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1 Introduction and motivation

Asset returns are leptokurtic, that is, the tails of the distribution contain too many ex-

treme observations to �t the normal distribution. Moreover, these extreme observations

tend to cluster together over time. Periods of large price movements alternate with periods

of relative tranquillity. This clustering of extraordinary movements in �nancial time series

is supposed to correspond with time-varying volatility. Given the importance of volatility

as a measure of risk in many �nancial decision problems, there has been a growing interest

in describing and forecasting volatility during the last, say, �fteen years. By far the most

popular models which are used for this purpose are the (Generalized) AutoRegressive Con-

ditional Heteroskedasticity [(G)ARCH] models, developed in Engle (1982) and Bollerslev

(1986). Recent surveys of the GARCH (and related) literature are provided by Bollerslev,

Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), Diebold and Lopez (1995),

Palm (1996), Shephard (1996), and Gourieroux (1997).

GARCH models have been shown to be able to replicate the salient features of asset

returns mentioned above, i.e., they are able to generate time series which have uncondi-

tional distributions with fatter tails than the normal density and which display clustering

of large realizations. Furthermore,

. . . temporal clustering of outliers can be used to predict their occurrence and

minimize their e�ects. This is exactly the approach taken by the ARCH model.

[Engle, 1982, p.992]

Obviously, in order to be able to exploit the apparent clustering of outliers for forecasting,

as suggested by Engle (1982), or to estimate the parameters in the (G)ARCH model

with some degree of precision, the data should display at least a few periods with high

volatility. The same holds, for example, for nonlinear models for business cycles, which

can only usefully be considered for data with at least two (but probably more) recessions.

Put di�erently, when �nancial time series display only very few short patches of extreme

observations, one may wonder if the consideration of elaborate (G)ARCH models is of

practical relevance. For example, if there is only one patch of two sequential outliers, there

are no degrees of freedom to estimate the three parameters in the popular GARCH(1,1)

model, let alone to estimate nonlinear extensions of this model which contain even more

parameters. Given this potential shortage of degrees of freedom, it makes sense to test
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for ARCH �rst instead of �tting an ARCH model right-away. Since one would want to

avoid being alarmed because of only a limited number of short patches of outliers, one

should preferably use a test for ARCH which is robust to such circumstances. It would

then be sensible to consider (a version of) an ARCH model only when this robust ARCH

test indicates its potential usefulness.

In this paper we apply the robust ARCH test developed in Van Dijk, Franses and Lucas

(1998) to a large set of daily observed �nancial time series (over two disjoint samples of 5

years). Before we turn to this application, we investigate the e�ect of patches of outliers

on the standard (and non-robust) test for ARCH put forward by Engle (1982). Our

examination uses both theoretical (asymptotic) arguments in Section 2 and Monte Carlo

simulations in Section 3. Our empirical �ndings, presented in Section 4, show that for

several daily series, ARCH e�ects are due to only a few short patches of outliers (out of

approximately 1250 observations). For about one half of the series analyzed we still �nd

evidence of ARCH when the robust test is applied.

2 Testing for (G)ARCH

This section is divided into two parts. First, we brie
y discuss the standard and robust

Lagrange Multiplier [LM] tests for (G)ARCH. Secondly, we discuss the properties of the

standard LM test in the presence of short patches of outliers.

2.1 The LM tests for (G)ARCH

Consider the AR(m)-GARCH(1,1) model for a time series yt,

�(L)(yt � �) = "t; t = 1; : : : ; T; (1)

"t = �t�t; (2)

where �(L) = 1 � �1L � : : : � �mL
m is a polynomial in the lag operator L, de�ned

as Lkyt = yt�k for all integers k, having all roots outside the unit circle, f�tg
T
t=1 is a

sequence of independent identically distributed [i.i.d.] random variables with E(�t) = 0

and E(�2t ) = 1, and

�2t = ! + �"2t�1 + ��2t�1; (3)

with ! > 0, �; � � 0 and � + � < 1. These parameter restrictions are necessary and

su�cient for the conditional variance of "t to be always positive and the unconditional
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variance �2, given by �2 = !=(1� �� �), to exist.

When � = 0 in (3), the model reduces to an ARCH(1) model, introduced in En-

gle (1982). This model can be extended straightforwardly to a general ARCH(q) model

by including additional terms "2t�2; : : : ; "
2
t�q in (3). Engle (1982) also derives the LM

test for the null hypothesis of conditional homoskedastic errors against the alternative of

ARCH(q). Lee (1991) shows that the LM test for GARCH(p,q) is the same as the test for

ARCH(q) when p � q. The GARCH(p,q) model is obtained by adding "2t�2; : : : ; "
2
t�q and

�2t�2; : : : ; �
2
t�p as regressors to (3). The LM test against ARCH(q) is given by

� =
T f̂ 0Ẑ(Ẑ 0Ẑ)�1Ẑ 0f̂

f̂ 0f̂
; (4)

where Ẑ 0 = (ẑ01; : : : ; ẑ
0
T ), ẑt = (1; "̂2t�1; : : : ; "̂

2
t�q)

0, and f̂ 0 = (f̂ 01; : : : ; f̂
0
T ), f̂t = ("̂2t =�̂

2 � 1),

with �̂2 =
PT

t=1 "̂
2
t =T and "̂t denoting the least squares residuals from estimating the

conditional mean equation (1) under the null of no ARCH by Ordinary Least Squares

[OLS]. The LM test � can simply be computed as TR2, where R2 is the coe�cient of

determination of an auxiliary regression of the squared residuals "̂2t on an intercept and

"̂2t�1 through "̂2t�q. Under the null hypothesis of no (G)ARCH, this standard LM test is

asymptotically �2 distributed with q degrees of freedom.

Now assume that additive outliers occur such that, instead of the `clean' series yt, one

observes the series xt which is equal to yt plus an additive outlier [AO] process,

xt = yt + ��t; (5)

where f�tg is a stochastic contamination process, which takes non-zero values with positive

probability, and where � > 0 is a non-zero constant indicating the magnitude of the AO's.

The model for xt implied by (1)-(3) and (5) is similar in spirit as the model proposed by

Friedman and Laibson (1989). It should be noted that this model does not imply that all

variation in and clustering of volatility of xt is explained by outliers, only that an explicit

distinction is made between ordinary and extraordinary movements.

It is well-known that OLS estimates of the mean and the autoregressive parameters

are severely biased when AO's are neglected. Using asymptotic arguments, Van Dijk,

Franses and Lucas (1998) (VDFL hereafter) show that, in case the AO's occur in isolation,

this bias adversely a�ects both the size and power properties of the standard LM test

for ARCH. They propose a modi�ed LM test, which can be obtained by using an outlier
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robust estimator for the parameters in (1) instead of OLS. In addition to estimates of

the parameters in the conditional mean equation, the (iterative) estimation procedure

suggested by VDFL provides weights ŵ"t , which actually identify the observations which

are to be considered as outliers. When ŵ"t = 1, the observation at time t is perfectly

regular, while a weight smaller than one indicates that the observation does not match the

properties of the bulk of the data. Obviously, if ŵ"t = 0, the corresponding data point is

an extreme outlier. It should be noted that the `observation at time t' here refers to the

composite of the regressand yt and regressors yt�1; : : : ; yt�m, as aberrant values of either of

those can cause the weight to be smaller than 1. The modi�ed LM test for ARCH, denoted

as �R, is given by (4), with ẑt and f̂t now de�ned as ẑt = (1; ŵ2
"t�1

"̂2t�1; : : : ; ŵ
2
"t�q

"̂2t�q)
0 and

f̂t = ŵ2
"t
"̂2t , respectively, where it should be stressed that the "̂t's are the residuals from

robust estimation. The outlier robust LM test statistic can simply be computed by forming

weighted regression residuals and running an auxiliary regression of the squared weighted

residuals on an intercept and q lags. The LM test is again equal to TR2, using the R2 from

this auxiliary regression. VDFL show that this robust LM test for ARCH is asymptotically

distributed as �2 with q degrees of freedom. Simulation results in VDFL show that the

robust LM test has quite satisfactory size and power properties, already in samples as

small as 100 observations, even when no outliers are present.

The analysis in VDFL is con�ned to the case of isolated AO's, which occur when the

contamination process �t in (5) is characterized as P (�t = 0) = 1� �, P (�t = 1) = P (�t =

�1) = �=2, with 0 < � < 1. However, additive outliers can also cluster together or,

put di�erently, occur in patches. A patch of k outliers occurs if we allow the �t to be

autocorrelated as follows,

�t =

(
~�t if vi 6= 0 for some i = t� k + 1; : : : ; t;
0 else;

(6)

with ~�t and vt i.i.d., P (~�t = 1) = P (~�t = �1) = 1=2, P (vt = 0) = 1��, and P (vt 6= 0) = �.

The e�ect of such patches on the asymptotic distribution of the standard LM test for ARCH

is considered next.

2.2 The e�ect of patchy additive outliers on the standard LM test

In this subsection, we use asymptotic arguments to show that the occurrence of only a

few adjacent AO's may result in spurious detection of ARCH e�ects. We study the e�ect
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of additive outliers that occur in patches of length k in a model that contains neither AR

nor GARCH behavior, i.e., (1)-(3) with (5) and (6) with �(L) = 1 and � = 0 in (1), and

� = � = 0 in (3).

Deriving the e�ect of outliers on the asymptotic distribution of the ARCH test � in

(4) is nontrivial, because 8-th order (cross-)moments of the di�erent stochastic variables

in the patchy AO model are involved. Therefore, instead of deriving the exact e�ects, we

follow VDFL and concentrate on the e�ect of outliers on the noncentrality parameter of

the asymptotic �2 distribution of the ARCH(1) test. To be more precise, we only look at

the e�ect of outliers on the main determinant of this noncentrality parameter, namely the

expectation of  
x2t
~�2
� 1

!
x2t�1; (7)

where ~�2 is the probability limit of the OLS estimator of the variance of the regression

errors, i.e., ~�2 � E("̂2t ). The noncentrality parameter is given by the squared expectation

of (7) divided by the variance of (7). For the e�ect of patchy outliers on the estimate of

the variance of the regression errors, ~�2, observe that

~�2 = E("̂2t ) = E(x2t )

= E(y2t ) + �2E(�2t )

= ! + �2(1� P (vt�k+1 = 0; : : : ; vt = 0))

= ! + �2(1� (1� �)k): (8)

Hence, on average the variance is overestimated by �2(1 � (1 � �)k). Furthermore, we

obtain that

E(x2tx
2
t�1) = E((yt + ��t)

2(yt�1 + ��t�1)
2)

= E(y2t y
2
t�1 + y2t �

2�2t�1 + y2t�1�
2�2t + �4�2t �

2
t�1)

= !2 + 2!�2(1� (1� �)k) + �4
�
P (9i2ft�k+1;:::;t�1g : vi 6= 0)+

P (vt 6= 0; vt�1 = 0; : : : ; vt�k+1 = 0; vt�k 6= 0))

= !2 + 2!�2(1� (1� �)k) + �4
�
1� (1� �)k�1 + (1� �)k�1�2

�
= !2 + 2!�2(1� (1� �)k) + �4

�
1� (1� �)k(1 + �)

�
: (9)

As a result, the expectation of (7) can be written as

E(x2tx
2
t�1)� ~�4

~�2
=

�4(1� �)k+1(1 � (1� �)k�1)

! + �2(1� (1� �)k)
: (10)
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Expression (10) clearly demonstrates that unless there are no outliers, i.e., � = 0 or � =

0, or only outliers, i.e., � = 1, the noncentrality parameter of the asymptotic distribution

of the ARCH test statistic is nonzero. This results in a rejection frequency of the standard

test above the nominal level, despite the absence of ARCH e�ects. Hence, AO's occurring

in patches can result in a spurious detection of ARCH e�ects. This is intuitively clear,

as additive outliers result in large values of the innovations. If several of such values

occur in a row, the ARCH test is biased towards the detection of volatility clustering, i.e.,

large innovations following large innovations. If patches become very long (k ! 1) the

noncentrality parameter tends to zero again. Long patches of dominant outliers result in

a distribution of the ARCH test close to its null distribution. Put di�erently, long patches

lead to small size distortions. It can be shown, however, that the same phenomenon for

the noncentrality parameter holds under the alternative of genuine ARCH e�ects, such

that long patches of outliers asymptotically lead to a power loss of the ARCH test. This is

again intuitively clear, because in such cases the homoskedastic white noise contamination

will dominate the original ARCH signal, such that volatility clustering will go unnoticed.

Notice that such a power loss might also occur even if the outliers do not dominate the

ARCH signal. From (8) it is seen that outliers tend to in
ate the estimate of the residual

variance, which reduces the value of the test statistic � and, hence, reduces the power of

the test.

The results which have been presented above can be generalized to models in which

the model for the conditional mean contains autoregressive components, i.e., m > 0 in (1),

and to tests against higher order ARCH alternatives. In the next section we investigate

the performance of the standard and robust ARCH tests in small samples using Monte

Carlo simulations.

3 Small sample properties of ARCH tests

In this section we add to the Monte Carlo experiments presented in VDFL some new

simulation evidence on the small sample properties of the standard and robust ARCH tests.

We examine the e�ects of both isolated and patchy AO's for a sample size which matches

the length of the empirical time series which we analyze in Section 4. To investigate the

e�ects of outliers, we employ two di�erent data generating processes [DGP's]: �rst, a zero

mean white noise process with homoskedastic errors [DGP I] and, second, a zero mean
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white noise process with GARCH(1,1) errors [DGP II]. For both DGP's, we generate 100

series of length 1250, which approximately corresponds with 5 years of daily data. The �rst

100 observations of each series are discarded to avoid dependence of our results on starting

values. For each replication we record whether we �nd ARCH with both tests, denoted

as (Y,Y), ARCH with the standard test but not with the robust test [(Y,N)], or one of

the other combinations [(N,Y) or (N,N)]. These simulations will guide the interpretation

of the empirical �ndings to be presented in the next section.

For both DGP's, we set � = 0 and �(L) = 1 in (1). In the GARCH(1,1) case,

the parameters in the conditional variance equation (3) are set equal to values which are

typically found for �nancial time series, � = 0:15; � = 0:80. The intercept in this equation,

!, is set equal to 0.05, such that the unconditional variance of "t is equal to the variance

of �t. In the simulations, we investigate the e�ects of the magnitude and frequency of

AO's as in (5). We examine isolated outliers of size � = 3, 5, and, 7 which occur with

probability � = 0:01 and 0.05, and in addition, patchy outliers of size � = 3 and 5. Instead

of using (6) to generate the patches, we opt for a more controlled experiment and add

one or two patches of length k = 2; 3 or 5 to each series (occurring at random places in

the series). All possible combinations of the characteristics of the contamination process

render 18 di�erent experiments per DGP. The e�ect of the distribution of the innovations

is investigated by considering a Student t� distribution with degrees of freedom equal to

� = 5 and1, the latter of course corresponding to normal errors. The t5 errors are rescaled

such that they have variance equal to 1. The assumption of t� distributed errors is quite

common in applications of GARCH models to �nancial time series, where yt typically is

the return on a �nancial asset. Finally, the tests are computed for the uncontaminated

series as well, to obtain estimates of their size and power. We evaluate all tests at the

5% signi�cance level and use the asymptotic �2 critical values. To investigate the e�ect of

lag length selection in the auxiliary ARCH test regressions, we set q equal to 1, 5 and 10.

Another reason for considering tests against ARCH(q) errors with q larger than the true

GARCH order is that a GARCH(1,1) process can be approximated by an ARCH(q) process

with q su�ciently large. Throughout, the ARCH tests are applied to series from which

the mean has been removed, either by estimating it with OLS or the robust estimator.

The results for DGP I with isolated outliers are reported in Table 1. From this table,

several conclusions emerge. First of all, when applied to the clean series with normal errors,
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the empirical size of our robust test, which can be obtained by adding up the entries in the

columns headed (Y,Y) and (N,Y), is quite satisfactory. It is comparable with the size of

the standard test, which is given by the sum of the columns (Y,Y) and (Y,N). Second, the

occurrence of AO's has quite di�erent e�ects on the standard and robust tests. For the

standard tests, the size increases if large outliers (� = 5; 7) occur very rarely (� = 0:01). If

outliers occur more frequently, the size returns to the nominal level. Note that this e�ect

is most pronounced for q > 1. On the other hand, the size of the robust test is hardly

a�ected. The results obtained when the errors are Student t5 distributed are roughly

comparable with the results for normally distributed innovations.

- insert Table 1 about here -

Results for the case of patchy outliers are set out in Table 2. In contrast to the limited

impact of neglecting isolated AO's in white noise series on the standard ARCH test, it is

seen that in case of clustering of AO's the standard LM test is a�ected to a much larger

extent. For almost all combinations of n; k and � considered here, the test statistic is

severely oversized. In fact, the empirical rejection frequency gets close to 100%, when

there is, for example, only a single patch of 3 or 5 outliers (of magnitude 5) out of the 1250

observations. In general, the size distortion is smaller in case the errors are distributed as

Student t(5) and the outliers are not very large. In sharp contrast with these �ndings for

the standard test, the empirical size of our robust test is usually close to the nominal 5%

signi�cance level.

- insert Table 2 about here -

The results for DGP II, which concern the empirical power of the tests, are shown in

Tables 3 and 4, for isolated and patchy outliers, respectively. The entries for � = 0 and

� = 0 in Table 3 reveal that a disadvantage of the robust test is slight decrease in power

when no outliers are present for the Student t5 distribution. This illustrates that protection

against aberrant observations sometimes comes at a cost. Notice however that this e�ect

only occurs for the test with q = 1. If isolated outliers occur, the situation is completely

reversed. In general, the power of the standard test decreases quite dramatically, while

the power of the robust test remains high. As mentioned in Section 2.2, this is due to the

fact that outliers in
ate the estimate of the residual variance, which decreases the power

of the standard test.
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- insert Table 3 bout here -

In the presence of patchy outliers, the power of the robust test against ARCH(1) again

su�ers from a power loss for Student t5 distributed errors, as can be seen from the relevant

entries in Table 4. In all other cases, the power of both the standard and robust tests is

very high.

- insert Table 4 about here -

The above simulation results clearly suggest how the outcomes of the standard and

robust ARCH tests can be interpreted in practice. First of all, it seems best to focus

on the outcomes for q = 5 or 10 since this minimizes the power loss from using the

robust test. Given this focus, it is seen that if the robust test �nds no ARCH, there

likely is no ARCH, and when it �nds ARCH, there likely is. Furthermore, the result

(Y,N), meaning �nding ARCH with the standard test but not with the robust test, can

most likely be seen as evidence against ARCH in favor of one or a few short sequences

of extraordinary observations. The opposite result (N,Y), meaning �nding ARCH with

the robust test but not with the standard test, can be interpreted as evidence of ARCH,

possibly contaminated with a few isolated outliers. In both cases we recommend to have a

closer look at the weights from the robust regression and the corresponding observations in

the original time series, before carrying on with any subsequent analyses. A possible way

to proceed is to downweight those observations which are found to be extreme outliers,

and to estimate the GARCH model for the cleaned series. Alternatively, one might use an

iterative outlier-detection method, in which one alternates between removing outliers and

estimating GARCH (or other) models, see Franses and Ghijsels (1998) and Hotta and Tsay

(1998). The forecasting results in Franses and Ghijsels (1998) show that volatility forecasts

from GARCH models of series which have been cleaned in this manner can dramatically

improve upon those from models for contaminated data. Yet another approach would be

to use robust estimation methods to estimate GARCH models.

4 ARCH in exchange rate and stock market returns

In this section we illustrate the use of our robust ARCH test in practice by examining 35

daily �nancial time series. In Section 4.1 we discuss the data and our empirical research

methodology, and in Section 4.2 we report our empirical �ndings.
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4.1 Data and methodology

We consider 35 �nancial time series, which are sampled daily over a ten-year period ranging

from 1986 to 1995. The 35 series can be grouped into 22 exchange rates (versus the US

dollar) and 13 stock market indices. The exchange rates concern the Australian dollar,

Austrian shilling, Belgian franc, British pound, Canadian dollar, Danish kroner, Dutch

guilder, ECU, Finnish markka, French franc, German DMark, Greek drachme, Irish pound,

Japanese yen, Malaysian ringgit, New Zealand dollar, Norwegian kroner, Singapore dollar,

South African rand, Spanish peseta, Swedish kroner, and the Swiss franc. The stock

markets concern those in Amsterdam (CBS), Brussels (BSE), Frankfurt (DAX), Hong

Kong (Hang Seng), London (FTSE), Madrid (MSE), Milan (MC), New York (Dow Jones

and S&P500), Singapore, Stockholm (VEC), Taipei, and Tokyo (Nikkei). We compute

our tests for two subsamples, 1986-1990 and 1991-1995, each of which contain 5 years of

data. In terms of daily data, this means that we have samples of about 1250 observations.

Given this choice to split the sample, our �rst sample contains the 1987 stock market

crash. Results for other samples, which turn out to be qualitatively similar, are available

upon request from the corresponding author. We apply the LM tests for ARCH with q

equal to 1, 5 and 10, although we will focus the discussion of the results on the latter

two values. The tests are applied to both the raw and `prewhitened' series. In both cases

the series are demeaned (`demedianed') �rst by subtracting the mean (median) before

applying the standard (robust) test to the series. Daily means and medians are considered

in order to allow for possible day-of-the-week e�ects, cf. Baillie and Bollerslev (1989). The

prewhitened series are obtained as the residuals from �tting an AR model of order 5. We

also compute the tests when the AR order in (1) is selected by the Akaike and Schwarz

Information Criteria. This does not yield qualitatively di�erent results, and in order to

save space we do not report them. All tests are evaluated at the 5% signi�cance level.

Similar results are obtained using 1% and 10% signi�cance levels, which therefore are not

displayed. We summarize our empirical �ndings by recording the number of times both

tests �nd ARCH [(Y,Y)], the standard test �nds ARCH while the robust test does not

[(Y,N)] and vice versa [(N,Y)], and when both tests do not �nd ARCH [(N,N)].
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4.2 Results

Table 5 presents some general results for the raw and prewhitened series. Using the guide-

lines obtained from the Monte Carlo experiments in Section 3, interpreting the outcomes

is straightforward when we focus on q = 5 and q = 10. Based on the robust ARCH test,

we �nd evidence in favor of ARCH in little over 50% of the cases, which can be seen by

summing the entries in the columns headed (Y,Y) and (N,Y). Additionally, the robust

test does not �nd ARCH while the standard test does in about 40% of the cases (columns

(Y,N) and (Y,N)/((Y,Y)+Y,N))). This suggests that ARCH may quite often be caused

by the occurrence of only one or a few short clusters of outliers. For the time series which

belong to this last group, it may not be possible to exploit this clustering for forecasting or

there may not even be enough degrees of freedom to estimate the parameters in (versions

of) a GARCH(1,1) model.

- insert Table 5 about here -

In Table 6, the results for the tests applied to the raw series are displayed at a more

disaggregated level, by focusing on the two subsamples and exchange rates and stock

market returns individually. Only results for q = 5 are displayed, the corresponding

�ndings for q = 10 look very much alike. It appears that the evidence of ARCH is a bit

more convincing in the 1986-1990 sample, as the entries in the (Y,Y) column in general

are larger than those for the subsample comprising 1991-1995.

- insert Table 6 about here -

To illustrate that exceptional outliers are important, consider the �nal two columns of

this table, which contain percentages of observations which receive weights ŵ"t equal to

zero and equal to one in the robust estimation procedure which is used to compute the

robust LM statistic. It can be seen from the last column that between 4.4% and 7.7% of the

observations are downweighted, i.e., obtain a weight smaller than one, of which between

2.6% and 4.9% of the observations are discarded completely (which is what e�ectively is

done when an observation receives weight zero). In the other columns of the table, these

percentages are shown based on subsets of the series for which a particular is obtained. test

outcome. For example, the entry 3.9 in the block on exchange rates for the sample period

1986-1990, in the column (Y,N) and row ŵ"t = 0, means that for the 10 series for which
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the standard test indicates ARCH and the robust test does not, on average 3.9% of the

observations receives a weight smaller than 0.05 in the robust estimation procedure. These

percentages not only show that indeed aberrant observations which may cause spurious

evidence of GARCH are found by the robust method, but also that outliers are found in

case there is GARCH. Recall that the model for the series xt as speci�ed in (1)-(3) and (5)

does not imply that all apparent ARCH e�ects can be explained by outliers, but rather

that the observed time series consists of a regular component yt, which may very well

exhibit GARCH, and an irregular component ��t. When estimating the parameters of the

regular GARCH component one should take the irregular component into account, using,

for example, the methods outlined in Friedman and Laibson (1989), Franses and Ghijsels

(1998) and Hotta and Tsay (1998).

Table 7 presents our empirical results in even more detail, by showing the outcomes of

the standard and robust tests against ARCH(q) with q = 5 for the individual series. In

addition, the table contains the number of patches of outliers of length k = 2; : : : ; 5 which

are present in the series, where as before an observation is considered to be an outlier if it

receives a weight ŵ"t smaller than 0.05.

- insert Table 7 about here -

Certain series, such as the Malaysian ringgit and the South African rand, contain quite

a few patches of 2 extraordinary observations. For all series, sequences of more than two

outliers are very rare. This substantiates our claim that the evidence of ARCH which is

obtained from applying standard techniques may often be due to only very few aberrant

observations which happen to be clustered over time.

Detailed inspection of the dates of occurrence of the indicated patches reveals several

interesting observations. For the stock market series, most of the patches in the �rst

subsample are concentrated around the turmoil in October 1987 and October 1989. In

fact, many series seem to have `common patches' during these periods. The Asian stock

indices (Hong Kong, Tokyo, Singapore and Taipei) also contain common patches in August

1990. Concerning the exchange rate series, the Austrian shilling, Belgian franc, Danish

kroner, Greek drachme, Dutch guilder, Finnish markka, Spanish peseta, South African

rand, Swedish kroner and Irish pound have a common patch at the end of March 1986. The

British pound, French franc, Dutch guilder, Belgian franc, Finnish markka, Spanish peseta
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have a common patch in the beginning of June 1989. In the second subsample, common

patches for many of the European currencies occur in the second half of September 1992,

during the speculative attack on the French franc and the subsequent demise of the EMS

exchange rate system. Finally, the German DMark, British pound, Japanese yen, Swiss

franc, Dutch guilder, Irish pound, Singapore dollar, Malaysian ringgit, South African rand

have sequence of extraordinary observations in common in the beginning of March 1995.

In our subsequent work we will study the construction of multivariate GARCH models

while taking care of the possible occurrence of common patches of outliers.

5 Conclusions

In this paper we have explored the possibility that apparent ARCH in daily �nancial

time series is caused by only a few sequences of aberrant observations. By comparing

the outcomes of standard and robust tests for ARCH for a large number of empirical

time series with results from extensive Monte Carlo simulations, we conclude that isolated

outliers are unlikely to suggest spurious ARCH but that short patches of outliers do. We

therefore recommend to apply both the standard and robust tests prior to the estimation

of GARCH models, as the joint outcome of these tests might be informative with regard

to the appropriateness of this class of models and the presence of outliers. In case only

the standard test �nds ARCH, the possibility of one or a few patches of AO's instead of

ARCH has to be given some serious thought. If the robust test rejects the null hypothesis

and the estimated weights indicate a few patches of outliers, it might be worthwhile to use

a robust estimation method for ARCH models in order to reduce their potential impact

on parameter estimates.
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Table 1: Evidence of ARCH - Empirical size in the presence of isolated outliers1

� =1 � = 5
� � q (Y,Y) (Y,N) (N,Y) (N,N) (Y,Y) (Y,N) (N,Y) (N,N)

:0 0 1 2 6 5 87 0 2 4 94
5 1 3 2 94 0 4 6 90
10 2 3 2 93 0 5 6 89

:01 3 1 1 2 6 91 0 1 6 93
5 1 3 3 93 0 9 5 86
10 0 1 5 94 0 10 7 83

5 1 0 3 7 90 0 1 5 94
5 0 13 3 86 0 9 5 86
10 0 9 4 87 0 9 7 84

7 1 0 5 8 87 0 4 5 91
5 0 14 3 83 0 9 5 86
10 0 13 4 83 0 8 7 85

:05 3 1 0 5 3 92 0 0 8 92
5 0 3 6 91 0 2 6 92
10 1 2 5 92 0 8 6 86

5 1 0 3 6 91 0 5 5 90
5 0 3 2 95 0 4 5 91
10 0 5 3 92 0 8 4 88

7 1 1 4 7 88 0 6 5 89
5 0 5 4 91 0 4 4 92
10 0 3 6 91 0 9 5 86

1 Evidence of ARCH using the standard LM test and using the robust LM test, developed by
VDFL. The table is based on 100 replications for sample size T = 1250, which roughly corresponds
with 5 years of daily data. The cells report the number of times that a certain outcome occurs when
the test statistics are evaluated at the 5% signi�cance level. For example, (Y,N) means that the
standard LM test detects ARCH (Y) while the robust test does not (N). The series are generated
according a homoskedastic white noise process drawn from a Student t distribution with � degrees
of freedom. Isolated outliers of absolute magnitude � occur with probability �. The q is the number
of lags included in the auxiliary ARCH test regressions, presented in Section 2.1.
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Table 2: Evidence of ARCH - Empirical size in the presence of patchy outliers1

� =1 � = 5
n k � q (Y,Y) (Y,N) (N,Y) (N,N) (Y,Y) (Y,N) (N,Y) (N,N)

1 2 3 1 4 14 3 79 0 9 4 87
5 3 12 3 82 0 12 4 84
10 2 11 1 86 1 16 1 82

5 1 7 88 0 5 3 44 1 52
5 4 81 1 14 1 32 4 63
10 4 76 0 20 1 33 1 65

3 3 1 9 38 1 53 0 15 3 82
5 5 31 2 64 1 14 5 80
10 6 26 3 68 1 17 1 81

5 1 7 93 0 0 4 80 0 16
5 5 94 0 1 1 80 2 17
10 3 94 1 2 1 74 1 24

5 3 1 8 70 0 22 2 29 1 68
5 5 73 2 20 2 28 4 66
10 5 67 0 28 1 31 0 68

5 1 7 93 0 0 3 94 1 3
5 4 96 0 0 6 91 0 3
10 5 95 0 0 1 94 0 5

2 2 3 1 6 34 0 60 1 14 2 83
5 1 19 4 76 1 15 6 78
10 1 14 5 80 1 14 0 85

5 1 7 93 0 0 3 82 1 14
5 4 95 0 1 5 66 1 28
10 6 92 0 2 1 67 0 32

3 3 1 6 66 1 27 1 22 3 74
5 4 66 2 28 0 24 4 72
10 3 59 2 36 2 24 1 73

5 1 8 92 0 0 4 93 0 3
5 6 94 0 0 4 90 1 5
10 4 96 0 0 1 90 0 9

5 3 1 5 93 0 2 1 61 0 38
5 4 94 0 2 6 52 1 41
10 5 90 0 5 1 54 2 43

5 1 6 94 0 0 2 97 0 1
5 5 95 0 0 6 93 0 1
10 6 94 0 0 2 97 0 1

1Evidence of ARCH using the standard LM test and using the robust LM test, developed
in VDFL. The table is based on 100 replications for sample size T = 1250, which roughly
corresponds with 5 years of daily data. The cells report the number of times that a certain
outcome occurs when the test statistics are evaluated at the 5% signi�cance level. For
example, (Y,N) means that the standard LM test detects ARCH (Y) while the robust test
does not (N). The series are generated according to a homoskedastic white noise process
drawn from a Student t distribution with � degrees of freedom. n patches of k outliers of
magnitude � are added at random places in the series. The q is the number of lags included
in the auxiliary ARCH test regressions, presented in Section 2.1.
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Table 3: Evidence of ARCH - Empirical power in the presence of isolated outliers1

� =1 � = 5
� � q (Y,Y) (Y,N) (N,Y) (N,N) (Y,Y) (Y,N) (N,Y) (N,N)

:0 0 1 95 5 0 0 76 19 3 2
5 100 0 0 0 93 6 1 0
10 100 1 0 0 91 9 0 0

:01 3 1 93 3 3 1 70 18 10 2
5 99 0 1 0 90 7 3 0
10 98 1 1 0 89 10 1 0

5 1 59 2 37 2 54 13 23 10
5 78 0 22 0 72 6 21 1
10 72 0 28 0 70 9 21 0

7 1 18 0 78 4 32 4 45 19
5 34 0 66 0 52 4 41 3
10 37 0 63 0 48 6 43 3

:05 3 1 63 3 24 10 58 14 22 6
5 83 0 16 1 79 5 15 1
10 83 1 16 0 79 6 14 1

5 1 18 0 77 5 30 4 52 14
5 32 0 68 0 40 0 56 4
10 23 0 77 0 41 1 51 7

7 1 5 0 90 5 14 3 69 14
5 12 0 88 0 17 0 79 4
10 9 0 91 0 21 1 72 6

1 Evidence of ARCH using the standard LM test and using the robust LM test, developed in
VDFL. The table is based on 100 replications for sample size T = 1250, which roughly corresponds
with 5 years of daily data. The cells report the number of times that a certain outcome occurs when
the test statistics are evaluated at the 5% signi�cance level. For example, (Y,N) means that the
standard LM test detects ARCH (Y) while the robust test does not (N). The series are generated
according to a GARCH(1,1) process with parameters � = 0:15, � = 0:8, ! = 1=(1 � � � �) and
t� distributed innovations with variance normalized to 1. Isolated additive outliers of magnitude
� occur with probability �. The q is the number of lags included in the auxiliary ARCH test
regressions used in computing the LM statistics.
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Table 4: Evidence of ARCH - Empirical power in the presence of patchy
outliers1

� =1 � = 5
n k � q (Y,Y) (Y,N) (N,Y) (N,N) (Y,Y) (Y,N) (N,Y) (N,N)

1 2 3 1 96 4 0 0 69 28 2 1
5 100 0 0 0 91 9 0 0
10 100 0 0 0 93 7 0 0

5 1 97 3 0 0 70 30 0 0
5 100 0 0 0 91 9 0 0
10 100 0 0 0 93 7 0 0

3 3 1 95 5 0 0 73 26 1 0
5 100 0 0 0 96 4 0 0
10 100 0 0 0 94 6 0 0

5 1 96 4 0 0 74 24 0 0
5 100 0 0 0 96 4 0 0
10 100 0 0 0 95 5 0 0

5 3 1 96 4 0 0 75 24 1 0
5 100 0 0 0 91 8 1 0
10 100 0 0 0 91 9 0 0

5 1 96 0 0 0 77 22 1 0
5 100 0 0 0 91 8 1 0
10 100 0 0 0 91 9 0 0

2 2 3 1 96 4 0 0 59 40 1 0
5 100 0 0 0 91 9 0 0
10 100 0 0 0 91 9 0 0

5 1 96 4 0 0 59 40 1 0
5 100 0 0 0 92 8 0 0
10 100 0 0 0 91 9 0 0

3 3 1 95 5 0 0 74 23 2 1
5 100 0 0 0 93 7 0 0
10 100 0 0 0 92 7 0 1

5 1 96 4 0 0 76 24 0 0
5 100 0 0 0 94 6 0 0
10 100 0 0 0 92 8 0 0

5 3 1 97 3 0 0 74 26 0 0
5 100 0 0 0 93 7 0 0
10 100 0 0 0 94 6 0 0

5 1 97 3 0 0 77 23 0 0
5 100 0 0 0 93 7 0 0
10 100 0 0 0 94 6 0 0

1Evidence of ARCH using the standard LM test and using the robust LM test, developed
in VDFL. The table is based on 100 replications for sample size T = 1250, which roughly
corresponds with 5 years of daily data. The cells report the number of times that a certain
outcome occurs when the test statistics are evaluated at the 5% signi�cance level. For
example, (Y,N) means that the standard LM test detects ARCH (Y) while the robust test
does not (N). The series are generated according to a GARCH(1,1) process with parameters
� = 0:15, � = 0:8, ! = 1=(1 � �� �) and Student t� distributed innovations, with variance
normalized to 1. n patches of k outliers of magnitude � are added. The q is the number of
lags included in the auxiliary ARCH test regressions used in computing the LM statistics.
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Table 5: Evidence of ARCH in exchange rate and stock market data, some overall results1

q (Y,Y) (Y,N) (N,Y) (N,N) (Y,N)/((Y,Y)+(Y,N))

Raw series

1 18 41 2 9 0.70
5 36 27 3 4 0.43
10 38 25 4 3 0.40

Prewhitened series

1 25 33 2 10 0.57
5 36 28 2 4 0.44
10 36 28 3 3 0.44

1 Evidence of ARCH using the standard LM test and using the robust LM test, developed in VDFL.
The cells report the number of times (out of 70 cases: 2 samples of 22 exchange rates and 13 stock
indices) a certain outcome appears when the test statistics are evaluated at the 5% signi�cance level.
For example, (Y,N) means that the standard LM test detects ARCH (Y) while the robust test does not
(N). (Y,N)/((Y,Y)+(Y,N)) denotes the frequency that the robust ARCH test does not �nd ARCH while
the standard ARCH test does. The data and the empirical methodology are presented in Section 4.1.

Table 6: Evidence of ARCH in exchange rate and stock market data1

Sample (Y,Y) (Y,N) (N,Y) (N,N) ŵ"t = 0 ŵ"t = 1

Exchange rates
1986-1990 No. 10 10 1 1 4.9 92.3

ŵ"t = 0 6:3 3:9 2:6 2:8
ŵ"t = 1 90:2 93:8 95:4 95:7

1991-1995 No. 8 11 1 2 2.6 94.4
ŵ"t = 0 3:7 3:4 3:6 2:8
ŵ"t = 1 94:3 94:5 94:6 94:2

Stock markets
1986-1990 No. 10 3 0 0 4.9 92.3

ŵ"t = 0 4:9 3:2 � �
ŵ"t = 1 93:3 95:1 � �

1991-1995 No. 8 3 1 1 2.6 94.4
ŵ"t = 0 3:1 2:2 2:6 1:5
ŵ"t = 1 95:2 96:3 95:2 97:2

1Evidence of ARCH using the standard LM test and using the robust LM test, developed in
VDFL. The blocks of three cells in columns 3-6 report the number of times (out of 22 cases for
the exchange rates and 13 cases of the stock market indices) a certain outcome appears when
the test statistics against ARCH(q) with q = 5 are evaluated at the 5% signi�cance level, the
percentage of observations which receive weights smaller than 0.05 (ŵ"t = 0) and larger than
0.95 (ŵ"t = 1) in the robust estimation procedure, when read from top to bottom. The �nal
two columns give those percentage averaged over all test outcomes. The data and the empirical
methodology are presented in Section 4.1. Results are presented for the raw series.
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Table 7: Evidence of patches of outliers in exchange rate and stock market data1

1986-1990 1991-1995
Exchange rate (�,�R) k 2 3 4 5 6 7 (�; �R) k 2 3 4 5

Australian dollar (Y,Y) 8 1 1 0 0 0 (Y,Y) 4 0 0 0
Austrian shilling (Y,N) 7 0 0 0 0 0 (Y,Y) 6 0 0 0
Belgian franc (Y,N) 6 2 0 0 0 0 (Y,N) 0 0 0 0
British pound (N,Y) 1 0 0 0 0 0 (Y,Y) 7 0 0 0
Canadian dollar (Y,N) 3 0 1 0 0 0 (Y,Y) 1 0 0 0
Danish kroner (Y,Y) 3 0 0 0 0 0 (Y,N) 2 0 0 0
Dutch guilder (Y,N) 4 0 0 0 0 0 (Y,N) 3 0 1 0
ECU (Y,Y) 2 0 0 0 0 0 (Y,N) 5 0 0 1
Finnish markka (Y,Y) 3 0 0 0 0 0 (N,N) 3 1 1 0
French franc (Y,N) 6 0 0 0 0 0 (Y,N) 3 0 0 0
German DMark (N,N) 1 0 0 0 0 0 (Y,N) 2 0 0 0
Greek drachme (Y,Y) 15 3 0 0 0 0 (Y,N) 2 1 0 0
Irish pound (Y,Y) 9 0 0 0 0 0 (N,N) 7 0 0 0
Japanes yen (Y,N) 1 1 0 0 0 0 (N,Y) 3 0 0 0
Malaysian ringgit (Y,Y) 14 2 3 2 1 0 (Y,Y) 14 3 1 0
New Zealand dollar (Y,N) 10 0 1 0 0 0 (Y,Y) 3 1 0 0
Norwegian kroner (Y,N) 2 0 0 0 0 0 (Y,Y) 2 0 1 0
South African rand (Y,Y) 13 0 1 0 0 0 (Y,N) 12 1 2 0
Singapore dollar (Y,N) 8 1 0 1 0 0 (Y,N) 7 2 1 0
Spanish peseta (Y,Y) 23 8 1 0 0 0 (Y,N) 2 0 0 0
Swedish kroner (Y,Y) 2 0 0 0 0 0 (Y,Y) 2 0 0 0
Swiss franc (Y,N) 3 0 0 0 0 0 (Y,N) 2 1 0 0

1986-1990 1991-1995
Stock market (�,�R) k 2 3 4 5 6 7 (�; �R) k 2 3 4 5

Amsterdam (Y,Y) 3 1 3 0 0 0 (N,N) 0 0 0 0
Brussels (Y,Y) 10 3 1 0 0 1 (N,Y) 3 0 0 0
Frankfurt (Y,Y) 3 0 1 0 0 0 (Y,Y) 2 0 0 0
Hong Kong (Y,Y) 4 5 0 0 0 0 (Y,Y) 4 2 1 0
London (Y,N) 2 0 1 0 0 0 (Y,N) 1 0 0 0
Madrid (Y,Y) 10 2 1 0 0 1 (Y,Y) 3 1 0 0
Milan (Y,Y) 7 1 0 1 0 0 (Y,Y) 1 0 0 0
New York - Dow Jones (Y,N) 6 0 0 0 0 1 (Y,N) 1 0 0 0
New York - S&P500 (Y,N) 4 0 0 0 0 1 (Y,N) 2 0 0 0
Singapore (Y,Y) 9 3 0 0 1 0 (Y,Y) 6 0 1 0
Stockholm (Y,Y) 2 1 2 0 1 0 (Y,Y) 2 2 0 0
Taipei (Y,Y) 6 1 0 1 0 0 (Y,Y) 8 1 0 0
Tokyo (Y,Y) 5 7 0 1 0 0 (Y,Y) 1 0 1 0
1Evidence of patches of outliers in exchange rate data and stock market data. The column headed (�; �R)

denotes the result from applying the standard LM test for ARCH and the robust LM test, developed in
VDFL, when evaluated at the 5% signi�cance level. For example, (Y,N) means that the standard LM test
detects ARCH (Y) while the robust test does not (N). The remaining columns constain the number of patches
of outliers of length k that occur during the sample period. An observation is considered as an outlier if it
receives a weight smaller than 0.05 in the robust estimation procedure, which is used in computing the robust
LM test. Results are presented for the raw series.
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