
TIME, SPEEDS, FLOWS AND DENSITIES IN STATIC MODELS

OF ROAD TRAFFIC CONGESTION AND CONGESTION

PRICING

Erik Verhoef*

Department of Spatial Economics
Free University Amsterdam

De Boelelaan 1105
1081 HV  Amsterdam

The Netherlands
Phone: +31-20-4446094

Fax: +31-20-4446004
Email: everhoef@econ.vu.nl

Key words: Road traffic congestion, congestion pricing
JEL codes: R41, R48, D62

Abstract
This paper studies some of the properties and fundamentals of static models of road traffic
congestion that have triggered much debate in the literature. The first part of the paper
focuses in particular on the difficulties arising with the backward-bending cost curve in the
context of ‘continuous congestion’. The relevance of the backward-bending segment of the
cost curve for the static analysis of congestion is questioned by demonstrating that
‘equilibria’ on this segment produce upwards shifts of the cost curve itself, and can
therefore not be of a stationary nature. Next, the implications for static models of ‘peak
congestion’ are considered. In doing so, the paper addresses the implicit assumptions,
particularly on the nature of scheduling costs, that are necessary to render static models of
peak congestion internally consistent. The paper ends with a brief discussion of the
implications for dynamic models of peak congestion.
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1. Introduction
Notwithstanding the long history of the economists’ and engineers’ study of road traffic
congestion and congestion pricing (see, for instance, Pigou, 1920; Knight, 1924; Wardrop,
1952; Walters, 1961; and Vickrey, 1969), it is fair to admit that academia has not yet
reached general consensus on the fundamentals that should underlie such analysis, witness
the relatively large number of comments and replies that papers on these topics seem to
trigger (Foster, 1974, 1975, versus Richardson, 1974, 1975; Else, 1981, 1982, versus Nash,
1982; De Meza and Gould, 1987, versus Alan Evans, 1992; Andrew Evans, 1992, 1993,
versus Hills, 1993; and Lave, 1994, 1995, versus Verhoef, 1995). However, especially now
that the introduction of road pricing as a means of combating congestion becomes an
increasingly realistic policy option at various places (Small and Gomez-Ibañez, 1997), the
importance of at least transport scientists coming to a closer agreement on the analytical
backgrounds underlying the phenomenon of road traffic congestion and the derivation of
optimal fees increases likewise. This paper discusses some of the key issues that have
dominated, explicitly or implicitly, the above mentioned debate in the literature, and that
may cause analysts to arrive at rather different representations of congestion, and hence at
different conclusions.

Within the class of economic models of road traffic congestion, two main streams
can be distinguished, namely static and dynamic models. This paper mainly focuses on
static models, especially those based on the so-called ‘fundamental diagram’ of traffic
congestion, depicting the relation between density and speed. Although static models have
obvious limitations in the analysis of traffic congestion, they are still often used for both
research and educational purposes, and it is therefore worthwhile to consider the properties
and implicit fundamentals underlying these approaches in some further detail.

In static models of congestion, the time dimension is not explicitly considered.
However, as will become clear, ‘static’ does not mean that time as such plays no role in
these models. It certainly does, often implicitly, and even causes part of the disagreement.
‘Static’ only means that these models do not explicitly study (or allow for) changes over
time. A main source of disagreement in such static modelling of road traffic congestion
concerns the choice of the output variable in the definition of demand and cost functions.
Two main stances can be distinguished: ‘flow-based’ measures, where the output measure
has an explicit ‘per-unit-of-time’ dimension (De Meza and Gould, 1987; Andrew Evans,
1992, 1993; Else, 1981, 1982 and Nash, 1982), and ‘stock-based’ measures on the other,
such as numbers of trips or densities (Alan Evans, 1992; Hills, 1993; Verhoef et al.,
1995ab, 1996ab). A second main issue concerns the question of whether the analysis
applies to ‘peak demand’ or ‘continuous demand’. This distinction will turn out to have
important implications for the static modelling of congestion. Unfortunately, however, the
question of which of these two types of demand is considered is usually not treated
explicitly in such analyses. These two issues will turn out to be closely related, and both
are dealt with in this paper.

Dynamic models of road traffic congestion typically focus on peak congestion, and
explicitly describe equilibrium patterns of variables such as speeds, densities, and arrival
rates over time during the peak. Two types of such dynamic approaches can be
distinguished. The first one is the ‘bottleneck approach’, originally developed by Vickrey
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(1969), and later on refined and extended in various directions by Arnott et al. (1993,
1997), Braid (1989, 1996), and others (see Arnott et al., 1997, for a comprehensive
overview). The second approach, originally proposed by Henderson (1974, 1981) uses
‘flow congestion’. In contrast to the bottleneck model, in this model travel delays are not
completely eliminated in the social optimum (see Chu, 1995). In both approaches, the
distribution of travel delays and scheduling costs over the peak and the duration of the
peak in the unregulated equilibrium and the social optimum are determined endogenously,
and both models have in common that the optimal toll is time-dependent, reaching its
maximum for the drivers arriving at the desired arrival time.

As mentioned, the present paper is mainly concerned with static models of road
traffic congestion, for which the disagreements among analysts have been particularly
fierce and persistent. Nevertheless, in the process of investigating the underlying, often
implicit assumptions that have caused these analysts to offer different and often opposing
views, some elements that would perhaps sooner be associated with dynamic modelling,
and therefore tend to be ignored in static analyses, will play an important role. Apart from
the aleady mentioned distinction between peak demand and continuous demand, the
question of whether a static equilibrium represents a dynamically stable configuration – a
‘stationary state’ – will be considered explicitly, and will be taken as a prerequisite for a
static equilibrium to be consistent and meaningful. Furthermore, in the static model of peak
demand, the scheduling cost structure necessary to render a static model applicable will be
made explicit.

The paper is organized as follows. Section 2 discusses some main features of static
approaches to the modelling of road traffic congestion, presents some definitions, and
distinguishes between models directed towards the cases of ‘continuous demand’ and
‘peak demand’. Section 3 proceeds by investigating the case of continuous demand, and
focuses in particular on the difficulties arising with the backward-bending cost curve that
have dominated much of the debate in the literature. The relevance of the backward-
bending segment of the cost curve for the static analysis of congestion is questioned by
demonstrating that ‘equilibria’ on this segment produce upwards shifts of the cost curve
itself, and can therefore not be of a stationary nature. Section 4 studies the implications of
this finding for static models of peak congestion. In doing so, it also addresses the question
of the implicit assumptions, particularly on the nature of scheduling costs, that are
necessary to render static models of peak congestion internally consistent. Because these
assumptions turn out to be rather unrealistic, the section also discusses the implications of
the analysis in Section 3 for dynamic models of peak congestion. Finally, Section 5
concludes.

2. The interpretation of static models of road traffic congestion
As with most phenomena studied by economic science, road traffic congestion in reality is
a complicated, inherently dynamic and spatially differentiated process, caused by the
interplay between (and at the same time affecting the decisions of) a large variety of
heterogeneous agents. The analyst studying congestion and congestion pricing is therefore
soon confronted with the strategic choice of whether to opt for either an ‘as realistic as
possible’ modelling approach, in which analytical solutions are difficult to obtain (see, for
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instance, the hydro-dynamic fluid model of Newell, 1988), or for an admittedly much
simpler representation of reality, which, however, permits analytical solutions and,
hopefully, the derivation of more or less general insights into the economic principles
behind the problems studied. This paper is concerned with the latter type of approaches.

Within this group of models, a distinction can be made between static and dynamic
models. In static models, no explicit time dimension is present. Speeds, densities,
generalized costs and the toll in case one is levied are, as it were, constant over time: they
only have one single equilibrium value.1 Although the static model of road traffic
congestion could be criticized for its inherent inability to deal with the dynamic features of
congestion, it has a number of advantages, most of which are related to its apparent
analytical simplicity and tractability. For the same reason, it probably more easily lends
itself for further analytical extensions – other than related to dynamics – than does a
dynamic model. Such extensions may include larger networks, or the study of the
interactions between transport and the overall (spatio-)economic system. It is, given our
analytical capabilities, probably too soon to throw the static model overboard, despite its
limitations. Moreover, exactly because static models of road traffic congestion based on
the fundamental diagram are still often used for both research and educational purposes, it
is worthwhile to consider the properties and implicit fundamentals underlying static
approaches in some further detail.

Notwithstanding the absence of an explicit time dimension in static models of road
traffic congestion, time does play a role in these models. No matter how abstract it may
seem in a ‘time-less’ approach, it is usually postulated that average generalized travel costs
increase with usage2, where this increase is due to decreased speeds and resulting time
losses. Moreover, as in any static economic model of a market, the demand (or marginal
benefit) and supply (or marginal cost) relations can only be specified after it is decided to
which time period they apply – and these should of course be consistent for the two. For
instance, in performing a standard diagrammatic analysis of the static equilibrium of a
market for, let’s say, bread, under the admittedly simplifying assumptions that no fixed
costs and seasonal effects in the production of bread are involved, the consideration of two
periods instead of one would imply an outward rotation of both the supply curve and the
demand curve by a factor 2, yielding a double equilibrium quantity, but the same
equilibrium price. Especially when marginal costs are increasing, the confrontation of the
demand curve pertaining to one period with the supply curve pertaining to two periods
would produce a meaningless, flawed result. No matter how obvious this observation may
seem, comparable flaws may plague static analyses of road traffic congestion, in particular
when directed to the case of peak congestion (see below).

                                               
1 Of course, one could envisage a formulation in which the peak is split up in a number of periods, with
different demand functions, each yielding a different optimal toll. However, these periods, especially
adjacent ones, will in reality of course not be independent. Considering such interdependencies would turn
the model into a dynamic one; either based on discrete or continuous time. Strictly speaking then, a static
formulation yields one single value for an optimal toll.

2 Before turning to the discussion of  which output measure to choose, the neutral phrasing ‘usage’ will be
used.
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A number of variables are normally used to characterize the non-intervention and
optimal equilibria in the analysis of road traffic congestion. In defining these, it is in the
first place important to consider one single, well-defined market. In particular, the product
‘trip’ should be homogeneous, which can most easily be assured by considering a one-link
network, to be used either completely, or not at all, by individual drivers. Hence, all trips
are assumed to have equal length (L). Differences between trips in terms of speeds or
arrival times, which are especially relevant in dynamic models, do not affect this
homogeneity condition as long as such variations are reflected in differences in
‘generalized user costs’. In addition, apart from having a possibly different maximum
willingness to pay for making a trip, giving rise to an elastic demand function for using this
single link, the potential road users should be identical in all other respects. In particular,
they share the same value of time, and they all contribute to congestion in the same way;
for instance, they have the same vehicles and driving styles. These assumptions are
necessary to postulate continuous cost functions, and should be relaxed only if one wishes
to study the impacts of heterogeneity among users explicitly.

Furthermore, in a static equilibrium, all relevant variables will have one single
equilibrium value. This may often be at odds with standard results in dynamic models of
road traffic congestion, where for instance travel times usually vary over the peak (see
Arnott et al., 1997; and Chu, 1995), but it is simply a property of static models. It is,
however, important to emphasize here the difference between the case of ‘peak demand’
(also referred to as models of ‘peak congestion’ in the sequel), where this divergence
between the properties of static and dynamic models is evident, and the case of ‘continuous
demand’ (or ‘continuous congestion’). This latter case would normally result in an
everlasting ‘stationary state’ situation, where a road is continuously used at a constant
intensity, so that the assumptions of single equilibrium values for speeds, flows, and
densities could be less problematic. ‘Peak demand’, in contrast, refers to the case where a
limited number of potential users consider using the road during the same period, the
duration of which could be endogenized, where the total (equilibrium) quantity of actual
users will depend on the (equilibrium) level of user costs. It will become clear in the sequel
that this distinction is important for an unambiguous interpretation of static models of
congestion. Much of the debate in the literature is partly caused by opposing authors
apparently having different types of demand in mind when making their points. Therefore,
in order to illustrate the difference between the two types of demand unambiguously: the
intersection of the inverse demand curve with the horizontal axis gives (1) in case of peak
demand: the total number of road users in case user costs were zero, with zero usage and
an empty road before and after they have travelled; and (2) in case of continuous demand:
the constant and everlasting number of users completing their trip per unit of time in case
user costs were zero. Clearly, one could consider mixed cases, with a certain peak demand
interfering with some continuous demand for the use of the same road, but the main point
here is only to distinguish between these two basic types of demand.

Although one could rightly argue that road traffic congestion is usually due to peak
demand, also continuous demand will be considered in this paper. In the first place, it is the
model that is implicitly assumed to apply in many static models of congestion; often those
models based on the fundamental diagram that use traffic flow as the output measure.
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Secondly, it is closer to standard static economic models of markets, and thus shows some
important differences between such standard models and markets for congested road
usage, apart from the additional complications resulting from the limited duration of the
peak.

Let us now turn to the various relevant variables. Consider first the set of possible
measures of ‘usage’. The first of these is total road usage, over the entire period
considered, without specifying the duration of this period. This variable is relevant only for
the case of peak demand. With continuous demand, total usage is either zero, or increasing
with the time period considered. Total usage can be measured in numbers of road users
completing the desired trip during the peak, and will be denoted N. A second measure for
usage is flow (F), measuring the number of vehicles passing a given point on the road per
unit of time. A third measure related to usage is density (D), which refers to the number of
users per unit of road space, where the total road space can be measured as the product of
two constants, namely length L and width W (usually the discrete number of lanes). D and
F are relevant measures for peak demand as well as for continuous demand. Finally, the
variable n will be used to represent the number of users that are simultaneously present on
the road.

Speed (S) is defined as distance travelled per unit of time, and is, after flow, the
second variable in which a time component is explicitly present. Speed has, through the
value of time (v), an important impact on the generalized user costs, because decreased
speeds imply increased travel times. These generalized costs, which make up average
social costs (AC), therewith include both monetized costs (for instances, expenses on fuel)
and time costs. As in most models, only time costs will be considered in what follows.

Apart from speeds and flows, there are three more time-related variables relevant
for the static analysis of congestion, the first of which is the duration of the peak (T). This
variable is usually ignored in static analyses of congestion, even if directed to the case of
peak demand. However, it should be considered carefully in these cases, in order to avoid
the type of fallacies described above for the case of the bread market. In particular, in case
of a ‘trip-based’ demand function, giving the demand for using the road during the peak in
terms of total number of trips as a function of the (equilibrium level of) generalized user
costs, the specification of the cost function deserves careful attention. The reason is that the
(average and marginal social) costs of having a number of users completing a trip will
depend on the presumably endogenous duration of the peak: the longer the duration, the
lower the costs. Likewise, in case of a ‘flow-based cost function’, giving the generalized
costs as a function of passages per unit of time, the specification of the demand function
should particularly be checked for consistency. For a given demand function defined in
terms of the total number of trips completed during the peak, the position of the demand
function defined over flows then depends on the endogenous duration of the peak itself
(compare (2a) below). In what follows, two measures for the duration of the peak will be
used. The duration T, without further qualification, will be used for the period between the
first and last driver in the peak passing a certain point of the road; and the ‘grand duration’
TG will give the time-span between the first driver’s arrival time at the entrance of the road,
and the last driver’s arrival time at its exit. The last time-related variable is the duration of
a trip (t), the meaning of which is evident. In contrast to T and TG, t is relevant both for
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peak demand and continuous demand. The grand duration of the peak, in a purely static
model with peak demand, is equal to TG=T+t.

In case of continuous demand, the following three identities can be given for a
stationary state equilibrium:

(1a)

(1b)

(1c)

Equations (1b) and (1c) are evident; equation (1a) can be checked by observing that all
users present on the road at a certain instant will have passed the point of exit after t time
units.

Recalling that in a purely static model of peak congestion, all variables have one
single value in equilibrium, and should therefore have the same value at each instant and at
each place along the road as long as it is used at that instant at that place, (1a)–(1b) will
have the following counterparts for the purely static model of peak congestion:

(2a)

(2b)

(2c)

Equations (2a) and (2b) are evident; equation (2c) can be understood after realizing that D
can be determined as if N⋅t/T vehicles were present simultaneously on the road during the
time-span T. It should be emphasized that (2c) only holds for places along the road at
instants that it is actually used, and that during the first (and last) t time units, during which
a decreasing (increasing) segment of the road is empty, it would be incorrect to derive the
density by dividing the number of users present at an instant by the total length of the road,
because this would incorrectly assume these users to be distributed uniformly along the
entire road.

Finally, it is easily checked that both (1a)–(1c) and (2a)–(2c) are consistent with the
well-known property that traffic flow is proportional to the product of density and speed:

(3)
W is often implicitly set at unity, and then disappears from (3).

An important question is whether the above static representation of peak
congestion, in equations (2a)–(2c), can be internally consistent. As a matter of fact, some
concentration of desired arrival times and some existence of scheduling costs have to be
assumed in order to maintain that congestion will occur at all during the peak. Otherwise,
users could always postpone their trips costlessly, and drive at free-flow costs. T and TG

could then be increased costlessly. Indeed, the specification of desired arrival times and
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scheduling costs is necessary to endogenize T and TG, because the duration of the peak can
be expected to depend on trade-offs between travel time delays, scheduling costs, and
(time-varying) tolls in case these are levied. However, once these desired arrival times and
scheduling costs are made explicit, one would normally end up with a dynamic model.
Therefore, it seems difficult to consistently endogenize the duration of the peak in a static
model of peak congestion. This question will be addressed in Section 4. First, however, the
case of continuous demand will be considered.

3. The case of continuous congestion
The case of continuous congestion, where the demand for road usage is constant over time
for an infinite time period, is probably not the most realistic representation of road traffic
congestion in reality, but it is nevertheless the situation that is often, implicitly, assumed to
apply in static models of road congestion and congestion pricing (see, for instance,
Johansson, 1997). Indeed, this configuration can be seen as offering a basic ‘bench-mark’
model for studying the economics of congestion, the insights of which can be helpful in
interpreting more realistic and complicated static or dynamic models. Moreover, even this
probably most simple representation of road traffic congestion has triggered a remarkable
level of disagreement, which justifies further consideration of the model. Finally, the
model allows one to study some first differences between ‘standard’ static economic
market models, and the model for the market of congested road usage, postponing the
additional complications caused by the endogenous duration of the peak for the time being.

3.1. The standard analysis
Continuing the discussion in Section 2, it can first be observed that there are various
interdependent variables: n, D, F, S, and t; while only L and W are constants (N is not
relevant for continuous congestion). Two pairs of variables are unambiguously related
through these constants, namely S and t by (1b), and D and n by (1c). It is usually assumed
that speeds have some natural upper limit, S*, which is the free-flow speed that a user
would have when driving in a congestion-free situation. The equilibrium flow F can be
written only as the ratio of two endogenous variables, namely n and t according to (1a); or
as the product of two other endogenous variables, D and S, multiplied by the constant W
according to (3). Therefore, in order to find the relation between equilibrium values of F
and one of the other variables, one has to take account of the full equilibrium consequences
of changes in that particular variable.

The relationship that is needed for that purpose is the one between speed and
density. If speed were independent of density, flow would simply be linear in D. This
would be the case if the road had an infinite capacity. Usually, however, speeds decrease
with increasing densities, as is illustrated by the density-speed relation (DS-curve) in the
first quadrant in Figure 1. This is the so-called ‘fundamental diagram’ of road traffic
congestion. As drawn, it is assumed that the free-flow speed S* can be sustained for
positive densities (the DS-curve starts with a flat segment); and secondly that there is some
maximum density Dmax at which speed falls to zero. Knowing that F is proportional to the
product of D and S, it is now immediately clear that F will obtain a maximum value for
some combination of speed and density, which are denoted S# and D#. This gives rise to the
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familiar speed-flow curve (SF-curve) in the fourth quadrant of Figure 1, and the density-
flow curve (DF-curve) in the second quadrant of Figure 1. Under the assumption that only
time costs matter for generalized user costs, via the value of time v, the speed-flow curve
in Figure 1-IV can be combined with the relation between speed and travel times in (1b) to
obtain the backward-bending average social cost function (AC) defined over flows,
depicted in Figure 2.

The lower section of the AC-curve, where speeds are relatively high and travel
times relatively short, corresponds with the upper section of the SF-curve in Figure 1-IV.
Likewise, the upper section of the AC-curve, representing situations that are usually
referred to as ‘hyper-congestion’, corresponds with the lower section of the SF-curve; and,
as speeds go to zero, generalized user costs go to infinity. Therefore, each level of flow,
except the maximum level and zero flow, appears to be obtainable at two cost levels: a low
one, where the density is low and the speed is high, and a high one, where the opposite
holds. It is especially this backward-bending cost curve that has lead to heated debate in
the literature, in particular because the confrontation of this curve with a standard
downward sloping demand curve may produce puzzling results.
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Else (1981), Alan Evans (1992) and Hills (1993) have challenged the representation in
Figure 2, in particular by questioning the appropriateness of flow as an output variable.
Before addressing their arguments, we first proceed by investigating the non-intervention
market equilibria, in absence of tolling, that are suggested by Figure 2. And, before doing
that, it should be emphasized that the translation of the SF-curve into the AC-curve
through the relation between speed and travel times by definition assumes that speeds,
densities and flows are constant over time and along the road: the road should be in a
stationary equilibrium. If speeds and densities would vary during the trip, one would first
have to determine the total travel time implied by these varying speeds, before being able
to determine generalized user costs. AC as a function of F would then not be very
meaningful, as F itself would vary during the trip. So, the very nature of Figure 2, giving
the average costs of making the entire trip as a function of a variable that describes the
situation at a particular instant at a particular place along the road, presupposes this
variable to be constant over time and place. Moreover, it is unlikely that drivers at a
particular spot and instant will have, and maintain, the combination of speed and density
implied by the fundamental diagram in Figure 1-I if the speed of the drivers just in front of
them is either lower or higher than their own speed. The postulation of one single DS-
relation therefore also presupposes speed to be constant.

In Figure 2, two demand curves, denoted E and E′, are included. These curves give
the marginal willingness to pay for making the trip as a function of traffic flow, which, in a
stationary equilibrium, is equal to the number of trips completed (and started) per unit of
time. These demand curves therefore do not give the marginal willingness to pay to pass
that particular point where flow is measured, at the particular instant it is measured – unless
the rest of the trip could be made against zero costs. Because the AC-curve was designed

$

F
E

E'AC

x

y

z

x'
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czl
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Figure B. The backward-bending average cost curve (AC) and two 
demand curves (E and E ) defined over traffic flow (F)
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to give the generalized user costs of the entire trip as a function of traffic flow, also the
demand curve should give the marginal benefits of the entire trip.

Let us first consider the demand curve E, which is drawn so as to produce the
possible types of intersection with the cost curve that can be distinguished. In contrast to
standard graphical representations of market equilibria, in which unique equilibria are
usually found, this curve seems to produce three possible equilibrium levels of flow,
namely the three intersections of E and AC labelled x, y, and z, where the marginal
benefits E (being the benefits of making the trip enjoyed by the marginal driver) are equal
to the generalized costs AC (the ‘price’ considered by the road users). Furthermore, each of
these flows could in principle be obtained at two cost levels, indicated with superscripts l
(low) and h (high). Considering, for the sake of completeness, the resulting six
configurations as candidates for an ‘equilibrium’, it can first be noted that z is nearest to
standard market equilibria where supply curves slope upwards and demand curves slope
downwards. It is also easily seen that, if the flow Fz would occur at the high generalized
cost level cz

h, the market could not be in equilibrium, as average costs then exceed
marginal benefits. Next, consider point x more closely. It is, after a moment of reflection,
evident that (Fx, cx

h) could not be a stable equilibrium: a marginal increase of the flow
makes marginal benefits exceed the average user cost, so the flow will continue to
increase. To the left of x, it is evident that the flow would turn to 0, as benefits consistently
fall short of average costs.3 Also (Fx, cx

l) gives no equilibrium, because marginal benefits
exceed average costs. This eliminates two more candidates for equilibrium configurations.
Finally, we have point y, which does seem to present a stable equilibrium at cy

h. Clearly,
the same flow could be obtained at a lower cost cy

l. It is usually argued that one of the
objectives of a toll is to secure the transition to the lower segment of the AC-curve,
because in an optimum, the flow should be obtained at the minimum cost. Apart from that,
the toll should of course bridge the gap between AC and marginal social costs (MSC), but
MSC is ignored for the time being in order to keep the diagram decipherable. Since (Fy, cy

l)
gives no equilibrium, because marginal benefits exceed generalized costs, we are left with
two possible candidates for stable equilibria: y and z, the latter of which is clearly superior
in producing a greater flow against lower costs. Nevertheless, also y appears to be a stable
equilibrium, and the model so far cannot predict which of the two equilibria will come
about.4

                                               
3 Else’s (1982, p. 301) claim that such a point in fact could be a stable equilibrium, because movements up
the backward-sloping section imply increasing numbers of users on the road, and that therefore at x
“marginal costs are increasing faster than marginal benefits” seems flawed. The statement either proves that,
to the left of x, flow will indeed fall to zero (as indicated in the main text), or it ignores the fact that the
demand curve he draws, in his Figure 3, should also be defined over flows; not over densities.

4The foregoing discussion of stability of equilibria considers small perturbations from an equilibrium in
terms of flows, and uses the resulting changes in marginal benefits and average costs to determine the
stability. It is interesting to note that if price perturbations are considered, in line with the Walrasian
tâtonnement process, one might conclude that x is locally stable and y locally unstable. For a slightly higher
price, an excess supply (demand) is then found for x (y), leading to a downward (upward) price adjustment
by the auctioneer, and hence to a move back to (further away from) the initial equilibrium. Note that z is
stable according to both approaches. However, it is questionable whether the auctioneer-approach offers a
very realistic representation of the market under consideration. Moreover, should this approach be
maintained, it can be argued that the supplier(s) of road space would offer the maximum flow at the prices
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3.2. Reconsidering the standard analysis
The representation in Figure 2 has been challenged by a number of authors. One particular
problem has received relatively little attention, and that is the situation where the demand
curve E′ would apply. In that case, only the unstable equilibrium x′ remains. Beyond that
flow, flows will continue to increase as marginal benefits consistently exceed the user
costs. The road users can ‘avoid the cost curve’ altogether and will presumably end up at
the intersection of E′ with the horizontal axis, expecting free trips. It is evident on intuitive
grounds that this cannot be correct; however, the model presented so far is unable to
explain what will happen in that case.

A first point of criticism on the above representation concerns the choice of flow as
an output variable. Hills (1993), for instance, suggests that it should be the number of trips
accomplished that is the relevant output variable, and Alan Evans (1992) suggests
densities. After the discussion in Section 2, it will be clear that the total number of trips
completed certainly makes sense in the case of peak congestion; however, in the case of
continuous congestion, the case considered here, it seems that the number of trips
completed per unit of time – flow, in a stationary state – should still be the relevant output
measure. The number of trips as such is a meaningless concept in a stationary state (it is
either equal to zero or increases with the time period considered), whereas the use of
density as an output variable would imply that it is ‘being on the road’ that people wish,
instead of ‘completing a trip’. An increasing density can be seen as the result of more trips
being undertaking per unit of time, which is the ‘product’ that potential road users actually
want (only in case of touristic road usage, involving sightseeing from the car, could one
argue differently). Therefore, it seems that one should maintain flow as the relevant output
variable in the case of continuous congestion. This measure, which is equal to completed
trips per unit of time in a stationary state, acknowledges that it is completed trips that users
are interested in. The normalization with respect to the time dimension is perfectly
consistent with common practice for the specification of demand and cost curves in
standard static economic market models (Else, 1982 (p.300); see also the example of the
bread market in Section 2).

A second point of criticism is that traffic flow is in fact an “endogenous variable,
resulting from the characteristics of the road and interactions among road users” (Alan
Evans, 1992, p. 212). Alan Evans then proceeds to claim that, for that reason, the demand
curve should relate to density, a modelling principle that was rejected above. However, the
point on endogeneity is valid. In particular, the backward-bending shape of the cost curve
defined over flows results from the fact that an increase in flow arises from jointly
occurring, interrelated changes in density, directly affected by individuals’ decisions to use
the road, and speed, which is only indirectly affected.

Alan Evans’s (1992) and Hills’s (1993) viewpoints are actually quite near those
used below when offering a new interpretation of what happens on the backward-bending
section of the cost curve. Two observations are made before doing so. The first is that, in

                                                                                                                                                  
labelled with superscript h, causing excess supply for all price offers corresponding with the backward-
bending segment of AC. Finally, since it will turn out in the next section that the backward-bending
segment yields non-stationary equilibria anyway, the above discussion of stability of x and y under the
incorrect assumption that the AC-curve itself is stable at these points is only of limited relevance.
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using the backward-bending average cost curve, one should verify whether ‘equilibria’ on
the upper segment satisfy one of the basic requirements for a consistent static equilibrium,
namely that the functions considered should be stable. It will be claimed below that the
upper segment of the AC-curve in Figure 2 does not satisfy this requirement: the AC-curve
itself will shift upwards, due to an ‘equilibrium’ on this segment. The second observation is
that, in a stationary state, it is necessary that the traffic flow be equal to the inflow, and to
the arrival rate of new users at the entrance. So far, authors have implicitly assumed that
this condition is always met, by ignoring what is going on at the entrance of the road.
However, it will turn out that, for outcomes on the upper section of the AC-curve, this
condition is violated. This also suggests that this segment of the AC-curve cannot be
consistent with stationary equilibria. These two observations, of course, are closely related.

Let us start by considering the arrival rate of users at the entrance of the road, being
the number of users ‘popping up’ at this entrance per unit of time. This variable will be
denoted r. In a stationary equilibrium, we need r=F; and this should also be equal to the
outflow: the number of users leaving the road at the exit per unit of time. In contrast to F,
however, r itself is not defined as the product, or as the ratio, of the equilibrium values of
two other endogenous variables; although in a stationary equilibrium, r will be equal to F.
The density at the entrance of the road will be denoted d, and can for stationary equilibria,
with a constant r, be written as d(r). The more users appear per unit of time, the higher the
density at the entrance. It is tempting to define d(r) as r/W, but this ignores that density
occurs not only in the ‘width dimension’, but also in the ‘length dimension’ of the road.
Unlike the DF-function in Figure 1-II, however, it is evident that the relation between r and
d for stationary states cannot be decreasing: ∂d/∂r≥0. In a stationary equilibrium, we will
find d(r)=D if the entrance has the same physical characteristics as the rest of the link, and
newly arriving users will, at the instant of their appearance, obtain a speed s(d) according
to the DS-curve in Figure 2-I. In a stationary equilibrium, s(d)=S. Finally, we define f as
the inflow on the road, so f gives the number of users that successfully pass the entrance
per unit of time. In a stationary equilibrium, we need f=r=F. The relation between the
arrival rate r and the inflow f in a stationary equilibrium (without queuing before the
entrance; see below) can be written as:

(4)

The s(d(r)) term in (4) is consistent with ‘Henderson congestion’, where the speed that
drivers obtain is a function of the arrival rate at the instant of arriving at the entrance of the
road; see Henderson (1974, 1981), and also Section 4.2 below. An important difference
with Henderson’s formulation is that the role of density is made explicit here. Next, a
necessary stationary state equilibrium condition is:

(5)

This implies that the partial derivative of the right-hand side of (4) with respect to r should
be equal to 1 in a stationary state. Equation (6) gives this partial derivative:

(6)
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The first term on the right-hand side of (6) is non-negative, and the second and third term
together gives ∂f/∂d, which is – if the entrance has the same capacity as the rest of the road
– the same as ∂F/∂D according to Figure 1-II. Clearly, for densities d>D#, this term will
become negative. When this occurs, ∂f/∂r cannot be equal to 1, and the necessary condition
for a stationary equilibrium (5) is violated. A crucial assumption here is that ∂d/∂r cannot
be smaller than 0 in a stationary equilibrium: more users jointly arriving at the entrance per
unit of time cannot produce a lower density at that entrance in a stationary state.

For values of d<D#, equation (6) implies that ∂d/∂r should increase with r to
maintain the stationary equilibrium condition that ∂f/∂r = 1, because W⋅∂2f/∂d2<0. It is now
clear that for ‘equilibrium’ values of D>D# and S<S#, the system cannot be in a stationary
equilibrium, as the rate of arrivals r that produces this density is necessarily greater than the
inflow f consistent with this rate of arrivals according to (4). The road itself starts to act as
a bottleneck in that situation. The fact that the equilibrium cannot stationary in turn implies
that the system cannot be analyzed straightforwardly with a static model. In a recent paper,
investigating hyper-congestion in peak congestion with a dynamic approach, Chu and
Small (1996) make a comparable claim.

One can now proceed with two assumptions concerning what is going on at the
entrance when an initial ‘equilibrium’ on the backward-bending segment of the AC-curve
in Figure 2 applies. The first assumption would be that the difference between vehicles
arriving, r, and vehicles flowing in, f, form a queue in front of the entrance. The variable
q=r–f could then give the per-unit-of-time increase in vehicles waiting to start their trip. An
alternative assumption is to stick to the original physical setting, and to deny the existence
of a reservoir where vehicles could queue up and wait. In this case, the number of users
who are present at the entrance to start their trip at a certain instant include, apart from r, all
drivers that have not yet succeeded in departing. Clearly, this latter possibility is a limiting
case of the queuing model, where the capacity for queuing is zero. However, following this
approach, the static modelling framework used so far cannot be used to analyze what is
going on at a point such as y, because (1) drivers having arrived at the entrance at different
points in time interfere directly with each other, and in order to describe the resulting
behavioural responses (for instance the change of arrival rates over time), one needs a
dynamic model; and (2) densities and speeds at a given place along the road will not be
constant in time, and, likewise, will not be constant along the road at a given instant.
Equations (1a)–(1c), as well as Figures 1 and 2, all of which presuppose a stationary state
if they are taken to represent the situation along the entire road, can no longer be used.

What can be inferred qualitatively in the absence of a queuing possibility, though, is
that the point y with demand E cannot be a possible initial stationary equilibrium. To see
this, observe that the demand curve specified over r should be the same as the one
specified over F: it gives, at a given instant and at a given place along the road, the
marginal user’s willingness to pay for her trip. It should not matter whether this marginal
willingness to pay is measured when arriving at the entrance, or somewhere halfway the
trip. It is then clear that, because the arrival rate r giving rise to y must exceed Fmax –
otherwise, we would not be at the backward bending segment of the AC-curve – it must
also exceed Fy. Therefore, the marginal benefits of arrivals at the entrance must be smaller
then cy

h. In other words, y would never arise as an initial equilibrium. The only consistent
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equilibrium remaining is z, where a stationary equilibrium occurs with the marginal benefit
of arrivals being equal to the generalized costs.

The advantage of assuming a queuing possibility is that the static diagrammatic
model can still be used to describe the stationary equilibrium also in case the demand curve
E′ applies. In that case, if the arrival rate exceeds Fmax, a queue will build up, which will
lead to an upward shift of the AC-curve when defined over r, because also waiting implies
time losses. The total duration of the trip tt could then be subdivided in tq, the time spent in
the queue, and tr, the time spent on the road. Road users are not mechanically ‘pushed on
the road’ at the entrance, as with the no-queue model, so they do not interfere directly with
drivers who have arrived earlier and are also still at the entrance, waiting to leave. As soon
as the queue has reached its equilibrium length, a fully stationary state in terms of waiting
time in the queue, and speeds, densities and flows on the road, is reached. Both properties
ensure that from then onwards, the system can again be described with a static model.
Although also with queuing a point such as y in Figure 2 will not arise as an initial
equilibrium, the above properties of the queuing model are helpful in understanding what
will happen in case the demand curve E′ depicted in Figure 2 applies. Figure 3 illustrates
this stationary state.

One can actually not study the transition process towards the stationary state
explicitly, because (1) no explicit formulation for the queuing process itself is used and
only the resulting waiting times tq are considered, and (2) the fundamental diagram in
Figure 1-I cannot be used to predict actual speeds and densities during the non-stationary
part of the process. However, a qualitative description of how this state is reached can be
given. In doing so, it is best to start at the beginning of the process, where the road is still
empty, being very inviting to all the drivers making up the demand curve E′ at that initial
instant. One can then make two assumptions about the queuing process.

The first will be called ‘efficient queuing’ (EQ). Under this assumption, the queuing
process takes the same form as is usually assumed in the bottleneck model (Arnott et al.,
1997), namely an inflow of f=Fmax, and a queue growing at a rate q=r–Fmax. This implies
that, before the stationary state is reached, drivers arriving at exactly the same instant are
not exactly equally well off (some have to wait an instant longer than others), but they are
nevertheless better off than if they would behave very ‘greedy’ and would all enter the
road at the same time, as the inflow f would then be necessarily smaller than Fmax. The
process then starts with an arrival rate r for which, approximately, E′(r)=AC(Fmax). A queue
starts building up because r>Fmax, and the arrival rate at the entrance will fall over time
because the AC-curve (defined over r), now including waiting time in the queue, starts
shifting upwards. The process of the queue growing, r decreasing, and the AC-curve
shifting upwards continues until r=Fmax, and the stationary state is reached, which can be
shown diagrammatically. That is the situation where the arrival rate r (now at the end of the
queue) is equal to f and to F on each point of the network, all being equal to Fmax.
Excessive demand is kept away through queuing costs, given by the line segment m-n.
Therefore, the average cost curve showing generalized costs for stationary equilibria only
is the one denoted AC*. Only the lower segment of the original curve AC is part of AC*; at
Fmax it rises vertically, showing that any marginal willingness to pay for making trips
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exceeding the travel costs at speed S#, density D# and flow Fmax will simply be translated
into queuing costs.5

The second queuing mechanism involves ‘inefficient queuing’ (IQ), where drivers
arriving jointly at the entrance also enter the road at the same time. Suppose, for the sake
of the argument, that the DS-curve in Figure 1-I applies also during the non-stationary part
of the peak. If the DS-curve would shift over time during the non-stationary phase, the
qualitative discussion would not be affected. This queuing process – in particular the
assumption of ‘zero group velocity’ reflected in the stable DS-curve – is consistent with
Henderson’s (1974, 1981) representation of congestion, but adds a maximum possible
inflow due to the structure of equation (4), and hence a queuing possibility (see Section 4.2
for a further discussion). Then, when the process starts, the very first cohort of drivers will
arrive with a rate r implying a density d higher than D#, because there is no intersection
with the upward sloping segment of the AC-curve. We know at the same time that d will
be lower than Dmax; otherwise, the road would be blocked completely at the entrance
straight away, implying infinite travel times for these drivers. The equilibrium value of the
first level of d will be such that the generalized costs for these users are equal to the
marginal benefits at the arrival rate r implying d. A queue will start to build up
immediately, as r>Fmax. The queue, at this instant, means that these drivers do not leave
quickly enough to create enough room for their successors to start straight away with their
trips, because the first drivers’ inflow f is necessarily smaller than the arrival rate r. This
again shifts the AC-curve, defined over r, upwards for their successors, because of the
implied waiting time. The drivers arriving just after the first ones will determine their r in a
way comparable to how the first ones did so: by determining that particular r, implying that
particular d and s once they can start, that makes the travel time cost, but now plus the
implied waiting time, equal to marginal benefits. Because there is now a positive waiting
time tq, r is just slightly lower than it was for the first drivers. This process of r decreasing
over time, and the queue growing, also continues until r and f are exactly equal to Fmax.
Hence, the EQ and IQ process both lead to the same stationary state. Since f is by
definition smaller under IQ than under EQ during the non-stationary part of the process,
the queue will build up quicker and the stationary state is reached sooner.6

                                               
5 Note that it is assumed that the demand relations defined over r are unrelated in time during the non-
stationary phase discussed qualitatively: users do not consider rescheduling. When not making the trip, a
potential user chooses an alternative (e.g. an alternative mode, or not making the trip at all), but does not
postpone the trip. This assumption assures the demand relations to be stable over time – which is in line
with standard procedures in comparative static analyses of market equilibria. Hence, the implication that
drivers in the first, non-stationary part of the process are better off (have lower generalized costs) than those
in the stationary part causes no problem here. The case where rescheduling would occur due to such average
cost differences over time, however, could be considered. In that case, the demand curve over arrival rates at
the entrance of the road is no longer stable over time, since some users will be attracted to the non-stationary
phase of the process where queues are still smaller and therefore, as implied by the discussion in the main
text, average costs including waiting costs in the queue would be lower without rescheduling. An
equilibrium can then be envisaged in which the sum of average travel time costs plus waiting costs in the
queue plus rescheduling costs is constant over time. This case is not discussed further here, because it adds
complexity while not changing the discussion fundamentally.

6 It is not evident that IQ will converge to the stationary state asymptotically: it is conceivable that
‘undershooting’, in the sense that r<Fmax for some period, occurs. For reasons of space, this issue is left
aside.
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The marginal social cost curve MC* can now be derived, which, like AC*, only
holds for stationary equilibria. This curve is steeper than AC* for stationary equilibria with
r=F<Fmax, and is vertical for stationary equilibria with r=F=Fmax. For the demand curve E,
the non-intervention traffic flow is Fn; the optimum Fo, where marginal benefits are equal
to marginal social costs, can be realized with a tax h–g. For E′, as described above, the
non-intervention traffic flow is Fmax, with queuing costs m–n, and the optimum F′o can be
realized with a tax j–i. Note that, at F′o, no queuing occurs. Finally, in case a demand curve
such as E′′ would apply, both the non-intervention and the optimal level of traffic flow are
equal to Fmax. An optimal tax k–n will then apply, serving only to avoid queuing, and not to
affect equilibrium traffic flows r=Fmax. Note that the tax k–n is then exactly equal to the
queuing costs that would hold in the non-intervention case, which is consistent with one of
the standard results in the bottleneck model (Vickrey, 1969; Arnott et al., 1997).
Furthermore, observe that the AC*-curve has to have a kink at r=Fmax. Otherwise, MC*

would approach the vertical line only assymptotically, implying that marginal social costs
become infinite as soon as queuing sets in. Although this would be true in steady state
equilibria, where queues would be growing infinitely long, this cannot be true if queues
have a finite stationary state equilibrium length. Therefore, r=Fmax indeed is the optimum in
case E′′ applies.

Therefore, there appears to be a fundamental fallacy in the usual analysis of a
diagram such as Figure 2, which is the incorrect implicit assumption that the upper
segment of the AC-curve is consistent with stationary equilibria. This ignores that, for a
certain flow to be sustained at the cost level indicated by the upper segment, one needs an
arrival rate at the entrance exceeding the inflow equal to that flow itself. This cannot be a
stationary state, as a queue will then build up. What the present analysis has in common
with those by Alan Evans (1992) and Hills (1993) is the questioning of the usual
assumption that the equilibrium traffic flow F is the correct measure to base demand and
cost functions on in the determination of market equilibria. What is different is the choice
of arrival rates as such a variable, which are only equal to the traffic flow at each point of
the link in stationary equilibria. Therefore, in contrast to the arguments put forward by the
authors just mentioned, the present model in principle accepts F as the output measure,
provided only stationary equilibria are considered.
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Finally, the above analysis implies that a static model of continuous congestion can be
used directly for any optimal market equilibrium provided the average cost curve AC* is
used, and for non-intervention equilibria provided the intersection of the demand curve
with the average cost curves occurs on its lower segment. For other non-intervention
equilibria, a queuing possibility has to be assumed in order to keep on using a static model.
Furthermore, only the stationary state, with the queue being at its equilibrium length, can
be fully described with that model; not the transition process towards that state. Hyper-
congestion does not occur in the stationary state, and occurs in the non-stationary part only
if IQ is assumed.

4. The case of peak congestion
Although the case of continuous congestion discussed above offers a useful starting point
for the economic modelling of road traffic congestion, congestion is usually a peak event.
Most models of congestion are therefore, implicitly or explicitly, taken to describe peak
congestion. In contrast to dynamic models of peak congestion, in which the duration of the
peak is one of the endogenously determined variables, static models based on the
fundamental diagram are usually remarkably careless in the treatment of the duration of the
peak. However, this duration is actually a crucial variable for the consistent modelling of
the market for peak road usage, also (or even particularly) for static models based on the
fundamental diagram. Ignoring the duration may easily lead to the type of fallacies
described in Section 2 for the case of the bread market. To see why, it can first be observed
that the demand for peak travelling would naturally refer to the total number of trips
accomplished during the peak (in the spirit of Hills, 1993). Using such a ‘trip-based’
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demand function, however, the specification of the cost function deserves careful attention,
because the capacity of a road increases, and therefore cost curves change, when the
presumably endogenous duration of the peak changes. Likewise, in case of a ‘flow-based
cost function’, giving the generalized costs as a function of passages per unit of time (see
Figure 3), the specification of the demand function should particularly be checked for
consistency, as the position of the demand function defined over flows then depends on the
endogenous duration of the peak itself. Therefore, for a consistent static economic model
of peak congestion, it is necessary to take full account of the impact of the duration of the
peak on the position of either the flow-based demand function, or the trip-based cost
function.

However, it seems difficult to consistently endogenize the variables T and TG in a
static model, because the duration of the peak will, in equilibrium, depend on trade-offs
between travel time delays, scheduling costs, and (time-varying) tolls in case these are
levied. Once the desired arrival times and scheduling costs are made explicit, however, one
would normally end up with a dynamic model, with speeds and densities varying over
time, unless it is somehow assumed that scheduling costs are constant over the peak. Two
ways out of this dilemma for the static modelling of peak congestion based on the
fundamental diagram can therefore be envisaged. The first possibility involves the explicit
assumption that the grand duration of the peak, TG, is exogenously given: all peak-
travelling related activities have to take place within a given time span. To find an
economic justification for this, one has to assume that scheduling costs discretely jump to a
sufficiently high level for users departing earlier or arriving later than the times implied by
TG; and this particular assumption will indeed explicitly be made when considering this
case in Section 4.1. TG is then ‘endogenized’, or rather ‘consistent’, because it can be taken
as an exogenously determined constant: the entire peak has to take place within the
boundaries implied by TG. By assuming the scheduling costs to be constant within TG, the
system during this interval may indeed be representable with a static approach. Both T and
t then become endogenous variables.7 Secondly, a rather artificial endogenization of T in a
static model could be accomplished by assuming that average scheduling costs are the
same for all users during the peak, and increase with T. This could correspond to a
situation where commuters could not start working before they have all arrived. This
assumption is actually as unrealistic as the usual assumption in static models of peak
congestion that speeds and travel times are constant during the peak, and could therefore
be defended on basis of the same flawed arguments as those that underlie the acceptance of
these assumptions – which, of course, are primarily arguments relating to mathematical
simplicity. Nevertheless, because this assumption is so unrealistic, the resulting model is
relegated to Appendix 2.

It is perhaps surprising that either one of these rather peculiar assumptions on the
pattern of scheduling costs implicitly must underlie the static models of peak congestion
that have been presented in the literature. The alternative implicit assumption that
                                               
7 Alternatively, if T were taken to be exogenously given, TG would become endogenous. The reasons for
considering the case with exogenous TG rather than exogenous T in the sequel are (1) that it makes more
sense to consider prohibitively high scheduling costs for a departure from home before a given time, than
for an arrival at work before a given time; and (2) that it implies an exogenous duration in which all peak
travelling activities have to take place, which is a more intuitive measure to be set exogenously.
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scheduling costs simply do not exist will not work, since in that case T and TG could be
increased costlessly and no congestion would occur during the peak.8 Although static
models may therefore give a rather distorted picture of peak congestion, because other
scheduling cost structures are more likely to apply in reality, the implied model with
exogenous grand duration is nevertheless considered here, in particular to see to what
extent the analysis in the previous section carries over to a static model of peak congestion
based on the fundamental diagram, which has played an important role in the discussion in
the literature. The usually implicit assumptions on the nature of scheduling costs, necessary
to render the model a consistent representation of peak congestion, are made explicit by
considering the step-wise scheduling cost function explicitly. The section will conclude
with a qualitative discussion of to what extent the analysis could carry over to a dynamic
model of peak congestion.

4.1. A static model of peak congestion with exogenous grand duration
Let us consider the case where the grand duration of the peak is exogenous and denoted
TG

*. TG
* is then defined by an earliest departure time from home, tD,F

*, which is assumed to
be the same as the arrival time at the entrance of the road, and a latest arrival time tA,L

* at
the exit of the road, which is where the workplace is. Therefore, tA,L

*– tD,F
*=TG

*. Next,
observe that in a static model, speeds, densities and flows are in principle not allowed to
vary during the peak. In order to construct a model in which both features apply, it is
assumed that the scheduling costs are constant – we assume zero – for those drivers
departing after tD,F

* and arriving at the road’s exit before tA,L
*, no matter exactly when they

travel; and to be prohibitively high for others, even if they depart an instant earlier than
tD,F

*, or arrive at the road’s exit an instant later than tA,L
*. An important equilibrating

principle in models of peak congestion is namely that in equilibrium, no driver should be
able to benefit from rescheduling: generalized user costs, including scheduling costs,
should be constant over time. Because of the assumed constancy of scheduling costs in the
present model, also total travel times (including the time spent in the queue, if there is one)
will therefore be constant. In absence of a queue, this, in turn, implies constant speeds and
densities during the peak, which are required for a static model.

This pattern of scheduling costs, involving penalties for early departures and late
arrivals, therefore implies that the duration TG is exogenously given (provided N is
sufficiently large), and yields constant travel times t during the peak, at least in equilibria
where no queuing occurs; implying a level of T through the equality TG

*=T+t. Both T and
t, however, will have to be determined endogenously. Finally, to avoid irregularities at the
end of the peak, it is assumed that a driver departing later than another driver cannot arrive
at the exit of the road at the same time. In other words: a driver driving in the last cohort
(arriving at tA,L

*) cannot benefit from departing later, drive at a higher speed, join the last
cohort before reaching the exit of the road, and still arrive at tA,L

*. The implied step-wise
scheduling cost function can be seen as a reasonable approximation for the situation where
                                               
8 Also the assumption that desired arrival times are distributed uniformly over time for a given period will
not yield a configuration that is representable with a static model, unless the scheduling costs make discrete
jumps such as described in the case of exogenous TG. Without this additional assumption, there will be
periods of increasing (and decreasing) traffic before (and after) the first (and last) preferred arrival time –
unless we have the uninteresting case where everybody could drive at free-flow speed.
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morning peak commuters have no specific desired arrival time, but do not want to leave
home before a given time, nor to arrive at work after a given time. In reality, one would
then expect the scheduling costs to increase sharply, but not discretely. The discreteness
assumption, however, is a necessary requirement for using a static formulation, because
scheduling costs are then independent of the arrival time as long as no-one drives outside
TG

*.
Because T is endogenous due to the equality TG

*=T+t, a representation in terms of
flows or arrival rates becomes problematic. In comparison to the model with continuous
demand, the nature of the demand is fundamentally different, being now a demand for a
total number of trips, to be fully accomplished within the time-span TG

*. For each
stationary state equilibrium without queuing, this demand in terms of N can of course be
evaluated in terms of r or F by an inward rotation with a factor T, compare equation (2a).
This in turn implies that for every pair of equilibrium values of T and t, a different demand
relation defined over r or F would apply. It is therefore easier to specify the demand in
terms of total numbers of trips accomplished over the entire peak, as proposed by Hills
(1993). The consequence is that also the cost functions, which were up to now defined over
flows or arrival rates, have to be defined in terms of N.

Let us start by considering stationary state equilibria without queuing; so, involving
cost levels associated with the lower segment of the AC-curve in Figure 3. In order to
make the transformation towards an AC-curve defined over N, it can first be observed that
the relation between F and N for such equilibria can be found by rewriting (2a) as follows:

(7)

On the right-hand side of (7), both F and t are endogenous. A function F(t) can be
constructed that depicts the equilibrium combinations of these two variables, by converting
the speed-flow curve in Figure 1-IV into a travel time-flow (TTF-)curve, using the fixed
relation between speed and travel time given in (1b). This TTF-curve is shown in Figure 4-
I.

Writing F as F(t), the derivative of the right-hand side of (7) with respect to t can be
taken to investigate the equilibrium relation between t and N during the peak:

(8)

From (8), it follows that the maximum number of users that can travel over the grand
duration of the peak Nmax is found for levels of flow smaller than the maximum flow Fmax

(∂N/∂t=0 requires ∂F/∂t>0), and therefore for a travel time smaller than t#. F* and t* in
Figure 4-I could give that particular combination of F and t consistent with the maximum
number of users Nmax. This implies that the cost level for which the average cost curve
defined over the total number of users has an infinite derivative with respect to N, at Nmax

in Figure 4-II, is lower than the (minimum) cost level consistent with Fmax in Figure 3. The
lower segment of the AC-curve in Figure 4-II implies a marginal social cost curve MSC.
These can be used to derive the non-intervention and optimal total numbers of users (Nn

and No, requiring a toll h–g) in case the demand curve E applies, as well as the optimal
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total number of road users in case E′ applies (N′o, requiring a toll j–i) and E′′ applies (Nmax,
requiring a toll k–n).

The question that remains to be answered is what happens in the non-intervention
case when a demand curve such as E′ or E′′ applies. These curves imply that at Nmax, there
will be some drivers left with a marginal benefit for making the trip exceeding the average
cost level at Nmax. Clearly, Nmax itself will then not be a stable equilibrium, since these
drivers have the incentive to use the road. Of course, they would then depart at such an
instant that they will not incur the prohibitive scheduling costs of arriving later than tA,L

*

themselves.
As a matter of fact, the AC-curve in Figure 4 can be completed with a backward-

bending section, showing that a given level of N is also obtainable at higher average costs,
possibly involving queuing. In the latter case, the total travel time tt, being the sum of the
time spent in the queue and on the road (tt=tq+tr) should be the same for all users, because
scheduling costs are constant within the time-span TG, and costs should be equal for all
users. Therefore, the queuing process that should be assumed is inefficient queuing (IQ);
see Section 3. In case efficient queuing (EQ) were assumed, with a constant inflow f=Fmax,
an equilibrium with equal user costs will not result because users departing earlier are then
always better off: tr would be the same for all, whereas tq would increase over time.9 Such
configurations, both with and without queuing, imply values of N<Nmax. For outcomes
without queuing, given by the solid part of the backward-bending segment, this follows
directly from (8): for F>F*, the positive effect of a larger F on N is outweighed by the
shorter duration  at the exit due to the condition T=TG

*–t. For equilibria with queuing,
given by the dotted curve, N is even smaller than the level consistent with Fmax, which is
given by N#=Fmax⋅(TG–t#). With queuing, the arrival rates for the first drivers, who have not
experienced the queue at its maximum length, is going to be smaller than Fmax, and because
their travel times will exceed t#, also the duration of the peak at the exit of the road is
smaller than TG–t#. Since the others cannot have an arrival rate exceeding Fmax, the result is
evident.

This implies a backward-bending section of the AC-curve defined over N, showing
that decreasing levels of N are consistent with increasing total travel times tt and hence
higher costs. Note that this AC-curve gives potential equilibrium combinations of N and
AC, where total travel costs are equal for all users. For demand curves that intersect the
AC-curve only once, and only at the backward-bending segment, the intersection (for
instance point x in Figure 4-II) then gives the unregulated market equilibrium. This may
seem odd in the light of the discussion in Section 3.1, Figure 2, where the configuration x –
before considering the question of stationarity in Section 3.2 – was classified as unstable
because beyond this point, drivers would keep on entering the road as average costs
consistently fall short of marginal benefits. The reason that this argument does not apply
here is that drivers not only have to decide whether to use the road, but also when to
depart. Since a departure at any of the instants available would imply marginally higher
travel costs at that particular instant because of the higher density, the marginal private

                                               
9 The reason that the EQ does not work here, whereas it does in the bottleneck model of peak congestion, is
that in the latter case scheduling costs are not constant over time.
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costs are increasing for additional drivers at each instant of arrival at the entrance, and
therefore cannot coincide with the falling average social costs in this region.

Note that in these equilibria, total travel times tt are relatively large and the duration T is
relatively short, implying that also the departures from home are relatively concentrated in
time. This reflects that those agents using the road in the equilibrium, by departing
relatively shortly after tD,F

*, avoid arriving late, and at the same time know that through the
relatively high cost the threat of potential road users entering the market is no longer
manifest. Therefore, these users are indeed prepared to accept a relatively large tt.
Interestingly, the optimal taxes j–i and k–n in these cases lead to a higher number of road
users in the optimum than in the non-intervention equilibrium. The reason is that the
necessity of selecting early departure times in order to avoid late arrivals is no longer there,
since the potential road users on the right-hand side of Nmax no longer have the incentive to
use the road, because of the tax.

Finally, in the event that the demand curve intersects the AC-curve defined over N
three times (compare Figure 2) or twice (for instance in case of a kinked demand), things
become somewhat complicated. As outlined in Appendix 1, the question of which
configuration will finally come about as the unregulated market equilibrium then depends
on the size of the penalty for travelling outside TG

*. The lower the penalty, the more likely
the more favourable equilibria are to come about (see Appendix 1).

Although configurations on the lower segment of the AC-curve defined over N
obtained with the above model may be a reasonable representation for peak congestion in
reality, it is fair to admit that when demand is relatively high, the model becomes
problematic. Most equilibria on the backward-bending segment of the AC-curve defined
over N involve queuing, so the primary purpose of creating a static model of peak
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congestion according to equations (2a)–(2c) actually has failed because the equilibrium
involves the building up of a queue. As argued in the previous section, this process, where
densities exceed D# in Figure 1-I and speeds and densities are not constant over time and
place raises the question of the applicability of the fundamental diagram.

Nevertheless, it is striking that for the static model of peak congestion with
exogenous grand duration, based on the fundamental diagram, two conclusions arise from
the analysis in terms of numbers of road users that are usually drawn from the model of
continuous congestion defined over flows, and that were rejected in Section 3. These
conclusions are (1) that the average cost function is backward-bending, and (2) that the
optimal toll may lead to an increase in road usage. The static model can properly describe
all optima, as well as non-intervention outcomes without queuing. Hyper-congestion does
not occur in optima, nor in (purely static) non-intervention outcomes without queuing,
even if these involve equilibria on the backward-bending segment of the AC-curve defined
over total numbers of road users. Because IQ is the only queuing process consistent with
constant scheduling costs, however, hyper-congestion does occur in (non-static) non-
intervention outcomes involving queuing.

4.2. Implications for dynamic models of peak congestion
Finally, it can be mentioned that the above analysis actually sets the stage for a dynamic
model of road traffic congestion based on the fundamental diagram, which would integrate
elements from the bottleneck model with flow congestion models (see Rouwendal, 1990,
for an earlier attempt along these lines). A full treatment would require a paper all of its
own, but some discussion is warranted, in particular because an internally consistent static
model of peak congestion requires rather heroic assumptions on the structure of scheduling
costs. Moreover, as demonstrated in the previous analysis, as soon as demand is relatively
high relative to the exogenous grand duration of the peak and the maximum possible flow,
the model predicts a queuing process, and the stationary state requirement for a static
model to be meaningful is not fulfilled. The assumed stepwise scheduling cost function
then becomes the main driving force in the model, and it becomes increasingly worthwhile
to relax this assumption and to consider situation in which the duration of the peak is
endogenized.

As soon as scheduling costs (denoted k) are a continuous function of the difference
between the actual arrival time and the jointly preferred arrival time, travel delays and
average speeds should vary over the peak in order to obtain a non-intervention equilibrium
in which total travel costs k + c are equal for all users; where c gives the travel time costs
(including time spent in the queue). For flow congestion, this means that one has to find a
formulation that can replace the relation between speed and density in Figure 1-I also for
non-stationary processes. Henderson (1974, 1981) and Chu (1995) both make the
convenient assumption of ‘zero group velocity’, in which case the speed experienced by a
driver is a function of the arrival rate at the entrance of the road at the instant the trip is
started (Henderson, 1974, 1981), or at the exit of the road at the instant the trip is ended
(Chu, 1995). Drivers drive at constant speeds, so varying speeds can be observed along the
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road at every instant.10 Such formulations have as an advantage over the bottleneck model
that it is no longer assumed that up to the maximum inflow no travel delays occur.
However, neither of these authors explicitly considers the above mentioned process that if
arrival rates at the entrance exceed the maximum possible inflow, a queue will build up
(note that, although bottleneck congestion is a limiting case of the congestion function
considered by Chu (1995), in order to reach this limit the elasticity of travel delay has to
approach infinity, so that the model then only has bottleneck congestion, and no flow
congestion, as assumed below).

Although Chu (1975) has pointed out that overtaking could be a problem in
Henderson’s (1974, 1981) formulation, for the present qualitative discussion based on the
previous sections it is convenient to consider the ‘Henderson-type’ of flow congestion, and
to make the additional assumption, like Henderson does, that overtaking is not possible.11

Using the notation introduced in Section 3, suppose that the speed for a certain cohort as a
function of the arrival rate r is given by s(d(r)), as implied in (4), so that the inflow has a
maximum value fmax and the average travel costs function c(r) has a shape comparable to
the AC(r) function depicted in Figure 3. As soon as the arrival rate exceeds the maximum
inflow fmax, a queue therefore develops before the entrance of the road. Two types of non-
intervention equilibria can then be considered, the first of which involves
rt=ft=st(dt(rt))⋅dt(rt)⋅W≤fmax for all arrival times t at the entrance. This is consistent with the
situation where the very first and very last drivers, who experience no congestion in
dynamic models of traffic congestion and hence drive at free-flow travel costs c* (Chu,
1995; Arnott et al., 1997), face scheduling costs kmax for which:

(9)

where cmin(fmax) is the minimum travel time cost consistent with the maximum inflow
(hence, it does not include queuing costs). We know that those users arriving at the desired
arrival time and facing zero scheduling costs can then not have experienced a queue,
owing to the constancy of user costs over the peak. This produces the standard Henderson
(1974, 1981) model, for which the following optimal time-varying tolls can subsequently
be derived (Henderson, 1974, 1981; Chu, 1995):

(10)

If, however, (9) does not hold, we know that those users arriving at the desired arrival time
and facing zero scheduling costs must have experienced a queue in the non-intervention
situation. Assuming the EQ queuing process as outlined in Section 3, one could at first

                                               
10 Alternatively, Agnew (1973) assumes ‘infinite group velocity’, where at every instant speeds are constant
along the entire road. This seems an even less realistic representation of the dynamics of road traffic
congestion than zero group velocity (Henderson, 1974). Reality is likely to be somewhere in between these
two extremes.

11 Moreover, because (1) overtaking cannot occur in equilibrium anyway, because the drivers being
overtaken are necessarily worse off than the ‘overtakers’, and (2) both Chu (1995) and Henderson (1974,
1981) assume zero group velocity, it can be argued that both models produce exactly the same equilibria
provided capacity is constant along the road.
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glance then expect a situation in which ‘Henderson’ tolls would apply for the first and last
phases of the peak where rt≤fmax; and ‘Vickrey’-bottleneck tolls would be necessary to
avoid all queuing for the middle period where rt>fmax in the non-intervention outcome.
Interestingly, however, the optimal Henderson toll in (10) prevents this to occur, since the
optimal toll approaches infinity as r approaches fmax. Therefore, as in the standard
bottleneck model, queuing will not occur in the optimum. In contrast to the pure bottleneck
model however, with flow congestion, the entrance of the road will in the optimum always
operate below the maximum capacity fmax. Furthermore, not all travel delays are
eliminated, as optimal flow congestion is positive.

This concludes our brief excursion to dynamic models of road traffic congestion. It
can be concluded that the static framework presented in Section 4.1 indeed can be
extended to a dynamic model which combines elements of flow congestion with bottleneck
congestion. This requires an alternative to the fundamental diagram, which is actually only
valid for stationary states with constant speeds, flows and density. A first possibility was
presented above, based on the notion of zero group velocity. This type of integrated
modelling, as also proposed by Rouwendal (1990), certainly deserves further attention in
future work.

5. Conclusion
Although the static model of road traffic congestion based on the ‘fundamental diagram’
has been around for some 75 years now, there still seems to be major disagreement about
the exact formulations that should be used. An important source of disagreement concerns
the choice of the output variable in the definition of demand and cost functions. Two main
stances can be distinguished here, namely ‘flow-based’ measures and ‘stock-based’
measures. The foregoing analysis suggests that the choice of the correct output measure is
directly related to the type of demand that is assumed to apply: ‘continuous demand’ on the
one hand, requiring a formulation in flows by definition, or ‘peak demand’ on the other,
which can most naturally be analyzed using a formulation in total numbers of trips
accomplished during the peak. In performing the analyses, it was acknowledged that a
meaningful static equilibrium should satisfy the condition of stationary stability, and only
static configurations that do represent stationary stable configurations were accepted.

Section 3 investigated the case of continuous demand, focusing in particular on the
difficulties arising with the backward-bending average cost curve defined over flows that
have dominated much of the debate in the literature. The relevance of the backward-
bending segment of the cost curve for the static analysis of congestion was questioned by
demonstrating that ‘equilibria’ on this segment produce upwards shifts of the cost curve
itself, and can therefore not be of a stationary nature. In particular, the analysis ignores
that, for a certain flow to be sustained at the cost level indicated by the upper segment, one
needs an arrival rate at the entrance exceeding the inflow equal to that flow itself. This
cannot be a stationary state, as a queue will immediately build up. Using the notion that, in
a stationary equilibrium, the arrival rate of drivers at the entrance should be the same as the
flow on any point along the link, the model presented in principle accepts traffic flows as
the output measure for the static analysis of continuous congestion, provided only
stationary equilibria are considered. The analysis implies that a static model of continuous
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congestion can be used directly for any optimal market equilibrium provided the lower
segment of the average cost curve defined over flows is used, and for non-intervention
equilibria provided the intersection of the demand curve with the average cost curves
occurs on its lower segment. When such an intersection does not exist, because the
marginal benefit exceeds the average cost at the maximum flow, the model can only be
used if it is assumed that queuing before the entrance of the road is possible. This causes
the average cost curve to rise vertically at the maximum flow, due to queuing costs. For the
associated non-intervention equilibria, involving queuing, only the stationary state, with
the queue at its equilibrium length, can be described with the model; not the transition
process towards this state. Hyper-congestion does not occur in the stationary state, and
occurs in the non-stationary phase only with ‘inefficient queuing’ (IQ).

In Section 4, it turned out that the analysis of peak demand with a static model
based on the fundamental diagram can be quite problematic, because for a consistent static
model of peak congestion, it is necessary to fully take account of the impact of the duration
of the peak on the position of either the flow-based demand function, or the trip-based cost
function. However, it seems difficult to consistently endogenize the duration of the peak in
a static model, because this duration will depend on trade-offs between travel time delays,
scheduling costs, and (time-varying) tolls in case these are levied. Once these desired
arrival times and scheduling costs are made explicit, however, one would normally end up
with a dynamic model, unless it is assumed that scheduling costs are constant during the
peak. To solve this dilemma for the static modelling of peak congestion, the explicit
assumption was made that the grand duration of the peak is exogenously given, because of
a particular step-wise scheduling cost function. No matter how unrealistic this assumption
may appear, it seems that it is at least preferable to models in which the duration of the
peak is completely ignored. Two conclusions arose from the analysis in terms of numbers
of road users that are usually drawn from the model of continuous congestion defined over
flows, and that were rejected in Section 3. These conclusions are (1) that the average cost
function is backward-bending, and (2) that the optimal toll may lead to an increase in road
usage. Hyper-congestion does not occur in optima, nor in purely static non-intervention
outcomes without queuing, even if these involve equilibria on the backward-bending
segment of the AC-curve defined over total numbers of road users. Because IQ is the only
queuing process consistent with equilibria involving constant user costs when scheduling
costs are kept constant by assumption, hyper-congestion does occur in non-intervention
outcomes involving queuing.

Finally, it was concluded that the static framework presented in Section 4.1 can be
extended to a dynamic model which combines elements of flow congestion with bottleneck
congestion. When the scheduling cost curve is sufficiently steep and demand is sufficiently
high, this model produces non-intervention outcomes where the road operates as a
bottleneck in the middle of the peak, and flow congestion occurs in the first and last stages.
Under the standard assumption in bottleneck models that queuing is ‘efficient’ (EQ),
hyper-congestion does not occur in this model. All queuing is eliminated under optimal
tolling, but optimal travel delays are positive. Inflows below the maximum inflow apply
throughout the optimized peak, and therefore only ‘Henderson tolls’ apply. This model
certainly deserves further attention in future work.
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Appendix 1: Multiple equilibria in the static model of peak congestion with
exogenous grand duration
This appendix considers the case where in the static model of peak congestion with exogenous
grand duration (see Section 4.1), the demand curve defined over N intersects the AC-curve
defined over N three times (compare Figure 2) or twice (for instance in case of a kinked demand).

Before addressing this issue, first observe that in general for an equilibrium to arise in
dynamic models of peak congestion, individual road users should somehow be capable of creating
the equilibrium they all expect. In a model of peak congestion, where individual agents should not
only make the choice of whether to use the road, as in the model of continuous congestion, but
also when to depart from home, this would require coordination if individuals are supposed to play
‘pure strategies’ in terms of selecting one particular departure time. If private costs do not vary
over the peak, and it is immaterial exactly when one is travelling, it would otherwise be unclear
what mechanism should secure the equilibrium pattern of departure times to arise, as there would
be countless Nash equilibria. It is therefore more natural to assume that an equilibrium requires a
‘mixed strategy’ to be played by every individual, specifying a probability density function of
departure times. In a symmetric game, the same probability density function should then be
selected by all individuals, and it should correspond with the distribution of departure times that
actually produce the candidate Nash equilibrium under consideration. If the number of individuals
is sufficiently large, the equilibrium may then be expected to actually arise. This representation of
equilibria will also be followed here.

The question of which configuration will finally come about as the unregulated market
equilibrium in this static model of peak congestion then depends on the size of the penalty for
travelling outside TG

*. Suppose there are three intersections x, y and z, where N x<Ny<Nz and
ACx>ACy>ACz (compare Figure 2). Consider the smallest group of users N x, and suppose that
they only consider three possible equilibria to eventually arise, namely the potential equilibrium
configurations x, y or z where user costs are the same for all users and marginal benefits are equal
to average costs, and that they ignore the impact of their own decision on the determination of the
equilibrium. That is, they are pure price-takers. For reasons of exposition, their strategy set is
restricted to the following choices: three equilibrium strategies S x Sy Sz, involving departure time
probability density functions consistent with x, y and z; and a fourth strategy S 4 involving a
discrete departure time outside T G

* implying, with certainty, travel costs consisting of the sum of
free-flow costs plus the penalty. As soon as an N x-driver finds S4 more attractive than Sx if all
other Nx-drivers would play Sx, he will realize that this also holds for the other N x-drivers. All Nx-
drivers will then infer that x cannot be a Nash-equilibrium, and will expect either y or z to arise.

Now if the penalty for late arrivals is ‘sufficiently high’ in the sense that AC x is smaller
than the sum of the free-flow costs plus the penalty for late arrivals, and if the N x-drivers attach
only the slightest possibility to x actually occurring, they will want to avoid a late arrival in all
cases, and they will all be driven to play S x, so that x is the Nash equilibrium. S x then minimizes
their expected costs of travelling, even if y or z would arise, as it certainly avoids the penalty.
Other drivers, knowing this, then have no incentive to join the market. However, if the sum of the
penalty plus the free-flow costs penalty is less than c x but more than cy, so that the penalty is only
‘sufficiently high’ in the sense that it prevents travelling outside T G

* in case equilibrium y arises, x
is no Nash equilibrium because N x-drivers would prefer S 4 to Sx in configuration x. Only y and z
remain as possible candidates for the Nash equilibrium. Depending on whether similar reasoning
applies for the comparison between y and z, either y or z can then finally be identified as the Nash-
equilibrium, with either N y or Nz playing the associated strategies in terms of selecting the
appropriate departure time probability density function. So, the level of the penalty determines the
selection of the equilibrium. The lower the penalty, the more likely the more favourable equilibria
are to come about. Note that the sum of free-flow costs and the penalty should of course at least
exceed ACz.
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Appendix 2: A static model of peak congestion with endogenous duration
As mentioned in the main text, the endogenization of a variable duration of the peak T in a static
model of peak congestion requires the assumption that scheduling costs are constant over the
peak; depending on the duration of the peak only, and not on the actual arrival time within this
peak. If not, the model would be internally inconsistent, as the assumption of constant travel times
associated with a static approach would then imply that users arriving nearer the desired arrival
time would be better off then others, so that the system could not be in equilibrium. 12

Accepting this assumption for the sake of being able to investigate the implic ations of the
analysis in Section 3 for the case of a static model with peak demand and an endogenous duration
T, the following model can be constructed. First, the generalized user costs AC now consists of
two components: travel time costs c, and scheduling costs k. Travel time costs c, as a function of
flow F, have the same shape as the AC *-curve in Figure 3. Therefore, for cost levels c>n, one
could again subdivide travel time costs into time costs incurred when waiting in the queue, and
time costs when driving on the road. The scheduling costs are constant over the peak, and increase
with T. Congestion then manifests itself as two externalities: travel time delays and scheduling
costs. Hence, average costs can for equilibria without queuing be written as:

(A1)

An important equilibrium condition that can be used to infer the specific combination of F and T
that will arise for a given total number of road users N, is that in a Nash equilibrium no driver
should be able to be better off – obtain lower average costs – through rescheduling. This may lead,
for a given N, to various possible equilibrium levels of F and T, depending on some assumptions
to be made explicit below. The set of possible equilibrium combinations of F and T may vary from
the situation where average costs are minimized, to the limiting case that free-flow speeds apply
throughout the peak. To see why this is the case, first two bench-mark representations of the
market process will be considered.

The first bench-mark case concerns perfect information and perfect foresight, where all
drivers know all other drivers’ departure times with certainty. Consider an initial situation where T
is smaller and hence F is higher than the average cost minimizing levels for that particular N. It is
then attractive for one driver to travel just an instant later than in the initial situation. This
increases T, and hence k, for all drivers, whereas the travel time for that single last driver is
smaller than for the rest. Because information is perfect, others will join him, until travel times are
again equalized over the peak. The average costs are now smaller for all drivers, as we started in
the situation where T was smaller and F larger than the cost minimizing combination. The first
driver postponing his trip will therefore not regret his decision. This process will continue until the
cost minimizing combination of T and F is reached. Then, no driver has an incentive to
unilaterally postpone his trip, because he knows that others would keep on joining him to enjoy
his smaller travel time, until travel times are again equalized. In the resulting equilibrium, also this
driver himself would then be worse off, because we now started from the average cost minimizing
combination of T and F. So, for each level of road usage N, the cost minimizing combination of T
and F will arise when information and foresight are perfect.

The other bench-mark case concerns the situation where the morning peak is a one-shot
game, where all agents do know the others’ pay-off functions, but not their actual actions. In this
case, the agents end up in a prisoners’ dilemma, because the above described average cost
minimizing combination of T and F is not a Nash equilibrium. A driver could then unilaterally
benefit from driving an instant earlier or later, if all others would stick to the above strategy. He
will then be able to drive at the free-flow speed, so he will make a non-marginal travel time gain,
                                               

12 Alternatively, one could of course assume that average scheduling costs are constant during the peak and
depend on TG. Analytically, this would lead to comparable results as the model discussed in the main text.
For reasons of space, and because it is probably less realistic than the case discussed in the main text, this
variant is not considered.
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and will incur only marginally higher scheduling costs. It is then intuitively clear that in the
resulting Nash equilibrium, F will be smaller and T will be higher than in the perfect information
case. Moreover, if the drivers are pure price-takers and do not take into account the impact of their
own decision on k(T), the only Nash equilibrium is the situation where all drivers drive at free
flow speed.

Neither representation is particularly realistic for the choice of departure times. It is likely
that the game could be best represented as an infinitely or indefinitely repeated game. According
to the ‘Folk Theorem’ in game theory, ‘anything goes’ in such games (Gibbons, 1992; Hargreaves
Heap and Varoufakis, 1995). For the present case, this means that both extremes mentioned above,
namely the minimum average cost outcome and the free-flow speed outcome, as well as all
intermediate combinations of F and T, could be sustained as Nash equilibria. Whereas the
argument for the free-flow speed equilibrium is the same as the one given above, for the minimum
average cost equilibrium this requires the agents to play a trigger strategy, where the joining of the
agent that postponed his trip will occur in the next stage, and will be maintained ever after. With a
discount factor sufficiently close to one (i.e. a discount rate sufficiently close to zero), this boils
down to the same type of reasoning as given above for the perfect information/perfect foresight
setting.

Even in the average cost minimizing equilibrium, where flows are relatively high
compared to the one-shot Nash equilibrium, only the lower segment of the travel time cost
function is relevant, and outcomes with queuing will not arise. Only equilibria where ∂c/∂F (the
slope of the AC-curve in Figure 4) is finite and positive will generally arise. This can be
demonstrated by substitution of T=N/F in equation (A1); compare equation (2a). This allows us to
derive, for a given N, the average cost minimizing level of F, since the necessary first-order
condition can be written as:

(A2)

Queuing, which occurs in equilibria with ∂c/∂F=∞ according to Section 3, will not arise in the
minimum average cost Nash equilibrium as long as ∂k/∂T<∞. In general, the second term in the
middle expression of (A2) is negative, so that ∂c/∂F must be positive. Because F is lower and T is
higher in all other possible Nash equilibria, it can be concluded that queuing will not arise in the
static model of peak congestion with endogenous duration.

Figure 5 shows the diagrammatic implications. First, panel 5-I shows why only
configurations involving the lower segment of the AC-curve over flows, from Figure 3, are
relevant. Two sorts of curves are depicted, the first of which are iso-AC-curves, showing
combinations of traffic flow F and the duration of the peak T for which the average cost according
to (A1) take on the same value. These curves can be derived by observing that c(F), as given in
Figure 4, increase with flow. In order to maintain the same level of AC, therefore, increasing
savings in scheduling costs are required. At F max, where c(F) is vertical according to Figure 4, also
the iso-AC-curve in Figure 5-I is vertical. Next, the iso-N-curves give those combinations of F and
T satisfying equation (2a): N=F ⋅T. Average cost minimizing combinations of F and T can be
found as points of tangency of an iso-N-curve and an iso-AC-curve. In accordance with (A2), it
also follows from Figure 5-I that these points of tangency involve outcomes involving the lower
segment of the (travel time) cost curves over flows shown in Figures 3 and 4. Two such
combinations are indicated, denoted with subscripts 1 and 2. For other Nash equilibria, the
possible combinations of T and F are given by points on the iso-AC-curves to the north-west of
these minimum average cost equilibria. Also in those equilibria, queuing does not occur.

Next, Figure 5-II shows that for minimum average costs Nash equilibria, the average cost
will be an increasing function of N as long as ∂k/∂T<∞, because both c(F) and k(T) will be larger
for larger values of N. Confronting this AC-curve defined over N, and the implied MSC-curve,
with the demand curve E shows that E and AC have only one intersection. The non-intervention
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level of road usage during the peak is N n, and the optimal level is N o, requiring an optimal toll h–
g.

If the agents do not play the optimal trigger strategy, the AC-curve will obviously be higher. If the
regulator is not able to affect departure time decisions, however, the diagrammatic representation
is qualitatively identical to Figure 5-II, be it that equilibrium values of N n and No will be lower,
and the optimal tax h–g will be higher. If  the regulator could affect departure time decisions, by
setting sufficiently high tolls for arrivals before or after the optimal duration T, the optimum is the
same as under the optimal trigger strategy, and would involve a downward shift of the AC-curve
to the position consistent with this strategy.

In conclusion, the static model of peak congestion with endogenous duration has no
unique Nash equilibrium for non-intervention when it is assumed that agents play an infinitely or
indefinitely repeated game. However, non of the possible Nash equilibria involves queuing or
hyper-congestion.
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Figure E. Iso-AC and iso-N curves (I) and the diagrammatic representation of the static
model of peak congestion with endogenous duration (II)


