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Abstract

A cooperative game with transferable utility {or simply a TU-game{ de-
scribes a situation in which players can obtain certain payo®s by cooperation.
A value function for these games is a function which assigns to every such a
game a distribution of the payo®s over the players in the game. An alternative
type of solutions are share functions which assign to every player in a TU-game
its share in the payo®s to be distributed.

In this paper we consider cooperative games in which the players are orga-
nized into an a priori coalition structure being a ¯nite partition of the set of
players. We introduce a general method for de¯ning a class of share functions
for such games in coalition structure using a multiplication property that states
that the share of player i in the total payo® is equal to the share of player i
in some internal game within i's a priori coalition, multiplied by the share of
this coalition in an external game between the a priori given coalitions. We
show that these coalition structure share functions satisfy certain consistency
properties. We provide axiomatizations of this class of coalition structure share
functions using these consistency and multiplication properties.

JEL classi¯cation number: C71
Keywords: TU-Game, coalition structure, share function, multiplication prop-
erty, consistency.

1 Introduction

A situation in which a ¯nite set of n players can obtain certain payo®s by cooperation

can be described by a cooperative game with transferable utility {or simply a TU-

game{ being a pair (N; v), where N = f1; : : : ; ng is a ¯nite set of players and v: 2N !
R is a characteristic function on N such that v(;) = 0. In this paper we consider
monotone TU-games, i.e. games (N; v) satisfying v(E) � v(F ) if E ½ F ½ N . We

denote the collection of all monotone TU-games by G. A monotone game (N; v) is a
null game if v(E) = 0 for all E ½ N . We denote the null game on player set N by

(N; v0), and we denote the class of monotone games that are not null games by G+.
A value function on G is a function f that assigns to every (N; v) 2 G an

jN j-dimensional real vector f(N; v) 2 RjN j representing a distribution of payo®s

among the players. A value function f is e±cient on G if for every game in G it

exactly distributes the worth v(N) of the `grand coalition' over all players, i.e. if
P
i2N fi(N; v) = v(N) for every (N; v) 2 G. An example of an e±cient value func-

tion is the Shapley value (Shapley (1953)). An example of a value function that is
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not e±cient is the Banzhaf value (Banzhaf (1965), Owen (1975), Dubey and Shap-

ley (1979)). Since the Banzhaf value is not e±cient it is not adequate in allocating

the worth v(N). In order to allocate v(N) according to the Banzhaf value, van den

Brink and van der Laan (1998) characterized the normalized Banzhaf value which

distributes the worth v(N) proportional to the Banzhaf values of the players.

An alternative approach to e±ciently allocating the worth v(N) is using share

functions as introduced in van der Laan and van den Brink (1998). A share vector

for game (N; v) 2 G is an jN j-dimensional real vector x 2 RjN j such that
P
i2N xi =

1. Here xi is player i's share in the total payo® that is to be distributed among

the players. A share function on G is a function that assigns to every (N; v) 2 G
exactly one share vector1 ½(N; v) 2 fx 2 RjN j j P

i2N xi = 1g. The share function
corresponding to the Shapley value is the Shapley share function which is obtained

by dividing the Shapley value of each player by the sum of the Shapley values of all

players (i.e. by v(N)). Similarly, the Banzhaf share function is obtained by dividing

the Banzhaf- or normalized Banzhaf value by the corresponding sum of payo®s over

all players. Note that, although the Banzhaf- and normalized Banzhaf value are very

di®erent (for example, the Banzhaf value satis¯es linearity and the dummy player

property which are not satis¯ed by the normalized Banzhaf value), they correspond

to the same Banzhaf share function.

Share functions yield a distribution of the worth of the grand coalition re°ecting

the individual bargaining position of the players. In this paper we consider situations

in which the grand coalition forms in order to maximize the total payo®, but in

which the players are also organized into smaller coalitions. These coalitions form a

coalition structure being a ¯nite partition P = fP1; : : : ; Pmg of the player set N and

are assumed to be given exogenously. As motivated by Winter (1989), the coalitions

can be seen as pressure groups for the division of v(N). So, to divide the worth of

the grand coalition over all players, ¯rst this worth is distributed over the coalitions

in the a priori given coalition structure, and then the payo® assigned to a coalition

is distributed over all its players.

For games in a priori given coalition structure P = fP1; : : : ; Pmg of m coalitions

several value functions have been proposed in the literature. The Aumann-Drµeze

value assigns to any player in a coalition Pk 2 P the Shapley value of the restriction
1For set-valued solutions in terms of share vectors we refer to van den Brink and van der Laan

(1999b).
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of the game (N; v) to coalition Pk, see Aumann and Drµeze (1974). Under this value

concept, the total payo® of the players within a coalition Pk is equal to the worth

of this coalition and therefore the total payo® is equal to
Pm
k=1 v(Pk), which need

not to be equal to v(N). According to the Aumann-Drµeze value, the payo® of a

player i in some coalition Pk does not depend upon its contribution to any coalition

containing players outside Pk. In fact, it is supposed that the grand coalition is

not formed but that the players agree to disagree and are satis¯ed with cooperation

within the coalitions Pk, k = 1; : : : ;m. However, one can imagine many situations

in which players form coalitions within the grand coalition. As already argued by

Aumann and Drµeze (1974), in many of such situations it is very reasonable that also

the outside opportunities of the members of a coalition have to be taken into account.

According to e.g. Hart and Kurz (1983) the existence of a coalition structure implies

a two-level interaction between the players. Firstly, the worth of the grand coalition is

distributed amongst the coalitions; secondly the payo® to each coalition is distributed

amongst the players within this coalition. The outcome of such a two-level interaction

is re°ected by the so-called coalition structure value introduced by Owen (1977). The

Owen coalition structure (CS-)value has the property that the total payo® of the

players in a coalition Pk is equal to the Shapley value of the coalition Pk, when this

coalition is considered to be a player in the ¯rst level game between the coalitions. As

a consequence we have that the Owen CS-value can be considered as a generalization

of the Shapley value to games in coalition structure.

The Owen CS-share function is obtained by dividing the Owen CS-value by the

worth v(N) of the grand coalition (being equal to the sum of the Owen CS-values

of all players). The Owen CS-share function alternatively can be de¯ned using the

following multiplication property . The Owen CS-share of player i 2 Pk 2 P in the

worth to be distributed is equal to the product of the Shapley share of coalition Pk in

the ¯rst level external game between the coalitions and the Shapley share of player i

in an appropriately de¯ned second level internal game between the players in Pk. In

the same way van der Laan and van den Brink (1999) de¯ne the Banzhaf CS-share

function which assigns to player i 2 Pk the product of the Banzhaf share of coalition
Pk in the ¯rst level (external) game between coalitions and the Banzhaf share of

player i in an appropriately de¯ned second level (internal) game.

In this paper we de¯ne a general class of CS-share functions using this multiplica-

tion property. All these CS-share functions satisfy the consistency property stating
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that the share of a coalition in the external game between a priori coalitions is equal

to the sum of the shares of the players in this coalition in the original game in coalition

structure. Moreover, we provide axiomatic characterizations of this class of CS-share

functions using the multiplication and consistency properties. This class of CS-share

functions generalizes the Owen CS-share function and the Banzhaf CS-share function.

This Banzhaf CS-share function is not the same as the Banzhaf type CS-share func-

tion corresponding to the Banzhaf CS-value function introduced by Owen (1981) for

games in coalition structure. In particular the share function obtained from Owen's

Banzhaf CS-value function does neither satisfy the multiplication nor the consistency

property.

The paper is organized as follows. In the next section we discuss some preliminaries

on share functions and games in coalition structure. In Section 3 we introduce a

class of share functions for games in coalition structure. In Section 4 we provide an

axiomatic characterization of this class using the multiplication property. In Section

5 we characterize this class using consistency. Finally, we make some concluding

remarks in Section 6.

2 Preliminaries

First, for player set N and set T ½ N , the game (N; uT ) denotes the unanimity game

of coalition T , i.e. for S ½ N we have that uT (S) = 1 if T ½ S and uT (S) = 0 other-

wise. Notice that (N;uT ) 2 G for all T ½ N . For a pair of games (N; v); (N;w) 2 G
and real numbers ® ¸ 0 and ¯ ¸ 0, the game (N; z) with z = ®v + ¯w is given by

z(E) = ®v(E) + ¯w(E) for all E ½ N . The set of monotone games is linear-closed,

i.e. if (N; v) 2 G and (N;w) 2 G, then also (N; z) 2 G for all ®; ¯ ¸ 0. From

Harsanyi (1959, 1963) we know that for any game (N; v) it holds that

v =
X

T½N
¢T (v)uT ;

where the so-called Harsanyi-dividends ¢T (v), T ½ N , follow recursively from the

systems of equations

v(S) =
X

T½S
¢T (v); S ½ N:
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It should be observed that a monotone game (N; v) 2 G may have negative dividends,
i.e. there may exist subsets T with ¢T (v) < 0. If so, for such a subset T the game

(N;¢T (v)uT ) is not in G and thus v can not be written as a linear combination of
monotone unanimity games. However, denoting

v+ =
X

fT½N j¢T (v)¸0g
¢T (v)uT and v¡ =

X

fT½N j¢T (v)<0g
¡¢T (v)uT

we have that v + v¡ = v+, showing that the monotone game (N; v+) is equal to the

sum of the two monotone games (N; v) and (N; v¡). This expression will be used in

the proofs given in the Sections 4 and 5. Finally, for a game (N; v) and a set T ½ N ,

the restricted game (T; vT ) on player set T is given by vT (E) = v(E) for all E ½ T .

2.1 Share functions

Let mi
E(N; v) = v(E) ¡ v(E n fig) be the marginal contribution of player i 2 N to

coalition E ½ N in game (N; v) 2 G. Then the well-known Shapley value 'S and
Banzhaf value 'B on the class G of monotone games are the functions de¯ned by

'Si (N; v) =
X

E½N
E3i

e!jN jjEjm
i
E(N; v); and '

B
i (N; v) =

X

E½N
E3i

b!jN jjEjm
i
E(N; v); i 2 N;

where for n 2 IN and k 2 f1; : : : ; ng, e!nk =
(k¡1)!(n¡k)!

n!
and b!nk = 1

2n¡1 . The Shapley

value (Shapley (1953)) is characterized by the well-known axioms of e±ciency, addi-

tivity, the null player property and symmetry. Axiomatizations of the Banzhaf value2

have been given by e.g. Lehrer (1988), Haller (1994), Nowak (1997) and Grabisch and

Roubens (1999). Since the Banzhaf value is not e±cient, this value is not adequate

in allocating the worth v(N) of the `grand coalition'. To divide the worth v(N) ac-

cording to the Banzhaf value on the class of monotone non-null games van den Brink

and van der Laan (1998) replace the Banzhaf value by the normalized Banzhaf value

'B which is the e±cient value function that distributes the worth v(N) proportional

to the Banzhaf values of the players, i.e.

'Bi (N; v) =
'Bi (N; v)P
j2N '

B
j (N; v)

v(N); i 2 N; (N; v) 2 G+;

and 'Bi (N; v
0) = 0 for all i 2 N .

2The Banzhaf value is introduced is as a power index for voting games by Banzhaf (1965), and
is generalized to arbitrary games by, e.g. Owen (1975) and Dubey and Shapley (1979).
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An alternative approach to e±ciently divide the worth of the grand coalition amongst

its players is given by the concept of share function introduced by van der Laan and

van den Brink (1998). A share function assigns to each player in a game its share in

the worth to be distributed, i.e. a share function on a subclass C ½ G of monotone
games is a function ½ on C satisfying

P
i2N ½i(N; v) = 1 for all (N; v) 2 C. The

Shapley share function ½S on G+ is given by

½Si (N; v) =
'Si (N; v)

v(N)
for all i 2 N; (N; v) 2 G+:

The Banzhaf share function ½B on G+ is given by

½Bi (N; v) =
'Bi (N; v)

v(N)
=

'Bi (N; v)P
j2N '

B
j (N; v)

for all i 2 N; (N; v) 2 G+:

We now state the following properties for share functions. First, a share func-

tion ½ satis¯es the null player property on C ½ G if for every (N; v) 2 C and

every null player 3 i 2 (N; v) it holds that ½i(N; v) = 0. Second, ½ satis¯es sym-

metry on C ½ G if for every (N; v) 2 C and every pair i; j of symmetric play-

ers4 in (N; v) it holds that ½i(N; v) = ½j(N; v). Finally, let be given some some

real-valued function ¹:G ! R. Then ½ satis¯es ¹-additivity on C ½ G if for ev-

ery pair of games (N; v); (N;w) 2 C satisfying (N; v + w) 2 C, it holds that
¹(N; v+w)½(N; v+w) = ¹(N; v)½(N; v)+¹(N;w)½(N;w). The last property is a gen-

eralization of the familiar additivity property which is obtained by taking ¹(N; v) = 1

for all (N; v) 2 G.
Next we state some properties for functions ¹:G ! R. Let C ½ G. A function

¹: C ! R is called positive on C if ¹(N; v0) = 0 and ¹(N; v) > 0 for every (N; v) 2
C\G+. We call ¹ additive on C if for every pair of games (N; v); (N;w) 2 C satisfying
(N; v + w) 2 C, it holds that ¹(N; v + w) = ¹(N; v) + ¹(N;w). Finally, we call ¹

symmetric on C if for every (N; v) 2 C, every pair of symmetric players i; j in (N; v),
and every E ½ N such that fi; jg ½ E and both restricted games (E n fig; vEnfig)
and (E n fjg; vEnfjg) are in C, it holds that ¹(E n fig; vEnfig) = ¹(E n fjg; vEnfjg).
The following two results follow from van der Laan and van den Brink (1998), see

also van den Brink and van der Laan (1999a).

3Player i 2 N is a null player in (N; v) if v(E) = v(E n fig) for all E ½ N .
4Players i; j 2 N are symmetric in (N; v) 2 G if v(E [ fig) = v(E [ fjg) for all E ½ N n fi; jg.
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Theorem 2.1 Let ¹:G+ ! R be positive and symmetric on G+. Then there exists
a unique share function ½¹ on G+ satisfying the null player property, symmetry and
¹-additivity on G+ if and only if ¹ is additive on G+.

In case the ¹-function is a weighted sum of the marginal contributions of the players

(with equal positive weights assigned to coalitions of equal size), then the correspond-

ing share function is given in the next theorem.

Theorem 2.2 For given positive vectors !n 2 Rn
+; n 2 IN, let the function ¹!:G+ !

R be de¯ned by ¹!(N; v) =
P
i2N

P
E3i !

n
jEjm

i
E(N; v). Then the unique share function

satisfying the null player property, symmetry, and ¹!-additivity on G+ is given by

½¹
!

i (N; v) =

P
E½N
E3i

!njEjm
i
E(N; v)

¹!(N; v)
for all i 2 N and (N; v) 2 G+:

Note that for any system of positive weights the corresponding function ¹! is positive,

symmetric and additive on G+ and thus satis¯es the conditions of Theorem 2.1. In

case the weight system !n is given by !nt = e!nt =
(n¡t)!(t¡1)!

n!
; t = 1; : : : ; n, n 2 IN, we

denote ¹S = ¹e! and we have that ¹S(N; v) = v(N). In case !nt = b!nt = 2¡(n¡1); t =
1; : : : ; n, n 2 IN, we denote ¹B = ¹b! and it follows that ¹B(N; v) = 1

2n¡1
P
E½N(2jEj¡

n)v(E). In van der Laan and van den Brink (1998) it is shown that the unique share

function satisfying the properties stated in Theorem 2.2 with ¹! = ¹S is the Shapley

share function ½S, and the unique share function satisfying these properties with

¹! = ¹B is the Banzhaf share function ½B.

2.2 Games in coalition structure

The share functions de¯ned in the previous section yield a distribution of the worth

of the grand coalition re°ecting the individual bargaining position of the players.

In many situations however, it is reasonable to suppose that players form coalitions

which decide to act together against the other players in bargaining over v(N). In

this section we consider situations in which the players are organized in a priori given

coalition structure.

A coalition structure on a player set N is a ¯nite partition P = fP1; : : : ; Pmg
of m non-empty, disjoint subsets of N , i.e. [mk=1Pk = N and Pk \ P` = ; for all
k; ` 2 f1; : : : ;mg, k 6= `. In the following the set of coalitions in the coalition
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structure P = fP1; : : : ; Pmg is denoted by M = f1; : : : ;mg with k 2 M representing

coalition Pk 2 P . Furthermore, a monotone game (N; v) 2 G in coalition structure P
is denoted by (N; v; P ). The collection of all coalition structures on N is denoted by

PN . The collection of all monotone games in coalition structure is denoted by GP . A
coalition structure (CS-)value function µ on the set GP assigns a payo® to any player

in every monotone game in coalition structure (N; v; P ). Hart and Kurz (1983) argue

that the existence of a coalition structure implies a two-level interaction between

the players. The outcome of such a two-level interaction is re°ected by the Owen

Coalition Structure value (Owen CS-value) µS introduced by Owen (1977), which is

de¯ned by

µSi (N; v; P ) =
X

L½M
L63k

X

E½Pk
E3i

jLj!(m¡ jLj ¡ 1)!
m!

¢ (jEj ¡ 1)!(jPkj ¡ jEj)!
jPkj!

£

(v(E [ P (L))¡ v((E n fig) [ P (L))) ; i 2 Pk 2 P; k 2 M; (1)

where P (L) = [j2LPj. We remark that the Owen CS-value reduces to the Shapley
value when P = fNg or when P = ffigi2Ng. The weights of the marginal values
are a product of two `Shapley weights', re°ecting the fact that ¯rst coalitions enter

subsequently in a random order and that within each coalition the players enter

subsequently in a random order.

For given (N; v; P ) 2 GP, with P = fP1; : : : ; Pmg, the m-player ¯rst-level or external
game between coalitions is the game (M; vP ) 2 G de¯ned by M = f1; :::;mg as the
set of players and characteristic function vP given by

vP (L) = v(P (L)); L ½ M:

This game is already introduced by Owen (1977) who calles it the quotient game.

For all k 2 M , it follows from equation (1) by summing up over all i 2 Pk that
X

i2Pk
µSi (N; v; P ) = µ

S
k (M;v

P ; fMg) = 'Sk (M; vP ); (2)

showing that the sum of the payo®s to the players in Pk is equal to the Shapley value

of player k (representing coalition Pk) in the external game between the coalitions.

Since this property generalizes the fact that the Owen CS-value reduces to the Shap-

ley value when P = fNg or when P = ffigi2Ng, as mentioned already above, we
say that the Owen CS-value is consistent . Since by e±ciency of the Shapley value
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P
k2M '

S
k (M; v

P ) = vP (M) = v(N), it follows from equation (2) that also the Owen

CS-value is e±cient. For axiomatizations of the Owen CS-value we refer to Owen

(1977), Hart and Kurz (1983) and Winter (1989).

A CS-share function is a function Ã on GP satisfying
P
i2N Ãi(N; v; P ) = 1 for all

(N; v; P ) 2 GP and assigns to every player in a monotone game in coalition structure

a share in the worth v(N) to be distributed. The Owen CS-share function assigns

to every player in a monotone game in coalition structure its share according to the

Owen CS-value, i.e. it is the function ÃS given by

ÃSi (N; v; P ) =
µSi (N; v; P )P
j2N µ

S
j (N; v; P )

=
µSi (N; v; P )

v(N)
; i 2 N:

The Owen CS-share of player i 2 Pk 2 P can be reformulated as the product of two
Shapley shares. The ¯rst share is the share ½Sk (M;v

P ) of coalition k in the m-player

¯rst-level external game (M; vP ) between coalitions that is discussed before. The

second share is the share ½Si (Pk; v
Pk) of player i in the jPkj-player second-level or

internal game (Pk; v
Pk) given by

vPk(E) =
X

L½M
L63k

jLj!(m¡ jLj ¡ 1)!
m!

vPk;L(E); E ½ Pk; (3)

where, for L ½ M and k 62 L,

vPk;L(E) = v(E [ P (L))¡ v(P (L)); (4)

is the marginal contribution of E ½ Pk to the union P (L) of the coalitions Pj; j 2 L.
So, the internal game (Pk; v

Pk) is a weighted sum of the marginal contributions vPk;L,

L ½ M , where the weight of the marginal contribution vPk;L is equal to the Shapley

weight e!mjLj+1 =
jLj!(m¡jLj¡1)!

m!
assigned to coalition k 2 M if this coalition joins the

collection L ½ M of coalitions. For given (N; v; P ) 2 GP with P = fP1; : : : ; Pmg and
M = f1; :::;mg van der Laan and van den Brink (1999) show that5

ÃSi (N; v; P ) = ½
S
i (Pk; v

Pk) ¢ ½Sk (M; vP ); i 2 Pk; k 2 M: (5)

Van der Laan and van den Brink (1999) use this multiplication property to de¯ne a

Banzhaf-type coalition structure share function. To do so they replace in equation (3)

5Owen (1977) shows a similar property without using the concept of share function.
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the second-level Shapley weights by the corresponding second-level Banzhaf weights

b!mjLj+1 = 2¡(m¡1) to obtain the jPkj-player internal game (Pk; bvPk), k 2 M , de¯ned by

bvPk(E) =
X

L½M
L63k

2¡(m¡1)vPk;L(E); E ½ Pk: (6)

Applying a similar multiplication property as (5) they de¯ne the Banzhaf Coalition

Structure (CS-)share function as the function ÃB on GP given by

ÃBi (N; v; P ) = ½
B
i (Pk; bv

Pk) ¢ ½Bk (M;vP ); i 2 Pk; k 2 M:

This Banzhaf CS-share function is di®erent from the CS-share function that is ob-

tained by normalizing the Banzhaf-type CS-value function that is introduced in Owen

(1981) (see also Section 6).

3 A class of CS-share functions for games in coali-

tion structure

In this section we generalize the share functions ½¹ discussed in Section 2.1 to games in

coalition structure. The share functions ½¹ are de¯ned on the class G+ of monotone
non-null games. For null games the concept of share function is in itself not very

interesting, because in such a game it seems reasonable that any player gets a payo®

of zero irrespective of the shares. Moreover, in many applications we may restrict

ourselves to the class G+ of monotone non-null games. However, in this paper we
apply the concept of share functions to games in coalition structure. As argued before,

for such games the payo® of a player can be seen as the result of a ¯rst-level external

game between coalitions and a second-level internal game between the players within

a coalition. In such a set-up we have to deal with null games, which may appear on

the second (internal) level, even when the game itself is a non-null game. Therefore

we extend the concept of share functions to null games by giving all players an equal

share, i.e.

½¹(N; v0) =
1

jN j for all i 2 N: (7)

We can generalize Theorem 2.1 to the class G of all monotone games in a straight-
forward way by requiring symmetry and ¹-additivity to hold for all games in G, and
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requiring the null player property only for the non-null games6 in G+.
We generalize the share functions ½¹ to games in coalition structure using the

multiplication property that de¯nes the share for player i 2 Pk in game (N; v) in

coalition structure P = fP1; : : : ; Pmg, as the product of the share of coalition k in
the external game (M; vP ) in which the coalitions in P act as individual players, and

the share of player i in some internal game among the players in Pk. To do so, for

given positive, additive and symmetric function ¹:G ! R, game (N; v) 2 G and

coalition structure P 2 PN , we de¯ne for Pk 2 P the ¹-internal game (Pk; vPk¹ ) by

vPk¹ (E) = ½
¹
k(M; v

P
PkjE) ¢ v(P (M n fkg) [E); E ½ Pk; (8)

where M = f1; : : : ;mg and the game (M; vPPkjE) on the player set M of coalitions is

given by the characteristic function vPPkjE; E ½ Pk 2 P , de¯ned by

vPPkjE(L) =

8
<
:
v(P (L n fkg) [ E) if k 2 L ½ M;

v(P (L)) if k 62 L ½ M:

So, the characteristic function vPPkjE assigns to every coalition L of coalitions in the

coalition structure the worth of the union of these coalitions where coalition Pk is

replaced by E ½ Pk, i.e. player l 2 M nfkg represents a priori coalition Pl 6= Pk in the
coalition structure P , whereas player k represents the subcoalition E of Pk instead

of Pk as a whole. Notice that this game also appears in Owen (1977), re°ecting in

some sense coalition's E ½ Pk possibilities if it defects from Pk.

Given a positive, additive and symmetric function ¹:G ! R, in the next theorem

we introduce a function Ã¹ on G using the multiplication property with respect to the
external game (M;vP ) and the internal game (Pk; v

Pk
¹ ) and show that this function

is a share function satisfying a set of consistency properties.

Theorem 3.1 Let ¹:G ! R be positive, additive and symmetric on G and let ½¹ be
the share function as de¯ned in Theorem 2.1 extended by (7). Then the function Ã¹

on GP de¯ned by

Ã¹i (N; v; P ) = ½
¹
i (Pk; v

Pk
¹ ) ¢ ½¹k(M;vP );

for i 2 Pk 2 P = fP1; : : : ; Pmg 2 PN ; k 2 M = f1; : : : ;mg, is a CS-share function
and satis¯es for every (N; v; P ) 2 GP the following consistency properties:

6Clearly, the null player property is not satis¯ed by any share function on a class of games that
contains null games. Note that symmetry and the fact that CS-shares by de¯nition add up to one,
imply the equal share distribution for null games.
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1.
P
i2Pk Ã

¹
i (N; v; P ) = ½

¹
k(M; v

P );

2. Ã¹(N; v; P ) = ½¹(N; v) when P = fNg;

3. Ã¹(N; v; P ) = ½¹(N; v) when P = ffigi2Ng.

Proof

Since ½¹ satis¯es
P
i2N ½

¹
i (N; v) = 1, it follows that

X

i2N
Ã¹i (N; v; P ) =

X

k2M

X

i2Pk
Ã¹i (N; v; P )

=
X

k2M

X

i2Pk
½¹i (Pk; v

Pk
¹ ) ¢ ½¹k(M; vP ) =

X

k2M
½¹k(M; v

P ) = 1;

and thus Ã¹ is indeed a CS-share function. It further follows that

1.
P
i2Pk Ã

¹
i (N; v; P ) =

P
i2Pk ½

¹
i (Pk; v

Pk
¹ ) ¢ ½¹k(M; vP ) = ½¹k(M; vP ).

2. For P = fP1g with P1 = N , and M = f1g it follows with equation (8) that
vN¹ (E) = ½¹1 (f1g; vPP1jE) ¢ v(E) = v(E) for E ½ P1 = N . Since vN¹ = v and

½¹1 (f1g; vP ) = 1, it follows that Ã¹i (N; v; fNg) = ½¹i (N; v
N
¹ ) ¢ ½¹1 (f1g; vP ) =

½¹i (N; v) for every i 2 N .

3. If P = ffigi2Ng thenM = N and vP (L) = v(P (L)) = v(L) for all L ½ M = N .

Since ½¹i (fig; vfig¹ ) = 1 and (M;vP ) = (N; v), it follows that Ã¹i (N; v; ffigi2Ng) =
½¹i (fig; vfig¹ ) ¢ ½¹i (M; vP ) = ½¹i (N; v) for every i 2 N . Q.E.D.

The consistency properties 2 and 3 in this theorem show that Ã¹ generalizes the

share functions ½¹ of Theorem 2.1 extended by (7), i.e. for any game (N; v) 2 G
we have that ½¹(N; v) = Ã¹(N; v; fNg) = Ã¹(N; v; ffigi2Ng). These two consis-
tency properties also imply that property 1 can be written as

P
i2Pk Ã

¹
i (N; v; P ) =

Ã¹k (M; v
fMg; fMg) = Ã¹k (M; vffkgk2Mg; ffkgk2Mg).

The next proposition shows that the function Ã¹ is the Owen CS-share function ÃS,

when taking the Shapley ¹-function ¹S, while Ã¹ is the Banzhaf CS-share function

ÃB, when taking the Banzhaf ¹-function ¹B.

Proposition 3.2 The CS-share function Ã¹ is the Owen CS-share function ÃS when

¹ = ¹S = v(N) and it is the Banzhaf CS-share function ÃB when ¹ = ¹B(N; v) =
1

2n¡1
P
E½N(2jEj ¡ n)v(E).
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Proof

According to equation (5) we have that ÃSi (N; v; P ) = ½
S
i (Pk; v

Pk) ¢ ½Sk (M;vP ), while
according to Theorem 3.1 the function Ã¹

S
is given by Ã¹

S

i (N; v; P ) = ½
¹S

i (Pk; v
Pk
¹S) ¢

½¹
S

k (M; v
P ), for i 2 Pk 2 P . Since ½S = ½¹

S
(see van der Laan and van den

Brink (1998)), it is su±cient to show that the internal game (Pk; v
Pk) as given

in equation (3) is equal to the internal game (Pk; v
Pk
¹S) as given in equation (8).

Since vPPkjE(M) = v(P (M n fkg) [ E), it follows that vPk¹S(E) = ½Sk (M;v
P
PkjE) ¢

v(P (M nfkg)[E) = 'Sk (M; vPPkjE) =
P

L½M
L63k

jLj!(m¡jLj¡1)!
m!

(vPPkjE(L[fkg)¡ vPPkjE(L)) =
P

L½M
L63k

jLj!(m¡jLj¡1)!
m!

v(P (L) [ E)¡ v(P (L)) = P
L½M
L63k

jLj!(m¡jLj¡1)!
m!

vPk;L(E) = vPk(E) for

all E ½ Pk.

Analogously, for the Banzhaf CS-share function we can show that the internal game

(Pk; bvPk) as given in equation (6) is equal to the internal game (Pk; vPk¹B). Q.E.D.

Other CS-share functions are obtained by taking other ¹-functions. For instance, con-

sider the non-e±cientDeegan-Packel value given by 'DPi (N; v) =
P

E½N
E3i

v(E)
jEj for all i 2

N , see Deegan and Packel (1979), and let the corresponding share function ½DP be

given by ½DPi (N; v) =
'DPi (N;v)P
j2N '

DP
j (N;v)

for all i 2 N . This share function satis¯es the
axioms of symmetry and ¹DP -additivity with ¹DP (N; v) =

P
E½N v(E), but does not

satisfy the null player property and thus does not belong to the class of share func-

tions given in Theorem 2.1. However, since ¹DP is positive, additive and symmetric

on G, according to Theorem 2.1 there exists a unique share function on G+ satisfying
symmetry, ¹DP -additivity and the null player property. Van der Laan and van den

Brink (1998) show that this is the share function ½¹
DP
that is obtained as in Theorem

2.2 by taking positive weight vectors !n 2 Rn
+; n 2 IN, recursively given by !nn = 1

n

and !nt =
1+(n¡t)!nt+1

t
, t = n ¡ 1; : : : ; 1. Applying this solution to games in coalition

structure as de¯ned in Theorem 3.1 gives the CS-share function Ã¹
DP
given by

Ã¹
DP

i (N; v; P ) = ½¹
DP

i (Pk; v
Pk
¹DP ) ¢ ½

¹DP

k (M; vP ):

In the next example we evaluate the Owen CS-share function, the Banzhaf CS-share

function and this ¹DP CS-share function for a four player game with a three coalition

structure.

Example 3.3 Consider the game (N; v) on N = f1; 2; 3; 4g given by v(S) = 1 if 1 2
S and jSj ¸ 2, v(S) = 0 otherwise. The Shapley, Banzhaf and ¹DP -shares of the play-

ers in this game are given by ½S(N; v) = (3
4
; 1
12
; 1
12
; 1
12
)>, ½B(N; v) = ( 7

10
; 1
10
; 1
10
; 1
10
)>
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E ½ P1 vP1;;(E) vP1;f2g(E) vP1;f3g(E) vP1;f2;3g(E)
; 0 0 0 0

f1g 0 1 1 1
f2g 0 0 0 0

f1; 2g 1 1 1 1

Table 1: Marginal contributions vP1;L(E); L ½ f2; 3g ½ M; E ½ P1 = f1; 2g

E = ; E = f1g E = f2g E = f1; 2g
¹ = ¹S 0 2

3
0 1

¹ = ¹B 0 3
4

0 1
¹ = ¹DP 0 5

3
0 4

Table 2: Characteristic functions of the internal games vP1¹

and ½¹
DP
(N; v) = (51

84
; 11
84
; 11
84
; 11
84
)>. They are obtained from applying Theorem 2.2

with weight vector e!4 = (1
4
; 1
12
; 1
12
; 1
4
)> for ½S, b!4 = (1

8
; 1
8
; 1
8
; 1
8
)> for ½B, respectively

!4 = (45
12
; 11
12
; 5
12
; 1
4
)> for ½¹

DP
.

For coalition structure P = fP1; P2; P3g with P1 = f1; 2g, P2 = f3g and P3 = f4g,
the external game (M;vP ) with M = f1; 2; 3g is given by vP (S) = 1 if 1 2 S and

vP (S) = 0 otherwise. Then ½S(M;vP ) = ½B(M; vP ) = ½¹
DP
(M; vP ) = (1; 0; 0)>.

Since the Shapley-, Banzhaf- and ¹DP -shares of the coalitions f3g and f4g in the
external game are zero, it follows that the Shapley-, Banzhaf-, and ¹DP -CS-shares of

players 3 and 4 are equal to 0. So, we are left to determine the CS-shares for players

1 and 2. Using for L ½ f2; 3g ½ M the marginal contributions vP1;L(E), E ½ P1,

(see equation (4)) as given in Table 1, and the weight vectors e!3 = (1
3
; 1
6
; 1
3
)>; b!3 =

(1
4
; 1
4
; 1
4
)> and !3 = (7

3
; 2
3
; 1
3
)>, this gives the internal games vP1¹ given in Table 2.

Finally, with e!2 = b!2 = (1
2
; 1
2
)> and !2 = (3

4
; 1
2
)> we obtain ½S(P1; v

P1
¹S) = (

5
6
; 1
6
)>,

½B(P1; v
P1
¹B) = (

7
8
; 1
8
)> and ½¹

DP
(P1; v

P1
¹DP ) = (

27
34
; 7
34
)>. So, the Shapley-, Banzhaf- and

¹DP -CS-shares are given by ÃS(N; v; P ) = (5
6
; 1
6
; 0; 0)>, ÃB(N; v; P ) = (7

8
; 1
8
; 0; 0)>,

respectively, Ã¹
DP
(N; v; P ) = (27

34
; 7
34
; 0; 0)>. Q.E.D.
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4 An axiomatization of CS-share functions using

the multiplication property

In this section we provide an axiomatization of the CS-share functions de¯ned in

Theorem 3.1 using the multiplication property. So, for ¹ a symmetric, additive and

positive function on G, we state several axioms for a share function Ã on GP. Since we
want to axiomatically characterize CS-share functions for games in coalition structure

we state all axioms in terms of CS-shares functions.

In the next axiom it is required that a share function satis¯es the multiplication

property. Since in this property the internal game vPk¹ appears and this game depends

on the chosen ¹-function, the multiplication property also depends on this ¹-function.

Axiom 4.1 (¹-Multiplication) For ¹:G ! R, (N; v; P ) 2 GP and i 2 Pk 2 P =
fP1; : : : ; Pmg it holds that

Ãi(N; v; P ) = Ãi(Pk; v
Pk
¹ ; fPkg) ¢ Ãk(M; vP ; fMg):

The null player property is a straightforward generalization of the null player property

for share functions.

Axiom 4.2 (Null player property) If i 2 N is a null player in (N; v) 2 G+ then
Ãi(N; v; P ) = 0 for every P 2 PN .

Note that the null player property only requires that null players in monotone non-

null games earn a zero payo®.

As done in Winter (1989, 1992) for CS-value functions, we distinguish two symme-

try axioms for CS-share functions: an individual and a coalitional symmetry axiom.

The individual symmetry axiom states that players who belong to the same a priori

coalition and are symmetric in the game earn the same share in the payo®. (Coali-

tional symmetry is introduced after the next theorem.)

Axiom 4.3 (Individual symmetry) If i; j 2 Pk 2 P 2 PN are symmetric in

(N; v) 2 G then Ãi(N; v; P ) = Ãj(N; v; P ).

In property 2 of Theorem 3.1 we saw that the CS-share function Ã¹ generalizes

the share functions ½¹ by taking coalition structure P = fNg. In Section 2 we

already mentioned that the share functions ½¹ satisfy ¹-additivity. Next we restate

¹-additivity for games in coalition structure in terms of CS-share functions.
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Axiom 4.4 (¹-additivity for one-coalition structures) Let ¹:G ! R be given.

For every (N; v); (N;w) 2 G it holds that

¹(N; v + w)Ã(N; v + w; fNg) = ¹(N; v)Ã(N; v; fNg) + ¹(N;w)Ã(N;w; fNg):

The next theorem proves that the CS-share function Ã¹ given in Theorem 3.1 is the

unique CS-share functions satisfying the four axioms stated above.

Theorem 4.5 Let ¹:G ! R be positive, additive and symmetric on G. Then Ã¹
is the unique CS-share function on G that satis¯es ¹-multiplication, the null player

property, individual symmetry and ¹-additivity for one-coalition structures.

Proof

The property of ¹-multiplication of Ã¹ follows directly from the de¯nition of Ã¹ and

consistency property 2 in Theorem 3.1. Next, let i 2 Pk 2 P 2 PN be a null

player in (N; v) 2 G+. Then v(P (M n fkg) [ E) = v(P (M n fkg) [ (E n fig)) for
all E ½ Pk; E 3 i, and vPPkjE(L) = vPPkjEnfig(L) for all L ½ M . This implies that

vPk¹ (E)¡ vPk¹ (E nfig) = ½¹k(M; vPPkjE) ¢ v(P (M nfkg)[E)¡½¹k(M; vPPkjEnfig) ¢ v(P (M n
fkg) [ (E n fig)) = 0 for all E ½ Pk, E 3 i. Thus, i is a null player in (Pk; v

Pk
¹ ).

Since ½¹ satis¯es the null player property we have that ½¹i (Pk; v
Pk
¹ ) = 0, and thus

Ã¹i (N; v; P ) = ½¹i (Pk; v
Pk
¹ ) ¢ ½¹k(M; vP ) = 0, if (Pk; v

Pk
¹ ) 2 G+. If (Pk; vPk¹ ) is a null

game then vPk¹ (Pk) = ½¹k(M; v
P
PkjPk) ¢ v(N) = 0. Since (N; v) 2 G+ we have that

v(N) > 0, and thus ½¹k(M; v
P
PkjPk) must be equal to 0. Since v

P
PkjPk = v

P it then holds

that ½¹k(M; v
P ) = 0. Again Ã¹i (N; v; P ) = ½¹i (Pk; v

Pk
¹ ) ¢ ½¹k(M;vP ) = 0. Hence, Ã¹

satis¯es the null player property.

If i; j 2 Pk are symmetric in (N; v) then i; j 2 Pk are symmetric in (Pk; v
Pk
¹ ).

Symmetry of ½¹ then implies that Ã¹i (N; v; P ) = ½
¹
i (Pk; v

Pk
¹ )¢½¹k(M; vP ) = ½¹j (Pk; vPk¹ )¢

½¹k(M; v
P ) = Ã¹j (N; v; P ).

Finally, the consistency property 2 of Theorem 3.1 and ¹-additivity of ½¹ imply

that ¹(N; v + w)Ã¹(N; v + w; fNg) = ¹(N; v + w)½¹(N; v + w) = ¹(N; v)½¹(N; v) +
¹(N;w)½¹(N;w) = ¹(N; v)Ã¹(N; v; fNg)+¹(N;w)Ã¹(N;w; fNg), which shows that
Ã¹ satis¯es ¹-additivity for one-coalition structures.

To show that Ã¹ is uniquely determined by the axioms, suppose that Ã is a CS-

share function satisfying the four axioms. Then, individual symmetry implies that

Ãi(N; v
0; fNg) = 1

jN j for all i 2 N . Next, consider the game (N;wT ), T ½ N , with
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wT = cTuT , cT > 0 and uT the unanimity game of coalition T . For i 2 N n T the
null player property implies that Ãi(N;w

T ; fNg) = 0. Individual symmetry implies
that there exists a c¤ 2 R such that Ãi(N;w

T ; fNg) = c¤ for all i 2 T . Since Ã is a
CS-share function it must hold that c¤ = 1

jT j , and thus Ã(N;w
T ; fNg) is determined.

For (N; v) 2 G, recall from the preliminaries that v + v¡ = v+, with both v¡ and

v+ a nonnegative linear combination of unanimity games. Hence, Ã(N; v+; fNg) and
Ã(N; v¡; fNg) follow directly from ¹-additivity for one-coalition structures and the

fact that we determined Ã(N; cTuT ; fNg), cT ¸ 0, above. Consequently the unique-

ness of Ã(N; v; fNg) follows directly from applying ¹-additivity for one-coalition

structures to v + v¡ = v+.

Finally, for arbitrary (N; v; P ) 2 GP, uniqueness of Ã(N; v; P ) then follows directly
from applying ¹-multiplication. Q.E.D.

Instead of the coalition structure fNg in ¹-additivity for one-coalition structures we
could also require ¹-additivity just for coalition structures with jN j coalitions, i.e.
the coalition structures ffigi2Ng.

Axiom 4.6 (¹-additivity for n-coalition structures) Let ¹:G ! R be given.

For every (N; v); (N;w) 2 G it holds that

¹(N; v + w)Ã(N; v + w; ffigi2Ng) = ¹(N; v)Ã(N; v; ffigi2Ng) + ¹(N;w)Ã(N;w; ffigi2Ng):

In order to characterize the class of share functions Ã¹ using this ¹-additivity of jN j-
coalition structures we need to replace individual symmetry by coalitional symmetry

stating that the total payo®s for two coalitions that are symmetric in the external

game (M; vP ) are the same.

Axiom 4.7 (Coalitional symmetry) If Pk; Pl 2 P 2 PN are symmetric players

in the external game (M; vP ) induced by (N; v; P ) 2 GP, then P
i2Pk Ãi(N; v; P ) =P

i2Pl Ãi(N; v; P ).

Theorem 4.8 Let ¹:G ! R be positive, additive and symmetric on G. Then the
function Ã¹ is the unique CS-share function on G that satis¯es ¹-multiplication, the
null player property, coalitional symmetry and ¹-additivity for jN j-coalition struc-
tures.
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Proof

From Theorem 4.5 it directly follows that Ã¹ satis¯es ¹-multiplication and the null

player property. If Pk; Pl 2 P are symmetric players in (M;vP ) then symmetry of

½¹, and ½¹ being a share function imply that
P
i2Pk Ã

¹
i (N; v; P ) =

P
i2Pk ½

¹
i (Pk; v

Pk
¹ ) ¢

½¹k(M; v
P ) = ½¹k(M; v

P ) = ½¹l (M; v
P ) =

P
i2Pl ½

¹
i (Pl; v

Pl
¹ )¢½¹l (M; vP ) =

P
i2Pl Ã

¹
i (N; v; P ).

This shows that Ã¹ satis¯es coalitional symmetry. Showing that Ã¹ satis¯es ¹-

additivity for n-coalition structures follows in the same way as it is shown that Ã¹

satis¯es ¹-additivity for one-coalition structures in the proof of Theorem 4.5 but us-

ing consistency property 3 of Theorem 3.1 instead of property 2. Uniqueness of Ã¹

follows in a similar way as in the proof of Theorem 4.5. Q.E.D.

Finally we mention that ¹-multiplication also can be replaced by the similar axiom in

terms of shares ½¹ and adding consistency property 2 (in Theorem 4.5) or consistency

property 3 (in Theorem 4.8) as stated in Theorem 3.1.

5 An axiomatization using consistency

In Section 3 we de¯ned for given function ¹ the CS-share function Ã¹ by using

the multiplication property and showed that this function satis¯es three consistency

properties. In the previous section we characterized this class of share functions using

the multiplication property as one of the axioms. Next we give an axiomatization

of the CS-share functions Ã¹ that uses consistency property 1. As in the previous

section, we state the axioms in terms of CS-shares functions. So, in the following

axioms, let ¹ be a symmetric, additive and positive function on G and Ã a CS-share
function on GP.

Axiom 5.1 (Consistency) If (N; v; P ) 2 GP and Pk 2 P then P
i2Pk Ãi(N; v; P ) =

Ãk(M; v
P ; fMg).

Unlike ¹-multiplication this axiom does not depend on the ¹-function. Finally, we

generalize ¹-additivity for one-coalition structures (and ¹-additivity for n-coalition

structures).

Axiom 5.2 (¹-additivity for coalition structures) For (N; v; P ); (N;w; P ) 2 GP
let the characteristic function z be given by z = v + w. For i 2 Pk 2 P it holds that

¹(Pk; z
Pk
¹ )¹(M;z

P )Ãi(N; z; P ) =
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³
¹(Pk; v

Pk
¹ )Ãi(Pk; v

Pk
¹ ; fPkg) + ¹(Pk; wPk¹ )Ãi(Pk; wPk¹ ; fPkg)

´
£

³
¹(M;vP )ÃPk(M; v

P ; fMg) + ¹(M;wP )ÃPk(M;wP ; fMg)
´
:

When in Theorem 4.5 the axiom of ¹-multiplication is replaced by consistency and

the axiom of ¹-additivity for one-coalition structures is strengthened to ¹-additivity

for coalition structures we again obtain a characterization for the CS-share functions

Ã¹ as de¯ned in Theorem 3.1.

Theorem 5.3 Let ¹:G ! R be positive, additive and symmetric on G. Then the
function Ã¹ is the unique CS-share function on G that satis¯es consistency, the null
player property, individual symmetry and ¹-additivity for coalition structures.

Proof

Again, we ¯rst show that Ã¹ satis¯es the four properties. From Theorem 3.1, prop-

erties 1 and 2, it follows that Ã¹ satis¯es the consistency axiom. From Theorem 4.5

we know that Ã¹ satis¯es the null player property and individual symmetry. Further,

let (N; v; P ); (N;w; P ) 2 GP and let z = v + w. To prove ¹-additivity for coalition

structures we distinguish three cases.

First, suppose that (N; z) is a null game. Since z = v0 if and only if v = w = v0,

¹-additivity for coalition structures follows since z = v0 also implies that zP and zPk¹
are null games for all Pk 2 P .
Next, suppose that (N; z) 2 G+, and let i 2 Pk 2 P be a null player in (N; z). Then

i also is a null player in both (N; v) and (N;w), because both games are monotone

games. Using similar arguments as when proving the null player property in the proof

of Theorem 4.5 it follows that Ã¹i (N; z; P ) = 0. Further, ¹(Pk; v
Pk
¹ ) ¢ ½¹i (Pk; vPk¹ ) = 0

since i is a null player in (Pk; v
Pk
¹ ) and either v

Pk
¹ = v0 (in which case ¹(Pk; v

Pk
¹ ) = 0)

or vPk¹ 6= v0 (in which case ½¹i (Pk; vPk¹ ) = 0). Similarly ¹(Pk; wPk¹ ) ¢ ½¹i (Pk; wPk¹ ) = 0.
So, also in this case ¹-additivity for coalition structures holds.

Finally, if i is not a null player in (N; z) 2 G+, then ¹(Pk; zPk¹ ) ¢ ¹(M; zP ) > 0 and
using ¹-additivity of ½¹ we can derive that

¹(Pk; z
Pk
¹ )¹(M;z

P )Ã¹i (N; z; P ) = ¹(Pk; z
Pk
¹ )¹(M;z

P )½¹i (Pk; z
Pk
¹ )½

¹
k(M; z

P )

= ¹(Pk; z
Pk
¹ )¹(M;z

P )

Ã
¹(Pk; v

Pk
¹ )½

¹
i (Pk; v

Pk
¹ ) + ¹(Pk; w

Pk
¹ )½

¹
i (Pk; w

Pk
¹ )

¹(Pk; z
Pk
¹ )

!
£
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Ã
¹(M; vP )½¹k(M;v

P ) + ¹(M;wP )½¹k(M;w
P )

¹(M;zP )

!

=
³
¹(Pk; v

Pk
¹ )½

¹
i (Pk; v

Pk
¹ ) + ¹(Pk; w

Pk
¹ )½

¹
i (Pk; w

Pk
¹ )

´
£

³
¹(M; vP )½¹k(M;v

P ) + ¹(M;wP )½¹k(M;w
P )

´
:

Consistency property 2 of Theorem 3.1 then implies that Ã¹ also satis¯es ¹-additivity

for coalition structures in this case.

To show uniqueness, suppose that Ã satis¯es the four axioms. For a null game,

Ã(N; v0; P ) is uniquely determined by individual symmetry. Next, consider for T ½
N , the scaled unanimity game (N;wT ), with wT = cTuT , cT > 0, and let P =

fP1; : : : ; Pmg be a coalition structure in PN . For i 2 N n T the null player prop-
erty implies that Ãi(N;w

T ; P ) = 0. To obtain Ãi(N;w
T ; P ) for i 2 T , ¯rst de¯ne

K(T; P ) := fk 2 M j Pk\T 6= ;g. Then, all coalitions Pk 2 P such that k 2 K(T;P )
are symmetric in the external game (M; (wT )P ). Individual symmetry then implies

that there exists a c¤ 2 R such that Ãk(M; (w
T )P ; fMg) = c¤ for all k 2 K(T;P ).

By Ã being a CS-share function and
P
i2Pk Ãi(N;w

T ; P ) = 0 for all k 2 M nK(T;P ),
we have that Ãk(M; (w

T )P ; fMg) = c¤ = 1
jK(T;P )j for all k 2 K(T; P ). Consistency

then implies that
P
i2Pk Ãi(N;w

T ; P ) = 1
jK(T;P )j for k 2 K(T; P ). Since all i 2 Pk \ T

are symmetric players in (N;wT ), and Ãi(N;w
T ; P ) = 0 for i 2 N n T , individ-

ual symmetry implies that Ãi(N;w
T ; P ) = 1

jPk\T j¢jK(T;P )j for i 2 Pk \ T and thus

Ã(N;wT ; P ) is uniquely determined for any wT and coalition structure P . Finally for

arbitrary (N; v) 2 G and coalition structure P , Ã(N; v+; P ) and Ã(N; v¡; P ) follow

directly from ¹-additivity for coalition structures and consequently the uniqueness

of Ã(N; v; P ) follows directly from applying ¹-additivity for coalition structures to

v + v¡ = v+. Q.E.D.

We can restate ¹-additivity for coalition structures using coalition structures ffigi2Pkg
and ffkgk2Mg instead of coalition structures fPkg, respectively, fMg. To character-
ize the share functions Ã¹ we then also have to replace individual symmetry by

coalitional symmetry as done in going from Theorem 4.5 to Theorem 4.8. Finally,

we can replace consistency in Theorem 5.3 by coalitional symmetry. That gives a

characterization using both individual and coalitional symmetry.
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6 Conclusion

In this paper we discussed a general approach to de¯ning CS-share functions for games

in coalition structure using a multiplication property. We showed that all these CS-

share functions are consistent in the sense that the total payo® of all players in an a

priori coalition is equal to the payo® of this coalition in the external game between

the coalitions. We gave axiomatic characterizations using these multiplication and

consistency properties.

Two special cases are the Shapley- and Banzhaf CS-share functions. The Shapley

CS-share function is obtained by normalizing the Owen CS-value function to one.

However, the Banzhaf CS-share function discussed in this paper is di®erent from the

Banzhaf type CS-share function that is obtained a la Owen (1981)'s Banzhaf CS-

value function. In the Banzhaf value each marginal contribution has an equal weight.

Generalizing this to games in coalition structure, Owen (1981) assigns equal weights

to each marginal contribution of a coalition within the coalition structure and within

such a coalition to each marginal contribution of the players within that coalition.

Replacing in equation (1) the Shapley weights by Banzhaf weights yields the value

function µ on GP de¯ned by

µi(N; v; P ) =
X

L½M
L63k

X

E½Pk
E3i

2¡(m¡1) ¢ 2¡(jPkj¡1) (v(E [ P (L))¡ v((E n fig) [ P (L))) ;

for all i 2 Pk; k 2 M . The corresponding share function Ã which, for every i 2 N
and (N; v) 2 G+, is given by Ãi(N; v; P ) = µi(N;v;P )P

j2N µj(N;v;P )
, is not the same as the

Banzhaf CS-share function discussed in this paper. In particular, it does not satisfy

the multiplication property nor consistency.
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