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Abstract

This paper considers the effects of raising the cost of entry for a potential competitor
on infinite-horizon Markov-perfect duopoly dynamics with ongoing demand uncertainty.
All entrants serving the model industry incur sunk costs, and exit avoids future fixed
costs. We focus on the unique equilibrium with last-in first-out expectations: A firm
never exits leaving behind an active younger rival. We prove that raising a second
producer’s sunk entry cost in an industry that supports at most two firms reduces the
probability of having a duopoly but increases the probability that some firm will serve
the industry. Numerical experiments indicate that a barrier to entry’s quantitative
relevance depends on demand shocks’ serial correlation. If they are not very persistent,
the direct entry-deterring effect of a barrier to a second firm’s entry greatly reduces
the average number of active firms. The indirect entry-encouraging effect does little
to offset this. With highly persistent demand shocks, the direct effect is small and the
barrier to entry has no substantial effect on the number of competitors. This confirms
Carlton’s (2004) assertion that the effects of a barrier depend crucially on industry
dynamics that two-stage “short run/long run” models capture poorly.
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1 Introduction

This paper determines the effects of raising a late entrant’s sunk cost in a duopoly version of

the industry dynamics model presented in a companion paper (Abbring and Campbell, 2006).

Demand evolves stochastically; entry possibly requires paying a sunk cost; and continued

operation incurs fixed costs. The wish to avoid these per-period fixed costs in markets that

are no longer profitable motivates firms to exit. We assume that all participants rationally

expect exit decisions to follow a last-in first-out pattern. That is, no firm produces after the

exit of an older competitor. Two considerations motivate this focus. First, it embodies (in an

extreme way) the widespread observation that young firms exit more frequently than their

older counterparts. Second, the last-in first-out restriction favors incumbents; so we expect

them to deter entry and promote exit by shifting equilibrium expectations in this direction

with any available means.

Abbring and Campbell (2006) prove that there exists an essentially unique Markov-perfect

equilibrium with last-in first-out expectations, and they provide a simple procedure for its

calculation. These results allow us to compare duopoly dynamics with different sunk costs of

entry. We first provide an analytic characterization of the effects of barriers to entry. Raising

a second entrant’s sunk cost reduces the probability of two firms operating, but increases

the probability that some firm will serve the industry. The first effect is the expected entry

deterrence. The second reflects the positive influence of barriers to entry on the value of

being a monopolist, and it is familiar from the static analysis of patents and innovation. We

also show that raising the second entrant’s sunk costs reduces average entry and exit rates.

In this specific sense, barriers to entry stabilize industry structure.

These qualitative results say nothing about a barrier to entry’s quantitative importance,

so we complement them with a wide range of numerical examples. We find that when demand

shocks are not very persistent, a barrier to entry substantially lowers the average number of

firms serving the industry. The entry-encouraging effect is small and does little to offset the

direct deterrent effect. Raising the persistence of demand dramatically changes this. For a

wide range of specifications with persistent shocks, we find that a sizeable barrier to a second

firm’s entry has only trivial effects on the number of active firms. The entry-encouraging

effect remains quantitatively unimportant and does not explain this result. Rather, highly

persistent demand makes the direct deterrent effect small. We do not explore the welfare

implications of a barrier to entry in detail. However, our numerical results suggest that even

a large barrier to entry entails little welfare loss in the empirically-relevant case with highly

persistent demand shocks.
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The term “barrier to entry” has a rich and confusing history. McAfee, Mialon, and

Williams (2004) review the many definitions proposed for it and conclude that none of them

are useful for antitrust analysis. They offer a new definition:

An economic barrier to entry is a cost that must be incurred by a new entrant

and that incumbents do not or have not had to incur.

The barrier to entry we consider satisfies this. Carlton (2004) asserts that the effects of

such a barrier depend crucially on the industry’s medium-run dynamics, so two-stage “short

run/long run” models capture them poorly. This paper’s results confirm and refine this point:

The positive effects of increasing a second entrant’s sunk costs substantially depend on the

stochastic rule governing the evolution of demand.

Most of this paper’s analysis assumes a last-in first-out (LIFO) pattern for entry and exit.

In the companion paper, we demonstrate that the Markov-perfect equilibrium satisfying this

restriction can be viewed as an approximation for a model with a learning curve. In the

learning-curve model, firms’ fixed costs decline as they age and no firm exits while leaving

behind a higher cost rival. Cabral (1993) uses this latter restriction to select a “natural”

equilibrium. This approximation result indicates that this paper’s analysis most naturally

applies to industries with technologies that favor experienced firms.

Models of Schumpetarian economic growth assume that technology favors younger firms,

so this situation also merits analysis. For this, we examine a version of our model in which the

younger firm’s continuation decision comes first. We prove the existence of an equilibrium

with first-in first-out expectations, and this is the unique equilibrium in which a higher

demand state never yields fewer active firms. In this sense, the equilibrium is also “natural”.

The qualitative effects of raising a barrier to entry in this environment are identical to those

from the case with LIFO expectations. Unfortunately, the FIFO analysis requires demand

to follow a particular stochastic process.

The remainder of this paper proceeds as follows. The next section presents the model’s

primitives and derives the effects of barriers to entry for a specific example with a pencil-

and-paper equilibrium solution. Section 3 presents the analysis of the general model, and

Section 4 examines the model’s FIFO version. Section 5 explains the relationship between

our work and existing papers on entry deterrence, competitive industry dynamics, and the

computational analysis of competition policy. Section 6 contains some concluding remarks.
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2 The Model

The model consists of a single duopolistic market in discrete time t ∈ {0, 1, . . .}. There is a

large number of firms that are potentially active in the market. We index these firms with N.

At time 0, N0 = 0 firms are active. Entry and subsequent exit of firms determines the number

of active firms Nt in each later period. At most two firms can be active in the industry at

any given time. The number of consumers in the market, Ct, evolves stochastically according

to a first-order Markov process on the interval [Ĉ, Č].

The sequence of events and actions within a period begins with the inherited values of Nt

and Ct−1. First, all participants observe the realization of Ct. Then, all active firms receive

profits equal to (Ct/Nt) × π(Nt) − κ. Here, each firm serves Ct/Nt customers, and π(Nt) is

the producer surplus earned from each one. We assume that π(1) > π(2)/2, so that entry

reduces an incumbent firm’s profits. The term κ > 0 represents fixed costs of production.

After serving the market, active firms decide whether they will remain so. These decisions

are sequential and begin with the oldest firm. In particular, if two firms are currently active

in the market (Nt = 2) the older duopolist will decide first on continuation and the younger

duopolist follows. For future reference, we introduce notation for the firm’s rank in this

sequence of exit decisions: If firm i is active in period t, then Ri
t = 1 if it is either a

monopolist or the older duopolist; and Ri
t = 2 if it is the younger duopolist. Exit is costless

but irreversible and allows the firm to avoid future periods’ fixed production costs.

If the continuation decisions do not commit two firms to serving the market, then the firm

with the smallest name (i) that has also not yet had an opportunity to enter makes an entry

decision. The cost of entry potentially depends on the number of firms already committed

to serving the market in the next period. We denote the entry cost for a firm that would

be the oldest among next period’s active firms with ϕ(1), and the same cost for a firm that

would be the youngest next period equals ϕ(2). The payoff to staying out of the industry

is always zero, because a firm with an entry opportunity cannot defer the option. If firm i

chooses to enter an otherwise empty industry, then firm i + 1 chooses between staying out of

the industry and entering with Ri+1
t+1 = 2. Otherwise, the period ends. We specified the entry

technology in this way to capture “free entry” within a game-theoretic environment, which

requires us to name every player and specify their possible actions and payoffs.1 Both active

firms’ and potential entrants’ decisions maximize their expected stream of profits discounted

1The restriction to markets with at most two firms can be formalized in the more general model of Abbring
and Campbell (2006) by either setting the entry cost ϕ(R′) for a firm with potential next period’s rank R′ ≥ 3
to a very large value or by setting the producer’s surplus π(N ′) in a market with N ′ ≥ 3 firms to 0.
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with β < 1. We assume that ϕ(2) ≥ ϕ(1) ≥ 0. If ϕ(2) > ϕ(1), we say that a second

entrant faces a barrier to entry (relative to a first entrant). We do not model the actions

that incumbents or policy makers take to impose these costs.

2.1 Markov-perfect equilibrium

We choose as our equilibrium concept symmetric Markov-perfect equilibrium. When firm

i decides whether to stay or exit, Nt − Ri
t (the number of active firms following it in the

sequence), Ct, and Ri
t+1 (its rank in the next period’s sequence of active firms) are available

and payoff-relevant. Collect these into Hit ≡ (Nt − Ri
t, Ct, R

i
t+1). Similarly, the payoff-

relevant state to a potential entrant is Hit ≡ (Ct, R
i
t+1). Note that Hit takes its values in

HS ≡ {0, 1} ×
[
Ĉ, Č

]
× {1, 2} for firms active in period t and in HE ≡

[
Ĉ, Č

]
× {1, 2} for

potential entrants. Here and below, we use S and E to denote survivors and entrants.

A Markov strategy for firm i is a pair (Ai
S(HS), Ai

E(HE)) for each HS ∈ HS and HE ∈
HE. These represent the probability of being active in the next period given that the firm

is currently active (Ai
S(·)) and given that the firm has an entry opportunity (Ai

E(·)). A

symmetric Markov-perfect equilibrium is a subgame-perfect equilibrium in which all firms

follow the same Markov strategy.

When firms use Markov strategies, the payoff-relevant state variables determine an active

firm’s expected discounted profits at any node of the game tree. We denote these at the

moment of the continuation decision with v(HS). In a Markov-perfect equilibrium, this

function satisfies the Bellman equation

v(HS) = max
a∈[0,1]

aβE
[

C ′

N ′π(N ′)− κ + v(H ′
S) HS

]
. (1)

Here and throughout, we adopt conventional notation and denote the variable corresponding

to X in the next period with X ′. In Equation (1), the expectation of N ′ is calculated using

all firms’ strategies conditional on the particular firm of interest choosing to be active.

Although firms make their continuation and entry decisions sequentially, the game’s infi-

nite horizon removes the standard argument for uniqueness of subgame perfect equilibrium.

Abbring and Campbell (2006) show that uniqueness of equilibrium can be restored by focusing

only on Markov-perfect symmetric equilibria in which an older firm’s first-mover advantage

translates into longevity. By definition, firms in such an equilibrium follow a common last-in

first-out (LIFO) strategy.

Definition 1. A LIFO strategy is a pair of functions (AS, AE) such that AS(HS) ∈ {0, 1},
AE(HE) ∈ {0, 1}, and AS(1, C,R′) ≥ AS(0, C,R′).
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If all firms follow a common LIFO strategy and the market is served by two firms, then the

youngest of these two firms will decide to exit whenever the oldest does:

AS(1, C, 1) = 0 ⇒ AS(0, C, 1) = 0.

Constructing a Markov-perfect equilibrium in a LIFO strategy is straightforward. Con-

sider the decisions of a firm entering with one firm already committed to produce in the next

period, that is with (potential) rank 2. This firm will produce no longer than the older firm

and will not experience further entry of competitors during its time in the market, so the

Bellman equation governing v(·, ·, 2) corresponds to a familiar non-strategic exit decision.

This Bellman equation obviously has a unique fixed point, and we choose its associated opti-

mal decision rule to form AS(0, C, 2) and AE(C, 2). If the firm is indifferent between activity

and inactivity at some value of C, we choose the rule that defaults to inactivity. With this

complete, we can consider the problem of a firm with rank 1. Maximizing its profit requires

only expectations about the entry and exit of a firm with rank 2, which are already in hand.

Thus, standard dynamic programming arguments yield the unique value function satisfying

the Bellman equation. With this, we can set AS(0, C, 1), AS(1, C, 1), and AE(C, 1) to the

unique optimal decision rule that defaults to inactivity.

The construction of this equilibrium suggests that it is the only one in a LIFO strategy

that defaults to inactivity. We present a formal proof of this in Abbring and Campbell (2006,

Proposition 2). As we mentioned in this paper’s introduction, we find the restriction to

LIFO strategies natural for the problem at hand, because it embodies in an extreme form the

empirical regularity that young firms exit more frequently than their older counterparts and

because these expectations make entry less profitable by placing incumbents in a privileged

position. It is also powerful enough to select an essentially unique Markov-perfect equilibrium,

so we impose it on our analysis.

2.2 A Pencil-and-Paper Example

If we assume that Ct = Ct−1 with probability 1 − λ and that it equals a draw from a

uniform distribution on [Ĉ, Č] with the complementary probability, then we can calculate

the model’s equilibrium value functions and decision rules with pencil and paper. Before

proceeding, we examine this special case to illustrate the model’s moving parts. To ensure

that the equilibrium dynamics are not trivial, we assume that no firm will serve the industry
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if demand is low enough and that two firms will serve the industry if it is sufficiently high.2

To begin, consider an incumbent firm with rank 2. In an equilibrium in a LIFO strategy,

its profit equals (C/2)π(2)−κ. It will earn this until the next time that Ct changes, at which

point demand will be statistically independent of its current value. These facts imply that

this firm’s value function is piecewise linear in C.

v(0, C, 2) =

{
0 if C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(0,2)

1−β(1−λ)
if C > C2,

where

ṽ(0, 2) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(0, C ′, 2)

(Č − Ĉ)
dC ′.

Here, ṽ(0, 2) is the firm’s average continuation value given a new draw of Ct and C2 is the

largest value of C that satisfies v(0, C, 2) = 0. Optimality requires the firm to exit if C < C2.

This value function is monotonic in C, so there is a unique entry threshold C2 that equates

the continuation value with the entry cost. Thus, a second duopolist enters whenever Ct

exceeds C2 and exits if it subsequently falls at or below C2.

Next, consider the problem of an incumbent with rank 1. If this firm is currently a

monopolist, it expects to remain so until Ct > C2; and if it is currently a duopolist, it

expects to become a monopolist when Ct falls below C2. This firm’s value function is also

piecewise linear. If the firm begins the period as the sole incumbent, it is

v(0, C, 1) =


0 if C ≤ C1

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1 < C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C2;

and if it begins as one of two incumbents it equals

v(1, C, 1) =


0 if C ≤ C1,

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1 < C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C2.

The exit threshold C1 is the greatest value of C such that v(0, C, 1) = 0, and the average

continuation values following a change in Ct for a monopolist and a duopolist are

2Sufficient conditions for these two properties are (1 − λ)
[
Ĉπ(1)− κ

]
+ λ

Ĉ+Č
2 π(1)−κ

1−β < 0 and

β

[
(1−λ)( Č

2 π(2)−κ)+ λ
1−β

(
1
2

Č+Ĉ
2 π(2)−κ

)
1−β(1−λ)

]
> ϕ(2).
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Figure 1: Equilibrium in the Pencil-and-Paper Example

ṽ(0, 1) =

(
Ĉ + Č

2

)
π(1)− κ +

∫ Č

Ĉ

v(0, C ′, 1)

(Č − Ĉ)
dC ′,

ṽ(1, 1) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(1, C ′, 1)

(Č − Ĉ)
dC ′.

This value function does not always increase with C, because slightly raising C from C2

induces entry by the second firm and causes both current profits and the continuation value

to discretely drop. Nevertheless we know that they drop to a value above ϕ(1), because at

this point the second firm chooses to enter. Hence, it is still possible to find a unique entry

threshold C1 that equates the value of entering with rank 1 to the cost of doing so.

Figure 1 visually represents the equilibrium. In each panel, C runs along the horizontal

axis. The vertical axis gives the value of a firm at the time that entry and exit decisions

are made. The top panel plots the value of a firm with rank 1, while the bottom plots the
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Figure 2: Effects of Raising ϕ(2) in the Pencil-and-Paper Example

value for a competitor with rank 2. Both panels use the same vertical scale. The value of

a duopolist with rank 2 equals zero for C < C2, and thereafter increases linearly with C.

The entry threshold C2 equates this value with ϕ(2). The value of an older firm with rank

1 has two branches. The upper monopoly branch gives the value of a monopolist expecting

no further entry. If C increases above C2 and thus induces entry, the firm’s value drops to

the lower duopoly branch. This has the same slope as the value function in the lower panel.

Its intercept is higher, because the incumbent expects eventually to become a monopolist

the first time that C passes below C2. When this occurs, the firm’s value returns to the

monopoly branch. The entry and exit thresholds for this firm occur where the monopoly

branch intersects ϕ(1) and 0.

Now turn to the effects of increasing ϕ(2) on this duopoly’s dynamics. Figure 2 illustrates

this exercise. If a second firm actually enters the market, then the entry cost has no impact

on that firm’s optimal exit decision or value function. The value function in the bottom

panel is monotonic in C, so raising ϕ(2) directly increases C2. In this sense, raising ϕ(2)
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directly deters entry. The impact of this on an incumbent’s value is clear. Both branches of

the value function shift up, from the grey to the solid black, and this lowers both C1 and

C1. Intuitively, these changes lower the probability that either zero or two firms will serve

the industry.

3 Barriers to Entry

Incumbents’ attempts to deter contestants’ entry occupy a central place in dynamic industrial

organization. In this section, we characterize the effects of raising ϕ(2) for given ϕ(1). Actions

available to a real-world incumbent for increasing ϕ(2) include bidding-up the price of fixed

inputs, litigation, and purchases of legal entry restrictions. We do not explicitly model the

incumbent’s choice of ϕ(2). Instead, we examine the impact of exogenously varying it for

observable aspects of industry dynamics. The relative simplicity of our model allows us to

characterize this experiment analytically. We complement these qualitative results with a

numerical analysis of several model parameterizations.

3.1 Qualitative Characterization of a Barrier’s Impact

Suppose that two firms serve the market in equilibrium with positive probability. Consider

the graphical results from Figure 2. These clearly depend on the fact that entry and exit

thresholds characterize the equilibrium strategy. This property seems both natural and

intuitively desirable. However, it does not generally hold good. In Abbring and Campbell

(2006), we calculate the equilibrium for an example in which, given two initial values CL <

CH , the distribution of Ct+1 given Ct = CH stochastically dominates the same distribution

given Ct = CL. Although this condition guarantees that thresholds give a monopolist’s entry

and exit decisions in a market that supports at most one firm, the equilibrium entry rule for

a firm entering an empty industry that can hold two firms has no threshold representation.

That is, there is a “hole” in the set of Ct for which entry into an otherwise empty industry is

rational. This difficulty obviously reflects the non-monotonic value function: Increasing Ct

can make future entry likely enough to reverse a firm’s current entry decision. This difficulty

does not manifest itself in the pencil-and-paper example, because there increasing Ct has no

impact on the likelihood of future entry.

In Abbring and Campbell (2006), we address this issue with a condition on the stochastic

process for Ct (weaker than that from the pencil-and-paper example) which guarantees a

threshold representation for the equilibrium strategy. It ensures that increasing C cannot
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move a “substantial” probability mass over another firm’s entry threshold. Rather than

repeat that analysis here, we make the following high-level assumption and refer the reader

to the companion paper for a more primitive analysis.

Assumption 1. Given the stochastic process for Ct, all other model parameters, and any

value of ϕ(2) ≥ ϕ(1), there exist four thresholds C1 ≤ C1 and C2 ≤ C2 such that AE(C, 1) =

I{C > C1}, AE(C, 2) = I{C > C2}, AS(0, C, 1) = AS(1, C, 1) = I{C > C1}, and

AS(0, C, 2) = I{C > C2}.

With this assumption in place, the graphical results from Figure 2 generalize immediately.3

Proposition 1. Increasing ϕ(2) weakly increases C2, leaves C2 unchanged, and weakly de-

creases both C1 and C1.

The inequalities here and below are weak only because the threshold entry and exit rules can

be trivial, prescribing activity or inactivity for all C.

Changes in the thresholds directly affect the evolution of the equilibrium number of firms.

To see how, suppose that ϕ(2) increases unexpectedly and permanently when the industry

begins with a particular value of C and no active producers. Entry of at least one firm occurs

if and only if C > C1. So, increasing a contestant’s entry cost increases the probability that

some firm will service the industry immediately. Suppose instead that the industry begins

with a single active incumbent. Because C1 decreases and C2 increases, any value of C that

induced neither entry nor exit will continue to do so. Hence, the probability of the industry

remaining with exactly one firm increases. Finally, an industry that begins with two firms

will remain unchanged in exactly the same conditions as before. The following proposition

shows that this intuition extends to the probability for a change in the number of firms that

conditions on the given initial values of C and N .

Proposition 2. Let Sj(C, N) ≡ Pr{Nt+1 = · · · = Nt+j = N |Ct−1 = C, Nt = N} denote the

probability that the number of firms remains unchanged over j periods given the initial num-

bers of consumers and firms. Then, raising ϕ(2) weakly decreases Sj(C, 0), weakly increases

Sj(C, 1), and leaves Sj(C, 2) unchanged.

An immediate implication of Proposition 2 is that imposing a barrier to entry makes the

structure of an active industry more stable in the short and medium run. We now turn to

consider the effects of the entry barrier on that structure itself. The impact of ϕ(2) on the

3Appendix A contains the proofs of this section’s propositions.
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equilibrium entry and exit thresholds strongly suggests that the probabilities of having 0 or

2 firms declines with ϕ(2). This is indeed the case

Proposition 3. Let Pj(N
′, C,N) ≡ Pr{Nt+j = N ′|Ct−1 = C, Nt = N}. Then raising ϕ(2)

weakly lowers Pj(0, C,N) and Pj(2, C,N).

This proposition’s content is straightforward: Imposing a barrier to a contestant’s en-

try increases the probability that the industry is serviced at the expense of decreasing the

probability of a “competitive” industry structure. The literature on entry barriers does not

ordinarily associate them with increasing the number of firms, but this effect is familiar from

the analysis of patents: Increasing the cost of a imitator’s entry encourages entry by an

innovator. The model of this paper differs from one with patents in one substantial respect:

The sunk cost of entry is weakly higher for a second entrant instead of lower. Nevertheless,

this difference does not change the qualitative effects of a barrier to entry on the incentive

for “innovation” (broadly construed).

Proposition 3 characterizes the number of firms at any given date in the future. In this

sense, it characterizes the short- and medium-run responses to creating a barrier to entry.

The following corollary extends its conclusions to the industry’s ergodic distribution, if it

exists.

Corollary 1. Suppose that (Ct−1, Nt) has a unique ergodic distribution and let P (N) denote

the probability of N firms serving the industry in this distribution. Then raising ϕ(2) weakly

decreases P (0) and P (2).

The omitted proof is an simple application of the bounded convergence theorem. By defini-

tion, the distribution of industry outcomes converges to the ergodic distribution as the time

horizon grows large. However, this long run differs substantially from the two-stage analysis

of industry structure which goes by the same label; because it gives a distribution of industry

outcomes given ongoing uncertainty and sunk costs rather than a single outcome at the end

of time.

We conclude this analytic characterization of the model’s dynamics by considering the

most familiar observable indicators of an industry’s propensity to change its structure, its

entry and exit rates. We define the net growth rate of the number of firms in the industry

with Gt ≡ 2 × (Nt − Nt−1)/(Nt + Nt−1). With this, the industry’s entry and exit rates are

ERt ≡ min{0, Gt} and XRt ≡ min{0,−Gt}. Because these are only well defined if either

Nt or Nt−1 is positive, we assume that P (0) = 0. With this, the following proposition shows

that raising ϕ(2) has the expected effect of reducing average entry and exit rates.
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Proposition 4. Suppose that (Ct−1, Nt) has a unique ergodic distribution with P (0) = 0.

Then increasing ϕ(2) weakly decreases E[ERt] = E[XRt], where the expectations are calcu-

lated using the ergodic distribution for (Ct−1, Nt).

The proof relies on the fact that raising C2 reduces P (2) and thereby all future dates’ exit

rates.

This completes the analytic characterization of the equilibrium impact of erecting bar-

riers to a duopolist’s entry. Analytic results from an infinite-horizon Markov-perfect equi-

librium come infrequently, so their mere existence is somewhat novel. Nevertheless, Judd

(1997) cautions against focusing only on surprising qualitative results without examining

their quantitative importance. For this, we turn to a numerical exploration.

3.2 Quantitative Assessment of a Barrier’s Impact

Calculation of the effects of barriers to entry requires us to assign values to the model’s

parameters. Estimating or calibrating them necessitates a much richer exploration of a par-

ticular industry’s institutional background and technological constraints than is appropriate

for this paper. Instead, we follow the strategy advocated by Judd (1997) and calculate the

model’s equilibrium dynamics at a wide range of parameter choices. This reveals which

features of the model amplify or mute the above qualitative results.

3.2.1 Model Specification

Calculation of the model’s equilibrium uses values for β, κ, π(1), π(2), ϕ(1), ϕ(2), and

the parameters of the stochastic process governing C. We suppose that a model period

corresponds to five years and that the real interest rate is 5%, so we set β = 1.05−5 for

all of the model’s parameterizations. We set the support of ln C to a grid of 301 evenly

spaced points on [−1.5, 1.5] and we choose the stochastic process to approximate the linear

autoregression ln C ′ = ρ ln C + u, where u has a normal distribution with mean zero and

variance σ2. The approximation is a mixture over 51 conditional distributions for ln C ′ with

a uniform distribution with support width σk and and conditional mean

µk(C) =


ln Ĉ + σk/2 if ρ ln C < ln Ĉ + σk/2

ρ ln C if ln Ĉ + σk/2 ≤ ρ ln C ≤ ln Č − σk/2

ln Č − σk/2 if ρ ln C > ln Č − σk/2.
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Parameter Possible Values

β 1.05−5

ρ 0.80, 0.90, 1.00

σ 0.10, 0.20, 0.30

κ 1

ϕ 0, 2/5, 4/5

π 2

Table 1: Baseline Parameter Values for Numerical Experiments

This paper’s replication file contains the details of their specification. Our calculations use

three different values of ρ— 0.80, 0.90, and 1.0— and three values of σ— 0.10, 0.20, and

0.30. Only the specification with ρ = 1 satisfies Abbring and Campbell’s (2006) condition

for threshold equilibrium entry and exit strategies, so our computational procedure does not

require firms to employ such threshold rules.

We normalize the per-period fixed cost κ to one. To begin, we suppose that the sunk

costs of entry in an market that is not yet served and in a monopolistic market are the same,

so that ϕ(1) = ϕ(2) = ϕ. We set ϕ to either 0, 2/5, or 4/5.4 Because our model period is five

years, these sunk costs correspond to 0, 2 and 4 years of fixed costs, respectively. Conversely,

their five-year rental equivalent values ϕ(1− β)/β are 0, 0.11, and 0.22.

Throughout, we assume that entry by a second producer has no effect on the producer’s

surplus per consumer served, π(1) = π(2) = π. This arises, for example, if producers are

monopolistic price setters serving equal market shares. Sutton (1991) refers to the slope of

π(·) as the “toughness” of competition. In this terminology, our specification exhibits low

toughness of competition.5 We set π = 2, so that the duopoly producer’s surplus when

C = 1 equals κ. For reference, Table 1 reports all of the possible values we give to the

model’s parameters in the baseline experiments without barriers to entry.

4The case with ϕ(N) = 0 is not equivalent to the infinite repetition of the static free-entry game, because
a firm’s operation in an earlier period gives it “priority” for serving the industry later.

5We have experimented with an alternative specification in which duopolists compete in quantities. This
example of Cournot duopoly gives π(2) = π(1)/2 and thus exhibits high toughness of competition relative to
our baseline specification. We do not report numerical results for this specification, because they are very
close to the results for our baseline specification, given appropriate normalizations of the level of demand.
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Figure 3: Firms’ Value Functions in the Leading Example

3.2.2 A Specific Example

It is helpful to have a specific example in mind when considering the results of all of the

experiments. For this, we set ρ = 0.9, σ = 0.2, ϕ = 4/5, and π = 2. Figure 3 plots the value

functions of the two firms that might serve this industry. Its bottom panel displays the value

of a firm that has entered as a duopolist. This weakly increases with demand. The value of

continuation exceeds the cost of entry if ln Ct > 0.27, and it equals zero if ln Ct ≤ −0.10.

Figure 3’s top panel plots the value of a firm that has entered as a monopolist. This has

the same structure as the plot of the incumbent’s value function in Figure 2. The upper

branch corresponds to the value function when the industry has one firm, and the lower

branch gives the first firm’s value after the entry of a second firm. The arrows indicate that
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the first firm’s value drops when the second firm enters and jumps after its exit. Unlike in

Figure 2, the monopoly and duopoly branches decrease near the second entrant’s entry and

exit threshold, respectively. This reflects the fact that here, unlike in the pencil-and-paper

example, a higher realization of Ct corresponds to a higher probability that a second firm is

active in the future. The stochastic process for ln Ct does not satisfy Abbring and Campbell’s

(2006) sufficient condition for threshold equilibrium entry and exit strategies. Nevertheless,

entry and exit thresholds, equal to −0.79 and −1.12, characterize this firm’s decisions.

To measure the impact of barriers to entry on equilibrium dynamics, we concentrate on the

number of firms’ average and standard deviation in the equilibrium’s ergodic distribution.

In this example, the average number of firms is 1.32 and the standard deviation is 0.47.

The barrier to entry we examine adds 4/5 to the sunk cost of a second firm’s entry. With

this modification, the second entrant’s entry threshold rises from 0.27 to 0.52. As Section

3.1’s results suggest, increasing the second entrant’s sunk costs encourages a first entrant.

However, even though the increase in these costs amount to a substantial four years of fixed

cost; the first entrant’s entry and exit thresholds drop very little. By construction, the second

entrant’s exit threshold remains unchanged. As a result of all this, the average and standard

deviation for the number of firms drop to 1.08 and 0.28. Thus, the intuition that raising a

barrier to entry stabilizes the number of firms holds good. Furthermore, the decrease in the

average number of firms conforms to the intuition from two-stage models that barriers to

entry increase concentration. In this particular example, imposing a barrier to entry hardly

changes the decision to enter or abandon an otherwise empty industry.

3.2.3 Experimental Results

Table 2 reports the average and standard deviation for Nt from the ergodic distribution for all

combinations of the parameter values we consider. The cost of entry influences the average

number of firms as expected. In all of the comparisons across parameterizations, raising ϕ

lowers the average number of firms. However, it lowers the number of firms much more if ρ

is low. For example, when σ = 0.1, raising ϕ from 0 to 4/5 decreases the number of firms

from 1.66 to 1.00 if ρ = 0.8. When ρ = 1.0, the same change lowers the average from 1.27 to

1.19.

A second notable pattern is that raising σ always increases the average number of firms.

This arises from the well-known effect of uncertainty on the real option embedded in a firm’s

value explained by Dixit and Pindyck (1994). Because firms can exit following an unprofitable

realization of Ct, uncertainty increases a firm’s value and in this way promotes entry.
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Average Standard Deviation

ρ σ ϕ = 0.0 ϕ = 0.4 ϕ = 0.8 ϕ = 0.0 ϕ = 0.4 ϕ = 0.8

0.80 0.10 1.66 1.04 1.00 0.47 0.19 0.00

0.90 0.10 1.65 1.30 1.04 0.48 0.46 0.21

1.00 0.10 1.27 1.22 1.19 0.83 0.84 0.85

0.80 0.20 1.70 1.35 1.07 0.46 0.48 0.26

0.90 0.20 1.66 1.48 1.32 0.47 0.50 0.47

1.00 0.20 1.33 1.27 1.23 0.80 0.82 0.83

0.80 0.30 1.72 1.50 1.28 0.45 0.50 0.45

0.90 0.30 1.66 1.54 1.44 0.47 0.50 0.50

1.00 0.30 1.39 1.32 1.28 0.77 0.80 0.81

Table 2: The Number of Firms in the Ergodic Distribution

The most notable feature of Table 2’s second panel is the relatively small impact of raising

ϕ on the standard deviation of Nt, unless both ρ and σ are small. In the four cases with the

lowest standard deviations, the industry is almost certainly a monopoly.6 The probability

of two firms serving the industry with all of the other specifications are substantial, but the

industry is likely to be inactive only if ρ = 1. These cases with substantial probabilities on

all three possible outcomes have the highest standard deviations.

Table 3 reports the changes in the number of firms’ average and standard deviation from

raising a barrier to entry. For each parameter combination, the cost of a second firm’s entry

was increased by 4/5 as in the leading example. In the reported experiments, raising a barrier

either lowers the average number of firms or leaves it unchanged. The largest decrease is 0.66

firms. In this case, the barrier completely deters a potential entrant. In the four cases in

which the market is unlikely to hold two active firms initially, raising ϕ(2) hardly changes

the average number of firms. A clear pattern emerges after eliminating these cases: Raising

a barrier to entry substantially lowers the average number of firms unless ρ = 1. With highly

persistent demand shocks, the average number of firms falls only trivially. The barrier’s effect

on the standard deviation also depends on the persistence of demand. Except in two cases,

the barrier decreases the standard deviation. This is the stabilization of market structure

that Proposition 3 leads us to expect. However, the standard deviation’s decline is always

trivial in the cases with ρ = 1.

To determine why the barrier to entry has such small effects with persistent demand

6These cases are (ϕ, ρ, σ) = (2/5, 0.80, 0.10), (4/5, 0.80, 0.10),(4/5, 0.90, 0.10), and (4/5, 0.80, 0.20).
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Average Standard Deviation

ρ σ ϕ = 0.0 ϕ = 0.4 ϕ = 0.8 ϕ = 0.0 ϕ = 0.4 ϕ = 0.8

0.80 0.10 -0.66 -0.04 0.00 -0.47 -0.19 0.00

0.90 0.10 -0.61 -0.30 -0.04 -0.27 -0.42 -0.20

1.00 0.10 -0.04 -0.03 -0.03 -0.01 -0.01 -0.01

0.80 0.20 -0.62 -0.35 -0.07 -0.20 -0.42 -0.25

0.90 0.20 -0.34 -0.30 -0.23 -0.01 -0.11 -0.19

1.00 0.20 -0.05 -0.04 -0.03 -0.02 -0.01 -0.01

0.80 0.30 -0.44 -0.39 -0.26 0.00 -0.19 -0.30

0.90 0.30 -0.22 -0.20 -0.18 0.02 -0.02 -0.06

1.00 0.30 -0.05 -0.04 -0.03 -0.02 -0.02 -0.02

Table 3: Effects of Imposing a Barrier to Entry on the Number of Firms

shocks, we began with an inspection of the (unreported) changes in the ergodic distributions

and thresholds underlying Table 3’s results. We found that the barrier had a negligible entry-

encouraging effect with all parameterizations. It changes neither the first entrant’s thresholds

nor the probability of an inactive market substantially. The barrier’s direct deterrent effects

explain the decreases in the average number of firms. The absence of a substantial effect in the

cases with ρ = 1 corresponds to small deterrent effects, not to offsetting entry-encouraging

effects. Even though the youngest firm’s entry threshold increases, the resulting change in

the probability of an active duopoly is small in these cases. Consequently, the changes in the

number of firms’ standard deviations are also small.7

The case with very persistent demand shocks obviously has empirical relevance, so it is

worth confirming that the very small effect of a barrier to entry we document is not specific

to the particular parameterizations used to create Table 3. To show this, we recalculated the

results of the same experiment for a variety of alternative parameter values. Increasing the

barrier from 4/5 to 8/5 leads to somewhat more pronounced effects without changing the

7The pencil-and-paper example provides a qualitative understanding of how the effects of a barrier to
entry depend on the persistence of demand. There, the ergodic distribution of (Ct−1, Nt) only depends on
the persistence parameter λ through the thresholds. If we increase persistence by decreasing λ, then the slope
of the younger duopolist’s value function directly increases. This makes C2 less sensitive to changes in the
sunk cost of entry. In the general model, the persistence parameter ρ affects the ergodic distribution not only
indirectly through the thresholds, but also directly. The numerical experiments confirm the pencil-and-paper
example’s intuition that the thresholds are less sensitive to a barrier to entry if ρ = 1. They also show that
the direct effect of ρ explains some of the fall in sensitivity to a barrier to entry.

17



main conclusions. The results for the cases with ρ = 1 also continue to hold for larger values

of σ than those reported in Table 3. In the case with ϕ = 0 and σ as high as 0.60, raising a

barrier to entry entices a first entrant to lower its entry and exit thresholds so that it becomes

and remains active at all demand levels. Consequently, the market is somewhat more likely

to be served by at least one firm, and the average number of firms increases slightly (by 0.02)

in this case. This shows that the entry-encouraging effect exists and can lead to an increase

in the number of firms without changing our conclusion that it is numerically unimportant.

Finally, we experimented with many alternative specifications of π(1) and π(2) to ensure

that our results did not depend on assuming that competition is not tough. In specifications

with π(2) < π(1) and ρ = 1, a barrier to entry continues to affect industry dynamics only

trivially.

4 A First-In First-Out Example

The above analysis heavily leverages the LIFO assumption. Although we find this assumption

natural for the reasons given above, confirmation that our results can be obtained without

it enhances confidence in their conclusions. Here, we present one such case which uses the

stochastic process for C from the paper-and-pencil example. We replace the assumption

that older firms make their continuation decisions first with its opposite, and we focus on

equilibria in which older firms exit before their younger competitors. We refer to this as the

first-in first-out (FIFO) example. As in the original model, de novo entry decisions follow

incumbents’ continuation decisions. We limit entry into the industry to at most one firm per

period.8

In Appendix B, we show that an equilibrium in a FIFO strategy that is characterized by

threshold rules exists, provided that ϕ(1) is sufficiently small and ϕ(2) is sufficiently large.9

Figure 4 plots this equilibrium’s value functions for a case in which ϕ(2) = ϕ(1).10 The solid

black line represents the value of a firm with rank 1. As before, it has monopoly and duopoly

8This final assumption avoids complications that arise when there are no incumbents, the value of being
a duopolist with rank 2 exceeds ϕ(2), and the value of being a duopolist with rank 1 is less than ϕ(1).

9Unlike in the LIFO case, we do not demonstrate that there is a unique Markov-perfect equilibrium in
a FIFO strategy. The equilibrium constructed in Appendix B is merely the unique equilibrium in which a
threshold rule governs a contestant’s entry.

10To create Figure 4, and Figure 5 in Appendix B, we calculated the equilibrium for particular parameter
values so that the bounds on ϕ(1) and ϕ(2) are satisfied (Assumptions 2 and 3 in Appendix B), so the analysis
in Appendix B does not presume an impossible configuration of parameters.
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Figure 4: Equilibrium in the FIFO Example

branches. They intersect the horizontal axis at C1(0) and C1(1). The grey line gives the

value of a firm with rank 2. This is slightly above the rank 1 duopoly branch and far below

the rank 1 monopoly branch. Suppose that initially N = 2. If C passes below C1(1), then

the older firm exits and the younger firm’s value jumps to the rank 1 monopoly branch.11 If

C then jumps above C
?

2, another firm enters and the original firm’s value falls to the rank 1

duopoly branch.

Now consider the consequences of raising ϕ(2) while holding ϕ(1) constant. In Appendix

B, we prove

Proposition 5. Increasing ϕ(2) alone weakly increases C
?

2, weakly decreases C1(0) and

C1(0), and leaves C1(1) unchanged.

This proposition is nearly identical to its predecessor from the general analysis of duopoly

11The discount rate used to calculate this example was relatively high, so this possibility contributes little
to the value of a duopolist with rank 1.
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with a symmetric LIFO strategy. There, C1 and C1 play the same role as C1(0) and C1(0)

here, while the FIFO analogue of C2 is C1(1). Extending the propositions from the LIFO

duopoly to this FIFO case thus requires only relabeling the relevant thresholds. For the sake

of completeness, we state them here.12

Proposition 6. Define Sj(C, N) as in Proposition 2. Raising ϕ(2) weakly decreases Sj(C, 0),

weakly increases Sj(C, 1), and leaves Sj(C, 2) unchanged.

Proposition 7. Define Pj(N
′, C,N) as in Proposition 3. Raising ϕ(2) weakly decreases

Pj(0, C,N) and Pj(2, C,N).

Corollary 2. Denote the probability of N firms serving the industry in the ergodic distri-

bution for (C, N) with P (N). Raising ϕ(2) weakly decreases P (0) and P (2) and increases

P (1).

Proposition 8. Suppose that (Ct−1, Nt) has a unique ergodic distribution with P (0) = 0.

Then increasing ϕ(2) weakly decreases both E[ERt] and E[XRt], where the expectations are

calculated using the ergodic distribution for (Ct−1, Nt).

It is somewhat remarkable that the same results hold good for the opposite extreme

assumptions of LIFO and FIFO entry and exit for this particular stochastic process. This

reflects the robustness of two economic principles from finite-stage games. First, raising the

cost of late entry directly deters that entry. Second, this deterrence indirectly encourages

early entry. Of course, there are specifications for the dynamic game of entry and exit other

than LIFO and FIFO, so showing that the analytic duopoly results are robust to this change

does not demonstrate that they always hold good. Nevertheless, it does show that a LIFO

pattern for entry and exit is not necessary for this paper’s analytic results.

5 Related Literature

This paper implicitly relies upon a great deal of previous work. This section serves to

acknowledge this dependence explicitly. There are three areas of previous research that are

particularly important for us.

12The corollary and final proposition take for granted the fact that (C,N) does have an ergodic distribution.
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5.1 Entry Deterrence

Barriers to entry play a prominent role in the structure-conduct-performance framework,

because no firm can maintain market power without an impediment to competition. Sub-

sequent work using game-theoretic tools examined incumbents’ ability to deter entry. Dixit

(1980) pioneered this with a demonstration that an incumbent’s investment can deter entry

by committing the firm to tough post-entry price competition, and Milgrom and Roberts

(1982) continued this by showing how actions with no intrinsic dynamic consequences can

nevertheless deter entry by credibly signalling the incumbent’s payoff-relevant private infor-

mation. Much work has followed this delineating the tools available to incumbents for entry

deterrence. Unlike that work, we take as given the existence of an economic entry barrier

(defined as in McAfee, Mialon, and Williams, 2004); and we focus instead on such a barrier’s

dynamic consequences.

5.2 Competitive Industry Dynamics

We are not the first to analyze the influence of sunk costs on industry structure in an infinite-

horizon framework. Hopenhayn (1992) does so in a model of competitive industry dynamics

with atomistic price taking firms. He shows that increasing the sunk cost of entry lowers

entry and exit rates in his model’s stationary equilibrium. This result is reminiscent of our

Proposition 4, but the two results reflect entirely different mechanisms. In our model, raising

a second entrant’s sunk cost raises that firm’s entry threshold and leaves the exit threshold

unchanged. The reduction in entry and exit rates arises from the greater distance that Ct

must fall before inducing that firm to exit. In Hopenhayn’s model, raising the sunk cost of

entry directly raises the competitive equilibrium price, which in turn lowers firms’ common

exit threshold.

Models of industry dynamics that assume either perfect competition (such as Jovanovic’s,

1982 or Hopenhayn’s, 1992) or monopolistic competition without strategic interaction (such

as Fishman and Rob’s, 2003) have proven invaluable in the empirical analysis of firm and

industry evolution, because they replicate the large simultaneous entry and exit rates doc-

umented by Dunne, Roberts, and Samuelson (1988). These models abstract from strategic

interaction, so they are very tractable. However, they imply nothing for the evolution of

oligopolistic markets. Campbell and Hopenhayn (2005) and Campbell (2006) have docu-

mented that observations from U.S. cities’ retail trade industries generally conflict with these

non-strategic models’ cross-market predictions, so their further analysis apparently requires
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consideration of oligopoly. The appropriate extension of this paper’s model can serve as the

foundation of such work if we consider a given industry with many firms to be a collection

of many oligopolies.

5.3 Computational Analysis of Competition Policy

Our focus on the positive consequences of erecting a barrier to entry places our work close to

previous investigations of competition policy in dynamic settings. For example, Fershtman

and Pakes (2000) examine the effects of collusive pricing on the number and quality of

products offered by an oligopoly; and Cheong and Judd (2000) examine mergers’ profitability

and welfare consequences in an infinite-horizon setting with aspects of both Bertrand and

Cournot competition. Those papers’ results come from computed Markov-perfect equilibria.

This paper’s model considers only two forward-looking decisions (entry and exit); and this

simplicity allows us to obtain some of our results analytically. Judd (1997) opines that

analytical results from special cases of otherwise intractable dynamic models complement

computational results from richer parameterizations. This paper’s use of analytical and

numerical results to reinforce each other embodies this complementarity.

6 Conclusion

The phrase “barriers to entry” has a long history in industrial organization, much of which

revolves around its imprecise definition. We adopt a specific definition— sunk costs that

only late entrants pay— and examine their effects on duopoly dynamics in a particular

Markov-perfect equilibrium. In theory, exogenously imposing a barrier to entry can either

raise or lower the number of competitors, but we show that the barrier’s entry-encouraging

effects are quantitatively unimportant. If demand is not very persistent, then the barrier’s

direct deterrent effects are substantial. However, a barrier to entry effects the number of

competitors little in the empirically-relevant case with highly persistent demand shocks.

The numerical procedure that we have used to calculate the effects of barriers to entry in

a potential duopoly can be applied directly to industries that support more than two firms.

For an example of this, see Abbring and Campbell (2006). An extension of this paper’s

analysis to general oligopolies presents nontrivial economic difficulties, because it involves

several incumbents jointly erecting barriers to deter multiple contestants’ entry. Sorting this

out by modelling the actions that create barriers to entry lies beyond the scope of this paper.
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Appendix A Proofs of Results in Section 3

Proof of Proposition 2. We begin with Sj(C, 0). This equals Pr[
⋂j−1

i=0{Ct+i ≤ C1}|Ct−1 = C],

which is clearly increasing in C1. Next, note that Sj(C, 2) = Pr[
⋂j−1

i=0{Ct+i > C2}|Ct−1 = C],

which is decreasing in C2. Finally, Sj(C, 1) = Pr[
⋂j−1

i=0{C1 < Ct+i ≤ C2}|Ct−1 = C],

which decreases with C1 and increases with C2. The conclusion follows immediately from

Proposition 1.

Proof of Proposition 3. First, consider Pj(0, C,N). Given Nt = N > 0, the event Nt+j = 0

equals

A0(j − 1) ≡
j−2⋃
i=0

{
{Ct+i ≤ C1}

j−1⋂
k=i+1

{Ct+k ≤ C1}

}⋃
{Ct+j−1 ≤ C1}

That is, the state must pass below C1 at some date t + i and thereafter remain below C1

until t + j. Given Nt = N = 0, the event Nt+j = 0 equals A0(t, j − 1)
⋃

B0(t, j − 1), where

B0(t, j − 1) ≡
j−1⋂
i=0

{Ct+j ≤ C1}.

Similarly, given Nt = N < 2, the event Nt+j = 2 equals

A2(t, j − 1) ≡
j−2⋃
i=0

{
{Ct+i ≥ C2}

j−1⋂
k=i+1

{Ct+k ≥ C2}

}⋃
{Ct+j−1 ≥ C2},

and given Nt = N = 2, this event equals A2(t, j − 1)
⋃

B2(t, j − 1), where

B2(t, j − 1) ≡
j−1⋂
i=0

{Ct+j ≥ C2}.

The sets A0(t, j− 1) and B0(t, j− 1) are both increasing in C1 and C1, and both A2(t, j− 1)

and B2(t, j−1) are decreasing in C2 and C2. The conclusion that Pj(0, C,N) and Pj(2, C,N)

decrease as ϕ(2) increases follows immediately from this and Proposition 1.

Proof of Proposition 4. Without loss of generality, take as given that (C0, N1) = (C, 1). Then

XRt = 2/3 if the event A2(1, t − 2)
⋂
{Ct ≤ C2} occurs, and XRt = 0 otherwise. The set

A2(1, t − 2)
⋂
{Ct ≤ C2} is decreasing in C2, so we have that E[XRt|C0 = C, N1 = 1] is

decreasing in ϕ(2). Taking the limit as t → ∞ yields the result that the expected value

of XRt calculated using the ergodic distribution decreases with ϕ(2). The conclusion then

follows from the fact that E[ERt] = E[XRt] in the ergodic distribution.
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Appendix B Section 4’s First-In First-Out Example

We continue to denote a firm’s rank with R, but the FIFO assumption implies that a firm’s

rank can decrease during its lifetime. To begin, consider the continuation decision of an

duopolist with rank 1. This firm rationally expects its rival to not exit before it does, so the

corresponding dynamic programming problem is identical to the problem of a duopolist with

rank 2 under LIFO:

v(1, C, 1) =

{
0 if C ≤ C1(1),

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C1(1).

Here, C1(1) is the largest value of C that sets v(1, C, 1) to zero and

ṽ(1, 1) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(1, C ′, 1)

(Č − Ĉ)
dC ′.

This value function is identical to v(0, C, 2) from the paper-and-pencil LIFO example.

The decisions of a potential or actual incumbent monopolist depend on their expectations

for further entry. To calculate an equilibrium we suppose that all future potential duopolists

actually enter if and only if C > C2. We then place conditions on the parameters that

guarantee that the best response by a current potential duopolist to such a strategy is to

enter if and only if C exceeds a threshold C
′
2. With this in place, we demonstrate that there

is a unique value of this threshold that is its own best response. Finally, we characterize the

entry decisions of a potential monopolist given this equilibrium duopoly entry policy.

Begin with a given value for C2. With this, we can specify the closely related dynamic

programming problems of an incumbent monopolist and of an incumbent duopolist with rank

2. Their value functions satisfy

v(0, C, 1) =


0 if C ≤ C1(0),

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1(0) < C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C2,

and

v(0, C, 2) =


0 if C ≤ C1(0),

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1(0) < C ≤ C1(1),

β
(1−λ)(C

2
π(2)−κ)+λṽ(0,2)

1−β(1−λ)
if C > C1(1).
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As above,

ṽ(0, 1) =

(
Ĉ + Č

2

)
π(1)− κ +

∫ Č

Ĉ

v(0, C ′, 1)

(Č − Ĉ)
dC ′,

and

ṽ(0, 2) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(0, C ′, 2)

(Č − Ĉ)
dC ′.

The threshold C1(1) is that defined from the older incumbent duopolist’s problem, and the

threshold C1(0) is the greatest value of C such that v(0, C, 1) = 0.

We can now consider the entry decision of a potential duopolist given that all future

potential duopolists use the threshold C2. We simplify the analysis with the assumption that

such entry is never optimal if it immediately induces the incumbent to exit.

Assumption 2. If C2 = Č, then v(0, C1(1), 2) < ϕ(2).

Because ϕ(2) played no role in the construction of v(0, C1(1), 2), Assumption 2 places a

(possibly trivial) lower bound on ϕ(2). With Assumption 2 in place, the incumbent chooses

to continue and the potential entrant stays out of the market when C1(0) < C < C1(1).

If C > C1(1), continuation is a dominant strategy for the incumbent; and the branch of

v(0, C, 2) to the right of C1(1) gives the payoff from entry. This is linear and increasing in

C, and Assumption 2 implies that it is below ϕ(2) for C close to C1(1). Define C
′
2(C2) to

equal the greatest value of C such that v(0, C, 2) ≤ ϕ(2). Creating a duopoly through entry

is optimal if C exceeds this threshold.

Figure 5 plots C
′
2(C2) for an example that satisfies Assumption 2. Increasing C2 increases

the value of entering as a duopolist, so C
′
2(·) is weakly decreasing. It is not difficult to

demonstrate that it is also continuous, so it has a unique fixed point if C
′
(Č) < Č. In this

case, we set C
?

2 to that fixed point. If C
′
(Č) ≥ Č, then we set C

?

2 to Č. In either case, C
?

2 is

the only possible equilibrium entry threshold for a second duopolist in an equilibrium with

a FIFO strategy.13

Determining the threshold for entry into the industry when it has no incumbents com-

pletes the determination of equilibrium entry and exit rules. By assumption, a firm entering

an empty industry will be a monopolist for one period. If C ≤ C
?

2, the firm’s payoff in the

13Unlike in the LIFO case, we have not demonstrated here that there is a unique Markov-perfect equilibrium
in a FIFO strategy. The equilibrium under construction is merely the unique equilibrium in which a threshold
rule governs a potential duopolist’s entry.

27



   
 

 

Figure 5: Equilibrium Determination of C
?

2 in the FIFO Example

next period is identical to a similarly situated incumbent monopolist. Hence, the value of

entering in this case is v(0, C, 1). If instead C > C
?

2, then this firm expects to become a

duopolist following the next period if C remains unchanged. It is possible that the resulting

payoff could fall below ϕ(1), in which case equilibrium entry rule would not follow a threshold

rule. In the following, we assume that this does not occur.

Assumption 3. The following inequality holds.

β
(
(1− λ)

(
C

?

2π(1)− κ + v(1, C
?

2, 1)
)

+ λṽ(0, 1)
)
≥ ϕ(1)

Because ϕ(1) played no role in the construction of the left-hand side of this inequality, it is a

positive upper bound on ϕ(1). It guarantees that there is a single value of C which equates

the payoff to entry as a monopolist with ϕ(1). This is the monopoly entry threshold, C1(0).

Finally, consider raising ϕ(2) while holding ϕ(1) constant. Increasing ϕ(2) directly in-

creases the function C
′
2(·), so it also weakly increases C

?

2. This in turn raises the rank 1

value function’s monopoly branch (vS(0, C, 1)) and leaves its duopoly branch (vS(1, C, 1))

unchanged. From this, Proposition 5 follows.
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