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1 Introduction

An important reason for the current interest in semide�nite programming (SDP) is the fact that

SDP problems can e�ciently be solved by interior point methods, see [1, 8, 3, 15, 16, 18, 20, 21,

23, 24, 28] among others. However, a remarkable but disappointing result was recently obtained

by Muramatsu [19], who gave an example of a SDP problem that satis�es all usual regularity

conditions, but nonetheless both the short step and the long step variants of the primal a�ne

scaling algorithm converge to a non-optimal point. For linear programming (LP), the primal

a�ne scaling algorithm is one of the more popular interior point methods, since it is both simple

and e�cient. Although proposed by Dikin [4, 5] as early as in 1967, the a�ne scaling algorithm

only received the proper attention when Barnes [2] and Vanderbei et al.[27] rediscovered it as

a natural simpli�cation of Karmarkar's algorithm [13, 14], by replacing Karmarkar's projective

transformations by a�ne transformations.

By Karmarkar's projective scaling transformation, the original linear objective function becomes

a fractional linear function. The search direction used in Karmarkar's method (in the trans-

formed space) is obtained by optimizing only the numerator of the transformed fractional linear

function (thus a simpli�cation) over an inscribed sphere of the solution space. This search direc-

tion is in general not a descent direction for the original linear objective, and hence a potential

function [13] is used. In contrast to this strategy, Padberg [22] derived a search direction by

optimizing the entire fractional objective over the sphere. Similar algorithms were independently

proposed and analyzed by Goldfarb and Xiao [6], Gonzaga [7] and Jan and Fang [9]. In fact, one

may obtain the search direction derived in Padberg [22] and Goldfarb and Xiao [6] by optimizing

the original linear objective over a conic section, using merely an a�ne transformation. In this

sense, the direction may be called a cone a�ne scaling direction.

Monteiro et al.[17] proposed a variant of the a�ne scaling algorithm for LP that is symmetric

in the duality, henceforth called a primal{dual a�ne scaling algorithm. Other primal{dual

a�ne scaling algorithms were proposed by Jansen et al.[10, 11, 12] and Sturm and Zhang [26].

Although polynomiality of the original method of Dikin is considered unlikely, the primal{dual

variants have been shown to have polynomial iteration bounds. The primal{dual a�ne scaling

algorithm of Monteiro, Adler and Resende [17] requires O(nL2) iterations, whereas the primal{

dual Dikin-type a�ne scaling algorithm of Jansen, Roos and Terlaky [11] and the primal{dual

cone a�ne scaling algorithm of Sturm and Zhang [26] solve linear programs in only O(nL) and

O(
p
nL) main iterations respectively.

Interestingly, De Klerk et al.[3] recently extended both the primal{dual a�ne scaling algorithm of

Monteiro, Adler and Resende [17] and the primal{dual Dikin-a�ne scaling algorithm of Jansen,

Roos and Terlaky [11] to SDP. They derived iteration bounds that generalize the results known

for the respective LP counterparts. In this paper we will generalize the primal{dual cone a�ne

scaling algorithm of Sturm and Zhang [26] to SDP. As is the case for the other two primal{dual

a�ne scaling variants, the iteration bound of this algorithm is the same as for LP. Hence, of

all a�ne scaling variants for SDP, the cone a�ne scaling algorithm has the best worst-case

behavior.

This paper is organized as follows. In Section 2, we will discuss the underlying ideas of the cone

a�ne scaling method. We show in Section 3 how the iterates of the cone a�ne scaling algorithm

for semide�nite programming can be computed. The polynomiality of this algorithm will be
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established in Section 4.

We will use the following notation. The set Sn denotes the set of all symmetric matrices in

IRn�n . Moreover, we will denote Sn++ (Sn+) the set of symmetric positive (semi)de�nite matrices.
The inner product of two matrices X and Y , denoted as X � Y , is de�ned as tr(XTY ). The

corresponding Frobenius norm kXkF of a matrix X is de�ned as
p
X �X. The spectral norm

of a matrix X is denoted by kXk. Given X 2 Sn, we let �min(X) denote its smallest eigenvalue.

The identity matrix will be denoted as I . The direct sum of two matrices X and Y is denoted

by X � Y , i.e.

X � Y =

2
64 X 0

0 Y

3
75 :

2 Cone a�ne scaling fundamentals

Consider the primal SDP problem (P )

(P ) min f C �X : Ai �X = bi; i = 1; : : : ; m; X � 0 g ;
and its dual

(D) max

(
bTy :

mX
i=1

yiAi + Z = C; Z � 0

)
;

where X;Z; C;A1; : : : ; Am 2 Sn and b; y 2 IRm. We make the common assumption that positive

de�nite solutions X and Z exist which are feasible for (P) and (D) respectively (primal{dual

Slater condition). In addition, we assume that n � 2.

As is well-known, the primal{dual Slater condition implies that both (P) and (D) have optimal

solutions. Moreover, if the triple (X; y; Z) satis�es the feasibility requirements

Ai �X = bi for i = 1; 2; : : : ; m; (1)

mX
i=1

yiAi + Z = C; (2)

then

X � Z = C �X � bTy:

The quantity X � Z is known as the duality gap. Therefore, solving the primal{dual pair (P)

and (D) is equivalent to minimizing the duality gap:

minfX � Z : (X;Z) 2 M; X � Z 2 S2n+ g; (3)

where M is the linear manifold of pairs (X;Z) 2 Sn � Sn that satisfy (1) and (2) for some

y 2 <m.
The cone a�ne scaling algorithm generates a sequence of feasible solution pairs (X1; Z1),

(X2; Z2), : : : with

(X i+1; Zi+1) = argminfX � Z : (X;Z) 2 M; X � Z 2 Kig; (4)

where for each iteration i = 0; 1; : : :, the set Ki � S2n+ is an inscribed convex cone of the

semide�nite cone S2n+ . The cones K0;K1; : : : will be chosen in such a way that
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� the cone program (4) can be solved analytically, and

� the duality gaps X1 � Z1; X2 � Z2; : : : converge to zero at least linearly.

In particular, we will consider the case where Ki is a circular cone (also known as second-order

cone). First, we will derive some relations between circular cones and the cone of semide�nite

matrices. Then, we will discuss a class of linear transformations that a�ect the circular cone,

but leave the semide�nite cone untouched. In this way, we obtain a class of inscribed cones of

the semide�nite cone. The cones K0;K1; : : : will be chosen from this class.

2.1 The semide�nite cone and circular cones

Consider the circular cone

Cnin := fY 2 Sn : trY � p
n� 1 kY kF g:

The following lemma states that Cnin is an inscribed cone of the semide�nite cone Sn+.

Lemma 2.1 There holds

Cnin � Sn+:

The above result follows immediately from Lemma A.2 in the Appendix of this paper. In fact,

Cnin is the largest inscribed circular cone of the semide�nite cone Sn+. The following lemma

characterizes the symmetric matrices that are both on the boundary of Sn+ and on the boundary

of Cnin.

Lemma 2.2 Let Y 2 Sn, be a symmetric matrix with eigenvalues �1 � �2 � � � � � �n. The

following two statements are equivalent:

1. Y 2 Cn
in

and �n � 0,

2. �n = 0 and �1 = �2 = � � � = �n�1 � 0.

Proof: It is straightforward to verify that (2) implies (1). To show that the converse is also

true, assume that Y 2 Cnin and �n � 0. Since Cnin � Sn+, it follows that �n = 0. Let u 2 <n be

de�ned as

u1 = u2 = � � �= un�1 = 1; un = 0:

Then, using the fact that �n = 0,

trY =
n�1X
i=1

�i = uT�; kY kF = k�k :

By de�nition, Y 2 Cnin implies that

uT� = trY � p
n � 1 kY kF = kuk k�k ;
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which means, by the inequality of Cauchy-Schwarz, that uT� = kuk k�k, hence � is a multiple

of u. This completes the proof. 2

The smallest circumscribing circular cone of Sn+ is given as

Cnout := fY 2 Sn : trY � kY kF g:

Indeed, if Y 2 Sn+ then it has n nonnegative eigenvalues �1; �2; : : : ; �n, and

trY = k�k1 � k�k = kY kF :

For n = 2, we have C2in = C2out, so that in this case the semide�nite cone is circular itself.

An interesting property of the largest inscribed circular cone Cnin is that it contains the so-called
Dikin-sphere [3]:

fY 2 Sn : kY � IkF � 1g:

Lemma 2.3 Let Y 2 Sn. If kY � IkF � 1 then Y 2 Cn
in
.

Proof: Assume that kY � IkF � 1. Observe that we have Y 6= 0 (since n � 2) and

1 � kY � Ik2F = kY k2F � 2trY + n:

Rearranging terms, we get

trY � kY k2F + (n� 1)

2
:

However, it follows from the arithmetic-geometric mean inequality that 
kY kF +

n� 1

kY kF

!
� 2

p
n � 1;

and hence

trY � p
n� 1 kY kF :

2

A well known property (Sylvester's law of inertia) of the semide�nite cone is that for any

invertible matrix P of order n, we have

Y 2 Sn+ if and only if PY PT 2 Sn+: (5)

Now consider the class of linearly transformed circular cones

Cn(�; P ) := fY 2 Sn : trPY PT �
q
(1� �2)n

PY PT

F
g; (6)

with � 2 [0; 1] and P an invertible matrix. From Lemma 2.1 we know that

Y 2 Cn( 1p
n
; P )) PY PT 2 Cnin � Sn+ ) Y 2 Sn+;
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where the last implication follows from (5). Hence,

Cn(�; P ) � Cn( 1p
n
; P ) � Sn+;

for all 0 � � � 1=
p
n and invertible P . Remark also that

Cn( 1p
n
;Q) = Cnin; Cn(

r
1� 1

n
;Q) = Cnout;

for any orthogonal matrix Q, because circular cones are invariant under orthogonal transforma-

tions.

2.2 The symmetric primal{dual transformation

Consider a pair (X;Z) 2 M such that X and Z are both positive de�nite. Let �XZ denote a

positive diagonal matrix whose diagonal entries are the eigenvalues of the matrix XZ. De�ne

V := �
1=2
XZ:

It is shown in [24] that there exists an invertible matrix Ld such that

L�1d XL�Td = LT
dZLd = V:

We see that the pair (V; V ) is feasible for the linearly transformed SDP

minf �X � �Z : (Ld �XLT
d ; L

�T
d

�ZL�1d ) 2 M; ( �X � �Z) 2 S2ng:
This elucidates that the above transformation is known as the symmetric primal{dual transfor-

mation. Due to the invertability of Ld, the above problem admits a one-to-one correspondence

with the untransformed problem (3). Remark that the duality gap of the pair (X;Z) in the

original SDP pair is the same as the duality gap of the pair (V; V ) for the transformed SDP pair:

trXZ = tr�XZ = trV 2:

It follows that the optimal solution set will be approached if V ! 0.

2.3 Cone a�ne scaling algorithm

The cone a�ne scaling algorithm to be introduced is iterative in nature. Suppose that in the

i-th iteration of the cone a�ne scaling algorithm, we have an iterate (X i; Zi) 2M with X i and

Zi positive de�nite. We compute Lid such that

(Lid)
�1X i(Lid)

�T = (Lid)
TZiLid;

exactly as discussed above. The next iterate is then de�ned as the solution (X i+1; Zi+1) of

the cone program (4), with Ki := C2n(�=p2; (Lid)�1 � (Lid)
T), for a suitable parameter � 2

(0; 1=
p
n). We will derive an analytic expression for the solution (X i+1; Zi+1) of (4) in this

section. Obviously, this solution does not exist if Ki \ M = ;. However, we will show in

Section 4 that this will not occur if we choose � = 1=(4
p
n).
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Cone A�ne Scaling Algorithm

Input:

An initial feasible solution (X0; Z0), a parameter � 2
(0; 1=

p
n) and tolerance � > 0

begin

i := 0;

while X i �Zi < � do
begin

Compute Lid satisfying

(Lid)
�1X i(Lid)

�T = (Lid)
TZiLid.

Calculate the new iterates

(X i+1; Zi+1) := argminfX � Z : (X;Z) 2 M; (X � Z) 2
Kig,
with Ki := C2n(�=p2; (Lid)�1 � (Lid)

T),

and let i := i+ 1.
end

end

3 Search directions

In this section we will prove that the above algorithm can be implemented in an explicit way,

i.e. we show that at each iteration the search directions can be computed analytically. Since

the algorithm is iterative, we will illustrate this fact by amplifying how one particular iteration

should proceed. For notational convenience, let X � 0; Z � 0 and (X;Z) 2 M be the current

iterates under consideration. We need to compute a new solution as follows

X+ := X + 2�X;

Z+ := Z + 2�Z;

where �X and �Z are displacements satisfying the feasibility requirements

Ai ��X = 0; i = 1; : : : ; mPm
i=1�yiAi +�Z = 0 for some y 2 IRm;

(7)

and the constraint

(X+ � Z+) 2 C2n(�=
p
2; (Ld)

�1 � (Ld)
T): (8)

The displacements in the transformed space are given by

Dx = L�1d �XL�Td ;

Dz = LT
d�ZLd:

(9)
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Let Dv := Dx + Dz and notice from (7) and (9) that Dx?Dz . Hence, Dx and Dz form an

orthogonal decomposition of Dv. Remark that

(L�1d � LT
d )(X

+ � Z+)(L�Td � Ld) = (V + 2Dx)� (V + 2Dz):

Constraint (8) can therefore be rewritten as follows:

tr((V + 2Dx)� (V + 2Dz)) �
s
(1� �2

2
)2n k(V + 2Dx)� (V + 2Dz)kF : (10)

However, using the fact that Dx?Dz , we have

kDxk2F + kDzk2F = kDx +Dzk2F = kDvk2F ;
so that

k(V + 2Dx)� (V + 2Dz)k2F = kV + 2Dxk2F + kV + 2Dzk2F
= kV k2F + kV + 2Dvk2F
= kV � (V + 2Dv)k2F : (11)

Moreover,

tr((V + 2Dx)� (V + 2Dz)) = tr(V � (V + 2Dv)): (12)

Combining (10){(12), it follows that (10) is equivalent with

tr(V � (V + 2Dv)) �
s
(1� �2

2
)2n kV � (V + 2Dv)kF ;

i.e. V � (V +2Dv) 2 C2n(�=
p
2; I). In order to solve the cone program (4), we have to minimize

the duality gap

X+ � Z+ = tr((V + 2Dx)(V + 2Dz)) = kV k2F + 2V �Dv:

It follows that Dv is the solution of

minfV �Dv : tr(V � (V + 2Dv)) �
s
(1� �2

2
)2n kV � (V + 2Dv)kF g: (13)

Denoting the angle between V and the identity matrix I by �, i.e.

� = arccos(
trVp
n kV kF

);

we let

� := sin(�):

In other words

� =

s
1� (trV )2

n kV k2F
: (14)

The crux of the cone a�ne scaling algorithm is that (4), which is equivalent to (13), can be

solved analytically as the following lemma shows.
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Lemma 3.1 For � < � < 1, the solution of (13) is

Dv =
 � 1

2(1� �2)

trV

n
I �  + 1

2
V (15)

where

 =

s
2� �2 � �2

�2 � �2
: (16)

Proof: Consider the convex program (13). The Lagrangian is

L�(Dv) = V �Dv + �(
1

2

q
(2� �2)n(kV k2F + kV + 2Dvk2F )� tr(V +Dv))

with gradient

rL�(Dv) = V + �(V + 2Dv)� �I;

where we let

� := �

s
n(2� �2)

kV k2F + kV + 2Dvk2F
: (17)

The Karush{Kuhn{Tucker optimality conditions are

rL�(Dv) = V + �(V + 2Dv)� �I = 0; (18)

� � 0 and

s
n(1� �2=2)

2
(kV k2F + kV + 2Dvk2F )� tr(V +Dv) � 0; (19)

�(

s
n(1� �2=2)

2
(kV k2F + kV + 2Dvk2F )� tr(V +Dv)) = 0: (20)

Rearranging the terms in (18), we have

2�(V +Dv) = �I + (�� 1)V: (21)

From (20) we obtain

0 = 2�(

s
n(1� �2=2)

2
(kV k2F + kV + 2Dvk2F )� tr(V +Dv))

= 2�n(1� �2=2)� 2�tr(V +Dv)

= 2�n(1� �2=2)� �n� �trV + trV;

where, in the last equation, we used (21). The above relation implies that

� =
(� � 1)trV

n(1� �2)
: (22)
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However, the quantity � depends on �. In particular, we have from the de�nition of � (17) that

n(2� �2)�2 = �2(kV k2F + kV + 2Dvk2F )
= �2 kV k2F + k�I � V k2F ;

which can be rewritten as

(�2 + 1) kV k2F = n(1� �2)�2 + 2�trV:

Substituting � by (22) in the above relation yields

(�2 + 1) kV k2F = (� � 1)�trV + 2�trV = (� + 1)�trV =
(�2 � 1)(trV )2

n(1� �2)
:

Furthermore, using (14) it follows that

(�2 + 1)(1� �2) = (�2 � 1)(1� �2):

As � is nonnegative, we conclude that

� =

s
2� �2 � �2

�2 � �2
= :

Together with (18) and (22), the lemma follows. 2

From the de�nition of , we have

2+ 1 = 2
1� �2

�2 � �2
; 2 � 1 = 2

1� �2

�2 � �2
; (23)

so that
 � 1

2(1� �2)
=

2� 1

2(1� �2)( + 1)
=

1

(�2 � �2)(+ 1)
;

and
 + 1

2
=

2 + 1

2(+ 1)
+

1

 + 1
=

1� �2

(�2 � �2)( + 1)
+

1

 + 1
:

Applying the above two relations and (14) to (15) it follows that

Dv =
 � 1

2(1� �2)

trV

n
I �  + 1

2
V

=
1� �2

(�2 � �2)(+ 1)
(
kV k2F
trV

I � V )� 1

 + 1
V: (24)

The new value of the duality gap, after taking the cone a�ne scaling step, is derived in the

lemma below. Let us �rst de�ne �+
XZ as the positive diagonal matrix whose diagonal entries are

the eigenvalues of the matrix X+Z+.
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Lemma 3.2 We have V +
2
F =

 � 1

 + 1
kV k2F ;

where V + := (�+
XZ)

1

2 .

Proof: Since Dx?Dz , we haveV +
2
F
= tr(V + 2Dx)(V + 2Dz) = V � (V + 2Dv):

Now we derive from (24) that

V �Dv = � 1

 + 1
kV k2F :

Combining the above two relations, the result follows. 2

4 Polynomiality of the cone a�ne scaling algorithm

We will show in this section that the cone a�ne scaling algorithm has a polynomial iteration

bound. Observe from Lemma 3.1 that the cone a�ne scaling step is only de�ned if � < �.

Therefore, it is crucial for the convergence analysis to estimate the next value for �, viz. the

quantity �+ := sin(�+), where �+ is the angle between V + and the identity matrix.

Lemma 4.1 For any orthogonal matrix Q, there holds

�+ � 1

2
� +

V +Dv �QV +QT

F

kV +kF
:

Proof: Since �+ is the sine of the angle between V and the identity matrix I , we have

�+
V +


F

= min
�

�I � V +

F

= min
�

�I � QV +QT

F

� min
�
k�I � (V +Dv)kF +

V +Dv � QV +QT

F
:

However,

V +Dv =
 � 1

2(1� �2)

trV

n
I +

 � 1

2
V; (25)

so that

min
�
k�I � (V +Dv)kF =

 � 1

2
min
�
k�I � V kF =

 � 1

2
� kV kF :

Using Lemma 3.2, we further have

min
�
k�I � (V +Dv)kF =

1

2

s
 + 1

 � 1

 � 1


�
V +


F
=

1

2

s
2 � 1

2
�
V +


F
� 1

2
�
V +


F
:

Now, the lemma follows easily from the above derivations. 2

The following result is cited from Sturm and Zhang [25], Corollary 3.1.
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Lemma 4.2 Suppose V +Dv � 0. Let � := kDvkF =�min(V +DV ). If � < 2=3 then there exists

an orthogonal matrix Q such thatV +Dv � QV +QT

F
� �

2� 3�
kDvkF :

Based on Lemma 4.1 and Lemma 4.2, a natural way to proceed the estimation of �+ is to work

out the quantities � and kDvkF = kV +kF . This will be done in the following lemmas.

Lemma 4.3 There holds

kDvkF =

s
�2

�2 � �2
� (1� �2)�2

(2� �2 � �2)(�2 � �2)

kV kF
 + 1

:

Proof: From (24) and the fact that ((kV k2F =trV )I � V )?V , we have

kDvk2F =

"
1� �2

(�2 � �2)( + 1)

#2
tan2(�) kV k2F +

kV k2F
( + 1)2

:

By the de�nition of �, we have tan2(�) = �2=(1� �2). Therefore,

kDvk2F =
kV k2F
( + 1)2

"
1 +

�2(1� �2)

(�2 � �2)22

#

(16)
=

kV k2F
( + 1)2

"
1 +

�2(1� �2)

(�2 � �2)(2� �2 � �2)

#

=
kV k2F
( + 1)2

"
�2

�2 � �2
� (1� �2)�2

(2� �2 � �2)(�2 � �2)

#
:

2

Lemma 4.4 There holds

kDvkF
kV +kF

=

s
�2

2(1� �2)
� �2

2(2� �2 � �2)

Proof: Using Lemmas 3.2 and 4.3 and relation (23), it follows that

kDvk2F
kV +k2F

=

"
�2

�2 � �2
� (1� �2)�2

(2� �2 � �2)(�2 � �2)

#
1

2 � 1

=
�2

2(1� �2)
� �2

2(2� �2 � �2)
:

2

11



Lemma 4.5 There holds

� =
kDvkF

�min(V +Dv)
�
p
2n�:

Proof: Let

� :=

p
n

kV kF
(
trV

n
+ (1� �2)�min(V )):

We obtain with (25),

�min(V +Dv) =
 � 1

2(1� �2)

�
trV

n
+ (1� �2)�min(V )

�
=

 � 1

2
p
n(1� �2)

� kV kF :

Now using Lemma 4.3, we have

� =

s
�2

�2 � �2
� (1� �2)�2

(2� �2 � �2)(�2 � �2)

2
p
n(1� �2)

�(2 � 1)

Applying (16) and (23),

� =
1

�

q
(2� �2 � �2)n�2 � (1� �2)n�2

=
1

�

q
(1� �2)n�2 + n(�2 � �2):

From Lemma A.2 (see the Appendix) we have

V � (1� pn � 1 tan(�))
trV

n
I

� (cos(I; V )�pn � 1 sin(�))
kV kFp

n
I

� (1� pn�)kV kFp
n

I:

This yields a lower bound on �

� �
p
1� �2 + (1� �2)(1�pn�):

Therefore, we have

� �
p
(1� �2)n�2 + n(�2 � �2)p
1� �2 + (1� �2)(1� pn�)

�
p
(1� �2)n�2 + n(�2 � �2)p

1� �2
: (26)

Since the above right-hand side of (26) is monotone in � and � 2 (0; 1) we obtain

� �
q
2n�2 � n�4

�
p
2n�;

completing the proof. 2
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Lemma 4.6 Suppose that � � 1=(4
p
n). Then, there exists an orthogonal matrix Q such that

kV +Dv � QV +QTkF
kV +kF

� 1

2
�:

Proof: Combining Lemma 4.2 and Lemma 4.4 we haveV +Dv �QV +QT

F

kV +kF
� �

2� 3�

s
�2

2(1� �2)
� �2

2(2� �2 � �2)
:

Using that � � p
2n� and � � 1=(4

p
n) it follows thatV +Dv �QV +QT


F

kV +kF
� �

2� 3�

�p
2(1� �2)

� 1

2
�;

which yields the proof. 2

Combining the results above, we are now able to prove the following result.

Lemma 4.7 Let � � 1=(4
p
n). Then, there holds

�+ � �:

Proof: From Lemma 4.1 and Lemma 4.6 we conclude that

�+ � 1

2
� +

1

2
� � �:

2

We are now in a position to prove polynomiality of the cone a�ne scaling algorithm.

Theorem 4.8 Suppose X0 and Z0 are feasible interior solutions of (P) and (D) respectively.

Let � be an accuracy parameter. Moreover, let � = 1=(4
p
n), and �0 = sin(V 0; I) � �. Then

the cone a�ne scaling algorithm yields a pair of primal and dual feasible solutions (X;Z) with

X � Z < � in at most O(pn log(X0 � Z0=�)) main iterations.

Proof: From Lemma 4.7 we have �i � � for all i. Now choose � = 1=(4
p
n). Hence

i =

s
2� �2 � (�i)2

�2 � (�i)2
=

s
2(1� (�i)2)

�2 � (�i)2
� 1

i �
s

2

�2
� 1 �

s
2

�2
� 6

p
n:

We have from Lemma 3.2

X i+1 �Zi+1 = (1� 2

i + 1
)X i � Zi � (1� 2

6
p
n + 1

)X i � Zi;

which implies the theorem. 2
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A Technical Lemmas

Lemma A.1 Let Y 2 Sn. If trY = 0, then

kY k �
r
n� 1

n
kY kF :

Proof: Let us denote the eigenvalues of Y by �1; : : : ; �n, where we assume, without loss of

generality, that these eigenvalues are ordered such that

j�1j � j�2j � � � � � j�nj :
By de�nition of the Frobenius norm of Y , and using that the trace of a matrix is the sum of its

eigenvalues, we have

kY k2F =
nX
i=1

�2i = �2n +
n�1X
i=1

�2i : (27)

From trY = 0 we have

�n = �
n�1X
i=1

�i;

so that
n�1X
i=1

�2i �
�2n

n � 1
=

n�1X
i=1

(�i +
�n

n� 1
)2 � 0: (28)

Combining (27) and (28) yields

kY k2F � (1 +
1

n � 1
)�2n =

n

n � 1
kY k2 :

This completes the proof. 2

Lemma A.2 Let Y 2 Sn with trY > 0. Let

� := arccos(
trYp
n kY kF

)

denote the angle between Y and the identity matrix. If
p
n� 1 tan(�) � 1, then

n

trY
Y � (1� pn� 1 tan(�))I:

Proof: For any matrix A 2 Sn we know that A + kAk I � 0. Applying this property with

A = ((n=trY )Y � I) 2 Sn we conclude that

n

trY
Y = I + (

n

trY
Y � I) � (1�

 n

trY
Y � I

)I: (29)

Since tr((n=trY )Y � I) = 0, we obtain from Lemma A.1 that n

trY
Y � I

 �
r
n� 1

n

 n

trY
Y � I


F

=
p
n� 1 tan(�):

Together with (29) this implies the lemma. 2
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