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Abstract

By combining two alternative formulations of a test statistic with two alternative resampling
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are adequate and in fact equivalent. The equivalence between the two valid implementations is
shown to break down in dynamic regression models. Then the procedure based on the test statis-
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illustrated in the ARMA(1,1)-model through a small-scale Monte Carlo study and an empirical
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1 Introduction

There exists a well-known correspondence between confidence sets and hypothesis testing. A confi-
dence set with confidence coefficient 1 — a entails the set of parameter values which are not rejected
by a hypothesis test performed at significance level a. This duality is exploited in this paper to de-
fine and examine several bootstrap testing procedures in static and stable dynamic regression models.
See Hansen (1999) for an analysis of bootstrap procedures which exploit this duality in unstable au-
toregressive models. For comprehensive overviews on the bootstrap see the books by Davison and
Hinkley (1997), Efron and Tibshirani (1993) and Hall (1992), while the papers of Li and Maddala
(1996), Horowitz (1997) and Berkowitz and Kilian (2000) provide recent reviews from an economet-
ric (time-series) perspective. The bootstrap procedures to be examined here differ in their choice of
the type of estimator employed in the resampling scheme and in the form of the test statistic used.
More specifically, a resampling scheme can use either a restricted or an unrestricted estimator in
defining bootstrap observables. In addition, a bootstrap test statistic can be centred around either a
restricted or an unrestricted estimator. The use of a restricted estimator in both the resampling scheme
and the test statistic is typical for the test statistic approach (in which one tries to assess the null distri-
bution), while the use of an unrestricted estimator is characteristic for the confidence region approach
(which does not adhere to just one specific null hypothesis); see Beran (1986) for more details about
the two approaches in the context of independent and identically distributed (i.i.d.) random vectors.
We shall examine these two approaches and their cross-fertilizations in a regression context.

To illustrate the basic idea, consider the simple regression model
y=u+ox-+e, (1)

where y and x are n x 1 vectors and ¢ is a » X 1 random vector whose components are i.i.d. with
unknown distribution F, with mean 0 and finite variance 62, i.e. & ~ F,(0,0%) fori = 1,...,n.
Suppose that we are interested in testing the null hypothesis Hy : 6 = 0y against the one-sided
alternative H;: 0 < dy for some given value of Jy. In general, the finite-sample distribution of the test
statistic used, say 7', is unknown since it depends on some nuisance parameters. The bootstrap tackles
this problem by replacing the nuisance parameters by their empirical analogues. For example, the
non-parametric bootstrap replaces the unknown distribution function F; by the empirical distribution
function (EDF) of the residuals. In general, however, the bootstrap distribution of the test statistic
does not possess a closed-form expression. In practice, fortunately, any desired characteristic of the
bootstrap distribution can be approximated by a bootstrap simulation. If 7} denotes the b-th bootstrap
realization of the test statistic 7', then the bootstrap uses the empirical distribution of {7}*}7 | to
approximate the actual distribution of 7. Below, we shall describe in some detail how to test the

hypothesis Hy : 6 = dy using the bootstrap based on either the test statistic or on the confidence



region approach.

The test statistic approach. Let

7(00) = (6 — do) /53 )

denote the well-known 7-statistic, which would have a Student z-distribution if the disturbances ¢;
were normally distributed and 6 = Jy. In addition, let y* denote the bootstrap observables defined

by the ‘restricted’ resampling scheme (")
v = Q, + dox + &, (3)

where t, denotes the estimator of x under the null hypothesis and ¢ (i = 1, ..., n) is drawn randomly
with replacement from the (un)restricted residuals. The bootstrap analogue of the ¢-statistic 7 (dy)

based on the bootstrap sample X* = (y* x) is given by

r

" =1¥(0) = (6 = o) /55, 4)

r

where the bootstrap estimators & and s5 will be defined explicitly in the next section. Let 7 ;*’ra denote

#
70

the a-quantile of the bootstrap distribution of the test statistic ¥ (dp), i.e. P.[t” < ¥ ] = a, where
the super-index " denotes that the resampling scheme is based on restricted estimators while the sub-
index 7 indicates that restricted (7) estimators have been used in the test statistic. The notation P, -]
stresses the fact that the probability is defined conditional on the data and with respect to resampling
scheme (3). The bootstrap test procedure ¢* rejects the restriction § = Jy if the observed ¢-statistic
7(dp) given in (2) is smaller than the a-quantile of the bootstrap distribution of 7* (dy), i.e. the
hypothesis Hy : 6 = dy is rejected against the alternative H, : d < dy if t(dg) < r;*ra From the
analysis in Beran (1986), it follows that, under the null hypothesis, the rejection probability of the
bootstrap test p* based on the quantiles of the theoretical bootstrap distribution (i.e. for B = 00)
converges to a, i.e. P[7(dg) < r;*’ralHO] — aasn— o0,

The confidence region approach. An asymptotically pivotal root for the regression param-

eter J is given by
R(9) = (6 = 6)/s;. (5)

A root is a function of both the parameter of interest and its estimator, and can be used to construct
a confidence interval; see Beran (1987) for more details on roots. In the confidence region approach,

the bootstrap sample X*" = (y*' x) is based on the “unrestricted’ resampling scheme (x*)

Y =ji4ox +er,

UIn the analysis, the population distribution function F is considered as a fixed nuisance parameter.



where ¢} is drawn randomly with replacement from the residuals. Let
R =R"() = (0 —d)/sy (6)

denote the bootstrap analogue of the root R(J) based on the bootstrap sample X'*". Note that in the
bootstrapped root R*' (9), the estimator o takes over the pivoting role of the unknown parameter J. Let
RZ:’G denote the a-quantile of the bootstrap distribution of the root R*" (3), ie. PR < R;:’a] =a,
where the super-index ** denotes that the bootstrap data is based on the ‘unrestricted’ resampling
scheme while the sub-index u indicates that the root is based on the unrestricted () estimators. A

one-sided (1 — a)-level percentile-# confidence interval for J is given by

I}, = (=00, d—s3R* ), (7)

u,0

which equals the set of parameters J defined by {0 : R(d) > R;Z'a}. Consider the situation that the
parameter value under test is dy. The parameter value dy lies outside the bootstrap confidence interval
I, if the condition R(dp) < R;jzla holds. Since the root R(dy) equals the z-statistic z(dy), the corre-
sponding bootstrap test procedure ™ rejects the restriction & = dy if the ¢-statistic 7(dg) is smaller
than the a-quantile of the bootstrap distribution of R*" (0), i.e. the hypothesis Hy: = dy is rejected
against the alternative H; : 0 < dy if 7(dy) < R;"a Under certain regularity conditions, Freedman
(1981) has shown that the bootstrap test y* also has the correct asymptotic rejection probability under
the null hypothesis.

To summarize, we have distinguished two different bootstrap testing procedures. For testing the
null hypothesis Hy : 0 = Jy against the alternative H; : 0 < dy using the z-statistic 7(Jy), the
bootstrap test ¢* rejects Hy if 7(dg) < r;*ra whereas the bootstrap test y* rejects Hy if 7(dp) < R;i’a.
In Section 3, it will be shown that in static regression models the tests ¢p* and w* are equivalent in
finite samples since the a-quantile of the bootstrap distribution based on the test statistic approach
coincides with the a-quantile of the bootstrap distribution based on the confidence region approach,
ie. t ;"a = R;i’a. In the case where the model contains only an intercept, this equivalence has been
noticed before by, for instance, Beran (1986, Example 2) and Tibshirani (1992).

Instead of combining (un)restricted estimators in both the resampling scheme and the bootstrap
test statistic, one could also opt for a crosswise combination. However, Hall and Wilson (1991) warn
against the use of the procedure based on the bootstrap distribution of the z-statistic 7*(dy) and the
‘unrestricted’ resampling scheme y*' = 7 + dx + ¢*, because this latter implementation is said to
lead to low test power. Yet another implementation results by combining the root R*(3) with the
‘restricted’ resampling scheme y* = i, + dox + &*. The latter two procedures will be referred to as

hybrid implementations since they mix up the test statistic with the confidence region approach. So,

by combining two formulations of a test statistic, viz. 7*(dy) and t*(S), with two ways to construct



the bootstrap observables, four different bootstrap test procedures are obtained. The aim of this paper
is to investigate the differences and similarities between these various implementations in both static
and dynamic multiple regression models. The papers by Carpenter (1999), DiCiccio and Romano
(1990) and Hansen (1999) also exploit the test statistic approach to construct confidence intervals,
although their focus is quite distinct from ours. Moreover, none of these papers considers the hybrid
implementations.

The paper is organised as follows. Section 2 takes a closer look at bootstrap hypothesis testing and
defines the various test statistics in linear regression models for both single and joint hypotheses. In
Section 3, we investigate the various bootstrap implementations and examine whether the one-to-one
correspondence between the test statistic and confidence region approach already found in models
with just an intercept continues to hold in finite samples of multiple regressions when testing one
or several parameters jointly. Furthermore, we derive the asymptotic rejection probabilities for each
testing procedure and we demonstrate that bootstrap tests based on any of the two hybrid implemen-
tations will produce zero rejections asymptotically, irrespective whether the null hypothesis is true
or false. The only exception is the case where restricted estimators are used in resampling and the
statistic is centred around the unrestricted estimator and the alternative hypothesis is one-sided. Then
there is a serious overrejection problem. We provide an intuitive explanation for this failure of the
two hybrid implementations in the case where a single coefficient is under test. In Section 3, we also
take a closer look at the issue of using restricted or unrestricted residuals in the resampling schemes.
In Section 4, the finite-sample performance of the two asymptotically valid implementations is inves-
tigated in stable dynamic models. We observe that in dynamic regression models, the test statistic and
confidence region approach lead to different findings in finite samples. In a small-scale Monte Carlo
study, finite-sample inference based on the two approaches is examined in an ARMA(1,1) model. In
Section 5, the two approaches are compared on the basis of an empirical example. The final section

discusses the major findings.

2 Various Bootstrap Regression Test Procedures
In the standard —not necessarily Gaussian— linear multiple regression model
y=Xp+e, (8)

yisan x 1 vector, X is a fixed n x k£ matrix, f is a k x 1 vector of unknown parameters and ¢
is an x 1 random vector with i.i.d. components &; ~ F,(0,¢?). In addition, we assume that the
number of coefficients £ is fixed, only X = (y X) is observable and the matrix X has rank k. For

the asymptotic analysis we assume that X’X/n — Q as n — oo, where Q has finite elements and



is positive definite. Of course, these conditions are rather restrictive but they allow us to apply the
asymptotic results obtained by Freedman (1981).

For relevant literature on the bootstrap in this class of models see Wu (1986) who gives an ex-
tensive overview of various resampling techniques. It appears that the bootstrap still works when the
dimension & of the model increases as the sample size n — 00; see Bickel and Freedman (1983)
and Mammen (1993). Hall (1989) and Navidi (1989) show that only when an asymptotically pivotal
(test) statistic is bootstrapped, the bootstrap is capable of achieving an Edgeworth correction, which
loosely speaking means that the bootstrap approximation to the distribution of interest is better than
the first-order normal approximation; see also Davidson and MacKinnon (1999) for an explanation
of the higher-order refinement provided by bootstrap tests. In the econometric literature on the boot-
strap, the use of asymptotically pivotal statistics, whose asymptotic distributions are independent of
unknown parameters, has been advocated by Horowitz (1994).

Let # = (X'X)~'X’y be the ordinary least squares (OLS) estimator of £ and denote the OLS
residuals by & = y — X = M,e, where M, = I — X(X'X)~'X". The (co)variance matrix of /3 is
estimated by s/% = s2(X’X)~!, where s* = &'¢/(n—k). The i-th diagonal component of s/% is indicated
by s/%’_. For testing a set of m(< k) independent linear restrictions on the vector of coefficients S5, we

consider the hypotheses
Hy: Rp =ry against H: Rp #ry,

where R and ry are known matrices of dimension m x k£ and m x 1 respectively. Let B, denote the

restricted OLS estimator under the restriction Rf = ry, then

By =B+ @) RW ™ ro — RP), ©)
with W = R(X’X)~'R’. Obviously Rﬁr = ry, i.e. the restricted estimators obey the linear restric-
tions. Note that when testing a single coefficient restriction 5, = f,, the i-th component of ﬁr is

equal to . The restricted residuals are denoted by &, = y — X, ﬁr. The traditional F'-statistic can be

written as
. 1~ . A
A(ﬂr): Zw_ﬂr)/R/W 1R(ﬁ_ﬂr)/sz' (10)
This test statistic has an exact F'-distribution in finite samples under the null hypothesis in the Gaus-

sian linear fixed-regressors model. For testing whether the i-th element of f§ equals a given scalar S,

we consider the hypotheses

Hy: B, =P against H:p, <py or Hs:p; > Py,

where i € {1, ..., k}. The habitual z-statistic is denoted as

t(Bo) = (B — Po)/sp, - (11)



For testing the hypothesis Hy: f; = f, against the two-sided alternative H; : f;, # S, we may use
the squared z-statistic 7 (f3,)*> which equals the corresponding F-statistic.

Bootstrap inference can be obtained as follows. Let F;, denote some estimator of the underlying
population distribution function. In the non-parametric bootstrap, E, usually equals the empirical
distribution function (EDF) of the demeaned unrestricted residuals &. In case of hypothesis testing,
1:1. is occasionally taken as the EDF of the demeaned restricted residuals &,. The use of the unre-
stricted residuals, however, ensures that the EDF 131 converges to the population distribution F, in
a suitable metric even when the null hypothesis is false; we shall elaborate on this issue later on.
For the moment, we shall stick to using unrestricted residuals in all resampling schemes considered.
Conditional on the data X', let the components of ¢* = (&7, ..., &) be i.i.d. with common distribution
F,. The bootstrap observations y* can be generated according to one of the following two resampling
schemes:

Scheme I ( **): v = Xp +e,

Scheme II (" ): v = XB +e¢”.
So, these schemes use the initial unrestricted () or the restricted (#) OLS estimator respectively for
constructing a bootstrap sample.

The bootstrap analogue of ﬁ is defined as ,3* = (X’X)~'X’y* under both resampling schemes
(v* € {y*,»*}). The (co)variance matrix of ﬁ* is estimated by 5; = s>*(X'X)~", where s* =
£Y8"/(n — k) and &* = y* — XB" are the bootstrap residuals.

In addition to the two options regarding the resampling schemes, the bootstrap test statistics
may be centred around either the unrestricted or the restricted estimator as indicated in the intro-
duction. Centring the bootstrap test statistic around the unrestricted estimator seems reasonable from
a confidence-region point of view. Following the bootstrap principle that population parameters are
replaced by their estimators, the bootstrap test statistic may be based on a studentised version of the
quantity ﬁl* - ﬁ ;- However, the test statistic approach suggests to base the bootstrap test statistic on a
studentised version of the quantity ﬁ,* — f,, since under the null the mean of E,* is known to be f,.
The combination of resampling schemes and test statistics leads to four feasible test procedures. For

j € {u,r}, the bootstrapped F'-statistics are defined as
2 =07 (B = %@* —BYRW'RB" = p)/s*>*  with (B, s>*) based on X*’ (12)
and
2 =" (B) = %(ﬁ* —BYRWT'R(B = B.)/s**  with (B, s*) basedon X*,  (13)

where X*' = (y*' X) and X* = (y* X). Hence, the super-index denotes which resampling scheme

is used and the sub-index indicates which type of estimator is used for centring. Similarly, the boot-

. . u u I r
strapped -statistics are denoted as 7}, ,7; , r) and 7 .



The a-quantiles of the bootstrap distributions of the test statistics 2* and 7* are denoted by A;, and

T respectively, ie.
P2 <] =a and Pr* < 1] =a. (14)

To distinguish the quantiles of the various bootstrap distributions, let /l;‘ua denote the a-quantile of
the bootstrap distribution of the test statistic i;*" =" @r), so that the quantiles use the same index
notation as the test statistics. In this way, the quantiles based on the other three procedures are
denoted by /l:i'a, )v;jr’a and /l;ira respectively. Similarly, r}*,; (J,! € {u,r}) refers to the a-quantile of
the bootstrap distribution of the appropriate -statistic 7 *.

In order to indicate the rejection probability of each procedure, let a; (/lfj) (j,! € {u,r}) denote

the rejection probability of Hy: Rf = r( against H,: RS # ry at nominal significance level a, i.e.
a1y =Pl 2 277, ). (sl & fu,r)). (15)

In addition, the rejection probabilities of Hy: f; = py against Hr : f, < fyand Hs: f; > p, are
denoted by

a7 ) =Pl <7},] and  as(z]) =Plc = 7)), ] (16)

In the next section, we shall show that two of the four bootstrap test procedures have size and
power problems and that the other two are appropriate and in fact equivalent in the context of static
linear regression models. Further on, we shall show that the latter situation is different in dynamic

regression models.

3 Properties of the Various Bootstrap Test Procedures

We begin this section by showing in Proposition 1 that the F'-statistic obtained by the confidence
region approach is algebraically equivalent to the F-statistic obtained by the test statistic approach,

ie. 2*”@) =) (ﬁ’r). Self evidently, the same result holds for the ¢-statistics * and 77"

Proposition 1 [n the linear fixed-regressors model (8), the F-statistics )*" (ﬁ ) and )* (ﬁ ) defined in
(12) and (13) are equivalent.

Proof. Consider the OLS estimator ﬁz = (X’X)"' X"y} based on the resampling scheme
vy =Xb+¢", (17)

where b denotes some arbitrary k£ x 1 vector and ¢* denotes an n x 1 vector of bootstrap disturbances.

Observe that resampling schemes I and II result from (17) for b = Z? and b = ﬁ, respectively. Using



the identities (Z?Z —b) = (X’X)"'X'e* and &" = M,e*, straightforward derivations show that

() = 1 e¥XXX)T'"RW'RX'X)™' X'e*
’ T m e¥Mye*/(n —k)

=" (B,). (18)

The expression in the middle of equation (18) reveals that the bootstrap distribution of both test
statistics depends only on the fixed quantities (R, X, k, m, n) and on the bootstrap disturbances &*.

O

The result stated in Proposition 1 is intuitively clear since the ¢ and F-statistics are invariant to
location changes in the linear regression model. The equivalence of the test statistics as stated in
Proposition 1 holds for any realization ¢* as long as both test statistics are evaluated at the same real-
ization of ¢*. Therefore, the equivalence holds irrespective whether in resampling the unrestricted or
the restricted residuals are employed. Note that the test statistic approach is based on the critical val-
ues 1"

‘ra

implies that 1* = 1*

7. Yu,a

whereas the confidence region approach is based on the critical values 2*" . The result in (18)

u,u”
i.e. the a-quantiles of the bootstrap distributions of the F-statistics 2*" Q@)

and ¥ (ﬁ’,) are identical. Likewise, we find 7' = 7%

. » > S0 that in the linear fixed-regressors model,

there exists a one-to-one correspondence between the test statistic and confidence region approach in
finite samples.

Next, we shall derive the asymptotic rejection frequencies for each procedure. We consider the
asymptotic properties of the F'-statistics first and subsequently look at the asymptotic properties of the
t-statistics. From, e.g., Mammen (1993), it follows that both the test statistic and confidence region
approach lead to correct asymptotic rejection probabilities under the null as stated in Proposition 2.
In fact, since the F' and #-statistics are asymptotically pivotal, these two approaches lead to bootstrap

inference which is second-order correct as noted earlier.

Proposition 2 Under Hy : R = r, tests based on the distributions of .*' (ﬁ) and 2* (ﬁ’,) have

asymptotic rejection probability o. at nominal significance level o.

Proof. The result for 1*" (ﬁ’) follows from Theorem 5 contained in Mammen (1993). Since

2 (B.) = 2*" (), it also applies to 2* (B,). O

We now turn to the asymptotic rejection probabilities of the bootstrapped F -statistics for the two

hybrid implementations. After some algebra we obtain

2
u N S A PR %
) =5 B + AT (B) (19)

and

2
7B = B+ B = 20)



where y * = % [R(X/X)_lX/e + RS — ro]/ W='R(X'X)~'X"e* /s**. Note that the original F-statistic
}v(ﬁ,) appears in the expressions of these two test statistics next to the appropriate bootstrap F-
statistics 2*" (/?) or ¥ (ﬁ’,). Moreover, there is also the appearance of another term y * which depends
on both the original and bootstrap disturbances. The next proposition, which generalizes the result of
Hall and Wilson (1991), shows that tests based on the bootstrap distributions of 1** (,3,) or 1* (/?) are

inconsistent tests with asymptotic rejection probability zero for any true value of £.

Proposition 3 Irrespective of the true value of b, tests based on the distributions of *" (ﬁ’r) and
Al Q@ ) given in (12) and (13) have asymptotic rejection probability zero at nominal significance level
a, provided that a. < 0.5.

Proof. First, we show that a1(/”") — 0 as n — oo. We find from (15) and by substitution of
(19) that

a() = PREB) =2,
= P[A(B,) = 2(B,) + (27 (B) + 7™ }1—a + 0p(D)]
= P2 (B)+ 7 }—w < 0] +0,(1) = 0,

where {2*(B) + y*}1—. denotes the (1 — a)-quantile of the convolution of the distributions of the
F-statistic 2" (/?) and the term y *. The convergence result in the last equation is obtained as follows.

Suppose that {1*" (/?) + 7 *}—« < 0. This would imply that
P2 (B)+77 < 0] > 4. @

However, Lemma 1 in the Appendix shows that the probability in (21) is less than or equal to 0.5
asymptotically leading to a contradiction. Hence, the probability that the (1 — a)-quantile is less than
zero tends to zero. The proof for a1(2} ) proceeds along the same lines. g

Note that the results obtained in Proposition 3 imply that tests based on the bootstrap distributions
of [r (B o)]2 and [T*r (ﬁ l-)]2 have asymptotic rejection probability zero when testing a single (m = 1)
restriction Hy: f; = B, in model (8) against the two-sided alternative H,: §; # B,.

We now turn to examining the asymptotic rejection probabilities of the various bootstrapped ¢-
statistics when testing Hy : f; = p, against one-sided alternatives. From Proposition 2, it follows
that bootstrap inference based on either the test statistic or the confidence region approach has correct
size asymptotically against one-sided alternatives. The two hybrid implementations lead again to
asymptotically incorrect sizes, but one leads to underrejection and the other to overrejection. It is
easily shown that the asymptotic rejection probability of the test based on the distribution of 7*" (/)

is zero for a nominal level o < 0.5 irrespective of the true value of 5, i.e.

Plz(By) < 75,] > 0 fora <0.5. (22)

10



A similar result holds for inference based on the critical value r:’ul_a for the other-sided alternative.
Hence, we see that the test based on the distribution of 7*" () does not just have low power (rejection
probability) as noticed by Hall (1992, Section 3.12) in the i.i.d. setup (regression with an unknown
intercept only), but it also has asymptotic size zero, which disqualifies this implementation of the
bootstrap procedure more fundamentally.

The inadequacy of the procedure based on the distribution of 7*(f8,) can be explained as follows.

After some straightforward manipulations, we obtain

™ (Bo) = =v(B) + 7 (B). (23)

Hence under the null, z*(f,) is approximately distributed around the observed test statistic 7 (/).
ie. B.Jt* (By)] = 7(B,), because r*"(/’?,)lX 4 N(,1) and s /s* % 1. Note that the distribution
of 7*'(f,) depends on the realization of z(f,), which is to be considered fixed in the bootstrap
procedure. So, the bootstrap distribution will vary with each realization of 7(f,). For a particular
realization of the original 7-statistic 7 (f3,), Figure 1 (upper graph) shows the asymptotic distributions
of the z-statistics 7*' (5, and r*"(/’?,-). From this figure, we see that the original test statistic 7 (/)
always lies between the bootstrap quantiles r;*::l and r;‘:'l_a fora < 0.5. So, if 7(f,) is used as test
statistic and the critical values are based on the bootstrap distribution of 7*" (), then one will never

reject the null hypothesis irrespective of the true value of £, and the tested value S,. Hence, this

implementation of bootstrap hypothesis testing can be classified as fundamentally unsound.
Insert Figure 1 about here.

Although Proposition 3 seems to suggest that the asymptotic rejection probability of 7* (ﬁ,—) is also
zero, this is not the case. It can be shown that the asymptotic size of inference based on the distribution

of t* (ﬁ,—) equals CD(%za), which is greater than the nominal level for a < 0.5, i.e.

ar(ry) = Ple(By) < 1), | Bi = Bl
= Plz(By) < {=7(Bo) + 7% Bo)}a + 0p() 1B = Bol
= Plc(Bo) < 3241 Bi = Bol + 0,(1) = ©(3z,). (24)

Here z,, denotes the a-quantile of the standard normal distribution. A similar result holds for inference

based on the critical value 7*

w.1—q for the other-sided alternative. Since @(%20,05) = 0.205, we see that

the difference between the nominal level and the asymptotic rejection probability of this bootstrap test
can be very substantial, and hence the test procedure based on the distribution of 7*' (ﬁ,-) is found to
be unsound too. The over-rejection of inference based on the distribution of 7* (ﬁ,-) can be explained

as follows. The test statistic 7* (ﬁ,-) can be rewritten as

(B = ==t (Bo) + 7 (Bo). @25)
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Contrary to z*' (f8,), which is centred around the observed z-statistic 7 () under the null, the asymp-
totic bootstrap distribution of 7* (/? ;) is centred around —z (f,), i.e. B, [t* (/? )] — —1(f,). Hence,
the quantiles based on the distribution of 7*' (/? ;) are approximately shifted by the amount of —z ()
with respect to the quantiles based on the distribution of 7* (), i.e. r;jr’a - r;"ra — 7(f). This shift
in the bootstrap distribution is shown in the lower graph of Figure 1, where the same realization of

the ¢-statistic 7 (/) is used as in the upper graph of Figure 1. Note that we reject the null hypothesis
Hy : p; = p, against the alternative H, : ; < p, if the ¢-statistic 7(f,) is significantly negative.

*r
7,0

«

However, when 7 (/) is negative, the critical value 7 ,

tends to be greater than 77 since the quantity
—1(f) is positive. Hence, the inequality 7(f;) < rflra has a greater probability to occur than the
event 7(fy) <t ;*ra, resulting in an asymptotic size that is greater than the nominal level.

Before turning to dynamic regression models, we return as promised earlier, to the issue of using
restricted or unrestricted residuals in the bootstrap resampling procedures. When the null hypothesis
is true, restricted estimators are of course more efficient than unrestricted estimators. Hence, at first
sight it seems advantageous to resample from residuals based on restricted estimators. However, if the
null hypothesis is false, the empirical distribution function of the restricted residuals will in general
represent the population distribution not very well. To illustrate this point, we consider again the
simple regression model as given in (1). Suppose we wish to test the hypothesis Hy : 6 = Jy for
0o = 0, whereas the true value ¢ is different from zero, i.e. 6 # 0. Under the restriction 6 = 0,
the restricted intercept equals the sample mean of y, ie. i, = y where j = n~! > y;. Since

y = u + 0x + &, we obtain the following expression for the restricted residuals
» =0(x —X) + (¢ —&). (26)

If &} is drawn randomly with replacement from the restricted residuals &,, then the variance of the

bootstrap disturbances does not converge to 2, since
Var,(e7) = 602 + 02, (27)

where 62 = lim,_,oo 77! "1 (x; — X)?. Hence, the asymptotic variance of the bootstrap disturbances
based on restricted residuals will in general be larger than the asymptotic variance based on unre-
stricted residuals when the null is false. Moreover, if n~! >} (x; — X)? is substantially different from
zero, the distribution of ¢ will be skewed as well, even if the population distribution does not exhibit
any skewness. Hence, a p-value obtained by the bootstrap is only correct when dy equals the true
value J. This phenomenon is especially undesirable when a confidence interval is constructed by in-
verting a test statistic. Such a confidence interval requires bootstrapping a p-value for a whole range
of test values dy. Since there is only one value of dy which equals the true but unknown value J, the

bootstrapped p-values for o) # J will be distorted if restricted residuals are used in the resampling
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scheme. Therefore, if the aim of the analysis is to approximate the null distribution of the test statistic
even if the null hypothesis is false, we recommend to use the unrestricted residuals, which have the

additional computational advantage of remaining the same irrespective of the value being tested.

4 Bootstrap Hypothesis Testing in Dynamic Models

By the theorems given in Freedman (1984), the asymptotic results of Propositions 2 and 3 immedi-

ately carry over to the stable autoregressive model of order one with fixed exogenous variables
y:PJ’—l‘i‘Xﬂ'i‘Ea |p| <15 (28)

where y_; = (3o, ..., ¥u—1) and g; ~ F,. However, the one-to-one relation between the test statistic
and confidence region approach, as established in Proposition 1 for fixed-regressors models, no longer
holds here. In dynamic models with a lagged-dependent variable, we have to resort to a recursive
resampling scheme. One of the consequences is that now the 7-statistics 7*' (ﬁ’,—) and t* (f3,) are not
identical in general and neither are the F-statistics 1*" (ﬁ) and 2* (ﬁ’,). We shall first illustrate this in
the Gaussian AR(1) model with intercept and subsequently through a small-scale Monte Carlo study
in the autoregressive moving-average of order (1,1)—ARMA(1,1)- model. Since the procedures based
on the hybrid implementations are afflicted with serious size and power problems also in dynamic
models, they are not considered in this section.

Consider the stationary Gaussian AR(1) model
Ve =pyi-1t+u+e, gtNN(Oa 62): 1= 15"'5’77 (29)

where the AR(1) parameter p lies in the stationarity zone, i.e. |p| < 1, and the starting value yy is
drawn from the stationary distribution, i.e. yo ~ N'(u/(1 — p), 5%/(1 — p?)). The AR(1) model can
also be written as y = X + ¢ with X, = (y,—;, 1) and = (p, u)’, although now the matrix X is
stochastic due to the presence of a lagged-dependent variable. We focus on testing Hy: p = p,, using

the 7-statistic

7(po) = (P — po)/sp (30)

based on the maximum likelihood (ML) estimator conditional on yy, which is equivalent to the least-
squares estimator. Since ) is drawn from the stationary distribution, the distribution of the -statistic
7(p,) does not depend on the nuisance parameters x and o?; see for instance Nankervis and Savin
(1988). The recursive dynamic (d) analogues of resampling schemes I and II based on the parametric

bootstrap are:

Scheme 19 (¥ ): yv=pyi + i +el
Scheme I1¢ (" ): yo=poyio + iy el
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where y; is defined in such a way that y; is stationary, &; ~ N(0, &2) and t = 1, ..., n. Since the
bootstrap distributions of 7*' (p) and 7* (p,) are invariant to the estimator 62, it makes no difference
whether 67 is based on the unrestricted or restricted residuals. More information about bootstrapping
general stationary ARMA(p, ¢)-models can be found in Kreiss and Franke (1992).

Since 7(p,) is invariant with respect to u and o2, the distribution of 7(p,) only depends on F,
and p,. The latter is assumed to be known under the null hypothesis. In the parametric ‘bootstrap
world’, the distribution of 7*' () depends on the estimator  only while the distribution of 7* (p;)
depends on the parameter p,, only. Because of these invariance properties, the bootstrap distribution
of 7*' (p,) mimics the finite-sample distribution of 7 (p,) exactly, which results in an exact inference
procedure. In effect, the bootstrap test reduces to a Monte Carlo test, which has a size which does
not exceed the nominal level. So, even if the critical value r;*,ra is approximated by a finite number of
bootstrap replications, bootstrap inference based on the test statistic approach yields exact inference
when the number of bootstrap replications B is chosen such that a(B + 1) is an integer; see inter alia

Hall (1986). Hence, we conclude that when F, is known

ar(z)) =Plz(py) <71l =a. (31)

Next, we consider the finite sample properties of the confidence region approach. Since p is stochastic

*II
u,o

and in general different from p,, inference based on the critical value 7 will not be exact. To

*l‘
r,o°

illustrate this point, Figure 2 shows the critical values based on the test statistic approach, i.e. 7

*Il
u,0°

and the confidence region approach, i.e. t* , as the estimator p varies for the case p, = 0.8, n = 25,

o € {0.05, 0.95} and F; is normal. Of course, r;"ra remains constant for fixed values of p, and n, just
like the a-quantile based on the exact finite-sample null distribution. Note that due to the parametric
bootstrap, which makes the distribution of 7*' () invariant with respect to the estimated intercept and
variance, the quantiles of the bootstrap distribution of 7*' () are constant conditional on a realization
of the estimator p. However, p is stochastic in finite sample so that t;j':a will be different for different
realizations of p. Figure 2, which is based on 100,000 simulation replications for a grid of 190 p

*Il

values, shows that the quantiles based on the confidence region approach, i.e. 7} ,,

vary substantially
with realizations of the estimator . It appears that the parametric bootstrap distribution of z*'(p) is
quite close to the non-central z-distribution> with a non-centrality parameter equal to E,[z*(p)]. By

the results in Tanaka (1983, formula (3.3)), this expectation for a given value of p can be approximated

2Based on extensive simulations of the distribution of 7(p) for 7 > 25 and |p| < 0.95, Nankervis and
Savin (1988, p. 127) observe that “the skewness is essentially zero and that the kurtosis is about the same as
for Student’s ¢”. This observation also applies to the parametric bootstrap distribution of *(p), since this

distribution is equal to the distribution of 7 (p) for p = p.
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as

o . _ , . 1 2p+1
B[ ()] = Be-(2) + O™, with B () = ——————. (32)
1)

Note that the approximation of the expectation of 7* (p,) up to first order is given by B;-(p;), so that

u r
# A
~ —
Tu,(x Tr,(x

[B;+(po) — B.+(p)]. Because the function B,-(p) is decreasing in p for p € (—1, 1),
we find the inequality r;j':a > r;*'a for =1 < p < pgand py > 0, which is evident in Figure 2 for
po = 0.8. The inequality rfl':a > r;*,ra leads to a rejection probability against the one-sided alternative
H,: p < py which is larger than « in finite samples, i.e. 0!2(‘[;”) > ap(z*") = . We can substantiate
this as follows. Let f,(x) denote the finite-sample density function of the OLS estimator p. If o

is small enough such that tfl':a and r;*,ra are negative (a < 0.5), then the rejection probability of the

confidence region approach can be bounded from below by

ax(r})) = Ple(po) < 7,1 = [T Ple(po) < 7)1 = x] fulx) dx
= [ Plr(po) < 1y | p =x] fo(x) dx
> [P Ple(pg) < 1)y 1 p = x] fulx) dx
= JIXPle(po) < 7, 1) =x] ful) dx = a2(z]) = . (33)

The second equality in the first line is a consequence of the law of iterated expectations by writing
Plz(pg) < rf:a = E[I{z(py) < rfl':a}] = E; [E[]{r(po) < rf:a}lﬁ]], where I{-} denotes the
indicator function. The equalities in the second and fourth lines result from the fact that the hypothesis

Hy: p = pg is rejected against the alternative /5 : p < p, if the z-statistic 7(py) = (p — py)/s;

*II
u,a

is sufficiently negative because 7’ < 0 and t;"’ra < 0 by assumption. Over the one-sided interval
p > po, T(py) is positive so the probabilities of the events {r(p,) < rf,':a} and {zt(py) < r;*ja} for
p > pg are zero. The inequality in the third line is due to the fact that P[z(py) < v] > Pt (py) < w]
forv > w. A similar argument shows that the rejection probability for the other one-sided alternative,
i.e. a3(tX"), is smaller than the nominal level o (for small & such that rfl':]_a > 0 and ‘L':’r] >0
since 7* (p,) is less biased than 7*(p) when p > p,. Overall, we conclude that in the stationary
Gaussian AR(1) model with an intercept only the test statistic approach leads to exact parametric

bootstrap inference in finite samples.
Insert Figure 2 about here.

If, instead of the parametric bootstrap, the non-parametric bootstrap is used a similar picture
emerges although now the situation is less unambiguous. This can be attributed to the fact that, in the
non-parametric case, the a-quantile z* () will be stochastic even conditional on a realization of the

estimator p since now the bootstrap distribution depends among other things on the realization of the

15



empirical distribution function of the residuals. For the non-parametric bootstrap, Bose (1988) has
shown that the bootstrap distribution based on the confidence region approach is capable of making a
first-order Edgeworth correction in AR(1) models, i.e. the bootstrap is second-order accurate. Since
simulation results reported in Giersbergen and Kiviet (1994) and Davidson (1999) show that the
test statistic approach outperforms the confidence region approach, we conjecture that the bootstrap
distribution based on the test statistic approach is at least second-order accurate. However, if the test
statistic approach is precisely second-order accurate, just like the confidence region approach, the
theory of Edgeworth expansions cannot be used to explain the finite-sample difference between the
two approaches.
Next, we consider the ARMA(1,1) model

Yo = pYi—1 +1u +8l +08l—15 &t NN(Oaaz)a = 15 s 1, (34)

where p and @ are the parameters of interest. The finite-sample performance of the two bootstrap
test procedures is investigated by a small Monte Carlo experiment. All simulations were carried out
using the matrix programming language Gauss 2.2. We generated 1000 (= N) samples according to
model (34) for the parameter values (p, 0, 1) = (0.53,0.55,0.82), 62 = 0.15 and n = 99. These pa-
rameter values were inspired by the ARMA(1,1) estimates obtained from annual unemployment data
which are analysed in the next section. The unrestricted residuals were multiplied by +/7/(n — 3) to
correct for the loss of degrees of freedom; see Bickel and Freedman (1983). For each sample {y;},
the bootstrap critical values were calculated from 999 (= B) bootstrap realizations of the appropriate
test statistic. The test statistics were based on the unconditional ML estimators of the parameters
p and 0, where the starting values were generated according to the procedure proposed by McLeod
and Hipel (1978, Wasim 2). The Wasim procedure is based on the Cholesky decomposition of the
covariance matrix of (¥, yo, €1, €0). We restrict ourselves to the non-parametric bootstrap since this
implementation is most used in practice. The starting values in the bootstrap procedure were gener-
ated by starting up the ARMA process and disregarding the first 30 observations. Table 1 shows the
rejection frequencies of the null hypotheses Hy: p = 0.53 and Hy: 6 = 0.55 against their one-sided
alternatives at 5% significance level in the Monte Carlo experiment. Note that the two hypotheses are
satisfied by the data generation process, so that the rejection frequencies yield an indication of the ac-
tual size of the test procedures. Since the true parameter values are far from the instability boundary,

the events |p| > 1 or |9| > 1 did not occur in the simulations.
Insert Table 1 about here.

The Monte Carlo results can be summarised as follows. Inference on the AR(1) parameter based

on the asymptotic approximation appears to be reasonably accurate, although the rejection frequencies
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are significantly different from the nominal level a. Asymptotic inference on the MA(1) parameter
is less reliable, since the rejection frequencies are approximately two times larger/smaller than the
nominal level a. The bootstrap approximation yields a uniform improvement over the asymptotic
approximation. Note that inference based on the distribution of 7** (9), i.e. the confidence region
approach, seems to over-correct, since the rejection frequency for the alternative & > 0.55 is signifi-
cantly too low whereas the rejection frequency based on the asymptotic approximation is significantly
too high. Inference based on the test statistic approach mimics the behaviour of an exact inference
procedure since none of the rejection frequencies are significantly different from the nominal level.
Note that the test statistic approach employs a resampling scheme which avoids the stochastic vari-
ability due to the parameter under test. For instance, when testing the hypothesis Hy : p = p, the
resampling scheme incorporates p,, instead of p. Of course, the test statistic approach cannot avoid
the stochastic variability due to the nuisance parameters. However, it is expected that the finite-sample
distribution of a bootstrap test statistic is more affected by the value of the parameter under test than
by the values of the estimated nuisance parameters. For example, in the AR(1) model (29) using
resampling scheme y; = po ¥7 | + fi, + &/, the distribution of 7* (p,) does not depend on the value
of fi,. Since the -statistics 7*(p) and 7* () in the ARMA(1,1) model are not invariant with respect
to p and 0 respectively, the use of the restricted estimators, which incorporate additional non-sample
information, in the resampling scheme seems helpful in improving the bootstrap approximation, es-
pecially for the MA(1) parameter. Overall, bootstrap inference based on the test statistic approach
performs best, followed by bootstrap inference based on the confidence region approach. Inference
based on the first-order asymptotic approximation is least accurate. Although our Monte Carlo de-
sign is limited, the results are useful for explaining the empirical findings that are obtained in the next

section.

S Empirical Illustration

To compare the different (bootstrap) approximations in practice, we consider annual data on unem-
ployment for the U.S. from 1890 through 1988 as used by Nelson and Plosser (1982) and extended
by Schotman and van Dijk (1991). Note that the unemployment rate is the only time series of the
fourteen considered by Nelson and Plosser which appears to be stationary. We focus on the con-
struction of confidence intervals. Instead of fitting a AR(p) model, we chose to model the data as an

ARMAC(1,1) model. ML yields the following estimates (¢-values between parentheses):
=0.527y,_1 +0.822 + &, + 0.554¢,_,. 35
N (5.11) Yot F (4.96) et (5.37) bl (35)

There appears to be no significant autocorrelation in the residuals; a p-value of 0.18 is obtained for

a likelihood ratio test against the ARMA(2,1) specification and a p-value of 0.52 is obtained for the
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Box-Ljung test statistic based on the first 10 residual autocorrelations. The non-parametric bootstrap
will be employed since the hypothesis of normality is rejected; a p-value of 0.001 is obtained for the
Jarque-Bera normality test. The non-normality appears to be caused mainly by two ‘large’ residuals
in the years 1893 and 1918.

The 95% equal-tail bootstrap confidence intervals for p and € based on the confidence region
approach are obtained as follows. Bootstrap observations {y;} are generated by the ‘unrestricted’

resampling scheme
y; =0.527y7  +0.822 + &7 4+ 0.554¢]_ |, tr=1,..,99, (36)

where &; is drawn randomly with replacement from the unrestricted but rescaled residuals &,. Let
‘L'g( Bi) denote the (B + 1)-th order statistic from the B bootstrap realizations {z*" ()} le. A 95%

confidence interval for p is given by

~ p P
(P =85 T0.075(841)> P = Sh To.025(8+1))- (37)

A similar interval for @ is defined with respect to the quantities 0, sp and rZ(B +1)- The bootstrap
confidence intervals for p and @ based on the test statistic approach are obtained as follows. For
simplicity, we focus on the construction of the interval for p. Since the confidence interval is obtained
by inverting a test statistic, a whole range of parameter values p, has to be tested. Hence, the test
statistic approach is more computer-intensive than the confidence region approach?, especially when
constructing a confidence region for a high dimensional parameter vector. Bootstrap observations

{y/} under Hy : p = p, are generated by the ‘restricted’ resampling scheme
V! =poyio + e &)+ 060, t=1,..,9, (38)

where 2, and 0, denote restricted estimators, and g; is drawn randomly with replacement from the
unrestricted but rescaled residuals &,. The bootstrapped p-value, based on B bootstrap realizations

{t* (po)s}2_, for Hy : p = pg against H, : p < p, using the observed -statistic 7 (pg) is given by

B
plvalue = (B+1)7 > {z" (po)s < 7(po)}. (39)
b=1

The upper confidence limit is equal to the value of p, for which the p*-value based on the lower-sided
alternative H; : p < p, equals 2.5%, whereas the lower confidence limit is equal to the value p for

which the p*-value based on the upper-sided alternative H, : p > p, equals 2.5%. The confidence

3In a recent paper, Hansen (1999) proposes to use a limited grid of parameter values and estimate the de-
pendence of the bootstrap quantiles upon the parameter value by kernel regression to reduce the computational

burden.
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interval for @ is obtained in a similar way. Figure 3 shows the p*-values for the one-sided alternatives
when testing the parameter sets p, € (0.2,0.8) and 6y € (0.15,0.8). Graphically the confidence
limits are found as the intersection of the solid lines, which denote the p*-values, with the dashed

lines, which denote the 2.5% nominal level.
Insert Figure 3 about here.

Table 2 shows the confidence intervals that were obtained by the different approximations. The
entries in the column below R/ L are a measure of the asymmetry of the various confidence intervals.
Contrary to the symmetric confidence intervals based on the first-order asymptotic approximation,
the bootstrap confidence intervals appear to be asymmetric, especially for the MA(1) parameter, even
though the sample size is quite large. The Monte Carlo results of the previous section suggest that the
confidence intervals based on the test statistic approach are most accurate. The intervals based on the

confidence region approach seem to be too asymmetric, as was also found in the Monte Carlo study.

Insert Table 2 about here.

6 Concluding Remarks

We have contrasted two approaches for testing a hypothesis using the bootstrap. The test statistic
approach is based on restricted estimators in both the test statistic and resampling scheme, while
the confidence region approach employs unrestricted estimators in the test statistic and resampling
scheme. Two hybrid approaches emerge if the test statistic approach is combined with the confidence
region approach. The hybrid approaches are shown to be cursed with serious size (and power) prob-
lems since the bootstrap distribution revolves around the realization of the test statistic (possibly with
opposite sign) obtained from the original sample. Hence, these hybrid implementations are found to
be completely inadequate for inference purposes.

In static regression models, the test statistic and confidence region approaches are shown to be
identical, even when various restrictions are tested jointly. Hence, also in the ‘bootstrap world’, there
is a one-to-one correspondence between testing hypotheses and constructing confidence regions in
static models. However, in dynamic models, this equivalence breaks down and the finite-sample per-
formance of the two approaches can be quite different. In the stationary Gaussian AR(1) model, the
test statistic approach leads to exact parametric bootstrap inference. The inaccuracy of the confidence
region approach stems from the fact that the critical bootstrap values depend on the unrestrictedly
estimated AR(1) parameter. We conjecture that in general dynamic models, the test statistic approach
has to be preferred to the confidence region approach in finite samples since the unrestricted resam-

pling scheme (utilised in the confidence region approach) is inflicted by stochastic variation which
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may be reduced or even completely annihilated by the restricted resampling scheme (utilised in the
test statistic approach). This observation implies that confidence intervals based on inverting a test
statistic will in general have a smaller coverage error than confidence intervals based on the confi-
dence region approach. Among others, Carpenter (1999), Davidson (1999) and Hansen (1999) share
this conclusion.

Note that in the class of models we examined the test statistic and confidence region approaches
are both consistent, i.e. their bootstrap distributions converge to the correct asymptotic distribution.
So, the conclusion to favour the former approach in stable dynamic models is based on its finite-
sample performance. Note, however, that in AR models containing a unit root, Basawa et al. (1991)
have demonstrated the inconsistency of the confidence region approach, whereas the test statistic ap-
proach does lead to correct bootstrap inference; see for instance Ferretti and Romo (1996) or Hansen
(1999). Hence, the superiority of the test statistic approach in unit root models is not simply a finite-

sample phenomenon, but follows from asymptotic theory.
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A Proof of Lemma 1

Lemma 1 In the linear fixed-regressors model (8), P[1* (ﬁ’) +y*<0]<05asn— oo

Proof. The quantity y* involves the term V = (Rf — ry), which is non-zero when the null
hypothesis Hy : Rf = ry is false. To avoid exploding quantities in the analysis, we only consider
local alternatives. Define v,, ~ N'(V, X) and v}, ~ N (0, X), where £ = RQ7'R'. From Freedman
(1981), it follows that

G B 7" S Leyz~lor +20, 2700, (A.1)

Since X is positive definite, there exists a non-singular m x m matrix C such that C’'C = ~'. Put

uy = Coy and uy;, = Co;;, so that u,, ~ N(CV, 1,) and u};, ~ N(0, I,,). Then we have

P2 (B)+7* <01 — P[(Cu)(Cul)+2(Cv,) (Cok) < 0]
= Pluju;, +2u,u;, < 0]. (A2)

m

Let J = (% (l)) and Jp, = J ® I,,. Defining us,, = (u, u,,)’, we can write u}u;, + 2u, u;, as
U, JomUam. Since J is a real symmetric matrix, it can be diagonalized by a real orthogonal matrix K,

ie.
K'JK = A, (A.3)

where A =diag(l1, 42) with 2; = 1(1 = v/5) ~ —0.618 and 1, = 1(1 4+ /5) ~ 1.618. In fact, X is
given by

V5-1 -2
K — K11 K2 _ \/10_2\/5 \/5—«/5 ~ 0.526 —0.851
K21 K22 —v2 IEVA —0.851 —0.526

V=5 A10-25
If K>,y = K ® I, then K, ), Koy = A® 1. Since K3, K»,, = by, we obtain w,, = (v}, w,,) =

*

K3 uom ~ N (o bom), where po,, = (i) w),) with uf, =x,1CV and p,, = k2,CV. Now

Pluyuy, + 2u,u;, <01 = PL(K},um) Ky Jom Kom (K5, ti0m) < 0]

= Pw}, (A ® L)wa, < 0]
= P> w; /> w? < =41/ 2]
= P[Epn(d1,6) < 2], (A4)

where 1 = =2/, = % ~ 0.382 and F,, ,(d;, d,) is a random variable having a non-central

F-distribution with (m, m) degrees of freedom and non-centrality parameters 6; = u,x,, and o, =

*/ *

iy, Next, we consider two case: (i) the null is true; and (ii) the null is false. When the null is
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true, d; = d» = 0 and the lemma follows from the fact that P[F}, ,, (0, 0) < 0.382] < P[F},.m(0,0) <
1] = 0.5. When the null is false, the lemma is proved as follows. First, note that K%z /K%1 =/, SO
that 0, = A0,. Hence, 01 < d» and P[F}, ,(d1,02) < A] is an increasing function of ||d2||, where
| - || denotes some well-defined matrix norm. However, we shall show that the probability is bounded
from above by 0.5 as the non-centrality parameters become large. Define the two random vectors

zm ~ N(0, I,) and z, ~ N(0, I,,). Now, the probability given in (A.4) can be written as

Pl(zm + i) Cm + ) < 2z, + 1) (25, + 151, (A.5)

*/ *

where u), 1, = Au . Furthermore, if || V|| becomes large, then z), z,, and Az}, z;, become negligi-

bly small in comparison to 2u),z,, and 2 z;, respectively. Hence, as ||V|| — oo, the probability

given in (A.5) can be accurately approximated by
Plu)zm < Auzy] = 0.5, (A.6)

since P[x < y] = 0.5 forx ~ N(0,02) and y ~ N (0, ai). Hence, we find that P[2*" (B) + y* <
0] < 0.5 asymptotically irrespective whether the null is true or false. Hence, Lemma 1 is proven in
case of addition, i.e. A (/?) + y*. In case of subtraction, i.e. A* (ﬁ’) — y*, we define the matrix
JT = ( _11 _3). Since the eigenvalues of J~ are the same as the eigenvalues of .J, the proof also
holds for 2** (ﬁ) — y * except that a slightly different matrix K~ is used to diagonalize the matrix J—,

viz. 1) and Ky, are interchanged. O
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Table 1: Rejection frequencies (in %) for Hy: p = 0.53 and Hy : 6 = 0.55 against their one-sided
alternatives in the model y; = py;_1 4+ u+¢; +0¢,_; at nominal significance level a = 5% (N=1000,
B=999, n=99).

alternative alternative
p <053 p>053 0<05 0>055
N(0, 1) 6.7 32 24 11.0
™ (B), B, e{p,0) 4.8 52 4.5 3.2
™ (Bo),  Po € {p.0} 5.0 4.4 4.7 4.5

Table 2: Various empirical 95% equal-tail confidence intervals for the ARMA(1,1) parameters
(B=4999).

(P> hu) R/L ©1,00) R/L
N(0, 1) (0.325,0.729) 1.00 (0.352,0.757)  1.00
(), B lp.d) (0.343,0.748) 1.20 (0.245,0.720)  0.54
™ (Bo),  Bo € {po. 0o} (0.331,0.751) 1.14 (0.283,0.716)  0.60

Note: R/L = (By — B)/(B - BL).
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Figure 1: Graphical comparison of the bootstrap distributions based on 7*' (5,) (straight line, upper

figure), 7= (B,) (dashed line, upper figure), ¥ (3,) (straight line, lower figure) and 7 (8,) (dashed

line, lower figure).
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Figure 2: Assessment of the dependence on p of the parametric bootstrap quantiles ri’a, T ;"a and the

actual expectation E,[7*" ()] in the Gaussian AR(1) model (n=25, p,=0.8, a € {0.05, 0.95}).
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Figure 3: Bootstrapped p-values based on the test statistic approach for the null hypotheses Hy: p =
po and Hy: 6 = Oy against their one-sided alternatives (B = 4999).
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