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Abstract

This paper extends a fundamental result about single-item inventory systems. This ap-

proach allows more general performance measures, demand processes and order policies, and

leads to easier analysis and implementation, than prior research. We obtain closed form

expressions for the Laplace transforms of the expressions of the performance measures, and

with the help of an eÆcient inversion algorithm, the approximations of these cost and service

measures are almost up to machine precision.



2 Single item inventory models: A time- and event-averages approach

1. Introduction

Consider a single item inventory model which allows for backorders. Let us start from the

basic 
ow-conservation relation, often used in inventory theory, relating the netstock process

IN (physical stock - backorders), the inventory position process IP (netstock + items on

order), and the demand process D,

IN(t+ L) = IP(t)�D(t; t+ L);

where L > 0 denotes the leadtime. It was shown for certain demand processes and order

policies that the limiting variables exist, and

IN1 = IP1 �D1(L):(1.1)

Here, the random variables IN1; IP1 and D1(L) are distributed with the pointwise lim-

iting distributions of the corresponding processes. Relation (1.1) in its own wouldn't be a

fundamental result, but the following two properties turn it into a strong statement:

IP(t) and D(t; t+ L) are asymptotically independent,(1.2)

IP1 has the limiting distribution of the Markov chain IP(tn);(1.3)

tn; n 2 IN [ f0g representing the arrival epochs of customers.

The statements (1.1) - (1.3) were �rst proven back in 1979 by Sahin, for the case of a

compound renewal demand process under an (s; S) policy (cf. Sahin(1979)). Later, in 1986,

Zipkin extended Sahin's result for the case of demand generated by a compound-counting pro-

cess, with i.i.d. individual demands, independent of the demand epochs. The ordering policy

he considers is based only on the inventory position. Further he assumes that the distribution

of the stochastic counting process N(t), associated with the arrival process of the customers,

converges pointwise to a limiting distribution. See our main reference, Zipkin(1986), for

earlier work.

Our work proves that statements (1.1) - (1.3) are valid in case of more general demand pro-

cesses or policies. Our extension of the already known results is easiest explained intuitively,

through the di�erence in the assumptions made by Zipkin(1986) and those in the present

paper. That is, instead of requiring that the pointwise limiting distribution for IP and N

would exist, we assume the following: the limiting distribution in the Cesaro sense of the joint
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process (IP;N) exists. Since the Cesaro sense limiting distribution is a long run average, it is

clearly less restrictive than the pointwise limit assumption. Furthermore, since we also prove

asymptotical independence of the processes IP and D, or equivalently, IP and N, in order to

be able to 'take apart' the joint limiting distribution in the Cesaro sense of IP and N, we will

consider the following cases: (i) the limiting distribution in the Cesaro sense of N(t) AND

the pointwise limiting distribution of IP(t) exist, or (ii) the pointwise limiting distribution

of N(t) AND the limiting distribution in the Cesaro sense of IP(t) exists. Under case (i) we

can list models such as demand modeled by a nonhomogeneous compound Poisson process,

i.e., the pointwise limit for the corresponding counting process N does not exist, while the

Cesaro limit does. Under assumption (ii) models such as an (s; S) policy with unit demand

can be analyzed: the pointwise limit of the IP process does not exist while the limiting distri-

bution in the Cesaro sense does. The importance of this result (asymptotical independence)

is further illustrated by the example of a two level distribution system.

Section 4 brings the other main result of this paper: the cost structure associated with

this general model is also innovative, in the sense that it provides a uni�ed treatment of

average costs and service measures, by exploiting the asymptotical independence result of

the previous section. We obtain the most important performance measures (that is, average

costs and service measures) by observing the behaviour of the net inventory process. The

end result is a general cost expression which yields any desired cost or service measure by

solely substituting the proper cost-rate function. Furthermore, the convolution structure of

these performance measure expressions, enables us to obtain a closed form expression for

their Laplace transformations, without a signi�cant e�ort. We then make use of a recently

developed Laplace transform inversion technique (Den Iseger(2000)), which facilitates us to

invert these Laplace transforms in any point. The obtained results are exact almost up to

machine precision.

All the results of the present paper hold true in the case of stochastic leadtimes, provided

that orders do not cross in time, as it is explained in detail in Section 5.1. Moreover, Section 5.2

deduces a surprising relationship between �xed-leadtime-models with time- nonhomogeneous

compound Poisson demand, and stochastic-leadtime-models with a compound point process

demand of Zipkin(1986). Section 6 provides numerical examples.
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2. Notation and main tools

This section presents the three most important tools for this paper. Let us begin with the

stochastic processes describing the inventory systems of our interest, that is single item in-

ventory systems with backlogging. The demand process D, is a general, stochastic compound

point process, where D(t) represents the aggregate demand up to time t

D(t) :=

N(t)X
n=1

Yn:(2.1)

The individual demands Yn; n 2 IN are independent and identically distributed random

variables, and independent of the arrival process of customers, N. Customers' interarrival

times are described by the process Xn; n 2 IN , are not necessarily independent or identically

distributed! The arrival times of the customers are thus given by tn := X1+ : : :+Xn; n 2 IN

and the related stochastic counting process fN(t) : t � 0g is given by

N(t) :=

1X
n=1

1ftn�tg:

The netstock or net inventory process IN := fIN(t) : t � 0g, is de�ned as the stock on hand

minus the backordered amount at time t, and the inventory position process IP := fIP(t) :

t � 0g, is the net stock plus outstanding orders at time t. The control rule associated with

the system is such that it only depends on the inventory position. An extension of this model,

where the control rule is not based on the inventory position, can be found in B�azsa and Den

Iseger(2001). In our analysis L can be �xed or stochastic and we refer to it as the leadtime.

We also need to make the common 'no order crossing' assumption: all and only those orders

placed by time t will arrive by time t+L. This assumption is essential for the validity of the

so called 
ow conservation law expression, which is a key tool for this paper. If the stochastic

demand process D is c�adl�ag (that is right continuous with left limits) then

�LIN(t) = IP(t)� �tD(0; L]; IP - almost surely(2.2)

for every t � 0 where �s; s � 0 is a shift operator such that �s(X)(t) := X(t + s) for every

t � 0 and X a stochastic process. For the same general stochastic process X the notation

X(a; b] means X(b)�X(a).

One of the main goals of this paper is to show that statements (1.1) - (1.3) and their appli-

cation to performance measures hold under more general circumstances than in Zipkin(1986).
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That is, for the stochastic counting process N(t) or the inventory position process IP, instead

of the existence of a pointwise limiting distribution we only assume the existence of the time or

event stationary distributions. These distributions are de�ned as follows (see Sigman(1995)).

De�nition 2.1. Consider a compound point process X = fX(t) : t � 0g and the sequence

of events fsn; n 2 INg related to X. The distribution

F c

1(x) = lim
t"1

1

t

Z
t

0

FX(s)(x)ds(2.3)

is called the time stationary distribution for X (see Sigman(1995)). The distribution given

by

F e

1(x) = lim
n"1

1

n

nX
k=1

FX(sk)(x)(2.4)

is de�ned as the event stationary distribution for X (see Sigman(1995)).

Since the the time and event stationary distributions are de�ned by Cesaro limits (time

and resp. event averages!), their existence is a much less restrictive condition than that of a

pointwise limiting distribution. This is the reason for referring to these distributions sugges-

tively, under a common noun, as limiting distributions in Cesaro sense. A good example for

the generality of these distributions is the time-nonhomogeneous compound Poisson process:

its pointwise limit in distribution does not exist, while both the time and event stationary

distributions exist.

The technical tool we use for the computation of the cost expressions is the Laplace-

Stieltjes transform and its inversion.1 The otherwise cumbersome convolution structure of

the cost expressions becomes easily tractable through Laplace transformations. These expres-

sions, involving Laplace transforms, can then be inverted with an eÆcient algorithm (see Den

Iseger(2000)) and we obtain piece-wise polynomial approximations in fractions of time. The

calculations are numerically stable, while the approximation is precise almost up to machine

precision.

3. The inventory position process

The de�nitions of this general control system imply for the inventory position process in

the epochs of customers' arrival that IP(tn) only depends on the previous state IP(tn�1), the

1All the arguments and results remain valid in case of Fourier transforms.
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individual demand of the nth customer Yn, and the magnitude of the replenishment order

Zn, if there was any order placed at tn. Since the individual demands Yn are independent

and identically distributed, and Zn only depends on IP(tn�1) and Yn, fIP(tn) : n 2 INg is

a Markov chain. If the chain fIP(tn) : n 2 IN [ f0gg has a unique limiting distribution (see

Ross(1970)), then it is given by

� := lim
n"1

IPfIP(tn) � xg = IPfIP1 � xg;(3.1)

where IP1 is a random variable distributed with the limiting distribution of the Markov chain

fIP(tn); n 2 INg. Otherwise, if only the limiting distribution in the Cesaro sense exists, that

is, the event stationary distribution for IPn, then it is denoted by

�c := lim
n"1

1

n

nX
k=1

IPfIP(tk) � xg = IPfIPc

1 � xg:(3.2)

The step function structure of the sample paths of the inventory position implies that

IP(t) = IP(tN(t)); for all t � 0:(3.3)

In order to prove that IP(t) is asymptotically independent of N(t), thus also independent of

D(t), we need the de�nition of asymptotical independence understood in the Cesaro sense,

that is:

De�nition 3.1. IfX andY are two stochastic processes such thatX has a pointwise limiting

distribution and the time- stationary distribution for Y exists, then they are asymptotically

independent if and only if

lim
T"1

1

T

Z
T

0

IPfX(t) � x;Y(t) � ygdt = IPfX1 � xgIPfYc

1 � yg;(3.4)

where X1 is a random variable distributed with the pointwise limiting distribution of X, and

Yc

1 is a random variable distributed with the time- stationary distribution of Y.

Observe that this de�nition can be easily adjusted in case of discrete stochastic processes

and an event- stationary distribution. The asymptotical independence is justi�ed by the

following theorem, for any inventory system where the control rule solely depends on the

inventory position:
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Theorem 3.2. Assuming that the Markov chain fIP(tn) : n 2 INg is ergodic, and the time-

stationary distribution for the stochastic counting process N exists, while N(t) �! 1 a.s.

as t �! 1, the inventory position process IP(t) and the leadtime demand D(t; t + L] are

asymptotically independent. Moreover,

lim
t"1

IPfIP(t) � xg = IPfIP1 � xg = �;(3.5)

for all x 2 IR, where IP1 and � were de�ned by relation (3.1). Conversely, if the event-

stationary distribution �c for fIPng exists (de�ned by relation (3.2)), together with a pointwise

limiting distribution of N, with N(t) �! 1 a.s. as t �! 1, the inventory position process

IP(t) and the leadtime demand D(t; t+ L] are asymptotically independent.

For the proof see the Appendix.

Remark 3.3. In the discrete case the conclusions of the theorem remain valid, obviously

assuming that the event- stationary distribution for the stochastic counting process N exists.

We will now give examples which are related to two of the most well-known policies in the

literature.

3.1. The (s; S) policy. This control policy only depends on the inventory position process.

Hence, as derived at the beginning of section 3 the inventory position in the moments of

customer arrivals fIP(tn); n 2 INg is a Markov chain which possesses a unique limiting

distribution. This distribution, though in a di�erent way, was also derived by Sahin (see

Sahin(1990)). For notational convenience, de�ne the sequence of random variables fVn : n 2

INg as the di�erence between the order-up-to level S and the inventory position at moment

tn; n 2 IN :

Vn := S � IP(tn); n 2 IN:(3.6)

Since fIP(tn) : n 2 INg is a Markov chain, obviously fVn : n 2 INg is also a Markov chain

equipped with a unique limiting distribution. By the de�nition of the policy it immediately

follows that

Vn+1 = (Vn +Yn+1) 1fVn+Yn+1�S�sg
; n 2 IN:(3.7)
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We aim to show now that the unique limiting distribution of the Markov chain fVn : n 2 INg

is of the form

lim
n"1

IPfVn � xg = IPfV1 � xg =
U0(x)

U0(S � s)
;(3.8)

where U0 denotes the renewal function related to the renewal sequence fY0;Y0 +Y1; : : : g

given by

U0(x) :=

1X
k=0

F k?

Y
(x):

Relation (3.8) is exploited in B�azsa and Den Iseger (2001a) for the purpose of a very eÆcient

optimization algorithm. Relation (3.7) implies straightforwardly that for every 0 � x � S� s

FV (x) = C + (FV ? FY )(x);(3.9)

where C := 1� (FV ?FY )(S� s) is a normalization constant. Since relation (3.9) is a renewal

type equation, it follows (see Ross(1970)) that its uniquely determined solution is given by

FV (x) = CU0(x):(3.10)

The constant C can be easily determined by the condition FV (S�s) = 1, therefore we obtain

that the unique invariant distribution of the Markov chain Vn is given by relation (3.8). As

a standard result from renewal theory (see Ross(1970)), if x is big enough, that is, S � s

is large, then the renewal function U(x)=x �! 1=IEX1. This implies that (3.8) converges

to x=(S � s), that is, the limiting distribution converges to a uniform distribution, and it s

independent of the demand process!

In the next subsection it is proved that the limiting distribution of the Markovian inventory

position process related to an (s;Q) model is given by the uniform distribution. This result

suggests that for large Q and S � s these models are very similar.

3.2. The (s; nQ) policy. Hadley and Whitin(1963) proved that in case of an (s; nQ) policy

the transition matrix of the Markov chain fIP(tn) : n 2 INg is double stochastic, hence it

follows straightforwardly that its limiting distribution is given by the uniform distribution on

(s; s+Q], that is

lim
n"1

IP(tn) = s+QU; n 2 IN;(3.11)
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with U a uniformly distributed random variable on (0; 1]. Together with the average holding

and ordering cost expressions this result was also found by Chen and Zheng(1992), for a

compound Poisson demand process. It is possible though to generalize this case even further.

Assume that the inventory position IPn has the steady state distribution s+QUn, with Un

uniformly distributed as before, and assume that the individual demand Yi are not identically

distributed anymore, perhaps not even independent. It follows now that IPn+1
d
= [QUn +

Yn+1]modQ
d
= QUn+1, and IPn+2

d
= QUn+2, hence the distribution of the inventory position

process remains uniformly distributed on (s; s + Q]. Furthermore, IPn is independent of

fYk : k = 1; : : : ; ng.

3.3. A decentralized two level distribution system. This example is meant to point out

the importance and use of Theorem 3.2, that is, the asymptotical independence property of the

inventory position process and leadtime demand. The deeply going mathematical details are

therefore omitted, the interested reader is referred to B�azsa and Den Iseger (2001). Consider

a two level distribution system, consisting of one warehouse and N retailers, started in the

equilibrium situation. The warehouse and retailers follow (s; nQ) control policies, that is, the

warehouse applies a policy with parameters (s0; Q0), while at retailer i the policy parameters

are (si; Qi), i = 1; : : : ; N . This model was also discussed somewhat similarly by Axs�ater

(1997), although with a centralized instead of decentralized approach. All the processes and

characteristics describing or related to the retailers will be indexed with i, i = 1; : : : ; N , while

for the warehouse we use index 0. Demand, denoted by Di, at each retailer is described by

a compound renewal process with i.i.d. individual demands fYn

i
: n 2 INg, i = 1; : : : ; N .

Let further Gi denote the cdf. of the interarrival times and Fi the order size distribution

for i = 1; : : : ; N . Li, i = 0; : : : ; N stands for the leadtime of a replenishment order. It is

well known that the replenishment moments f�n
i
: n 2 INg at the individual retailers form

a regenerative process. Let us denote the stochastic counting process associated with this

regenerative process with Ni(t), i = 1; : : : ; N . It is also known that the distribution of the

interarrival times between replenishment orders at retailer i is given by

�i(t) =
1

Qi

Z
Qi

0

1X
k=0

�
F k�

i
� F

(k+1)�
i

�
(Qiu)G

(k+1)�
i

(t)du;
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and the size of the replenishment orders is

cn
i
Qi; with c

n

i
:= inffk � 0 : kQi > si � IPn

i
+Yn+1

i
g;

the distribution of cn
i
being independent of n. Demand at the warehouse is the superposition

of the replenishment processes of the retailers, that is,

D0(0; t] =

NX
i=1

Ni(t)X
n=1

cn
i
Qi =

N0(t)X
j=1

cjQj;(3.12)

where N0 is the superposition of the independent renewal processes Ni, and cjQj is the

replenishment order placed on time tj = �N0(t). Let R
n

i
:= cn

i
Qi, and Ri(t) be the cumulative

process of replenishment orders of retailer i, up to time t > 0, i = 1; : : : ; N .

3.3.1. The warehouse. In order to compute the long run average cost of the warehouse, related

to the netstock process, we make use of the 
ow conservation law: IN0(t + L0) = IP0(t) �

D0(t; t+ L0]. In the spirit of this paper, to be able to use an eÆcient procedure, we need to

�nd out whether the inventory position process and the leadtime demand are asymptotically

independent. The state space of the inventory position process at the warehouse is fs0 +

q; : : : ; s0 + kq; : : : ; Q0g, with q de�ned as the largest common factor of all batch quantities

Qi; i = 0; 1; : : : ; N (cf. Axs�ater(1997)). However, IP0 is unfortunately not a Markov process

given some dependency structure. About the leadtime demand D0 we know that it is the

superposition of the replenishment order processes of the individual retailers (see relation

(3.12)). The limiting distribution of leadtime demand at the warehouse is given thus by

D1

0 (0; L0]
d
=

NX
i=1

N1
i
(0;L0]X
n=1

Rn

i
;

where N1
i
(0; L0] is characterized by relation (6.4) (see Section 6.2) as

lim
t"1

�tNi(0; L0] = lim
t"1

(Ni(t+ L0)�Ni(t))
d
= Ni(L0 �A1

i ):

Hence, the demand process D0 of the warehouse depends on the inventory position process

through the residual life processes Ai(t) := tNi(t)+1 � t. Proposition 5.1 in Sigman (1990)

helps us to come around this diÆculty: assuming that all the �i's are spread out, the process

A = (A1; : : : ;AN ) is a positive recurrent Harris process which converges to its stationary

distribution (denote with A1 the random variable distributed with this stationary distribu-

tion). Now the joint process (IP0(t);A(t)) is a Markov process, moreover, due to the spread
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out cycles assumption, it is an ergodic Harris recurrent Markov process. This implies (see e.g.

Thorisson (2001), page 369) (IP0;A) has a limiting distribution, given by the distribution

of (IP10 ;A1), where IP10 is a random variable distributed with the uniform distribution on

fs0+q; : : : ; Q0g. Conditioning now on (IP10 ;A1) and using Theorem 3.2 realizes the desired

independency, yielding

IE(INL) = IE(IEA1(QU�D1

0 (0; L0])):

The average cost is now determined with the e�ective procedure described in the next section.

The interested reader can �nd the detailed analysis in B�azsa and Den Iseger (2001), it is

beyond the intention of this example to elaborate on Harris chains.

3.3.2. The retailers. The 
ow conservation law for the retailers is given by

INi(t+ Li +W(t)) = IPi(t) +Di(t; t+ Li +W(t)];(3.13)

where W(t) is the additional remaining waiting time at time t incurred by the event when

the warehouse runs out of stock. By this de�nition of the waiting time it is clear that the


ow conservation law remains valid. If the distribution ofW(t) is known, then we can do the

analysis on the same line as before for the warehouse, conditioning on W(t). Note also that

the state space of the random variable W(t) is [0; L0]. The distribution of the waiting time

can be characterized by the following relation

IPfW(t) � wg = IPfIN0(t+w) +D0(t; t+ w] > 0g(3.14)

= IPfIP0(t+ w � L0)�D0(t+w � L0; t] > 0g:(3.15)

Relation (3.15) expresses the fact that the demand of retailer i placed at �Ni(t) will be ful�lled

after the delay w, while in relation (3.15) the 
ow conservation law is used for IN0(t + w).

The demand, as de�ned earlier, D0(t+w � L0; t] =
P

N

k=1Rk(t+w � L0; t]. All the Rk; k =

1; : : : ; i � 1; i + 1; : : : ; N are independent, and we can determine the superposition D0 as

before. Yet, Ri(t + w � L0; t] (the replenishment orders of the retailer in question) equals

Ri(t + w � L0; �Ni(t)], having �i := �Ni(t) dependent on IPi, exactly what we want to avoid

in relation (3.13). Fixing now a w and knowing that the retailer applies an (si; nQi) policy

we have

IPi(t) = (IPi(t� (L0 � w)) �Di(t� (L0 � w); t]) mod Qi:
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De�ne now

cIPi(t� (L0 � w); t] = IPi(t� (L0 �w)) �Di(t� (L0 � w); t];

and it follows that

Ri(t� (L0 � w); t] = IPi(t)� cIPi(t� (L0 � w); t]

= Qi f(IPi(t) +Di(t� (L0 � w); t]) div Qig :

This expression solves our problem: conditioning on (IPi;W) in relation (3.13), and using

theorem 3.2, we obtain the asymptotical independence which is necessary for a straightforward

calculation of the long run average cost and service measures, as it is shown in the next section.

There is a very important observation to make before concluding this section.

Observation 3.4. The waiting timeW with distribution given by (3.15), is not only impor-

tant for the calculation of long run average costs, but it yields service measure, frequently

used in practice: the probability that a customer has to wait more than certain amount of

time T > 0.

Remark 3.5. The analysis of the two level distribution system described above remains valid

also in the case when the system starts in an arbitrary state, not in equilibrium. In this case

we need the additional assumption of a �nite expected delay-cycle cost.

4. Performance measures

4.1. The cost structure. Now we consider a general approach to performance measures.

In general, the cost of an inventory control system (most commonly: long run average cost) is

associated with the net inventory process. It is well-known that the sample paths of the net

inventory process is a step function, with two types of jumps: (downwards) jumps occurring

due to the arrival of customers, called type I jumps, and (upwards) jumps caused by the

arrival of a replenishment order, called type II jumps. We associate three kinds of costs

with the netstock process. The �rst type of cost is incurred between events, that is, between

jumps. The second and third kinds of costs are associated with the type I and type II jumps,

respectively, as follows:
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�rst: When IN(t) = IN(Jn) = x a.s. for Jn � t < Jn+1, where x 2 IR is a constant and

Jn; n 2 IN are the points of time when a jump occurs, then it is natural and trivial to

introduce a cost-rate function f(x) related to this event. This cost will give us a very

important characteristic, the average holding cost (and penalty cost), therefore we refer

to this type of cost in the remainder of the paper as the average holding cost.

second: Similarly, we introduce a cost-rate function g1 related to the type I jumps of the

sample paths of the netstock process, that is, the cost of the jump in time point tn is

given by g1(IN(t�n );Yn). This type of "cost" usually provides us with service measures,

since it is related to the arrival of customers. Therefore we refer to the cost of the type

I jumps as service measures. Observe, that by altering the cost-rate function g1, we

obtain any speci�c service measure one needs. Later we also show that this cost-rate

function is most of the time given by a simple algebraic expression.

third: Introduce also a function G2, related to the type II jumps, that is, the cost of the

control policy: for a replenishment order placed at time point tn it is given by G2(Zn).

By the de�nition of Zn, Zn = h(IP(t�
n
)�Yn), where h is a function dependent on the

control rule, the cost of the control rule is given by g2(IP(t
�
n
)�Yn), with g2 = G2 Æ h.

Before starting with the actual computation of these costs we discuss some properties related

to the expected long run average cost associated with a stochastic process. The average cost

associated with a positive function l (or if l is a function with bounded variation) and a

stochastic process X is given by

lim
t"1

IE

�
1

t

Z
t

0

l(X(s))ds

�
:(4.1)

Assume now that the time-stationary distribution for the stochastic processX exists, andXc

1

denotes a random variable distributed with this time- stationary distribution of the process

X. Using Fubini's theorem in the previous relation yields that

lim
t"1

1

t

Z
t

0

l(X(s))ds = l(Xc

1) a.s.

Having obtained almost surly convergence, the next step in order to obtain L1 convergence is

use Theorem 13.7 of Williams (1991), and Sche��e's Lemma (Williams (1991)) establishing a
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suÆcient and necessary condition for L1 convergence:

limt"1 IE

�
1
t

R
t

0
l(X(s))ds

�
= IE(l(Xc

1))

if and only ifn
1
t

R
t

0
l(X(s))ds : t �> 0

o
is uniformly integrable.

(4.2)

One can also de�ne costs as event-averages, in the following way. The costs related to the

jumps (type I or type II) are associated with events, hence we de�ne an event-average cost in

the following manner. The event-average cost related to the series of events fsn : n 2 IN[f0gg

associated with a stochastic process X and a positive cost-rate function l is given by

lim
n"1

IE

0@ 1

n

nX
j=1

l(X(sj))

1A :(4.3)

Similarly as relation (4.2) for the continuous case, we obtain that

limn"1 IE

�
1
n

P
n

j=1 l(X(sj))
�
= IE (l(Xe

1))

if and only ifn
1
n

P
n

j=1 l(X(sj)) : n 2 IN
o

is uniformly integrable,

(4.4)

where Xe

1 is a random variable distributed with the event stationary distribution F e

1 de�ned

by (2.4). Let us summarize relations (4.1) - (4.4) in the following theorem.

Theorem 4.1. Assuming that the time and event stationary distributions, F c

1 resp. F e

1, for

the stochastic process X exist, then

lim
t"1

IE

�
1

t

Z
t

0

l(X(s))

�
ds = IE (l(Xc

1)) ;(4.5)

if and only if
n
(1=t)

R
t

0
l(X(s))ds : t > 0

o
is uniformly integrable; and

lim
n"1

IE

0@ 1

n

nX
j=1

l(X(sj))

1A = IE (l(Xe

1)) ;(4.6)

if and only if
n
(1=n)

P
n

j=1 l(X(sj)) : n 2 IN

o
is uniformly integrable. Expressions (4.5) and

(4.6) are the time-, respectively event-average costs related to the process X and the

cost-rate function l. Moreover, if N(t)=t �! � a.s. as t �!1 then

lim
t"1

IE

0@1

t

N(t)X
j=1

l(X(sj))

1A = �IE (l(Xe

1)) ;(4.7)
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and
n
(1=t)

PN(t)
j=1 l(X(sj)) : t > 0

o
uniformly integrable.

Obviously, if the pointwise limiting distribution of the stochastic process X exists then it

coincides with the distributions de�ned by relations (2.3) and (2.4). The right hand side of

relation (4.7) is the time-average version of the cost de�ned on a set of events.

Assumption 4.2. For the case of the inventory systems considered, we assume for the rest

of the paper that
n
(1=t)

R
t

0
l(�LIN(s))ds : t > 0

o
is uniformly integrable and / orn

(1=n)
P

n

j=1 l(�LIN(sj)) : n 2 IN

o
is uniformly integrable.

4.2. Average holding cost. Since in this case we are interested in long run time-average

costs we aim to compute the expression

lim
t"1

1

t

Z
t

0

IEf(�LIN(s))ds:(4.8)

Relation (2.2) gives us a powerful tool to compute the average cost. By the de�nition of the

demand process (2.1) the average cost equals

lim
t"1

1

t

Z
t

0

IEf

0@IP(s)� �sN(0;L]X
k=1

Yk

1A ds:(4.9)

Proposition 4.3. The average holding cost de�ned by relation (4.9) equals

IEIP1
�
(f � FD1(0;L]) (IP1)

�
;(4.10)

where D1(0; L] :=
PNc

1
(0;L]

k=1 Yk.

Proof. As deduced in Theorem 3.2, IP(t) and D(t; t + L] are asymptotically independent.

Since IP1;N
c

1(0; L] and Yk are pair by pair independent, the statement of the proposition

follows immediately.

Observe that the expression for the demand process can be written in the form

IPf

Nc
1
(0;L]X

k=1

Yk � xg =

1X
k=0

IPfNc

1(0; L] = kgF k�

Y
(x);

and taking the Laplace- Stieltjes transform of this we obtain

LSFD1 (�) =

1X
k=0

IPfNc

1(0; L] = kgLSk
FY

(�) = PNc
1
(0;L](LSFY (�));



16 Single item inventory models: A time- and event-averages approach

where PNc
1
(0;L](�) denotes the z-transform of Nc

1(0; L]. In conclusion, if we can determine

PNc
1
(0;L] then with the previously mentioned Laplace transform inversion algorithm we obtain

a piece-wise polynomial approximation for f � FD1(0;L], say Pf�FD1(0;L]
. We are now able to

approximate equation (4.10) by

IEIP1

�
Pf�FD1(0;L]

(IP1)
�
;(4.11)

obtaining a result which is almost up to machine precision.

4.3. Service measures. The long run event-average cost, as given by relation (4.3), of the

(type I) jumps associated with the cost-rate function g1 is of the form

lim
n"1

1

n

nX
j=1

IE

�
g1(IN(t�

j
);Yj)

�
:(4.12)

Furthermore, by the de�nition of the demand process it is obvious that IN(t�
n
) and Yn are

independent for any n 2 IN [ f0g, and Yn; n 2 IN [ f0g are identically distributed. Using

now relation (2.2) the above average cost expression equals

lim
n"1

1

n

nX
j=1

IEg1

0@IP(t�
j
� L)�

�tj
N(�L;0]X
k=1

Yk;Y1

1A ;

where the notation Y1 stands for a random variable distributed as Y1. As deduced in section

3, IP(t) has a pointwise limit in distribution, and by the assumptions the event stationary

distribution for �tN(0; L] exists. We obtain thus by relation (4.4) the following proposition.

Proposition 4.4. The event-average cost of the type I jumps equals

SMevent := IEg1(IP1 �

Ne
1
(0;L]X

k=1

Yk;Y1) = IEIP;Y1

�
g1(�;Y1) ? FDe(0;L](IP1)

�
;(4.13)

where Ne

1(0; L] is a random variable distributed with the event stationary distribution for N,

given by

lim
n"1

1

n

nX
j=1

IPf�tjN(�L; 0] = kg:(4.14)

Proof. The statement is a direct consequence of Theorem 3.2 and Remark 3.3.
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Figure 1. The g1 cost-rate function, related to the type I jumps

Observe that by Theorem 4.1 the event-average cost (4.13) is easily convertible to a time-

average cost expression. That is, if

lim
t"1

N(t)

t
= � a.s.;

then the long run time-average cost of the jumps, SMtime, is given as in relation (4.7) by

SMtime = � � SMevent:(4.15)

An intuitive example for the cost of the type I jumps would be the expected number

of items short up to time t, which is one of the most frequently used service measures in

the literature. In this case the function g1 related to the jumps is given by

g1(X;Y ) := (Y �X)+ � (�X)+;(4.16)

where X is the level from where the jump occurs and Y is the size of the jump. Obviously,

X := IN(t�
k
) and Y := Yk. Figure 1. provides some intuition for the de�nition of the

function g1 in this case.
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4.4. The cost of the control rule. As we discussed at the beginning of section 4, the type

II jumps are related to the inventory position process. These jumps in the sample paths of

the inventory position process occur due to placement of replenishment orders. This implies

a suggestive name for this type of cost: the cost of the control rule. Thus, as in section 4.3

we can derive the following proposition.

Proposition 4.5. The time-average cost of the type II jumps equals

�IEg2(IP1 �Y1):(4.17)

The most obvious example for the cost of the control rule is the setup cost. In this case

the cost-rate function is given by

g2(A) = K1fA�sg;

where K and s are given parameters.

5. Stochastic leadtimes, nonhomogeneous demand, and limiting distributions

in the Cesaro sense

5.1. Stochastic from nonhomogeneous with stationary versions? Let us assume for

the moment that the leadtime is �xed L > 0, and the arrival rate of the demand process is

nonhomogeneous, but known, given by the function � : IR+
�! IR+. As it was described

earlier, we are interested in the limiting distribution of the leadtime demand, that is,

lim
t"1

1

t

Z
t

0

IPfD(s; s+ L] � xgds;

which can be interpreted as �UtIPfD(s; s+L] � xg, with U a uniformly distributed random

variable on [0; t]. This, according to relation (4.5) is in fact the time stationary version of

the leadtime demand, which can be further written as IPfD(UT;UT + L] � xg, T > 0. The

Laplace transform of the latter is given by

exp

�
�L

�
1

L

Z
UT

UT�L

�(v)dv

�
(1� LSFY (�))

�
:

Hence we de�ne a new demand rate

b� :=
1

L

Z
UT

UT�L

�(v)dv;
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the stationary version of the nonhomogeneous demand rate. Clearly, the new rate is now

homogeneous but stochastic!

The message is the following. In the expression of the Laplace transform of the leadtime

demand exp(��(U)(1 � LSFY (�))), with �(U) =
R
UT

UT�L(UT )
�(v)dv, it is only �(U) which

is changing or uncertain. This yields that is the distribution of �(U) stays the same, the

distribution of L and � (or the functions L(u) and �(u)) can change, leading to the same

stationary version of the leadtime demand, thus to the same average cost. Suppose for

instance that the rate of the leadtime demand process is nonhomogeneous, with �(U) =R
UT

UT�L0
�(v)dv, and �xed leadtime L0. By keeping the distribution of �(U) �xed, we can

always transform the model into an equivalent stochastic leadtime and constant demand

demand rate (say, �0) model. In order to achieve this, set L(UT ) = (1=�0)
R
UT

UT�L0
�(v)dv,

yielding �(U) = �0L(UT ), that is, stochastic leadtime, constant demand rate. The next

subsection expresses the same idea with a more intuitive construction.

There is one more interesting observation to make. The limiting distribution in the Cesaro

sense of the leadtime demand, limt"1(1=t)
R
t

0
IPfD(u; u+ L] � xgdu is almost surly equal to

limt"1(1=t)
R
t

0
1fD(u;u+L]�xgdu, which is just the mathematical justi�cation of the approxi-

mations so often used in practice. In conclusion, this means that one doesn't need to know

the distribution of the whole demand process, not even that of the leadtime demand, only

the fraction of time that D(L) � x.

5.2. Stochastic leadtimes vs. nonhomogeneous demand processes. Although the

title of this subsection might be surprising, there is indeed an interesting relation between

inventory models with stochastic leadtimes and a compound renewal demand process and in-

ventory models with �xed leadtimes and a time-nonhomogeneous compound Poisson demand

process. Consider thus a model with �xed leadtime L > 0, and time-nonhomogeneous com-

pound Poisson demand with rate �(t). The idea is now to perform a time transformation2

s := ��1(t). Intuitively, imagine that the original time axis would consist of a nonhomo-

geneous rubber material, which we can stretch out until the arrival moments will get into

balance, such that they will correspond to a now homogeneous Poisson arrival with rate 1 on

this 'new' transformed (stretched) axis. Indeed, �(s) = �(��1(t)) = t. While the behaviour

of the demand process is cured in this way, the distances such as the leadtime L are not the

2J.B.G. Frenk, Erasmus University, Private communication
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same as in the time before transformation: they became 'nonhomogeneous', that is, stochas-

tic! This construction of stochastic leadtimes has a very nice property: orders do not cross in

time. In this way thus we arrived to the stochastic leadtimes model described in Zipkin(1986).

The long run expected average cost of the initial system with the nonhomogeneous arrivals is

lim
t"1

IE

�
1

t

Z
t

0

f(IP(u)�D(u; u+ L])du

�
:

Using the change of variables u := ��1(z) (the transformed time system, where the arrivals

are homogeneous), and the previous relation transforms into

lim
t"1

IE

 
�(t)

t

1

�(t)

Z �(t)

0

f(IP(��1(z))�D(��1(z);��1(z) + L])d��1(z)

!
:

Assuming that �(t)=t converges a.s. as t goes to in�nity to � > 0, it follows that the average

cost expression becomes

�

�
lim
s"1

1

s

Z
s

0

f(IP(u)� ~D(u; u+ L])
1

�(u)
du

�
:

This relation, practically speaking, is the same kind of transformation as the one given in

relation (4.15) between time and event averages. Besides, this relation can be interpreted as

the long run average cost expression in homogeneous time, having stochastic leadtimes with

probability density 1=�(u), less a normalization factor.

The lead time L is now determined from the relation ��1(u) + L = ��1(u + L(u)) (�

can also be considered stochastic) , that is, L(u) = �(��1(u) + L)� u. With this speci�c L

we can determine the ergodic stochastic process U(t), which drives the leadtime mechanism

of Zipkin(1986), obtaining thus an equivalence between the two models. Denoting with u

the moment a replenishment order was placed, its arrival time v is obtained in Zipkin(1986),

as v = minft : t �U(t) � ug (having t �U(t) nondecreasing). For our model this means

v� u = �(��1(u) +L)� u, yielding v = �(��1(u) +L). Substituting this speci�c v into the

expression v �U(v) = u, and letting t := �(��1(u) + L), yields U(t) = t � �(��1(t) + L).

Having �(��1(t) + L) increasing in t, U satis�es all the conditions of Zipkin(1986).

To conclude this section, there is an interesting observation to make.

Observation 5.1. Using stationary policies in combination with a time-nonhomogeneous

demand process and �xed leadtimes can be as motivated as using stationary policies in com-

bination with stationary demand but stochastic leadtimes. On the other hand, the demand
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rate can be viewed as stochastic (see the previous subsection), thus not knowing the demand

rate in advance, it is natural to use a stationary policy.

6. Numerical examples

6.1. Time-nonhomogeneous compound Poisson demand.

6.1.1. Average holding cost. In case of non-homogeneous compound Poisson demand

with arrival rate given by �(t); t � 0, we obtain that the z-transform of the time stationary

distribution for the stochastic counting process is given by

PNc
1
(0;L](z) = lim

t"1

1

t

Z
t

0

exp

�
�(1� z)

Z
s

s�L

�(z)dz

�
ds:(6.1)

Therefore the average cost can again easily be computed as it was described earlier. In Figure
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Figure 2. Average holding cost in case of an (s; S) policy with non-

homogeneous compound Poisson demand; parameters are K = 20; L =

1; �1 = 25=2; �2 = 45=2; q = 50; p = 3; h1 = 1; h2 = 3 )
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2. we plotted the values of the average cost of an (s; S) policy with variable s and S�s values

in case when demand is given by a non-homogeneous compound Poisson process. The demand

rate function varies every (unit) interval, such that if t 2 [2k; 2k + 1) then �(t) = �1 and if

t 2 [2k+1; 2k+2) then �(t) = �2. The individual demands follow a Gamma distribution with

shape parameter 2.5 and scale parameter 2.5 (see Tijms(1994)). Furthermore we considered

a piecewise linear cost-rate function given by

f(x) =

8>>><>>>:
�px if x < 0

h1x if 0 � x � q

h1q + h2(x� q) if x � q

(6.2)

where q denotes a critical level of inventory, from which the inventory holding cost increases

to h2 per unit (h2 > h1 > 0). In the costs we also included a �xed ordering cost K > 0

(see section 4.4) for every placement of a replenishment order. The expression (6.1) is easy

to calculate, because one only needs the fraction of time that the demand has a certain rate,

obtaining 1=2 exp(�(1 � z)�1L) + 1=2 exp(�(1� z)�2L).

6.1.2. Service measures. In case of non-homogeneous compound Poisson demand with rate

�(t) we obtain that the z-transform of Ne

1(0; L] is given by

PNe
1
(0;L](z) = lim

n"1

1

n
IE

nX
j=1

exp

 
�(1� z)

Z
tj

tj�L

�(z)dz

!
:

Conditioning on tj we obtain that the above equals

PNe
1
(0;L](z) = lim

t"1

1

t

Z
t

0

exp

�
�(1� z)

Z
s

s�L

�(z)dz

�
�(s)

�
ds;(6.3)

where the normalization factor � is given by

� = lim
t"1

1

t

Z
t

0

�(s)ds;

which is actually the rate limt"1(IE(N(t)=t). This implies that relation (6.3) is in fact the

time stationary transformation of the event stationary version; the transformation formula

was given by relation (4.15). Both of the cases can be computed with the help of the Laplace

transform inversion algorithm (see Den Iseger(2000)).

6.2. Compound renewal demand.
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6.2.1. Average holding cost. In case of compound renewal demand, we obtain for the stochas-

tic counting process that

lim
t"1

�tN(0; L] = lim
t"1

(N(t+ L)�N(t))
d
= N0(L�A);(6.4)

where A is a random variable distributed with the limiting distribution of the residual life

process (see Tijms(1994)) and N0 denotes the arrival process with a renewal in time point 0.

Let us use the notation

	k(t) := IPfN0(t) = kg;

then the probability distribution of (6.4) equals (	k ? FA)(L). Straightforwardly

	k = F
(k�1)�
X

� F k�

X ; k � 1 and 	0(t) = 1ft�0g

and the Laplace-Stieltjes transform of FA is given by

LSFA(�) =
1� LSFX (�)

�IEX1
:

It follows that the two dimensional Laplace-Stieltjes transform of D(0; L] is given by

(1� LSFX (�))
2LSFY (�)

�IEX(1 � LSFY (�)LSFX (�))
+
(1� LSFX (�))

�IEX
:

Thus � is the argument of the Laplace -Stieltjes transform taken with respect to the leadtime

L, while � is the argument of the Laplace -Stieltjes transform taken with respect to the

individual demand Y. With this construction we are able to calculate the long run average

cost with the help of the two dimensional inversion algorithm (see Den Iseger(2000)).

6.2.2. Service measures. In case of compound renewal demand by a reversed time argument

we obtain that

lim
j"1

IPfN(t�
j
)�N(t�

j
� L) = kg = IPfN(L) = kg;(6.5)

that is Ne

1(0; L]
d
=N(L). Hence relation (4.12) equals

IEg1(IP1 �

N(L)X
k=1

Yk;Y1):(6.6)

A special case of a general compound renewal demand process with Gamma distributed

arrival process (shape=5/2,scale= 1/14) and i.i.d. Gamma distributed individual demands

with shape resp. scale parameters � = � = 2:5 are considered in case of an (s;Q) control
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Figure 3. Average number �2 of items short in case of an (s;Q) policy (L = 0:5)

rule. The expected (time-) average number of items short, given by relation (6.6) with g1

given by (4.16), is plotted in Figure 3., with respect to the decision variables s and Q.

7. Conclusions

The present paper extends results which are already known in the literature to a more

general demand class. The generalization consists in requiring limiting distribution in Cesaro

sense, thus long run averages, instead of pointwise limiting distributions. Under this assump-

tion the model also allows nonstationary demand processes, stochastic leadtimes, all treated

in a uni�ed way. We also �nd an interesting equivalence for the stochastic leadtime model

described in Zipkin(1986). The paper also emphasizes the importance of the asymptotical in-

dependence of the inventory position process and the leadtime demand, which in our opinion

was never exploited eÆciently in the literature. This is also illustrated through an important
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model in inventory theory. Exploiting further the asymptotical independence property, the

cost structures considered are also innovative, it allows the straightforward derivation of any

performance measure.

Appendix A. The proof of Theorem 3.2

Theorem Assuming that the time- stationary distribution for the stochastic counting

process N exists and N(t) �! 1 a.s. as t �! 1, the inventory position process IP(t) and

the leadtime demand D(t; t+ L] are asymptotically independent. Moreover,

lim
t"1

IPfIP(t) � xg = IPfIP1 � xg;

for all x 2 IR and IP1 is de�ned by relation (3.1).

Proof. Let us introduce the notations

Pn(t) := IPf�tN(0; L] = ng;

n 2 IN , for the time- stationary distribution of �tN(0; L]

Pn(1) := IPfNc

1(0; L] = ng;

and the joint event

An;n0
(t) := (�tN(0; L] = n;N(t) � n0):

Proving the identity

lim
T"1

1

T

Z
T

0

IPfIP(t) � x; �tN(0; L] = ngdt = �Pn(1)(A.1)

is adequate to conclude all the statements of the theorem. The fact that IP has a pointwise

limiting distribution means that for all " > 0, there exists an n0 2 IN , such that for all n � n0

j IPfIP(tn) � xg � �(x)j < ";(A.2)

for all x 2 IR. Let us now start with the expression under the limit in (A.1), that is,

IPfIP(t) � x; �tN(0; L] = ng
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equals the sum of probabilities

IPfIP(t) � x; �tN(0; L] = n;N(t) < n0g+ IPfIP(t) � x; �tN(0; L] = n;N(t) � n0g:

Knowing that N(t) �! 1 a.s. as t �!1 yields

IPfIP(t) � x; �tN(0; L] = n;N(t) < n0g � IPfN(t) < n0g �! 0 as t �! 1:

Relation (3.3) states that IP(t) = IP(tN(t)) for all t � 0. Suppose that IPf�tN(0; L] = ng > 0

(otherwise the result is trivially 0), hence

IPfIP(t) � x;An;n0
(t)g

equals

IPfIP(tN(t)) � x j An;n0
(t)gIPfAn;n0

(t)g:

Since in the above expression N(t) � n0, we know by (A.2) that

j IPfIP(tN(t))g � �(x)j < ";

independent of N(t) and �tN(0; L]. These arguments imply that

j IPfIP(tN(t)) � x j An;n0
(t)g � �(x)j < ":(A.3)

The assumption that N(t) �!1 a.s. as t �!1 also implies that

lim
T"1

1

T

Z
T

0

IPfAn;n0
(t)gdt = Pn(1):(A.4)

Finally we obtain that

j IPfIP(tN(t)) � x j An;n0
(t)gIPfAn;n0

(t)g � �(x)Pn(1)j

is less or equal than

j IPfIP(tN(t)) � x j An;n0
(t)g � �(x)j � IPfAn;n0

(t)g+ (IPfAn;n0
(t)g � Pn(1)) j �(x)j:

Taking the Cesaro limit with respect to t of the above expression, and using intermediate

the results (A.3) and (A.4), yields that the expression is bounded by ". This completes the

proof.



Em}oke B�azsa and Peter den Iseger 27

Acknowledgement

We are indebted to Paul Zipkin for his valuable comments and suggestions, which signi�-

cantly improved the paper.

References

Axs�ater, S. 1997. Simple evaluation of echelon stock (R;Q) policies for two- level inventory

systems. IIE Transactions 29, 661-669.

Chen, F., and Zheng, Y.S. 1992. Inventory policies with quantized ordering. Naval Research

Logistics 39, 285-305.

Hadley, G., and Whitin, T.M. 1963. Analysis of inventory systems. Prentice-Hall, Englewood

Cli�s, NJ.

Iseger, den P.W. 2000. A new method for inverting Laplace transforms. Working paper.

Department of Decision Sciences, Erasmus University Rotterdam, The Netherlands.

Ross, S.M. 1970. Applied probability with optimization applications. Holden-Day, San Fran-

cisco.

Rudin, W. 1987. Real and complex analysis. Mathematics Series. McGraw-Hill, Singapore.

Sahin, I. 1979. On the stationary analysis of continuous review (s; S) inventory systems with

constant leadtimes. Operations Research 27, 717-729.

Sahin, I. 1990. Regenerative inventory systems: Operating characteristics and optimization.

Springer-Verlag, New York.

Sigman, K. 1995. Stationary marked point processes: An intuitive approach. Stochastic

Modeling. Chapman and Hall, New York.

Tijms, H.C. 1994. Stochastic models: An algorithmic approach. John Wiley & Sons, New

York.

Williams, D. 1991. Probability with martingales. Cambridge University Press, Third Reprint,

Cambridge.

Zipkin, P.H. 1986. Stochastic leadtimes in continuous-time inventory models. Naval Research

Logistics Quarterly 33, 763-774.


