (asymptotic) size in § = 0. This doesnot hold for the 2SLS t-statistic. As
expected, the different statistics have quite some power for discriminating values of § in the
valid instrument case but little in the weak instrument case.

k=5 Figures 11 and 12 show plots of the rejection frequencies (power curves) of the hy-
pothesis Hy : § = 0 for various values of 5 in DGP (29) where Hj is tested using (18), the
Anderson-Rubin statistic, the Likelihood Ratio statistic and the 2SLS t-statistic. As k = 5,
the estimated model is over-identified. Figure 9 is the case of a valid instrument, 71 = 1, while
the instrument is weak in figure 10, 7; = 0.1.

Since the model is over-identified, the Anderson-Rubin statistic and statistic (18) no longer
coincide. There is then also a difference between these statistics and the Likelihood Ratio
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Figure 9: Power curves of statistics that test Hy : 3 = 0 with 5% (asymptotic) significance for
various values of # in DGP (29), £k = 1, m; = 1. Pivotal statistic (-), Anderson-Rubin (- -),
Likelihood Ratio (-.-), 2SLS t-statistic (..).

Figure 10: Power curves of statistics that test Hy : § = 0 with 5% (asymptotic) significance
for various values of 8 in DGP (29), k = 1, m; = 0.1. Pivotal statistic (-), Anderson-Rubin (-
-), Likelihood Ratio (-.-), 2SLS t-statistic (..).
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Figure 11: Power curves of statistics that test Hy : § = 0 with 5% (asymptotic) significance
for various values of 8 in DGP (29), k = 5, m; = 1. Pivotal statistic (-), Anderson-Rubin (- -),
Likelihood Ratio (-.-), 2SLS t-statistic (..).

Figure 12: Power curves of statistics that test Hy : § = 0 with 5% (asymptotic) significance
for various values of 8 in DGP (29), k = 5, m; = 0.1. Pivotal statistic (-), Anderson-Rubin (-
-), Likelihood Ratio (-.-), 2SLS t-statistic (..).
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Figure 13: Power curves of statistics that test Hy : § = 0 with 5% (asymptotic) significance
for various values of 5 in DGP (29), £ = 20, 7; = 1. Pivotal statistic (-), Anderson-Rubin (-
-), Likelihood Ratio (-.-), 2SLS t-statistic (..).

statistic. As the Anderson-Rubin statistic and statistic (18) are asymptotically pivotal, they
have the correct size as the rejection frequency is equal to the (asymptotic) size (5%) in 8 = 0.
The Likelihood Ratio statistic is not asymptotically pivotal and therefore has some (minor)
size distortion. The size distortion of the 2SLS ¢-statistic is very large. Because the degrees
of freedom parameter of the limiting distribution of the Anderson-Rubin statistic is larger
then the number of parameters in Hy, the Anderson-Rubin statistic has less discriminatory
power than statistic (18). Figures 11 and 12 clearly show this difference in discriminatory
power. Figure 12 shows that the power curve of (18) has a decrease at the location of the
power curve of the 2SLS ¢-statistic. Figure 12 also shows that the 2SLS ¢-statistic has a lot of
discriminatory power that is completely spurious.

k =20 Figures 13 and 14 show plots of the rejection frequencies (power curves) of the
hypothesis Hy : 8 = 0 for various values of 5 in DGP (29) where Hj is tested using (18), the
Anderson-Rubin statistic, the Likelihood Ratio statistic and the 2SLS t-statistic. As k = 20,
the estimated model is over-identified. Figure 13 is the case of a valid instrument, 7; = 1,
while the instrument is weak in figure 14, 7; = 0.1.

Figures 13 and 14 show that the size distortion of the Likelihood Ratio statistic has in-
creased while the Anderson-Rubin statistic and statistic (18) still have the correct asymptotic
size. Because the degree of over-identification is substantial, there is also a distinct difference
between the power curves of the Anderson-Rubin statistic and statistic (18) while both have
the correct size. Figure 14 shows that both the power curves of the Likelihood Ratio and
statistic (18) have a decrease at the location of the power curve of the 2SLS ¢-statistic. For
statistic (18), this decrease is also present in figure 12 and in the p-value plot in figure 8. Also
notice again the completely spurious power of the 2SLS t-statistic in figure 14. Because the
DGPs in figures 9, 11 and 13 and figures 10, 12 and 14 are identical, the power of statistic (18)
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Figure 14: Power curves of statistics that test Hy : § = 0 with 5% (asymptotic) significance
for various values of § in DGP (29), k = 20, m; = 0.1. Pivotal statistic (-), Anderson-Rubin
(- -), Likelihood Ratio (-.-), 2SLS t-statistic (..).

is minorly affected by adding superfluous instruments to the estimated model. The power of
all the other statistics is seriously influenced by this.

7 Application to the Angrist-Krueger Data

Angrist and Krueger (1991) analyze the return of education on earnings. They use quarter
of birth or quarter of birth interacted with other (dummy) variables as instruments in the
earnings equation. These quarter of birth related variables can serve as instruments since the
quarter of birth is randomly distributed over the population. As a result of the age at which
a person enters school and state-dependent compulsory school attendance laws, the quarter of
birth does, however, affect the educational attainment. We use the “men born between 1930-
39” part of the Angrist and Krueger (1991) dataset which gives us 329.509 observations. This
part of the dataset is also analyzed by Staiger and Stock (1997). Our dataset contains five
variables, i.e. year of birth, state of birth, quarter of birth, years of education and log-earnings,
such that we lack observations on the variables: race, standard metropolitan statistical area,
region and married, that are also used by Angrist and Krueger (1991) and Staiger and Stock
(1997).
The model that is used by Angrist and Krueger (1991) reads:

w; = + ﬁei +’)/IZi +Ul

€= ¢ +8'z +7'x; v (30)

where w; are the log-earnings of individual ¢, e; the number of years of education, z; contains the
included exogenous variables and x; contains the instruments. u; and v; are the disturbances.
We estimated the parameters of (30) for three different specifications of the included exogenous
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Estimation Method\Model specification I II 111
2SLS 0.0891 | 0.0847 | 0.0899
(0.0161) | (0.0328) | (0.0107)
LIML 0.0929 0.0981 0.108
(0.0177) | (0.0465) | (0.0147)
OLS 0.0711 | 0.0711 | 0.0673
(0.003) | (0.0003) | (0.0003)
F-stat 4.91 1.26 1.79
(0.00) | (0.17) | (0.00)

Table 1: Estimates of § and F-statistic for instrument relavence for three different speci-
fications of the Angrist-Krueger model. (standard errors or p-values (F-statistic) between
brackets)

variables and instruments and using three estimation procedures. The results for the parameter
0 are reported in table 1. Model specification I is such that z; contains year of birth dummies
and x; contains quarter of birth interacted with year of birth dummies. Model specification
II is such that z; contains year of birth dummies, age, age? and z; contains quarter of birth
interacted with year of birth dummies. Model specification III is such that z; contains year of
birth dummies, state of birth dummies, age, age? and z; contains quarter of birth interacted
with year of birth dummies and quarter of birth interacted with state of birth dummies.
The quarter of birth interacted with state of birth dummy instruments are also present in
the analysis of Staiger and Stock while the Angrist and Krueger analysis only contains the
quarter of birth interacted with year of birth dummy instruments. Table 1 also reports the
F-statistic for instrument relavence which is the standard F-statistic that tests the hypothesis
Hy : m = 0 in the second equation of (30). The estimates for specification 1 correspond with
the estimates that are reported in table 5 of Angrist and Krueger (1991).

Table 1 shows that the F-statistic that indicates instrument relavence is not significant for
model specification II. The other F-statistics are also relatively small which shows that the
instruments are relatively weak. This implies that we have to interpret the 25LS and LIML
t-statistics with care. We therefore computed asymptotic confidence sets using statistic (18),
the Anderson-Rubin statistic, the 2SLS t-statistic and the Likelihood Ratio statistic. Figures
15 to 17 contain the p-value plots of the different model specifications and test statistics. The
figures also contain a straight line at 0.95 that enables us to straightforwardly construct the
95% asymptotic confidence set.

The confidence sets that result from statistic (18) nicely show that it attains its minimal
value at the liml estimator since the minimal p-values lie at the location of the liml estimator.
This of course also holds for the Likelihood Ratio statistic. The p-value plots also show that
the 2SLS confidence sets are biased in the direction of the OLS estimator compared to the
Likelihood Ratio asymptotic confidence sets and the pivotal confidence sets, see Nelson and
Startz (1990). For all model specifications and all values of «, the a% confidence sets from
statistic (18) exceed the asymptotic «% Likelihood Ratio based confidence set. For model
specification II, the asymptotically pivotal 95% confidence sets that result from statistic (18)
and the Anderson-Rubin statistic are both infinite which is not unrealistic given the non-
significant value of the F-statistic for instrument relavence. The Likelihood Ratio based
asymptotic 95% confidence set is finite for this model specification which shows that there is
a distinct difference between statistic (18) and the Likelihood Ratio statistic. The figures also
show that the Anderson-Rubin statistic leads to much larger confidence sets than statistic (18)
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Figure 15: p-value plots of tests of the hypothesis Hy : § = (, for model specification I using
2SLS t-statistic (..), likelihood ratio statistic (-.-), pivotal statistic (18) (-) and the Anderson-
Rubin statistic (- -).

Figure 16: p-value plots of tests of the hypothesis Hy : 5 = 3, for model specification II using
2SLS t-statistic (..), likelihood ratio statistic (-.-), pivotal statistic (18) (-) and the Anderson-
Rubin statistic (- -).
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Figure 17: p-value plots of tests of the hypothesis Hy : 8 = [, for model specification III
using 2SLS t-statistic (..), likelihood ratio statistic (-.-), pivotal statistic (18) (-) and the
Anderson-Rubin statistic (- -).

which results from the substantial degree of over-identification which is present in all of the
estimated models.

The confidence sets that result from statistic (18) in figures 15-17 are smaller then or equal
to the 95% Bonferroni confidence sets that are reported by Staiger and Stock (1997). The
95% Bonferroni confidence set is also infinite for specification II (which is specification III in
the analysis of Staiger and Stock). The 95% Bonferroni confidence sets have a coverage ratio
of at least 95% such that they are larger than or equal to the confidence sets that result from
statistic (18) that are constructed here.

8 Conclusions

We developed a statistic for conducting joint tests on the structural parameters in Instrumental
variables regression. The statistic is straightforward to compute and has a limiting distribution
that is pivotal with a degrees of freedom parameter that is equal to the number of structural
parameters. The statistic can be used to construct asymptotically pivotal confidence sets for
the structural parameters. These confidence sets can have non-standard shapes. We conducted
a power comparison of different statistics for conducting tests on the structural parameters
and the novel statistic is favored in all cases. The statistic is applied to the Angrist-Krueger
(1991) data for which we obtained similar results as in Staiger and Stock (1997) albeit with a
statistic that is less complicated to construct.

The novel statistic, that can be used to conduct a joint test on all structural parameters,
results from specifying the maximum likelihood estimator of the parameters of the Instrumen-
tal variables regression model as an invertible function of orthogonal statistics, see Kleibergen
(2000). In Kleibergen (2000), next to (18), also a statistic that test the hypothesis of over-
identification is constructed in this manner. By combining these two statistics, it is then also

21



possible to construct a statistic that can be used to conduct tests on subsets of the structural
parameters and which has a pivotal limiting distribution with a degrees of freedom parameter
that is equal to the number of tested parameters, see Kleibergen (2000).
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