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Analyzing the Term Structure of Interest Rates using the

Dynamic Nelson-Siegel Model with Time-Varying Parameters

Abstract

In this paper we introduce time-varying parameters in the dynamic Nelson-Siegel yield

curve model for the simultaneous analysis and forecasting of interest rates of different

maturities, known as the term structure. The Nelson-Siegel model has been recently

reformulated as a dynamic factor model where the latent factors are interpreted as the

level, slope and curvature of the term structure. The factors are modelled by a vector

autoregressive process. We propose to extend this framework in two directions. First,

the factor loadings are made time-varying through a simple single step function and

we show that the model fit increases significantly as a result. The step function can

be replaced by a spline function to allow for more smoothness and flexibility. Second,

we investigate empirically whether the volatility in interest rates across different time

periods is constant. For this purpose, we introduce a common volatility component

that is specified as a spline function of time and scaled appropriately for each series.

Based on a data-set that is analysed by others, we present empirical evidence where

time-varying loadings and volatilities in the dynamic Nelson-Siegel framework lead to

significant increases in model fit. Improvements in the forecasting of the term structure

are also reported. Finally, we provide an illustration where the model is applied to an

unbalanced dataset. It shows that missing data entries can be estimated accurately.

1 Introduction

Fitting and predicting time-series of a cross-section of yields has proven to be a challenging

task. As with many topics in empirical economic analysis there is the trade-off between

the goodness of fit that is obtained by employing statistical models without a reference to

economic theory, and the lack of fit by economic models that do provide a basis for the

underlying economic theory.

For many decades work on the term structure of interest rates has mainly been theoretical

in nature. In the early years work focused on the class of affine term structure models.
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The classical models are Vasicek (1977) and Cox, Ingersoll, and Ross (1985). Duffie and

Kan (1996) generalized the literature and Dai and Singleton (2000) characterized the set of

admissable and identifiable models. Later a class of models was introduced that focused on

fitting the term structure at a given point in time to ensure no arbitrage opportunities exist

(Hull and White (1990) and Heath, Jarrow, and Morton (1992)). It has been shown that the

forecasts obtained using the first class of models do not outperform the random walk, see for

example Duffee (2002). The second class of models focuses on the cross-section dimension

of yields but not on the time series dimension. Time series models aim to describe the

dynamical properties and are therefore more suited for forecasting. This may partly explain

the renewed interest in statistical time series models for yields.

The papers of Diebold and Li (2006, DL) and Diebold, Rudebusch, and Aruoba (2006,

DRA) have shifted attention back to the Nelson and Siegel (1987, NS) model. DL and DRA

consider a statistical three factor model to describe the yield curve over time. The three

factors represent the level, slope and curvature of the yield curve and thus carry some econom-

ical interpretation. More importantly, they show that the model-based forecasts outperform

many other models including standard time series models such as vector autoregressive mod-

els and dynamic error-correction models. In DRA, the Nelson-Siegel framework is extended

to include non-latent factors such as inflation. Further they frame the Nelson-Siegel model

into a state space model where the three factors are treated as unobserved processes and

modelled by vector autoregressive processes. A wide range of statistical methods associated

with the state space model can be exploited for maximum likelihood estimation and signal

extraction, see Durbin and Koopman (2001). We will follow this approach in which the state

space representation of the Nelson and Siegel (1987) model plays a central role.

Parameter estimation in Diebold and Li (2006) and Diebold, Rudebusch, and Aruoba

(2006) relies on two simplifying assumptions. First, to allow the time-varying factors to be

estimated in a linear setting the factor loadings are kept constant over time for each maturity.

In the original Nelson and Siegel (1987) model the factor loadings depend on a parameter

that is also time-varying, which in DL is restricted to be constant to keep the factor loadings

constant. Second, volatility is kept constant over the full sample period.

We contribute to the literature by introducing time-varying factor loadings and time-

varying volatility in the dynamic Nelson-Siegel model. First, a time-varying loading para-
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meter is introduced and specified as a step-function through time. This specification leads

to an improvement of model fit. Then the factor loadings are allowed to change gradually

over time via a flexible cubic spline function. Improvements in model fit are achieved here as

well. Second, we introduce a time-varying volatility specification in the model. Empirically

it is found that during high volatility periods, the yields for all maturities are highly volatile

although some maturities are more volatile than others. An cubic spline function of time is

considered for the overall or common volatility. This spline is multiplied by a scaling factor

and a constant level of volatility is added for each maturity. Similar to the introduction of

time-varying factor loadings, time-varying volatility significantly increases model fit.

These findings may shed some light on more recent developments in the term structure

literature. The dynamic Nelson-Siegel model does not rely on theoretical concepts such

as the absence of arbitrage, see also the discussion in Ang and Piazzesi (2003). Recently,

Christensen, Diebold, and Rudebusch (2007) have modified the Nelson-Siegel framework to

impose the abritrage-free condition. As a result, a new class of affine dynamic term structure

models is defined. An important condition for the risk-free rate to exist in this framework

is that loadings are constant over time. This condition may be validated by allowing the

factor loadings to be time-varying as we do in this paper. Also in the work of Diebold, Li,

and Yue (2007) on the global yield curve, constant factors are an important condition.

A third contribution to the literature is that we show how easily the Nelson and Siegel

(1987) model in state space form treats missing observations. This is a general property

of state space models, but has not yet been explored in this context. Besides the standard

unsmoothed Fama-Bliss monthly yields dataset for the period 1972-2000 (as used by DRA

and others), we also estimate the time-varying model for U.S. Treasury yields over the

period January 1972 up to June 2007 obtained from the Federal Reserve Economic Database

(FRED). The latter dataset is interesting as it has more recent data, but can not easily be

used in the OLS framework due to its many missing values. We show that in the state space

framework unbalanced datasets can be treated in a straightforward manner. In particular,

by combining the two datasets we show how well the smoothed values for the missing data

approximates the true value. Using the state space framework allows us to include the longest

maturity bond (maturing in 30 years), which was not issued during the period February 2002

until January 2006.
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There are a number of papers that extend the work of DL and DRA for the NS model.

Bianchi, Mumtaz, and Surico (2006) allow for time-varying variance for the factors. It is

implied that the factor loadings for the term-structure are also appropriate weights for the

variation in the term-structure. This is a strong assumption that needs to be validated.

To avoid this restricted framework, we introduce for each yield in the observation equation,

a different factor loading for the common volatility factor that is modelled as a flexible

function of time. Yu and Zivot (2007) extend the Nelson-Siegel framework by including

corporate bonds. De Pooter (2007) examines the dynamic NS model that is extended by

additional factors. It is shown that such extentions can improve both the in-sample fit and

the post-sample forecasting performance. De Pooter, Ravazzolo, and Van Dijk (2007) study

the forecasting ability of the Nelson-Siegel model by focusing on the predictive gains that

can be obtained when macroeconomic variables are included and forecasts of different model

specifications are combined. Without adopting the Nelson-Siegel framework, Bowsher and

Meeks (2006) introduce a 5-factor model where splines are used to model the yield curve

and where the knots for these splines act as factors. While their approach allows for a more

flexible yield curve some economic intuition of the factors is lost. Moreover, also in this

framework, volatility is kept fixed over time.

The rest of the paper is organised as follows. Section 2 describes the baseline dynamic

Nelson-Siegel latent factor model and Section 3 discusses our new extensions. In Section 4

we present, discuss and compare estimation and forecasting results for different model spec-

ifications. Section 5 presents an illustration for an unbalanced dataset. Section 6 concludes.

2 The Nelson-Siegel Latent Factor Yield Curve Model

In this section we introduce the latent factor model that Nelson and Siegel (1987) develop for

the yield curve. First we focus on the model that is slightly adjusted in terms of factorization

by Diebold and Li (2006). Second we discuss the state space approach as proposed by

Diebold, Rudebusch, and Aruoba (2006).
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2.1 The Nelson-Siegel model

Interest rates are denoted by yt(τ) at time t and maturity τ . For a given time t, the yield

curve θt(τ) is some smooth function representing the interest rates (yields) as a function of

maturity τ . A parsimonious functional description of the yield curve is proposed by Nelson

and Siegel (1987). The Nelson-Siegel formulation of the yield is modified by Diebold and Li

(2006, henceforth DL) to lower the coherence between the components of the yield curve.

The DL formulation is given by

θt(τ) = θ(τ ; λ, βt) = β1t + β2t

(

1 − e−λτ

λτ

)

+ β3t

(

1 − e−λτ

λτ
− e−λτ

)

, (1)

where βt = (β1t, β2t, β3t)
′, for given time t, maturity τ and fixed coefficient λ that determines

the exponential decay of the second and third component in (1).

The shape and form of the yield curve is determined by the three components and their

associated weights in βt. The first component takes the value 1 (constant) and can therefore

be interpreted as the overall level that influences equally the short and long term interest

rates. The second component converges to one as τ ↓ 0 and converges to zero as τ → ∞

for a given t. Hence this component mostly influences short-term interest rates. The third

component converges to zero as τ ↓ 0 and as τ → ∞ but is concave in τ , for a given t. This

component is therefore associated with medium-term interest rates.

Since the first component is the only one that equals one as τ → ∞, its corresponding

β1t coefficient is usually linked with the long-term interest rate. By defining the slope of the

yield curve as θt(∞) − θt(0), it is easy to verify that the slope converges to −β2t for a given

t. Finally, the shape of the yield can be defined by [θt(τ
∗) − θt(0)] − [θt(∞) − θt(τ

∗)] for a

medium maturation τ ∗, say, two years, and for a given t. It can be shown that this shape

approximately equals β3t.

In case we observe a series of interest rates yt(τi) for a set of N different maturities

τ1 < . . . < τN available at a given time t, we can estimate the yield curve by the simple
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regression model

yt(τi) = θt(τi) + εit

= β1t + β2t

(

1 − e−λτ

λτ

)

+ β3t

(

1 − e−λτ

λτ
− e−λτ

)

+ εit, (2)

for i = 1, . . . , N . The disturbances ε1t, . . . , εNt are assumed to be independent with mean

zero and constant variance σ2
t for a given time t. The least squares method provides estimates

for the βjt coefficients j = 1, 2, 3. These cross-section estimates can be obtained as long as

sufficient interest rates for different maturities are available at time t.

The series of regression estimates for βt, for all time periods t = 1, . . . , T , appear to be

strongly correlated over time. In other words, the coefficients are forecastable and hence the

Nelson-Siegel framework can be used for forecasting in this way. This has been recognized

by DL who implemented the following two-step procedure: first, estimate the βt by cross-

section least squares for each t; second, treat these estimates as three time series and apply

time series methods for forecasting βt and hence the yield curve θ(τ ; λ, βt).

DL compare forecasts obtained using this method with other methods, such as forecasts

based on the random walk model, the univariate autoregressive models and the trivariate

vector autoregressive models. These different methods produce rather similar results. Never-

theless, the two-step forecasting approach does better than forecasting the different interest

rates series directly, especially for the longer maturities.

2.2 The dynamics of the latent factors

Diebold, Rudebusch, and Aruoba (2006, henceforth DRA) go a step further by recognizing

that the Nelson-Siegel framework can be represented as a state space model when treating

βt as a latent vector. For this purpose, the regression equation (2) is rewritten by

yt = Γ(λ)βt + εt, yt = [yt(τ1), . . . , yt(τN )]′ (3)
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with N × 3 factor loading matrix Γ(λ) where its (i, j) element is given by

Γij(λ) =



















1, j = 1,
(

1 − e−λ·τi

)

/ λ · τi, j = 2,
(

1 − e−λ·τi − λ · τie
−λ·τi

)

/ λ · τi, j = 3.

The observation disturbance vector is given by

εt ∼ NID(0, Σε), εt = (ε1t, . . . , εNt)
′, t = 1, . . . , n.

The time series process for the 3× 1 vector βt can be modelled by the vector autoregressive

process

βt+1 = (I − Φ)µ + Φβt + ηt, ηt ∼ NID(0, Ση), (4)

for t = 1, . . . , n, with mean vector µ and initial condition β1 ∼ N(µ, Σβ) where coefficient

matrix Φ and variance matrix Σβ are chosen such that Σβ − ΦΣβΦ′ = Ση and stationarity

of the vector autoregressive process is ensured. An effective reparameterisation for this is

developed by Ansley and Kohn (1986). This approach differs from that of DRA but we have

found that our estimates of the parameter coefficients are similar to those reported by DRA.

2.3 Estimation and forecasting using state space methods

The dynamic Nelson-Siegel model is represented by the equations (3) and (4) with an appro-

priate initial condition for β1. These equations can be regarded as a special case of the linear

Gaussian state space model as discussed, for example, in Durbin and Koopman (2001). The

unobserved factors of βt are placed in the state vector and can be estimated by the Kalman

filter and the associating smoothing algorithm. The model parameters, including the 3 × 3

autoregressive coefficient matrix Φ, the 3 × 3 variance matrix Ση and the N × N diagonal

variance matrix Σε, are treated as fixed and are unknown. Estimation of these parameters is

based on the method of maximum likelihood. The likelihood function is routinely evaluated

by the Kalman filter for a given value of the parameter vector. A quasi-Newton optimization

method is then employed to maximize the likelihood function with respect to the parame-

ter vector. The score function is evaluated numerically for this purpose. This approach is
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implemented in the matrix programming language Ox of Doornik (2001) with the use of the

SsfPack state space functions developed by Koopman, Shephard, and Doornik (1999).

The state space framework allows for many other variations of the dynamic Nelson-Siegel

model. In particular, different dynamic processes for vector βt can be considered. Also, the

variance matrix of the factor disturbances Ση can be taken as a full or as a diagonal matrix.

Diebold, Rudebusch, and Aruoba (2006) assume that the measurement disturbance variance

matrix Σε is diagonal so that the yield equations of different maturities are uncorrelated,

given the factors ft. This assumption is often used since it reduces the number of coefficients

that need to be estimated. It therefore leads to computational tractability of the estimation

process when a potentially large number of yields is available.

Finally, the Kalman filter also forms the basis for forecasting. The Nelson-Siegel model

where βt is modeled by the vector autoregressive process (4) has been developed primarily for

the forecasting of yield curves. Yu and Zivot (2007) conclude that forecasting results have not

improved considerably compared to the two-step approach of Diebold and Li (2006). This

applies to forecasting performances for short-term and long-term maturities. De Pooter

(2007) confirms these findings but he shows that forecasts can be improved by considering

more than three factors.

3 Time-Varying Factor Loadings and Volatility

In the previous section we have discussed the dynamic Nelson-Siegel model for the yield curve

as proposed by Diebold, Rudebusch, and Aruoba (2006). Next we propose two extensions of

their time series modelling approach of interest rates: (i) introduction of time-varying factor

loadings and (ii) introduction of time-varying volatility. Motivations and further details of

these extensions are given below.

3.1 Time-varying factor loadings

In the dynamic Nelson-Siegel model, the parameter λ determines the shape of the yield curve.

In the earlier studies, the default is to pre-fix a value for λ and not necessarily estimate it.

For example, Diebold and Li (2006) fix λ at 0.0609, Diebold, Rudebusch, and Aruoba (2006)

estimate λ to be 0.077. Yu and Zivot (2007) adopt these estimates in their empirical study
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concerning corporate bonds. They argue that the loadings Γij(λ) are not very sensitive to

different values of λ as can be illustrated graphically. Hence there is no need to estimate λ

and they fix λ so that it maximizes the loading on the curvature component at some medium

term (that is, 30 months for λ = 0.0609 and 23.3 months for λ = 0.077).

We conclude that the value for λ is usually fixed in empirical studies although different

values for λ are considered in different studies and sometimes it is estimated. We emphasize

that the estimation of λ is straightforward in a state space framework as it can be included

in the parameter vector. Its estimation by maximum likelihood methods is described in the

previous section. Keeping λ fixed over the full sample period may be too restrictive as the

data usually spans over a long time period. The characteristic of the yield curve may have

changed over a longer time period and λ determines the shape of the yield curve directly.

The factors themselves also influence the yield curve and they are time-varying and modelled

by a vector autoregressive process. However, the maturity at which the curvature factor is

maximized and the speed of decay of the slope parameter depend only on λ and are fixed as

a result. The importance of λ and its constancy over time is also discussed in Christensen,

Diebold, and Rudebusch (2007, Proposition 1) where an arbitrage-free version of the Nelson-

Siegel framework is proposed. Given the importance of λ, we study its role in more detail

by considering possible changes of λ over time.

The time-varying λ is formalized as follows. We let λ depend on some function of time

t, that is

λt = f(t; λ∗), t = 1, . . . , n,

where f() is a function depending on time-index t and k × 1 vector of coefficients λ∗. We

consider two possible specifications for f() below. The first specification is a step function

as represented by

λt = ℓtλ
∗, t = 1, . . . , n,

where ℓt is a particular row of the k × k identity matrix for t = 1, . . . , n. The sequence of

ℓt is known and is typically chosen such that λt represents a step-function of k steps or, in

other words, k different constants for k different periods.

An example of a smooth time function for f() is the cubic spline function. The regression

representation of a cubic spline function is particular convenient for our purposes, see Poirier
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(1976). It allows the linear specification of f() as given by

λt = w′

tλ
∗, t = 1, . . . , n,

where wt is the k×1 vector of interpolating weights which are determined by certain smooth-

ness conditions at the knot points. These knot points can be regarded as the break-points

in the function. In both formulations of λt, the break-points need to be determined a-priori.

In our empirical work reported below, we will consider both of these specifications.

3.2 Time-varying volatility

Another key aspect in the analysis of the term structure is the recognition that interest rates

are the result of trading. Therefore, the volatility in the series may change over time. In

most empirical work on the yield curve, monthly time series of interest rates are analyzed

under the assumption that the volatility in the time series is constant over time. A few

exceptions are Engle, Ng, and Rothschild (1990) and Bianchi, Mumtaz, and Surico (2006).

However, investigating time-varying volatility in the context of the dynamic Nelson-Siegel

model is a novelty.

In our empirical work below we do find changes in the volatility of interest rate series for

different maturities but they appear to evolve slowly over time. Furthermore, the changes

between high and low volatilities in the yields for the different maturities appear to occur

at the same time which leads to common patterns of time-varying volatility. We therefore

adapt the model and allow the variances of the yields for different maturities to be driven

by two components. The first component vt is the time-varying log-volatility component

which is common to all maturities. It is multiplied by a constant scaling parameter for each

maturity α2
i . The second component σ2

i is a constant and measures the overall individual

volatility of the yield for maturity i with i = 1, . . . , N .

The variance matrix of the observation disturbances is given by Σε. Below, we will treat

it as a time-varying matrix, that is Σε,t and it will be specified as a diagonal matrix with

elements hit for i = 1, . . . , N and t = 1, . . . , T . Each element hit represents the variance of

the series of yields for the ith maturity at time t. The diagonal elements are thus modelled
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by

hit = σ2
i + α2

i exp(vt), (5)

where the common time-varying log-volatility component vt is specified by a flexible smooth

function of time. A typical example is the smoothing spline function but other functional

forms can also be considered.

4 Data and Empirical Findings

For our first and main empirical analysis of yield curves we use the dataset as used by

Diebold, Rudebusch, and Aruoba (2006). We will first give a short description of the data,

with some summary statistics. Then we will outline our empirical results.

4.1 Standard Fama-Bliss dataset

The dataset we use is the unsmoothed Fama-Bliss zero-coupon yields dataset, obtained from

the CRSP unsmoothed Fama and Bliss (1987) forward rates. We study U.S. Treasury yields

with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months

over the period from January 1972 to December 2000. This dataset is the same as used by

Diebold, Rudebusch, and Aruoba (2006)1, Diebold and Li (2006) provide more details on

how it is obtained.

[insert Table 1]

Table 1 provides summary statistics for our dataset. For each maturity we show the

mean, standard deviation, minimum, maximum and some autocorrelation coefficients. In

addition we show these statistics for proxies of the level, slope and curvature coefficients.

These proxies are chosen in accordance with the construction of the factors from the Nelson

and Siegel (1987) model, see the discussion in Section 2.1, and have previously been used,

among others, by Diebold and Li (2006).

From the table we see that the average yield curve is upward sloping. Volatility decreases

by maturity, with the exception of the 6 month being more volatile than the 3 month. Impor-

1We thank Francis X. Diebold for making the dataset available on his website:
www.ssc.upenn.edu/ fdiebold/.
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tant for econometric analyses, yields for all maturities are very persistent. The persistence

is most notable for long term bonds. However, with a first-order autocorrelation of 0.970,

the 3 month bill is still highly persistent. The level, slope and curvature proxies are persis-

tent but to a lesser extent. The curvature and slope proxies are least persistent given the

twelfth-order autocorrelation coefficients of 0.259 and 0.410, respectively.

[insert Figure 1]

Figure 1 shows the cross-section of yields over time. This is a graphical representation of

our data-set. In addition to the findings of Table 1 we see a few interesting characteristics.

The first noticable fact is that yields vary significantly over time from which various common

dynamics across all yields can be deduced. Especially in the years 1978-1987 interest rates

are remarkable high and volatile. Secondly, the shape of the yield curve is not constant over

time. Though on average it is upward sloping, there are periods when it is downward sloping

or humped.

4.2 Empirical Results

In Sections 4.2.2 and 4.2.3 we analyze how our extensions affect the performance of the

Nelson-Siegel latent factor model. Section 4.2.4 discusses the results from the Nelson-Siegel

with both of our model extensions jointly included. In Section 4.2.5 we discuss the forecasting

performances. Before we do this we will first provide results for the baseline Nelson-Siegel

latent factor model in Section 4.2.1.

4.2.1 The baseline dynamic Nelson-Siegel model

[insert Table 2]

Table 2 presents the estimates of the vector autoregression (VAR) model for the latent

factors. The high persistence from the proxies for the level, slope and curvature that we

report in Table 1 are confirmed by the high diagonal elements of the VAR coefficient matrix.

The estimates in this table are almost identical to those in Diebold, Rudebusch, and Aruoba

(2006, Table 1, p.316). The slight difference stems from our use of the Ansley and Kohn

(1986) method to ensure stationarity, see Section 2.2.
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The factor loadings parameter λ is estimated as 0.0778, with a standard error of 0.00209.

The high significance of this estimate confirms that interest rates can be informative about

λ and that small changes in the loadings can have a significant effect on the likelihood value.

[insert Table 3]

Table 3 reports sample means and standard deviations of measurement and prediction

errors. Panel A of this table focuses on the prediction errors, while Panel B looks at the

measurement errors. The prediction errors are obtained from the Kalman filter. The mea-

surement errors are defined as the actual yields minus the yields that are obtained using the

estimated parameters and smoothed estimates of level, slope and curvature. We find that in

particular the 3 month rate is difficult to fit: it has the highest mean prediction and mea-

surement error. The standard deviations reported in Table 3 indicate that the relatively long

bonds are predicted most accurately. The shortest and longest bonds are however difficult

to fit. The medium term notes of around 24 month are modelled adequately and produce

the best fit.

4.2.2 Time-varying factor loadings

To obtain some indication whether the λ parameter varies over time in our dataset, we

estimate the baseline model for four equally sized subperiods. The four estimates of λ

are 0.0397, 0.126, 0.0602 and 0.0695. The corresponding standard errors are sufficiently

small for concluding that the estimates are distinct from each other (except for the last two

subsamples). This finding confirms that datasets of interest rates can be informative about

the λ parameter and that the assumption of constant factor loadings over time does not

necessarily hold.

[insert Table 4]

Table 4 presents the estimated factor loadings parameter for different specifications of

a time-varying λt together with standard errors. The likelihood ratio (LR) tests are also

reported. They enable model comparisons. The estimates of the factor loadings parameter

λ parameterized as a step function, see Section 3.1, confirm the earlier finding based on the

subsample estimates of λ. All other parameters in the model are assumed to be constant
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over the full sample period and therefore the estimates differ from the subsample estimates

of λ. However, again we find low standard errors and distinctly different estimates for λ over

time. The LR-test shows significant improvement in model fit over the baseline model with

constant λ, even at the 1% level.

[insert Figure 2]

Finally, we estimate the factor loadings parameter λ in its most flexible form. This is

the spline function as defined in Section 3.1. For the knots we choose to divide the interval

in four equally spaced intervals. Together with knots at the begin- and end-point of the

sample, we place knots at April 1979, July 1986 and October 1993.2 Figure 2 presents the

estimates of the time-varying λ in a graph. From this figure it is clear that even within each

subperiod, the factor loadings parameter λ is not constant over time. In Table 4 we show the

mean λ for each of the periods. On average, the mean λ for these periods varies less than the

estimates obtained from models with subsamples and with the step function. However, there

still is considerable evidence of a varying λ parameter over time. The LR test shows that

the model with a spline for the factor loadings parameter improves the fit most significantly

compared to both the constant λ model and the model with a step function.

To gain further insights in the impact of a varying λ parameter, we present in Figure

3 the slope and curvature factor loadings for the different maturities, that is Γi2(λt) and

Γi3(λt) for i = 1, . . . , N in equation (3) for a particular time point t. The factor loadings are

presented for the minimum value of λt and the maximum value of λt in panel (A). Since the

maximum of λt occurs at the end of the sample where the uncertainty with respect to the

estimate of λt is high, we also present the loadings for a local maximum of λt in panel (B).

It is apparent from these graphs that the time-varying λt can lead to significantly different

factor loading patterns for slope and curvature. We conclude from this finding that our

modifications to the dynamic Nelson-Siegel model are not necessarily marginal.

2We have tried various different number of knots, see Figure 1 in the Appendix (available from the authors
on request). Adding more knots will improve the model looking at both the likelihood and Akaike Information
Criterion (AIC). However, to keep the number of parameters tractable while allowing the loadings parameter
to vary over time we choose a number of knots which provides a shape that represented a wide range of
values for the number of knots. The main change in shape of the spline when using a large number of knots
is in the end of the sample period. Adding more knots shows the high value of the spline there is mainly
caused by the inverted shape of the yield curve around 1999.
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Table 3 compares the prediction and measurement error of this model with the baseline

constant λ model. For 10 (9) out of the 17 maturities the mean prediction (measurement)

error is lower. This is particularly true for short maturities. The standard deviation of the

prediction (measurement) error is lower for 13 (9) out of the 17 maturities.

4.2.3 Time-varying volatility

The second modification we propose in Section 3 is to allow for a time-varying volatility. In

a similar way as we obtain time-varying factor loadings, we introduce a spline function for

the time-varying common volatility pattern in the observation disturbances, see Section 3.2

for details. The knots are set to equal those of Section 4.2.2.3

[insert Figure 4]

Panel (A) of Figure 4 presents the spline for the time-varying common volatility com-

ponent. This spline shows how the average overall or common volatility varies over time.

When mulitplied by a loading for each individual maturity, it provides an estimate of the

volatility pattern for each maturity up to a constant. Panel (B) in Figure 4 gives the result-

ing volatilities for a selection of maturities. Interestingly, we find that volatility is especially

high in the period between 1980 and 1987. Thereafter it is almost completely constant for

all maturities.

Table 3 compares the measurement and prediction error of this model with the baseline

constant volatility model and the time-varying λ model. For 9 (10) out of the 17 matu-

rities the mean prediction (measurement) error is lower. It is interesting to note that the

improvements of a time-varying λ are mainly obtained for the short maturities while those

for time-varying volatility are most pronounced for long bonds. The standard deviation of

the prediction (measurement) error is lower than the baseline case for only 2 (8) out of the

17 maturities.

[insert Table 5]

In Table 5 we report the performance of the various models. We report the loglikelihood

and the Akaike Information Criterion (AIC) value, together with an LR-test for model

3See Footnote 2 for more details. The shape of the spline for volatility depends less on the number
of knots chosen than was the case for the factor loadings parameter, as can be seen from Figure 2 in an
Appendix of this paper (available from the authors on request).
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improvement. We find a highly significant improvement of the model over the baseline

model without time-varying volatility. The increase in likelihood value and decrease in AIC

is higher than is the case for the baseline model versus the time-varying factor loadings model.

This indicates that most gains in describing the yield curve in this dataset are obtained by

introducing time-varying volatility.

4.2.4 Time-varying factor loadings and volatility

In this section we report our results of analyzing the dataset using the dynamic Nelson-Siegel

model with both factor loadings and volatility time-varying. As the parameters of the vector

autoregression are similar to those in Table 2 and the splines similar to Figures 2 and 4 we

do not repeat these here4.

In Table 3 the measurement and prediction error of this model are given. In comparison

with the baseline Nelson-Siegel model, we observe that the prediction (measurement) error

is lower for 11 (11) out of the 17 maturities. Finally, we find that the standard deviations of

the prediction errors are improved for 13 of the 17 maturities while only 6 maturities show

such improvements for the measurement errors.

The loglikelihood and Akaike Information Criterion (AIC) values reported in Table 5 show

strong significant improvements compared to the baseline model. Also when we benchmark

them against the model with only time-varying factor loadings or only time-varying volatility

we obtain significant improvements. We therefore conclude that, though adding time-varying

volatility is most significant, both model extensions significantly contribute to improving the

Nelson-Siegel latent factor model.

[insert Figure 5]

In Figure 5 the latent factors obtained from the model are compared with their data-

based proxies. Each of the factors agrees with their data-based proxy: the level factor is

close to the 120 month yield, the slope is close to spread of 3 month over 120 month yields

and the curvature is close to the 24 month yield minus the 3 and 120 month yield. Finally,

in Figure 6 we discuss the four selected fitted yield curves as earlier reported in Diebold and

Li (2006, Figure 5). We report the yield curve obtained from the DL OLS model, DRA SSF

4These additional results are reported in an Appendix of this paper (available on request).
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model and our extended SSF model with both the factor loadings and volatility time-varying.

Especially in the August 1998 it is clear that our model extensions allow for more flexibility

and improve the fit of the model.

[insert Figure 6]

4.2.5 Some forecasting evidence

Although our modifications are not primarily motivated by improving the forecast perfor-

mance of the dynamic Nelson-Siegel model, it is however interesting to empirically investigate

the quality of our forecasts for this dataset. For this purpose we have created similar tables

as in DL. To limit the number of tables, we only present root mean squared error (RMSE)

measures of our forecasts in Table 6, see Footnote 4. The forecasting exercise is carried out

for two post-samples: (A) from 1994 onwards and (B) from 1989 onwards. We present our

forecasting results for these two samples since (A) is used in DL and DRA and (B) illustrates

the variations in the forecasting results that can be obtained. Therefore, these forecasting

results should be interpreted with some reservation.

[insert Table 6]

The forecasting results reported in Panel (A) of Table 6 confirm that the two time-

varying extensions (time-varying λ and time-varying volatility) do not lead to clear forecast

improvements compared to the baseline model DRA. However, some improvements can be

observed. These results also confirm that the forecast performances of the univariate random

walk model and the DL method are overall superior to DRA. Similar findings have been

reported by Yu and Zivot (2007). To balance such conclusions, we also investigated the

forecasting performances for a longer post-sample starting in 1989, see Panel (B) of Table

6. Here the results look more promising with respect to DRA and our modifications. In

some cases the forecast performances are highly improved as a result of our extensions of

the model.

[insert Figure 7]

Another interesting aspect in forecasting is the precision at which a forecast is produced.

In the dynamic Nelson-Siegel model-based framework, the standard error can be produced
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for each forecast. The standard error is a precision measure as it determines the confi-

dence interval around the forecast. Different model specifications produce different forecast

standard errors. In Figure 7 the forecasts for four maturities, for two different model spec-

ifications and for the months in 1984 are presented together with confidence intervals. In

forecasting 1 year and 3 year maturities, the extended model produces more precise forecasts

compared to the baseline model while for 3 month and 10 year the precision is more or less

equal. Graphs as in Figure 7 can be presented for other years, for other maturities and for

other model specifications. It is therefore not straightforward to present an overall picture on

improvements in forecast precision. However, Figure 7 does illustrate that our modifications

can produce more precise forecasts.

5 An illustration for an unbalanced dataset

An attractive feature of models in state space form is that they can allow for missing values.

For OLS estimation of the Nelson-Siegel model (as put forward by Diebold and Li (2006))

data must be available for all periods to avoid ad-hoc measures. However, this is not the

case for models in state space form.

The smoothing algorithm associated with the Kalman filter5 produces the smoothed

estimates of the latent factors for all periods and based on the available observations in the

dataset. The estimation procedure itself does not change depending on data availability.

Moreover, the smoothed estimates of the factors do also generate smoothed estimates of the

interest rates for all maturities. It implies that when data is missing for a certain maturity,

we are still able to obtain estimates for this maturity which are then based on data from

this maturity at other time periods and data from other maturities. It is therefore expected

that we still can obtain accurate forecasts for a maturity although the data is not complete

for this maturity. This is a strong property of Kalman filter methods.

To illustrate this we use a publicly available dataset of fixed maturity U.S. Treasury

yields. The dataset is obtained from the Federal Reserve Economic Data (FRED) online

database, maintained by the Federal Reserve Bank of St. Louis. We look at the fixed

5See Section 2.3 for our discussion of state space models, and Durbin and Koopman (2001) for a discussion
on state space models generally.
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maturity interest rates, over the period January 1972 up to June 2007, with maturities of

1, 3, 6, 12, 24, 36, 60, 84, 120, 240 and 360 months. With the convenience of being freely

available and covering a long time horizon, there comes the inconvenience that many missing

entries are present in the dataset. For example, the dataset for the 3 month bill starts only

in January 1982, for the 24 month this is June 1976 and the 360 month starts February

1977 with missings in the period March 2002 until January 2006 (the period when it was

not issued).

[insert Figure 8]

We have estimated the Nelson-Siegel latent factor model with both time-varying factor

loadings and time-varying volatility for this dataset. Figure 8 shows the time series of the

maturities with missings that are mentioned above. We see that using the smoothed latent

factors, based on data available not only in that period but also during other periods, an

estimate of the missing yield can be obtained.

To obtain an indication of the reliability of this estimate, we compare it to its value

obtained from the dataset of Section 4.1. Unfortunately, this dataset does not contain the

30 year bond and therefore we can only make such comparisons for the 3 month and 24

month yields. We find that in both cases the smoothed yield obtained provides a reliable

estimate of the missing data.

6 Conclusion

In this paper we propose two extensions for the dynamic Nelson-Siegel model for the yield

curve of Diebold, Rudebusch, and Aruoba (2006). We first consider the loadings parameter of

the latent factors which is usually assumed fixed at some constant known value or estimated

as constant through time. Our empirical results show that this parameter can be estimated

with a small standard error. This implies that the data can be highly informative about the

shape of the factor loadings. We then investigate whether this parameter is time-varying.

For this purpose we consider a simple step function and a spline function. We show that these

extensions can lead to significant improvements in model fit. Next we turn our attention

to the volatility for each of the maturities. We propose to include a common time-varying
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volatility component that is specified as a spline function. This common volatility component

is multiplied by a loading parameter and a constant variance is added for each maturity. This

extension also provides a significant improvement in model fit. We also show that forecast

results are also affected by these modifications of the baseline model. Finally we illustrate

that missing values can be easily treated in this modelling framework. For example, we

consider a dataset where four years of the 30 year bond has not been issued. However,

with the use of both data from other periods of the same maturity and data from other

maturities we obtain accurate estimates of the missing values. Given the general framework

of the dynamic Nelson-Siegel model, other modifications can be considered in future work.
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Table 1: Summary Statistics
The table reports summary statistics for U.S. Treasury yields over the period 1972-2000. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. Maturity is measured in months. For
each maturity we show mean, standard deviation (Std.dev.), minimum, maximum and three autocorrelation
coefficients, 1 month (ρ̂(1)), 1 year (ρ̂(12)) and 30 months (ρ̂(30)).

Summary Statistics for each Maturity
Maturity Mean Std.dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)
3 6.851 2.695 2.732 16.020 0.970 0.700 0.319
6 7.079 2.702 2.891 16.481 0.972 0.719 0.355
9 7.201 2.679 2.984 16.394 0.972 0.726 0.378
12 7.302 2.602 3.107 15.822 0.971 0.729 0.394
15 7.408 2.548 3.288 16.043 0.973 0.737 0.415
18 7.481 2.532 3.482 16.229 0.974 0.743 0.431
21 7.544 2.520 3.638 16.177 0.975 0.747 0.442
24 7.558 2.474 3.777 15.650 0.975 0.745 0.450
30 7.647 2.397 4.043 15.397 0.975 0.755 0.470
36 7.724 2.375 4.204 15.765 0.977 0.761 0.480
48 7.861 2.316 4.308 15.821 0.977 0.765 0.499
60 7.933 2.282 4.347 15.005 0.980 0.779 0.514
72 8.047 2.259 4.384 14.979 0.980 0.786 0.524
84 8.079 2.215 4.352 14.975 0.980 0.768 0.526
96 8.142 2.201 4.433 14.936 0.982 0.793 0.535
108 8.176 2.209 4.429 15.018 0.982 0.794 0.540
120(level) 8.143 2.164 4.443 14.925 0.982 0.771 0.532
slope 1.292 1.461 -3.505 4.060 0.929 0.410 -0.099
curvature 0.121 0.720 -1.837 3.169 0.788 0.259 0.076
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Table 2: Baseline Model - Estimates of VAR Model for Latent Factors
The table reports the estimates of the vector autoregressive (VAR) model for the latent factors. The results
shown correspond to the latent factors of the baseline Nelson-Siegel latent factor model. Panel A shows
the estimates for the constant vector µ and autoregressive coefficient matrix Φ, Panel B shows the variance
matrix Ση.

Panel A: Baseline Model - Constant and Autoregressive Coefficients of VAR
Levelt−1 (β1,t−1) Slopet−1 (β2,t−1) Curvaturet−1 (β3,t−1) Constant (µ)

Levelt (β1,t) 0.997∗∗
0.00811

0.0271∗∗
0.00889

−0.0216∗
0.0105

8.03∗∗
1.27

Slopet (β2,t) −0.0236
0.0167

0.942∗∗
0.0176

0.0392
0.0212

−1.46∗∗
0.527

Curvaturet (β3,t) 0.0255
0.023

0.0241
0.0257

0.847∗∗
0.0312

−0.425
0.537

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance at the 1% level or less.

The standard errors are reported below the estimates.

Panel B: Baseline Model - Variance Matrix of VAR
Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t)

Levelt (β1,t) 0.0949∗∗
0.00841

−0.014
0.0113

0.0439∗
0.0186

Slopet (β2,t) 0.384∗∗
0.0306

0.00927
0.0344

Curvaturet (β3,t) 0.801∗∗
0.0812

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote

significance at the 1% level or less. The standard errors are reported below the estimates.
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Table 3: Prediction and Measurement Errors
The table reports the prediction and measurement errors from the four Nelson-Siegel latent factor models we
estimate. The Baseline Model corresponds to the baseline Nelson-Siegel latent factor model with constant
factor loadings and volatility. The Time-Varying Factor Loading model corresponds to the model with a
spline for λ. The Time-Varying Volatility model corresponds to the model with a spline for the volatility.
The Both Time-Varying model corresponds to the model with a spline for both the factor loadings parameter
and the volatility. For each maturity we show mean and standard deviation (Std.dev.). We summarize these
per model with three statistics: the mean, median and number of maturities for which the absolute value
is lower than that of the baseline model (#Lower). In Panel A we report prediction errors, in Panel B
measurement errors.

Panel A: Prediction Errors (in basis points)
Baseline Time-Varying Time-Varying Both
Model Factor Loading Volatility Time-Varying

Maturity Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
3 -11.91 64.84 -9.32 63.63 -13.80 66.71 -11.38 64.17
6 -0.69 60.52 0.05 60.07 -1.86 61.18 -0.55 60.16
9 1.09 59.05 0.73 58.80 0.53 59.17 1.09 58.69
12 1.82 59.25 0.84 58.94 1.74 59.41 1.81 59.00
15 4.15 56.39 2.87 56.05 4.44 56.57 4.22 56.22
18 3.98 54.17 2.61 53.74 4.56 54.30 4.16 53.95
21 3.55 52.43 2.21 51.94 4.33 52.52 3.85 52.13
24 -1.16 52.28 -2.40 51.63 -0.25 52.33 -0.75 51.85
30 -2.57 48.73 -3.51 47.86 -1.56 48.76 -1.99 48.12
36 -3.29 46.83 -3.93 45.92 -2.35 46.87 -2.65 46.14
48 -2.01 44.29 -2.21 43.38 -1.47 44.43 -1.48 43.58
60 -3.60 40.85 -3.61 40.10 -3.60 41.09 -3.41 40.36
72 1.53 39.20 1.55 38.81 0.99 39.53 1.33 39.04
84 0.21 39.40 0.17 39.52 -0.83 39.49 -0.41 39.43
96 2.98 37.79 2.86 38.12 1.53 37.92 2.00 38.03
108 3.66 36.72 3.44 37.40 1.86 36.35 2.36 37.01
120 -1.95 37.91 -2.27 38.64 -4.05 37.40 -3.53 38.12
Mean -0.25 48.86 -0.58 48.50 -0.58 49.06 -0.31 48.59
Median 0.21 48.73 0.17 47.86 -0.25 48.76 -0.41 48.12
#Lower 10 13 9 2 11 13
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Table 3 (continued)
Panel B: Measurement Errors after Smoothing (in basis points)

Baseline Time-Varying Time-Varying Both
Model Factor Loading Volatility Time-Varying

Maturity Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
3 -12.66 22.42 -9.89 19.91 -14.80 28.43 -12.38 22.90
6 -1.37 5.08 -0.31 2.80 -2.63 10.50 -1.37 7.18
9 0.50 8.11 0.55 8.83 -0.04 7.97 0.44 8.25
12 1.31 9.86 0.82 10.21 1.33 9.58 1.31 9.96
15 3.71 8.72 3.00 8.49 4.18 8.91 3.85 8.69
18 3.63 7.28 2.86 6.71 4.42 7.82 3.92 7.35
21 3.27 6.51 2.57 6.08 4.28 7.31 3.71 6.72
24 -1.38 6.40 -1.95 6.54 -0.21 6.89 -0.80 6.64
30 -2.67 6.06 -2.92 6.42 -1.39 5.74 -1.89 6.08
36 -3.28 6.57 -3.24 6.84 -2.08 5.98 -2.43 6.42
48 -1.82 9.71 -1.41 9.66 -1.07 9.64 -1.12 9.69
60 -3.29 8.04 -2.77 7.48 -3.14 8.14 -2.95 7.78
72 1.94 9.14 2.41 9.04 1.50 10.03 1.83 9.77
84 0.68 10.38 1.03 10.38 -0.29 10.52 0.13 10.52
96 3.50 9.05 3.72 9.88 2.09 8.73 2.56 9.44
108 4.23 13.64 4.30 13.83 2.44 12.59 2.93 13.33
120 -1.35 16.44 -1.41 16.38 -3.46 14.94 -2.95 15.68
Mean -0.30 9.61 -0.16 9.38 -0.52 10.22 -0.31 9.79
Median 0.50 8.72 0.55 8.83 -0.21 8.91 0.13 8.69
#Lower 9 9 10 8 11 6
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Table 4: Estimates of Time-Varying Factor Loadings Parameter
The table reports various estimates of the time-varying factor loadings parameter λ. The Baseline model
corresponds to the baseline Nelson-Siegel latent factor model (with constant factor loadings) as estimated
for the full sample. The Step function model corresponds to the Nelson-Siegel latent factor model with a
step function for λ. The Spline model corresponds to the Nelson-Siegel latent factor model with a spline for
the λ.

Estimates of Time-Varying Factor Loadings Parameter
(a) Baseline (b) Step Function (c) Splines#

Full Sample 0.0778∗∗
0.00209

01/72 - 03/79 0.0932∗∗
0.00533

0.0938

04/79 - 06/86 0.116∗∗
0.00393

0.116

07/86 - 09/93 0.0638∗∗
0.00240

0.0698

10/93 - 12/00 0.0717∗∗
0.00419

0.0861

Loglikelihood 3185.4 3259.0 3289.0
AIC -6304.8 -6446.1 -6503.9
LR-test (a) vs. (b) 147.2∗∗

0.000

LR-test (a) vs. (c) 207.2∗∗
0.000

LR-test (b) vs. (c) 60.0∗∗
0.000

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote

significance at the 1% level or less. The standard errors are reported below the estimates,

for the tests this is the probability H0 is accepted. The # indicates that the λ’s from the

model with a spline are the average over the period, see Figure 2.
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Table 5: Loglikelihood and AIC of Model Extensions
The table reports the loglikelihood and Akaike Information Criterion (AIC) for the various model extensions
proposed. The Baseline model corresponds to the baseline Nelson-Siegel latent factor model (with constant
factor loadings) as estimated for the full sample. The TV Factor Loadings model corresponds to the baseline
Nelson-Siegel latent factor model with a spline for the factor loadings parameter. The TV Volatility model
corresponds to the Nelson-Siegel latent factor model with a common time-varying volatility component.
The TV Loadings & Volatility model corresponds to the Nelson-Siegel latent factor model with both factor
loading and volatility time-varying.

Performance of Model Extensions
Loglikelihood AIC LR-test vs. Baseline

Baseline 3185.4 -6304.8
TV Factor Loadings 3289.0 -6503.9 207.2∗∗

0.000

TV Volatility 4144.2 -8180.5 1917.6∗∗
0.000

TV Loadings & Volatility 4187.3 -8258.5 2003.8∗∗
0.000

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance

at the 1% level or less. The probability H0 is accepted is reported below the test-statistic.
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Table 6: Forecast Performance of Various Model Extensions
The table reports the out-of-sample forecasting results from various specifications of the Nelson-Siegel model,
with some benchmarks. The RW corresponds to forecasts obtained using the Random Walk model. DL
corresponds to forecasts obtained using the Diebold and Li (2006) forecasting method with the factors
obtained by OLS and prediced using univariate AR(1) models. DRA correspond to the forecasts obtained
using the state space model as introduced by Diebold, Rudebusch, and Aruoba (2006). TV λ corresponds
to our model with the time-varying factor loadings parameter λ, TV Vol to our model extension with time-
varying volatility and Both TV to forecasts from a model with both extensions jointly. We compute the
root mean squared error (RMSE ) of the forecasts and summarize the forecasting performance by presenting
the RMSE for 1-, 6- and 12-months-ahead forecasts.

Panel A: from January 1994
Maturity RW DL DRA TV λ TV Vol Both TV

RMSE 1-month-ahead forecasting results

3 months 0.179 0.160 0.180 0.179 0.307 0.279
1 year 0.240 0.227 0.236 0.238 0.232 0.241
3 years 0.277 0.263 0.271 0.289 0.270 0.273
5 years 0.275 0.279 0.280 0.295 0.278 0.284
10 years 0.253 0.249 0.268 0.292 0.266 0.264

RMSE 6-months-ahead forecasting results

3 months 0.603 0.464 0.525 0.527 0.539 0.588
1 year 0.775 0.612 0.696 0.682 0.674 0.687
3 years 0.874 0.712 0.765 0.801 0.760 0.758
5 years 0.856 0.750 0.773 0.817 0.775 0.776
10 years 0.754 0.698 0.728 0.767 0.726 0.723

RMSE 12-months-ahead forecasting results

3 months 1.013 0.812 0.834 0.860 0.831 0.897
1 year 1.190 0.907 0.953 0.969 0.925 0.937
3 years 1.230 1.026 0.999 1.057 1.000 0.996
5 years 1.184 1.087 1.013 1.070 1.024 1.029
10 years 1.045 1.056 0.978 1.020 0.994 0.994
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Table 6 (continued)
Panel B: from January 1989

Maturity RW DL DRA TV λ TV Vol Both TV
RMSE 1-month-ahead forecasting results

3 months 0.207 0.245 0.221 0.234 0.258 0.232
1 year 0.266 0.342 0.661 0.350 0.307 0.292
3 years 0.299 0.355 0.782 0.430 0.329 0.311
5 years 0.289 0.347 0.611 0.421 0.325 0.313
10 years 0.257 0.283 0.340 0.369 0.279 0.279

RMSE 6-months-ahead forecasting results

3 months 0.735 1.008 0.752 0.944 0.846 0.751
1 year 0.827 1.136 0.835 1.219 0.972 0.854
3 years 0.843 1.067 0.856 1.362 0.920 0.815
5 years 0.806 0.986 0.825 1.311 0.856 0.783
10 years 0.686 0.790 0.702 1.093 0.705 0.681

RMSE 12-months-ahead forecasting results

3 months 1.315 1.653 1.334 1.773 1.383 1.260
1 year 1.330 1.717 1.336 1.970 1.440 1.255
3 years 1.203 1.554 1.210 1.961 1.273 1.070
5 years 1.113 1.425 1.127 1.809 1.156 0.990
10 years 0.961 1.187 0.967 1.470 0.963 0.875
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Figure 1: Yield Curves from January 1972 up to December 2000
In this figure the U.S. Treasury yields over the period 1972-2000 are shown. We examine monthly data,
constructed using the unsmoothed Fama-Bliss method. The maturities we show are 3, 6, 9, 12, 15, 18, 21,
24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.
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Figure 2: Time-Varying Factor Loadings Parameter
In this figure we present the time-varying factor loadings parameter. It is estimated with a spline, with knots
at both the beginning and end of the sample, and at April 1979, July 1986 and October 1993.
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Figure 3: Minimum and Maximum Factor Loadings
In this figure we present the slope and curvature factor loadings using the minimum and maximum value
of the time-varying factor loadings parameter λ. In Panel (A) we do this for the maximum factor loadings
parameter over the whole sample, in Panel (B) we exclude the last part of the sample for this.
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Figure 4: Time-Varying Volatility
In this figure we present the time-varying volatility. The volatility is estimated with a spline, with knots
both at the beginning and end of the sample, and at April 1979, July 1986 and October 1993. The spline
is loaded onto each maturity by a scalar and added to a constant volatility level per maturity. Panel (A)
shows the estimated spline, Panel (B) depicts for a few maturities (3 months, 12 months, 36 months and
120 months) the volatility that is obtained using the spline and the loadings of each maturity.
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Figure 5: Time-Varying Model - Level, Slope and Curvature
This figure reports the level, slope and curvature as obtained from the Nelson-Siegel latent factor model
with both time-varying factor loadings and volatility. Panel (A) shows these together in one plot. Panels
(B), (C) and (D) report them with their proxies from the data. For the level this is the 120 month treasury
yield, for slope this is the spread of 3 month over 120 month yields and for curvature this is twice the 24
month yield minus the 3 and 120 month yield.
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Figure 6: Fitted Yield Curves for Four Months
This figure presents the fitted yield curve obtained from the Nelson-Siegel latent factor model with both
time-varying factor loadings and volatility. The dots represent the actual yield curve, the solid line the fitted
yield curve obtained from the Nelson-Siegel latent factor with both our extensions, the dashed line the model
as put in state space form by Diebold, Rudebusch, and Aruoba (2006) and the dotted line the OLS model
as in Diebold and Li (2006). We show these for four different months: March 1989, July 1989, May 1997
and August 1998.
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Figure 7: Confidence Intervals of Forecasts
In this figure we present the forecasts with confidence intervals of the yield curve made at December 1983 for
the full year 1984. The DRA model corresponds to the Nelson-Siegel model in state space form as introduced
by Diebold, Rudebusch and Aruoba (2006). The Both TV model is this model with both time-varying factor
loadings and time-varying volatility. We show the forecasts up to 12 months ahead with their 95% confidence
intervals.
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Figure 8: An Illustration with Missing Values
This figure illustrates how the Nelson-Siegel latent factor model deals with missing values. The data is the
FRED fixed maturity U.S. Treasury Yields dataset from January 1972 up to June 2007 (note that all other
tables and figures in this paper are based on the unsmoothed Fama-Bliss data). We show the yield from the
data, the smoothed yield using the Nelson-Siegel latent factor model with time-varying factor loadings and
volatility and, if available, the yield from the unsmoothed Fama-Bliss dataset.
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