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Abstract

In this paper we study cooperative games with limited cooperation possibilities, represented

by an undirected cycle-free communication graph. Players in the game can cooperate if and

only if they are connected in the graph, i.e. they can communicate with one another. We

introduce a new single-valued solution concept, the component fairness solution. Our solu-

tion is characterized by component efficiency and component fairness. The interpretation

of component fairness is that deleting a link between two players yields for both resulting

components the same average change in payoff, where the average is taken over the players

in the component. Component fairness replaces the axiom of fairness characterizing the

Myerson value, where the players whose link is deleted face the same loss in payoff. The

component fairness solution is always in the core of the restricted game in case the game

is superadditive and can be easily computed as the average of n specific marginal vectors,

where n is the number of players. We also show that the component fairness solution can

be generated by a specific distribution of the Harsanyi-dividends.

Keywords: TU-game, communication structure, Myerson value, fairness, marginal vec-

tor.

AMS subject classification: 90B18, 91A12, 91A43.

JEL code: C71.



1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair (N, v), where N is a finite set of players and v: 2N → IR is a characteristic function

on N such that v(∅) = 0. For any subset S ∈ 2N , v(S) is the worth of coalition S, i.e. the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Unless

stated otherwise, we assume that N = {1, . . . , n}, i.e. N is a set of n players, indexed by

i = 1, . . . , n, and we denote a game (N, v) shortly by its characteristic function v.

A payoff vector x ∈ IRn of a game v is an n-dimensional vector giving a payoff

xi ∈ IR to any player i ∈ N . In the following we denote x(S) =
∑

i∈S xi, S ∈ 2N . A payoff

vector x is efficient if it exactly distributes the worth v(N) of the ‘grand coalition’ N , i.e.

if x(N) = v(N). A solution for TU-games is a mapping F that assigns to every game v a

set of payoff vectors F (v) ⊂ IRn. A solution F is efficient if for any game v every element in

F (v) is efficient. A classical solution is the core, see Gillies [6], which assigns to any game v

the set C(v) of undominated efficient payoff vectors, i.e. x(N) = v(N) and x(S) ≥ v(S) for

all S ∈ 2N . The best known single-valued solution is the Shapley value, see Shapley [15],

assigning to any game v the average ψ(v) of all marginal vectors. For some permutation

π on N , the corresponding marginal vector mπ(v) ∈ IRn assigns to every player i a payoff

mπ
i (v) = v(πi ∪ {i})− v(πi), where πi = {j ∈ N |π(j) < π(i)}, i.e. πi is the set of players

preceding i in the permutation π. Since every marginal vector is efficient, the Shapley

value is an efficient solution. A game v is convex if v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ∈ 2N and superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N such that

S∩T = ∅. The core of a game is equal to the convex hull of all marginal vectors if and only

if the game is convex. In that case the Shapley value is an element of the core. In general,

the Shapley value may be outside the core, even if the core is not empty. Moreover, the

core is nonempty if and only if the game is balanced, see Bondareva [1].

In this paper we study cooperative games with limited cooperation possibilities,

represented by an undirected communication graph as introduced by Myerson [12]. The

vertices in the graph represent the players and the edges represent the communication links

between the players. Players can only cooperate if they are connected. This yields a so-

called graph game, given by a triple (N, v, L) with N the set of players, v the characteristic

function and L the set of edges (communication links) in the graph (N,L) on the set of

nodes N . Since in graph games only connected coalitions can cooperate, the core reduces

to the set of component efficient payoff vectors that are not dominated by any connected

coalition, i.e.

C(v, L) = {x ∈ IRn|x(S) = v(S), S ∈ CL
m(N), and x(S) ≥ v(S), S ∈ CL(N)},
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where CL(N) is the collection of all connected subsets of N in the graph (N,L) and CL
m(N)

is the collection of all components of N in the graph, see also Section 2 for these notions.

The set C(v, L) equals the core C(vL) of the so-called restricted game vL, defined by

Myerson [12] as

vL(S) =
∑

T∈CLm(S)

v(T ), S ∈ 2N ,

where CL
m(S) is the collection of components of S induced by the graph (N,L). A single-

valued solution for graph games is a function f that assigns to every graph game (N, v, L)

a unique payoff vector f(v, L) ∈ IRn. The so-called Myerson value, to be denoted by µ,

is the solution that assigns to any graph game the Shapley value of the restricted game,

so µ(v, L) = ψ(vL). The Myerson value can be characterized by component efficiency, i.e.
∑

i∈S µi(v, L) = v(S) if S ∈ CL
m(N), and fairness. The latter property says that deleting

a link between two players yields for both players the same change in payoff. Clearly, the

Myerson value is the average of all marginal vectors of vL and is guaranteed to be in the core

if the restricted game is convex. Alternative characterizations of the Myerson value have

been given in Myerson [13] and Borm et al. [2]. In the latter paper also another solution

for graph games has been proposed, the so-called positional value, see also Meessen [11].

This value is also characterized by component efficiency and by balanced total threats, see

Slikker [16]. The balanced total threat property says that the total threat of any player

towards another player equals to the total threat of that player towards the first player,

where the total threat of a player towards another player is the sum over all links of the

first player of payoff differences the second player experiences if such a link is broken.

From Kaneko and Wooders [9] and Le Breton, Owen and Weber [10] it follows that

C(vL) is not empty if the graph (N,L) contains no cycles and v is superadditive, see also

Demange [4]. For an arbitrarily taken node, a cycle-free graph induces a tree with the

given node as root. Demange assigns to any node taken as root a particular marginal

vector and shows that this vector is in the core of the restricted game vL. Interpreting

the tree as a hierarchy on the set of players, Demange [5] argues that hierarchies yield

stability, in the sense that there exist undominated payoff vectors under the mild condition

of superadditivity, providing a rationale for the fact that a group organizes itself in a

hierarchy to achieve coordination.

In this paper we provide a new single-valued solution concept for cycle-free graph

games. To do so we replace Myerson’s fairness by an alternative fairness property, to be

called component fairness. This property says that deleting a link between two players

yields for both resulting components the same average change in payoff, where the average

is taken over the players in the component. The new solution is characterized by component

efficiency and component fairness. It is easy to compute the new solution. We prove that
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it equals the average of the n marginal vectors considered by Demange. It follows that

the component fairness solution belongs to the core of the restricted game if the game is

superadditive. So, contrary to the Myerson value and the position value the new value is

in that case always an element of the core. We also compare the three values in terms of

distributions of the so-called Harsanyi-dividends, see Harsanyi [8].

This paper has been organized as follows. In Section 2 we give some preliminary

notions of graph theory. In Section 3 we introduce the concept of component fairness

solution and prove that component efficiency and component fairness fully characterize

the component fairness solution on the class of cycle-free graph games. We also show that

it equals the average of n specific marginal vectors, for each player one. In Section 4 we

show that in case the game is superadditive the component fairness solution lies in the core

and we compare the new value with the Myerson value and the position value. Section 5

concludes.

2 Some Notions in Graph Theory

In this section we present some notions in graph theory that are needed for our results. An

undirected graph is a pair (N,L) where N is a set of nodes1 and L is a collection of edges,

i.e. L ⊆ {{i, j}|i, j ∈ N, i �= j} is a collection of subsets of N such that each element

of L contains precisely two elements of N . Node j is adjacent to node i if {i, j} ∈ L.

Because the elements of L will represent binary communication links between the players,

in the sequel we call them links instead of edges. For K ∈ 2N , the graph (K,L(K)) with

L(K) = {l ∈ L|l ⊆ K} is called the subgraph of (N,L) on K. The number of nodes in K

being adjacent to node i ∈ K in subgraph (K,L(K)) is called i’s degree in (K,L(K)) and

is given by dLK(i) = |{j ∈ K|{i, j} ∈ L(K)}|.

A sequence of k different nodes (i1, . . . , ik) is a path in a graph (N,L) if {ih, ih+1} ∈ L

for h = 1, . . . , k − 1. Two nodes i, j ∈ N are connected in the graph (N,L) if there exists

a path (i1, . . . , ik) with i1 = i and ik = j. A graph (N,L) is connected if any two nodes

i, j ∈ N are connected in (N,L). In a given graph (N,L), a set of nodes K is said to be a

connected subset of N when the subgraph (K,L(K)) is connected. A subset K of N is a

component of (N,L) if the subgraph (K,L(K)) is maximally connected, i.e. (K,L(K)) is

connected and for any j ∈ N \K, the subgraph (K ∪ {j}, L(K ∪ {j})) is not connected.

Note that the collection of components of (N,L) forms a partition of N . The collection

of all connected subsets of K in the subgraph (K,L(K)) of (N,L) is denoted by CL(K).

The collection of all components of (N,L) is denoted by CL
m(N). A sequence of nodes

1Since in this paper the nodes in a graph represent the players in a game we use the same notation for

both the set of nodes and the set of players.
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(i1, . . . , ik+1) is a cycle in (N,L) if (i) k ≥ 2, (ii) all nodes i1, . . . , ik are different elements

of N , (iii) ik+1 = i1 and (iv) {ih, ih+1} ∈ L for h = 1, . . . , k. A graph (N,L) is cycle-free

when it does not contain any cycle.

A directed graph is a pair (N,D) where N is a set of nodes and D is a collection

of directed edges, i.e. D ⊆ {(i, j)|i, j ∈ N, i �= j}. If (i, j) ∈ D, then the node j is a

successor of i and i is a predecessor of j. We say that j �= i is a subordinate of i if there is a

sequence of directed edges (ih, ih+1) ∈ D, h = 1, . . . , k, such that i1 = i and ik+1 = j. We

denote the set of subordinates of i in (N,D) by SD(i) and denote ScD(i) = SD(i)∪{i}. For

K ∈ 2N , the directed graph (K,D(K)) with D(K) = {(i, j) ∈ D|i, j ∈ K} is called the

directed subgraph of (N,L) on K. A directed graph (N,D) is a tree if there is one node in

N , called the root or top-node, having no predecessors in D and there is a unique sequence

of directed edges in (N,D) from this node to any other node in N . Let (N,D) be the

undirected graph induced by (N,D), i.e. D = {{i, j}|(i, j) ∈ D}. A directed graph (N,D)

is a forest if for every component K of (N,D) the directed subgraph (K,D(K)) is a tree.

A directed graph (N,D) represents a hierarchy on N when (N,D) is a forest. Clearly, in

a forest (N,D) we have that ScD(j) ⊆ SD(i) when j is a subordinate of i.

Finally, let (N,L) be a cycle-free undirected graph and K a component of (N,L)

consisting of k = |K| nodes. Then every node i ∈ K induces a unique tree T (i) on K in

the following way. For any j ∈ K \ {i}, take the unique path in (K,L(K)) from i to j,

then change the undirected edges on this path to directed edges in such a way that the

first node in any ordered pair is the node that comes first on the path from i to j. In this

way the undirected cycle-free subgraph (K,L(K)) induces k different trees, one tree for

each of the k different nodes of K. For a component K of (N,L), we denote by TKL the

collection of all |K| trees on K induced by the undirected graph (N,L).

3 Component Fairness Solution

In this section we define a new solution concept for cycle-free graph games and we prove that

this is the unique solution satisfying the properties of component efficiency and component

fairness. Let (N, v, L) be a cycle-free graph game. For a component K of (N,L) and i ∈ K,

let T (i) ∈ TKL be the unique tree with player i as its top-player and, with a slight abuse

of notation, let ST (i)(j) and ScT (i)(j) be the sets of subordinates of j in T (i), without and

including j, respectively. Further, define by LT (i)(j) = {h ∈ K|(j, h) ∈ T (i)} the set of

successors of j in T (i). We now associate to player j in T (i) payoffs tij(v, L) given by

tij(v, L) = v(ScT (i)(j))−
∑

h∈LT (i)(j)

v(ScT (i)(h)). (3.1)
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So, the payoff to player j ∈ K is equal to the worth of the coalition consisting of player j

and all his subordinates in T (i) minus the sum of the worths of the coalitions consisting

of any successor of player j and all subordinates of this successor in T (i). By the tree

structure of T (i) we have that for every player j ∈ K the sets ScT (i)(h), h ∈ LT (i)(j), form

a partitioning of ST (i)(j) and thus

tij(v, L) = v(ScT (i)(j))− vL(ST (i)(j)), (3.2)

where the second right hand term is the restricted worth of the coalition consisting of

all subordinates of j in the tree T (i). So, the payoff to player j in tree T (i) is equal to

what player j contributes when he joins his subordinates in T (i). Clearly, the set ScT (i)(j)

itself is connected, so when joining his subordinates, player j connects all the subsets of

subordinates of his successors to one connected set and receives his marginal contribution to

it. Observe that a player j ∈ K receives his own worth v({j}) when j has no subordinates

in the tree T (i). More generally, the total payoff to a player j and all his subordinates in

T (i) is equal to the worth of the coalition ScT (i)(j), i.e.

∑

h∈Sc
T (i)

(j)

tih(v, L) = v(ScT (i)(j)), j ∈ K. (3.3)

We now define the Component Fairness solution CF as the solution assigning to each cycle-

free graph game (N, v, L) the payoff vector in which player j in a component K ∈ CL
m(N)

receives the average of all the payoffs tij(v, L) in the |K| trees T (i), i ∈ K, in TKL .

Definition 3.1 Component Fairness Solution

On the class of cycle-free graph games, the Component Fairness (CF) solution assigns to

any (N, v, L) the payoff vector CF(v, L) given by

CFj(v, L) =
1

|K|

∑

i∈K

tij(v, L), j ∈ K, K ∈ CL
m(N).

To characterize the CF-solution we state the following properties for a solution f

on the class of cycle-free graph games.

Axiom 3.2 Component Efficiency

A solution f on the class of cycle-free graph games is component efficient if for any game

(N, v, L) it holds that
∑

i∈K fi(v, L) = v(K) for each K ∈ CL
m(N).

To state the next axiom, for a component K and a link {i, j} ∈ L(K), let Kh be the

component in (N,L \ {i, j}) containing h, h = i, j. Clearly, Kh is the subset of K of

players connected to h in the graph that results after deleting the link {i, j}.
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Axiom 3.3 Component Fairness

A solution f on the class of cycle-free graph games satisfies component fairness if for any

(N, v, L) it holds that

1

|Ki|

∑

h∈Ki

(fh(v, L)− fh(v, L \ {i, j})) =
1

|Kj|

∑

h∈Kj

(fh(v, L)− fh(v, L \ {i, j})) ,

for all {i, j} ∈ L(K), K ∈ CL
m(N).

The first property is standard and has been introduced by Myerson [12]. The second

property is an alternative to the Myerson fairness property which states that fi(v, L) −

fi(v, L\{i, j}) = fj(v, L)−fj(v, L\{i, j}) for any {i, j} ∈ L. The Myerson fairness property

states that two players i and j linked directly together face the same loss in payoff when

the link between them is deleted from the set of links. On the class of cycle-free graphs, any

link is crucial because deleting a link breaks the component into two parts. Considering

a link {i, j} in a component K we have that all players in Ki are only connected to the

players in Kj through the link between i and j. One may argue that h, h = i, j, behaves on

behalf of all players in Kh in sustaining the link {i, j}. The component fairness property

states then that when a link {i, j} between i and j is deleted, the average change in the

payoffs of the players in Ki is equal to the average change in payoffs of the players in Kj .

Observe that superadditivity and component efficiency implies that on average the players

face a loss in payoff when a link is deleted.

We now state the main theorem, which says that the CF-solution is the unique

solution satisfying component efficiency and component fairness.

Theorem 3.4 A solution f on the class of cycle-free graph games is equal to the CF-

solution if and only if it satisfies component efficiency and component fairness.

Proof.

First, suppose that f satisfies component efficiency and component fairness. For any

graph game (N, v, L), let l = |L| be the number of links and c = |CL
m(N)| the number of

components in (N,L). Observe that l+ c = n, because the graph is cycle-free. Component

efficiency implies that
∑

h∈K

fh(v, L) = v(K), for all K ∈ CL
m(N). (3.4)

Also because of component efficiency we have
∑

h∈Ki fh(v, L \ {i, j}) = v(Ki) and
∑

h∈Kj

fh(v, L\{i, j}) = v(Kj) for any link {i, j} in L(K). Therefore, component fairness reduces

to

1

|Ki|

(
∑

h∈Ki

fh(v, L)− v(Ki)

)

=
1

|Kj|

(
∑

h∈Kj

fh(v, L)− v(Kj)

)

, (3.5)
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for all {i, j} ∈ L(K) and K ∈ CL
m(N).2 Since there are c equations of type (3.4) and l

equations of type (3.5) and all the c + l = n equations are linearly independent, these

equations uniquely determine f(v, L).

It remains to prove that the CF-solution satisfies the two properties. First, since

i ∈ K is the top-player in the tree T (i) on component K and thus ScT (i)(i) = K, for any

i ∈ K it follows from equation (3.3) that
∑

h∈K

tih(v, L) =
∑

h∈Sc
T (i)

(i)

tih(v, L) = v(ScT (i)(i)) = v(K).

Hence,

∑

h∈K

CFh(v, L) =
∑

h∈K

1

|K|

∑

i∈K

tih(v, L)

=
1

|K|

∑

i∈K

∑

h∈K

tih(v, L) =
1

|K|

∑

i∈K

v(K) = v(K),

which shows component efficiency.

To show component fairness, suppose link {i, j} is deleted in some component K.

Component efficiency implies that for both components Ki and Kj in the graph (N,L \

{i, j}) it holds that
∑

h′∈Kh CFh′(v, L\{i, j}) = v(Kh), h = i, j. Further, consider the tree

T (h) on K for some h ∈ Ki, then by definition of th(v, L) we have that
∑

h′∈Kj

thh′(v, L) = v(Kj). (3.6)

On the other hand, for h ∈ Kj it holds that
∑

h′∈Kj

thh′(v, L) = v(K)− v(Ki). (3.7)

Since there are |K i| equations of type (3.6) and |Kj| equations of type (3.7), we obtain

that
∑

h∈Kj

CFh(v, L) =
1

|K|

(
|Ki|v(Kj) + |Kj|(v(K)− v(Ki))

)
.

With |Ki|+ |Kj| = |K| it follows that
∑

h∈Kj

(CFh(v, L)− CFh(v, L \ {i, j})) =

1

|K|

(
|Ki|v(Kj) + |Kj|(v(K)− v(Ki))

)
− v(Kj) =

|Kj|

|K|

(
v(K)− v(Ki)− v(Kj)

)
.

2Observe that because of this reduced form of the component fairness property, it is not needed to use

induction on the number of links, as in the proof of the uniqueness of the Myerson value, in which one

first has to determine the values fh(v, L \ {i, j}) for h = i, j.
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Analogously it follows that

∑

h∈Ki

(CFh(v, L)− CFh(v, L \ {i, j})) =
|Ki|

|K|

(
v(K)− v(Ki)− v(Kj)

)
,

which shows that CF satisfies component fairness. �

From the proof it follows that the CF-solution satisfies the property that when a link

{i, j} connects two subcomponents Ki and Kj to form component K the surplus v(K)−

v(Ki)− v(Kj) obtained from this connection is distributed among the two subcomponents

proportional to the number of players in these subcomponents. In the next section we will

consider some more properties of the CF-solution and compare this solution with other

solutions for graph games.

4 Properties and Comparison

Consider a connected cycle-free graph (N,L), so that N is the unique component. Then

the CF-solution becomes

CFj(v, L) =
1

n

∑

i∈N

tij(v, L), j ∈ N,

where ti(v, L) ∈ IRn is the payoff vector defined by equation (3.1) when i is the top-player

in the tree T (i) on N induced by (N,L). Suppose that v is superadditive. It has been

shown by Demange [5] that the vector ti(v, L) in which a player j gets a payoff equal to the

worth of the coalition consisting of himself with all his subordinates minus the restricted

worth of the coalition of his subordinates is in the core of the restricted game vL. In fact,

it holds that vL is permutationally convex for any permutation π satisfying πj < πh when

j is a subordinate of h on a tree T (i) on N , see for instance van Velzen [17]. According

to Granot and Huberman [7] this implies that the corresponding marginal vector mπ is in

the core of vL. It is straightforward to verify that ti(v, L) = mπ(vL) for any permutation π

that satisfies the condition above for the tree T (i). Since the core is convex and CF(v, L)

is the average of all vectors ti(v, L), i ∈ N , this implies that the CF-solution is stable in

the sense that it is in the core of vL and thus cannot be dominated by any coalition. The

discussion above generalizes straigtforwardly in case the graph (N,L) consists of several

components. Since stability implies the weaker condition of component efficiency, we have

the following important corollary.

Corollary 4.1

On the class of cycle-free superadditive graph games the CF-solution is the unique solution

satisfying stability and component fairness.
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The corollary not only says that the CF-solution is the unique stable solution satisfy-

ing component fairness, it also says that there exists a solution being stable and component

fair. This makes the CF-solution an attractive alternative to other solutions such as the

Myerson value and the position value which may not be stable, even not on the class of

cycle-free games. The Myerson value µ(v, L), characterized by component efficiency and

fairness, satisfies, for any link {i, j} ∈ L,

µi(v, L)− µi(v, L \ {i, j}) = µj(v, L)− µj(v, L \ {i, j}).

It is equal to the Shapley value ψ(vL) of the restricted game vL, implying that it may be

outside the core of vL when vL is not convex. So, fairness may contradict the requirement

of stability. Also the position value, denoted by γ(v, L), introduced for the class of all graph

games and characterized on the class of cycle-free graph games in Borm et al. [2], does not

need to be stable. Slikker [16] characterizes the position value on the class of graph games

as the unique solution satisfying component efficiency and balanced total threats, saying

that the total threat of any player i towards another player j is equal to the total threat of

player j towards player i. The total threat of a player i towards another player j is defined

as the sum over all links of player i of the payoff differences player j experiences if such a

link is broken, i.e. for each pair of players i, j ∈ N it holds that
∑

h|{i,h}∈L

(γj(v, L)− γj(v, L \ {i, h})) =
∑

h|{j,h}∈L

(γi(v, L)− γi(v, L \ {j, h})) .

The next example shows that also the balanced threat property may contradict the re-

quirement of stability, i.e. also the position value may be outside the core.

Example 4.2 Let (N, v, L) be given by N = {1, 2, 3}, v({1, 2}) = 1, v({2, 3}) = v(N) = 2,

v(S) = 0, otherwise and L = {{1, 2}, {2, 3}}. Observe that vL = v, so that the Myerson

value equals the Shapley value: µ(v, L) = ψ(vL) = ψ(v) = (1/6, 7/6, 2/3)⊤. To obtain

the position value, straightforward calculations show that γ(v, L \ {1, 2}) = (0, 1, 1)⊤ and

γ(v, L\{2, 3}) = (1
2
, 1
2
, 0)⊤. Then, it follows that γ(v, L) = (1

4
, 1, 3

4
)⊤ by solving the system

of three equations given by the component efficiency property and the two balanced threat

property equations between 1 and 2 and between 3 and 2. Since x1 = 0 for any payoff

vector x in the core of vL, this shows that both the Myerson value and the position value

are not stable. Finally, the component fairness solution follows easily as the average of the

three vectors ti(v, L), i = 1, 2, 3, and is given by CF(v, L) = (0, 5/3, 1/3), which is in the

core.

Next we compare the three values in terms of distributions of the so-called Harsanyi

dividends. Let Ω be the collection of nonempty subsets of N . Then, for T ∈ Ω, the

unanimity game uT on N is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise.
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Leaving out v(∅), it is well-kown that the collection of unanimity games forms a basis in

IR2
n−1 for the class of TU-games on N , i.e. for any game v represented as a (2n−1)-vector

with the worths of the non-empty coalitions as its components, it holds that

v =
∑

S∈Ω

∆S(v)uS, (4.8)

where the coefficients ∆S(v) are the Harsanyi dividends, see Harsanyi [8], given by

∆S(v) =
∑

T⊆S

(−1)|S|−|T |v(T ), S ∈ Ω. (4.9)

It is well-known that the Shapley value can be obtained by distributing the Harsanyi

dividend of coalition S equivalently among the players in S,

ψi(v) =
∑

S∈Ω|i∈S

1

|S|
∆S(v), i ∈ N.

The Shapley payoff to player i is equal to the sum over all coalitions S containing player i

of a share 1
|S|

of the dividend of coalition S.

Consider a cycle-free graph game (N, v, L). For a connected set S, a node i ∈ S is

extreme if S\{i} is connected in the subgraph (N\{i}, L(N\{i})). The set of extreme nodes

of S is denoted by Ex(S). Owen [14], see also Borm et al. [2], showed that the dividends

of the restricted game can be expressed as sum of the dividends of the underlying game v,

∆S(vL) =

{ ∑
T∈Σ(S)∆

T (v), if S is connected,

0, otherwise,

where Σ(S) = {T ⊆ S|Ex(S) ⊆ T}. Since the dividends of not connected coalitions are

zero, for the restricted game of a cycle-free graph game (N, v, L) equation (4.8) reduces to

vL =
∑

S∈CL(N)

∆S(vL)uS (4.10)

and the payoffs according to the Myerson value follow by distributing the dividends of the

connected coalitions equally among its players

µi(v, L) =
∑

S∈CL(N)|i∈S

1

|S|
∆S(vL), i ∈ N.

As follows from Borm et al. [2], see also van den Brink et al. [3], the position value is

obtained by distributing the dividend of any connected coalition S proportional among its

players according to the degrees of the players in the subgraph (S,L(S)), i.e. the payoff of

player i according to the position value is given by

γi(v, L) =
∑

S∈CL(N)|i∈S

dLS(i)∑
j∈S dLS(j)

∆S(vL), i ∈ N.

10



Comparing the two values shows that in the position value the more central players, that

means players with more neighbours, get higher shares in the dividends.3

Also the component fairness solution can be obtained by distributing the dividends

appropriately. To derive these distributions, for each connected S in (N,L) and j ∈ S, let

pLS(j) be the number of players outside S represented by j in S. We say that player j ∈ S

represents player k outside S, if k is connected to j and on the unique path connecting j

and k all players between j and k are outside S. So,

pLS(j) =
∑

h∈N\S|{j,h}∈L

|Kh|,

where, as in the previous section, Kh is the component of the graph (N,L\{j, h}) containing

player h. Clearly, player j connects the players in S with the players in Kh in the sense that

link {j, h} is on the path between any player i in S and any player k in the set Kh ⊆ N \S.

Notice that for some players j, pLS(j) = 0. We now have the following result.

Theorem 4.3 The payoff of player i according to the CF-solution is given by

CFi(v, L) =
∑

S∈CL(N)|i∈S

1 + pLS(i)

|S|+
∑

j∈S pLS(j)
∆S(vL), i ∈ N.

Proof.

First, observe that CF is linear, i.e. for two games v and w and coefficients α, β ∈ IR, it

holds that CF(αv + βw,L) = αCF(v, L) + βCF(w,L). This follows from the fact that the

CF-solution is the average of specific marginal vectors of the restricted game vL, where the

choice of the marginal vectors is independent of the payoffs. Further, observe that uLS = uS

if S is connected in (N,L). Hence, with equation (4.10) it follows that

CFi(v, L) =
∑

S∈CL(N)

CFi(uS, L)∆S(vL), i ∈ N.

Let S be a connected coalition in (N,L) and let T ∈ CL
m(N) be the component of (N,L)

containing S. Since uS(K) = 0 for each component K �= T , it follows from component

efficiency and component fairness that CFj(uS, L) = 0 for all j �∈ T . Further uS(T ) = 1,

so component efficiency requires that
∑

j∈T CFj(uS, L) = 1. Consider players j ∈ T \ S

and i ∈ S and on the path (i1, . . . , ir), with i1 = j and ir = i, from j to i, let, for some

index t, it be the last player outside S (and thus it+1 the first player in S). Then delete

3Since dividends may be negative, this does not necessarily mean that in the position value the more

central players get higher payoffs than in the Myerson value. In the example above, the coalition {1, 2}

has dividend 1, coalition {2, 3} has dividend 2 and the grand coalition N has dividend -1. Since in the

latter coalition the central player 2 has degree two and the other players degree one, the position value

gives a lower payoff to the central player 2 than the Myerson value.
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the link {it, it+1} and consider the component Kit in the graph (N,L \ {it, it+1}). Then

j ∈ Kit and S ⊆ Kit+1 . Since uS(K
it) = 0 and uS(K

it+1) = 1, component efficiency

requires that
∑

h∈Kit CFh(uS, L \ {it, it+1}) = 0 and
∑

h∈Kit+1 CFh(uS, L \ {it, it+1}) = 1.

Since this holds for any j ∈ T \ S, it follows by applying the component fairness property

that also CFj(uS, L) = 0 for all j ∈ T \ S and thus for all j not in S. Consequently,
∑

i∈S CFi(uS, L) = 1. Now, for any two linked players i and j in S, let u
L\{i,j}
S be the

restricted game of uS on (N,L \ {i, j}). Since S is not connected anymore, u
L\{i,j}
S (T ) = 0

for any T ∈ 2N , i.e. the restricted game is the null-game, yielding worth zero to any

coalition. Consequently, CFj(uS, L \ {i, j}) = 0 for all j. Hence the component fairness

property requires that for each pair i, j ∈ S with {i, j} ∈ L,

∑

h∈Ki

CFh(uS, L) =
∑

h∈Kj

CFh(uS, L).

Since S is connected, there are |S|−1 links in S and thus |S|−1 of such equations. Together

with
∑

i∈S CFi(uS, L) = 1 we have a system of |S| linearly independent equations with |S|

unknowns, yielding a unique solution. It is easy to verify that the solution is given by

CFi(uS, L) =
1 + pLS(i)

|S|+
∑

j∈S pLS(j)
, i ∈ S.

Doing this for any connected S, the theorem follows from equation (4.10) and the linearity

of the CF-solution. �

Theorem 4.3 shows that the CF-solution can be obtained by distributing the div-

idend of any connected coalition S among the players in S in such a way that the share

of player i ∈ S in the dividend of coalition S is given by (1 + pLS(i))/(|S| +
∑

j∈S p
L
S(j)).

The weight 1 + pLS(i) is equal to the number of players on behalf of which player i acts

in S, including himself, i.e. one plus the number of players outside S in the component

containing S and being connected to i through a path of players outside S. Recall from

above that the Myerson value is obtained by distributing the dividend of any connected

coalition equally among the players in S and the position value is obtained by distributing

the dividends according to the degree of each player in the subgraph (S, L(S)). In both

these cases the shares of the players in the dividends only depend on the structure of the

subgraph (S,L(S)). In fact, the Myerson value only depends on the number of players in

S. In contrast, for the CF-solution the shares also depend on the structure of the graph

(N,L) outside S. Indeed, the shares depend on the structure of the whole subgraph on

the component K containing S. As a result, the CF-solution for the unanimity game uS

will change when the graph changes on K but not on S, whereas the other two solutions
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can only change when the graph changes on S itself. More precisely, when {i, j} is a link

of L not on S but on the component K containing S, we have that

µ(uS, L) = µ(uS, L \ {i, j}) and γ(uS, L) = γ(uS, L \ {i, j}),

but

CF(uS, L) �= CF(uS, L \ {i, j}).

As has been shown in Borm et al. [2], both the Myerson value and the position value

satisfy the so-called superfluous link property. A link {i, j} ∈ L is superfluous in a graph

game (N, v, L) if vE(N) = vE∪{i,j}(N) for all E ⊆ L\{i, j}, so when for each subset of links

E not containing {i, j}, the restricted value of the grand coalition on the graph (N,E) is

equal to the restricted value of it on the graph (N,E ∪ {i, j}). A solution f satisfies the

superfluous link property if f(v, L) = f(v, L \ {i, j}) whenever {i, j} is a superfluous link

in (v, L). Clearly, any link outside S is a superfluous link in the graph game (N,uS, L).

Since deleting such a link may change the CF-solution, CF does not satisfy the superfluous

link property.

5 Concluding Remarks

In this paper we propose a new value for cycle-free graph games. In such games players

are only able to cooperate if they are connected to each other. In case of superadditivity,

the core of the game is non-empty and contains for each player a specific marginal vector.

This marginal vector is induced by a tree in which that player is the root and the directed

edges correspond to the undirected edges of the graph. The solution is then the average of

these marginal vectors. Since all these marginal vectors are an element of the core, the new

value is also an element of the core, even if the game is not convex. This is in contrast to

the Myerson value and the position value. These values may not be elements of the core.

The new value has been axiomatized by component efficiency and component fair-

ness. The latter property says that if a link is deleted, the average loss per player is the

same in the two subcomponents resulting after deletion of the link. This means that the

surplus in worth obtained from a link is distributed over these two subcomponents propor-

tional to their number of players. In this respect the value differs from the Myerson value

and the position value. The Myerson value is characterized by component efficiency and

by fairness, the property that if a link is deleted, then the two players that were connected

by this link have equal loss. This loss is therefore not related to the size of the components

resulting after the deletion of the link. The position value is characterized by component

efficiency and balanced total threats, the property that the total threat of a player towards

13



another player is equal to the total threat of the latter player towards the former player.

The component fairness solution may fail to satisfy balanced total threats.

In terms of distributions of Harsanyi-dividends the new solution is obtained by

distributing the dividends of a connected coalition among its members in such a way that

the share of a player in it is given by the relative number of players on which behalf the

player acts in the coalition, including himself. This means that the shares depend on the

structure of the subgraph on the component of which the coalition is a subset and not just

on the structure of the subgraph on the coalition itself as is the case for the Myerson value

and the position value. This property guarantees that the value is an element of the core.

It is not hard to compute the component fairness solution. If n is the number of

players, the value can be calculated as follows. First, for each player i, a permutation πi is

determined satisfying that player j has a higher rank than player k if player j lies on the

unique path connecting player i and player k. Any permutation that satisfies this condition

leads to the same marginal vector. Next, the component fairness solution is the average

of the n marginal vectors obtained in this way. In general, the calculation of the Myerson

value and the position value is more complex from a computational point of view. The

Myerson value is the average of n! marginal vectors and the position value is the solution

to a system of n equations. For larger n this may take quite some computational time. For

example, if there are ten players, the new value is the average of just ten marginal vectors,

whereas the Myerson value is the average of about 3.6 million marginal vectors and for the

position value a system of ten equations has to be solved.
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