
Linders, Gert-Jan M.; de Groot, Henri L.F.

Working Paper

Estimation of the Gravity Equation in the Presence of
Zero Flows

Tinbergen Institute Discussion Paper, No. 06-072/3

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Linders, Gert-Jan M.; de Groot, Henri L.F. (2006) : Estimation of the Gravity
Equation in the Presence of Zero Flows, Tinbergen Institute Discussion Paper, No. 06-072/3,
Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/86589

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/86589
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2006-072/3 
Tinbergen Institute Discussion Paper 

 

Estimation of the Gravity  
Equation in the Presence of Zero Flows
 

 Gert-Jan M. Linders 
Henri L.F. de Groot* 
 

Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam. 
 
 
* Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



 

Estimation of the gravity equation in the presence of zero flows 

 

Gert-Jan M. Lindersa, * and Henri L.F. de Grootb 

 

a Department of Spatial Economics, Vrije Universiteit Amsterdam 

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands 

 

b Department of Spatial Economics, Vrije Universiteit Amsterdam and Tinbergen Institute 

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands 

 

 

 
Abstract 
The gravity model is the workhorse model to describe and explain variation in bilateral trade 
patterns. Consistent with both Heckscher-Ohlin models and models of imperfect competition 
and trade, this versatile model has proven to be very successful, explaining a large part of the 
variance in trade flows. However, the log-linear model cannot straightforwardly account for 
the occurrence of zero-valued trade flows between pairs of countries. This paper investigates 
the various approaches suggested to deal with zero flows. Apart from the option to omit the 
zero flows from the sample, various extensions of Tobit estimation, truncated regression, 
probit regression and substitutions for zero flows have been suggested. We argue that the 
choice of method should be based on both economic and econometric considerations. The 
sample selection model appears to fit both considerations best. Moreover, we show that the 
choice of method may matter greatly for the results. In the end, the results surprisingly 
suggest that the simplest solution, to omit zero flows from the sample, often leads to 
acceptable results, although the sample selection model is preferred theoretically and 
econometrically. 
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1 Introduction 

The gravity model has become the workhorse model to analyze patterns of bilateral trade 

(Eichengreen and Irwin, 1998). Originally inspired by Newton’s gravity equation in physics, 

the gravity model has become common knowledge in regional science for describing and 

analyzing spatial flows, and was pioneered in the analysis of international trade by Tinbergen 

(1962), Pöyhönen (1963) and Linneman (1966). The model works well empirically, yielding 

sensible parameter estimates and explaining a large part of the variation in bilateral trade 

(Rose, 2005). However, it has long been disputed for a lack of theoretical foundation. More 

recently, the gravity model has made a comeback in the international trade literature. 

Developments in the modelling of bilateral trade that provided the model with a more 

satisfying theoretical underpinning in trade theory have been crucial in this revival (see, e.g., 

Feenstra, 2004, and Anderson and Van Wincoop, 2004, for an overview). 

In conjunction with the expanding theoretical literature on the gravity model, a number of 

recent contributions have addressed issues concerning the correct specification and 

interpretation of the gravity equation in empirical estimation. These deal with, for example, 

the specification of panel gravity equations, the estimation of cross-section gravity equations, 

and the correct interpretation of the distance effect on patterns of bilateral trade (e.g., Buch et 

al., 2004, Egger, 2000, Egger and Pfaffermayr, 2005, and Matyas, 1998). All in all, these 

developments have improved our understanding of the gravity equation as a tool to model and 

analyze bilateral trade patterns. However, a number of questions with regard to bilateral trade 

and the gravity equation remain to be investigated (see Anderson and Van Wincoop, 2004). 

One of these is the question how to deal with zero-valued bilateral trade flows. The standard 

gravity model cannot easily deal with zero flows. This has resulted in a widespread practice in 

the literature to ignore zero flows in the analysis of bilateral trade. However, zero-valued 

observations contain important information for understanding the patterns of bilateral trade, 

and should not be discarded a priori. 

This paper deals with the question how to amend the gravity model in order to be able to 

deal with zero flows. Section 2 describes the gravity equation that we estimate to analyze 
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bilateral trade, and the data set used in the analysis. Section 3 discusses the theoretical and 

econometric problems for the gravity model generated by the occurrence of zero flows, and 

presents an overview of the solutions commonly proposed and applied in the literature. We 

argue that these solutions are at odds with both a sound theoretical treatment of zero flows in 

the gravity model and with proper econometric modeling of zero flows in bilateral trade. In 

Section 4, we propose an alternative method to deal with zero-valued trade flows. The sample 

selection model, which has been widely used in other fields of applied economics, is rather 

novel to the literature on bilateral trade. Because the sample selection model offers a 

theoretically sound and econometrically elegant solution to include zero flows in the gravity 

model of bilateral trade, it deserves more attention in applied work. Section 5 presents 

empirical results of estimating a sample selection model of bilateral trade. Moreover, we 

compare the results to various alternative approaches suggested to address zero flows in 

bilateral trade, thus providing an explicit check of the sensitivity of the empirical outcomes to 

the approach chosen. This allows us to asses whether the general consensus in the literature 

that zero flows do not have much impact on the estimation results (see, e.g., Baldwin, 1994 

and Frankel, 1997) is corroborated. Finally, Section 6 discusses our main findings, and 

provides some conclusions. 

 

2 The gravity model 

The gravity model relates bilateral trade flows to the GDP levels of the countries and their 

geographic distance. GDP reflects the market size in both countries, as a measure of 

‘economic mass’. The market size of the importing country reflects the potential demand for 

bilateral imports, while GDP in the exporting country represents the potential supply and 

diversity of goods from that country; geographic distance reflects resistance to bilateral trade. 

Usually, the gravity equation is expressed in logarithmic form. We will follow the literature in 

extending the basic gravity equation with several variables that proxy different aspects of 

economic distance. These comprise, among others, dummies for common language and 

colonial history, which capture cultural familiarity, a dummy for membership in a common 
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trade bloc that reflects economic integration, and a religion dummy that indicates similarity in 

cultural values and norms. The benchmark version of the gravity equation estimated below 

looks as follows: 

 0 1 2 3 4

5 6 7 8

ln( ) ln( ) ln( ) ln( )ij i j ij ij

ij ij ij ij ij

T Y Y D Adj

RIA Lan Col Rel

= β + β + β + β + β

+β + β + β + β + ε
, (1) 

where ijε is a stochastic disturbance term that is assumed to be well-behaved. The dependent 

variable ijT  is merchandise exports (in ’000 US$) from country i to j, for 1999. The 

independent variables are: GDP (Y), the distance between i and j (Dij) and dummies reflecting 

whether i and j: share a land border (Adj), are both member in a regional integration 

agreement (RIA), have the same primary language (Lan) or were part of a common colonial 

empire (Col), and whether they share the same main religion (Rel). The data set comprises 

127 countries. For further details on the variables and countries in our data set, see Appendix 

B. 

 

3 Dealing with zero flows 

The gravity model predicts that countries have positive trade in both directions, even if this 

predicted trade may be small. Moreover, the conventional log-linear formulation of the 

gravity model cannot include zero-valued bilateral trade flows, because the logarithm of zero 

is undefined. However, in our data set of bilateral trade, some of the trade flows are recorded 

as zero or missing.1 At the aggregate level, zero flows mostly occur for trade between small or 

distant countries, which are expected to trade little (Frankel, 1997). However, disregarding 

zero flows can bias the empirical results, if they do not occur randomly. Specifically, if 

geographic distance, low levels of national income, and a lack of cultural or historical links 

reduce trade, omitting zero flows from the analysis tends to result in an underestimation of the 

                                                
1
 Most of these flows are recorded as missing in the source database (UN COMTRADE); some have explicitly 

been recorded as zero. We assume that all missing observations in principle indicate that bilateral exports are 

considered to be absent by the reporting country. Countries that do not report any trade statistics in the database 

have been omitted from our sample.  
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effects of these variables on trade (see Rauch, 1999, pp. 18–19). Omitting zero-flow 

observations implies that we loose information on the causes of (very) low trade. 

Several approaches have been applied or suggested in the literature to address the problem 

of zero flows (see, e.g., Frankel, 1997, pp. 145–146; Bikker, 1982, pp. 371–372). The most 

common solution in the literature confines the sample to non-zero observations to avoid the 

estimation problems related to zero flows. Alternatively, (part of the) zero values may be 

substituted by a small constant, so that the double-log model can be estimated without 

throwing these country pairs out of the sample. Examples in the literature that followed this 

approach are Linnemann (1966), Van Bergeijk and Oldersma (1990), Wang and Winters 

(1991) and Raballand (2003). Substituting small values prevents omission of observations 

from the sample, but is essentially ad hoc. The inserted value is arbitrary and does not 

necessarily reflect the underlying expected value. Thus, inserting arbitrary values close to 

zero does not provide any formal guarantee that the resulting estimates of the gravity equation 

are consistent. Both approaches are hence generally unsatisfactory.  

Dealing properly with zero flows requires that the information provided by these flows is 

taken into account, without using ad-hoc methods. The censored regression model (Tobit 

model) is often employed to analyse data sets in which a substantial fraction of the 

observations cluster at zero. Several studies have used the standard Tobit model to estimate 

the gravity equation with zero flows (e.g., Rose, 2004; Soloaga and Winters, 2001; Anderson 

and Marcouiller, 2002). The Tobit model describes a situation in which part of the 

observations on the dependent variable is censored (unobservable) and represented instead by 

mapping them to a specific value, generally zero. The model applies to situations in which 

outcomes cannot be observed over some range, either because actual outcomes cannot reflect 

desired outcomes (e.g., actual outcomes cannot be negative), or because of measurement 

inaccuracy (e.g., rounding). Thus, whether the Tobit model can be applied to study zero flows 

in the conventional gravity framework depends on two questions. Firstly, ‘Can desired trade 

be negative?’ and secondly, ‘Is rounding of trade flows an important concern?’. 
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The gravity model as conventionally specified under the assumption of a log-normally 

distributed disturbance term would only predict zero trade if the GDP of one or both countries 

equaled zero. This is a hypothetical situation, of course, which will not occur in practice.2 If 

we specified the gravity model with an additive, normally distributed disturbance term, 

instead of a log-normal error structure, the gravity model could in principle generate negative 

trade, by means of the random error. This negative trade would then be censored at zero, and 

actual zero trade might reflect desired negative trade. Note, however, that the underlying 

expected trade determined by the gravity model can never be negative. This non-stochastic 

part of the gravity model can be consistently derived from economic optimization (see, e.g., 

Deardorff, 1998, and Feenstra, 2004). The disturbance term allows for optimization outcomes 

that differ randomly from the expected outcome, but it is unclear which optimizing 

framework would justify negative desired trade, even if caused by randomly distributed 

factors not explicitly identified in the model.3 We thus answer the first question negatively: 

desired trade cannot be negative. Rounding to zero of trade flows below some positive value 

is a second possible reason for censoring of trade flows. In this case, the Tobit model with a 

positive threshold value would be appropriate. However, censoring of trade flows from below 

in general does not seem to occur in our data set. Trade flows are reported in the 

COMTRADE database up to an accuracy of US$ 1 (although this differs somewhat across 

countries). Therefore, the second question regarding the suitability of censored regression can 

be answered negatively as well. As a consequence, the Tobit model is not the appropriate 

model to explain why some trade flows are missing. 

Given that the conventional gravity model does not predict zero-valued bilateral trade nor 

desired negative trade, and in the absence of rounding below some positive value, zero flows 

have to be interpreted otherwise. In this context, zero flows result from binary decision 

                                                
2 One could imagine this to describe the tautological situation of trade with an uninhibited island, which would 

be zero almost by definition. 
3 In fact, this suggests that an additive disturbance term might better be regarded as truncated from below. Zero 

flows then always represent desired zero flows, and the model is consistent with economic optimization. 

However, this solution does not accord with the Tobit model anymore. 
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making rather than censoring (Sigelman and Zeng, 1999). The appropriate way to proceed, 

then, is “to model the decisions that produce the zero observations rather than use the Tobit 

model mechanically” (Maddala, 1992, cf. Sigelman and Zeng, 1999, p. 170). This can be done 

by modelling the decision whether or not to trade as a Probit model. The outcome of that 

decision determines whether or not we observe actual trade flows in the sample. The size of 

potential trade is determined by the gravity model. This structure has been framed in the 

sample selection model (see, e.g., Greene, 2000, section 20.4; Verbeek, 2000, section 7.4), to 

which we will now turn for a solution to the problems associated with zero flows in a gravity 

model context. 

 

4 The sample selection model 

The model, also known as the Heckman selection model (Heckman, 1979), is often used in 

microeconometric research, especially in labour economics. Its use can be traced back, for 

example, to Gronau (1974). A rather small number of gravity model studies of bilateral trade 

have used the selection model to deal with zero flows. For example, Bikker (1982) and Bikker 

and De Vos (1992) make extensive use of a selection model, similar to the one used here. 

Rose (2000) estimates a variant of the model in a robustness section of the paper, without 

explicating the model. Hillberry (2002) motivates and estimates a more restricted variant, in 

which an independent selection and, as he prefers to call it, truncated regression equation are 

estimated (cf. Cragg, 1971). The sample selection model of bilateral trade is specified as 

follows:  
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(2)

 

The model in equation (2) can be estimated using Maximum Likelihood (ML) estimation (for 

further details, see Appendix A). The selection equation determines whether or not we 

observe bilateral trade between two countries in the sample. The regression model determines 

the potential size of bilateral trade. In general, the selection equation should at least contain all 

variables that are reflected in the regression equation (Verbeek, 2000). We assume that the 

selection process reflects decisions made at the microeconomic level on the basis of 

comparing costs and benefits of bilateral transactions (see Bikker and De Vos, 1992). 

Anderson and Van Wincoop (2004) point at the importance of fixed costs associated with 

international trade to explain zero flows in trade, such as border costs (Hillberry, 2002), 

search costs and other specific investments to enter foreign markets (Romer, 1994). At the 

macroeconomic level, we assume an underlying latent variable, say profitability, which 

depends on the same variables as the gravity equation. This can be motivated by the fact that 

profitability will generally increase if the potential size of trade gets larger. However, this 

does not imply that profitability only reflects the potential size of the flow. For example, some 

variables may be more important in determining the profitability of flows rather than the 
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potential size of these flows. Moreover, the disturbance term of the selection equation will 

capture all (microeconomic) factors that influence profitability of bilateral transactions. 

Therefore, we expect that the coefficients in the selection and regression equation will not 

perfectly match and that the correlation between the disturbance terms will be positive, but 

not necessarily one.4 

The basic idea behind the sample selection model is as follows. If a variable such as 

geographic distance becomes so small that firms decide to stop exporting to a country, 

because it is no longer profitable, we do not observe potential bilateral trade. Therefore, OLS 

regression for the observed data on bilateral trade could underestimate the effect of distance, 

if the correlation between the disturbance terms of both equations in the selection model is 

positive (cf. Verbeek, 2000, p. 207). Those trade flows that we do observe for small distances 

will have a positive value for the disturbance term in the selection equation,ijµ , in order for 

the selection decision to be positive. Because of the positive correlation, εµρ , the expected 

disturbance term in the regression model,ijε , will be positive as well. As a result, observed 

trade will be expected to be higher than potential trade, which is unconditional on being 

observed or not. The observed sample will be biased upward at low levels of geographic 

distance, and OLS estimates of the regression coefficients, for the observed sample of positive 

trade, will be biased toward zero if 0εµρ > . The two-staged sample selection model takes this 

into account, by controlling for what is technically known as sample selection bias. Thus, the 

                                                
4
 As noted by Bikker and De Vos (1992), for / , {1, .. }k Kk kγ = β σ ∈ε , 0 0( ) /c εγ = β − σ (where c is the 

censoring limit in the Tobit model for logged trade), and 1ρ =εµ , the sample selection model transforms into 

the Tobit model (see also Verbeek, 2000, and Greene, 2000 for similar observations for the standard Tobit 

model). The only difference between the sample selection model and the conventional Tobit model, in this case, 

is that the selection equation has a variance normalized to one and includes a linear transformation with the 

censoring threshold, because the selection limit is set at zero. Because, in the Tobit model, the latent selection 

variable and the potential size of the action are perfectly correlated, we can map the latent variable to the 

observed variable and do not need to normalize the selection equation. Note that, if the estimated sample 

selection model would (approximately) lead to the relations regarding parameters and cross-equation correlation 

as put forward here, we would observe trade as if it were censored at a positive value. Strictly speaking, this is 

not a case of censoring, because the observed sample is not limited by non-observability (e.g., due to rounding) 

of trade below this value. 
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sample selection model allows us to tackle the problem, noted earlier in the paper, that 

disregarding zero flows may lead to an underestimation of the regression coefficients of, e.g., 

distance and GDP. 

 

5 Empirical results 

The previous sections have argued that, on theoretical grounds, the sample selection model is 

preferred to other approaches often used in the literature to deal with zero flows, such as 

censored regression (Tobit), truncated regression, and substitution of arbitrary small values. 

This section estimates the gravity equation using these different approaches for zero flows, to 

assess the sensitivity of the results for using different methods.  

The regression results presented in Table 1 compare the various solutions for dealing with 

zero flows. The first specification represents simple OLS regression on a sample excluding 

the zero flow observations. All variables have the expected sign, and are highly significant 

statistically. These findings are in line with the existing literature. Trade increases with GDP 

and decreases with physical distance.Common language, common border, and trade 

agreement, as proxies for proximity, positively affect trade. 

Specification (2) represents the sample selection model set forward in the previous section. 

Column (2a) presents the regression equation, and column (2b) the corresponding selection 

equation. The results are surprisingly similar to the straight OLS results. There is only 

marginal indication that OLS is biased downwards due to sample selection bias. The 

correlation between both stages in the selection model ( εµρ ) is positive, as expected, but 

small (although significantly different from zero at p<0.05). The impact of some independent 

variables in the selection stage is quite comparable to the regression stage, after correcting for 

the re-scaling involved in the selection stage (see footnote 5). This implies that the effect of 

these variables on the expected potential size of bilateral trade corresponds to their effect on 

expected profitability. However, this does not hold for several regressors, notably adjacency, 

language, religion and common trade bloc membership. These findings suggest that the extent 
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of sample selection bias is relatively small, and that, apart from its theoretical unsuitability, 

the Tobit model is not supported as a reduced form either. 

Specification (3) shows the results of a Tobit estimation that imposes artificial censoring 

on our trade data. A possible advantage of artificially censoring positive but small trade flows 

is that these flows are relatively prone to measurement errors, and may be too influential in 

the regression analysis (Frankel, 1997; Rose, 2000). We have substituted 1 (=$1000) for the 

zeros, and subsequently put the censoring limit to ln(1)=0, censoring all flows below $1000 

including the zero observations. The imposed censoring limit is arbitrary, because of the 

absence of actual rounding of trade flows. Therefore, even though we treat the zero flows as if 

they were censored, there is no direct causal relation between the zero flows and the imposed 

censoring limit. The parameter estimates generally tend to overestimate the results from the 

sample selection model. This reflects that maximizing the Tobit likelihood function implies 

that the expected value for all zero flows is forced as closely as possible to (or below) $1000. 

Clearly, this value is arbitrary and not representative for all zero flows. 

Specification (4) uses truncated regression. All actual flows (including the zero flows) 

below $1000 are truncated from the sample. This approach disregards all truncated flows, and 

captures that the flows observed just above the truncation limit will on average have positive 

disturbance terms. As a result, it should correct for a downward bias in OLS estimation. The 

outcomes from truncated regression (4) are more in line with the Heckman results than the 

corresponding Tobit model in specification (3), because they are not burdened with the zero 

flows that are ill-fit to the imposed censoring or truncation limit. However, truncated 

regression does not appear to correct sufficiently for the selection bias that results from the 

arbitrarily imposed truncation at $1000. The estimates are lower in absolute terms than the 

benchmark estimates in specifications (1) and (2).  

The final specification (5) in Table 1 performs OLS after substituting an arbitrary, small 

value for all zero flows. As argued before, OLS in a sample that excludes zero flows yields 

inconsistent estimates that are biased towards zero. Therefore, it is not straightforward which 

value (or values) should be substituted for zero flows to best correct for sample selection bias. 
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To correct for the downward bias in OLS estimators, we have chosen to substitute a single, 

small value for zero flows. We arbitrarily opt for the smallest integer value recorded in the 

COMTRADE database, viz. $1. The results in Table 1 illustrate, however, that the approach 

leads to an overcorrection of the assumed bias. Most parameter estimates are unrealistically 

high in absolute terms, and overestimate the benchmark results from the sample selection 

model. Of course, the results from this approach are not robust to the value chosen to 

substitute for zeros. 

 
Table 1: Estimation Results       
 (1) (2a) (2b) (3) (4) (5) 
 OLS Heckman: 

regression 
Heckman: 
selection 

Censored at 
$1000 

Truncated 
at $1000 

OLS: $1 
for zeros 

Log GDP exporter 1.23***  1.24***  0.49***  1.48***  1.17***  1.76***  
 (133.93) (139.90) (41.81) (140.56) (137.26) (129.73) 
Log GDP importer 1.01***  1.02***  0.40***  1.21***  0.97***  1.45***  
 (109.45) (114.37) (37.87) (116.03) (113.58) (106.82) 
Log Distance –1.12***  –1.14***  –0.46***  –1.39***  –1.09***  –1.68***  
 (50.08) (50.95) (17.08) (49.71) (52.39) (47.98) 
Border Dummy 0.93***  0.92***  –0.36 0.69***  0.85***  0.51**  
 (7.25) (7.13) (1.36) (4.33) (6.85) (2.26) 
Language Dummy 0.38***  0.39***  0.51***  0.57***  0.32***  0.76***  
 (4.15) (4.24) (4.83) (5.23) (3.60) (5.34) 
Colonial Dummy 0.81***  0.83***  0.41***  1.15***  0.77***  1.53***  
 (10.30) (10.53) (4.73) (12.63) (10.28) (12.14) 
Religion Dummy 0.13***  0.13***  0.14***  0.28***  0.14***  0.42***  
 (2.64) (2.79) (3.12) (4.87) (3.31) (5.60) 
Trade area Dummy 0.57***  0.56***  0.76***  0.41***  0.61***  0.18* 
 (7.94) (7.77) (5.13) (4.22) (9.20) (1.66) 
Constant –36.91***  –37.41***  –15.73***  –46.43***  –34.84***  –56.88***  
 (96.35) (100.49) (36.89) (107.83) (98.05) (100.83) 
Observations 13682 16002 16002 13249 16002 
‘censored’  2320 2753 2753  
Adjusted R2 0.68     0.64 
log likelihood –30282.40 –34313.15 –34253.03 –27572.54 –44071.15 
F-statistic 3950.22   19470.05  3530.48 
Wald-statistic  37094.18   33407.61 

εµρ   0.08    

εσ   2.21    

Inverse Mills ratio (λ )†  0.18    
Notes: Robust t-statistics in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%. 
Dependent variable: log bilateral export (1999). †: Inverse Mills ratio computed at the mean value of the 
regressor variables. 

 



 12 

Table 2 includes some additional estimations, as a robustness check. Specifications (1) and (2) 

again apply Tobit and truncated regression. The lower limit has been put equal to the average 

value of zero flows following from the benchmark OLS estimation for the non-zero sample. 

The results show that these methods are not robust for the chosen censoring limit. The Tobit 

results are now more in line with the benchmark outcomes from the sample selection model, 

because the censoring limit imposed is a more realistic representation of the zero-flow 

observations. However, these approaches remain empirically unsatisfactory as well as 

theoretically unfounded for the situation at hand. Arbitrary censoring and truncation is an ad-

hoc, crude method that does not guarantee any quantitative accurateness in terms of results, 

compared to the preferred and flexible sample selection model. Because of the absence of 

actual censoring from below, the estimation results will depend on the (arbitrarily chosen) 

lower limit. Only if the chosen censoring value is sufficiently high to capture potential trade 

for all zero flows, these approaches would yield consistent estimates. However, this does not 

help us to understand how zero flows arise, and it would imply that a large number of positive 

observations are censored as well. Hence, the information contained in these observations 

would be largely lost. 

Specifications (3) and (4) provide robustness checks using country-specific fixed effects in 

the regression equation. Fixed effects correct for the potential misspecification bias in the 

estimates of the traditional gravity equation, which does not include country-specific price 

levels (see Anderson and Van Wincoop, 2004; Feenstra, 2004). Although the results indeed 

differ quantitatively from the conventional gravity outcomes, the OLS and sample selection 

models remain highly comparable. The correlation term between regression and selection 

equation does not differ statistically from zero once country-specific effects have been 

controlled for. This suggests that the Probit selection model and the linear regression model 

are independent, which implies that performing fixed-effects OLS on the non-zero sample 

does not bias the results. 
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Table 2: Robustness      
 (1) (2) (3) (4a) (4b) 
 Tobit at 

mean exp. 
value† 

Truncated at 
mean exp. 

value† 

OLS FE Heckman FE: 
regression ‡ 

Heckman: 
selection 

Log GDP exporter 1.32***  1.08***    0.49***  
 (147.84) (131.61)   (67.32) 
Log GDP importer 1.09***  0.92***    0.40***  
 (123.12) (112.82)   (67.30) 
Log Distance –1.23***  –1.00***  –1.31***  –1.31***  –0.46***  
 (53.23) (52.13) (41.68) (42.31) (32.79) 

Border Dummy 0.75***  0.85***  0.87***  0.87***  –0.32***  
 (5.80) (7.63) (6.70) (6.75) (3.36) 
Language Dummy 0.47***  0.35***  0.49***  0.49***  0.51***  
 (5.16) (4.22) (5.21) (5.28) (10.64) 
Colonial Dummy 0.93***  0.71***  0.72***  0.72***  0.41***  
 (12.37) (10.20) (8.73) (8.84) (11.74) 
Religion Dummy 0.22***  0.10**  0.35***  0.35***  0.14***  
 (4.64) (2.48) (6.99) (7.07) (6.17) 
Trade area Dummy 0.55***  0.69***  0.24***  0.24***  0.75***  
 (6.84) (11.43) (3.11) (3.12) (13.22) 
Constant –40.56***  –31.92***  10.98***  10.98***  –15.58***  
 (111.45) (93.15) (27.59) (27.86) (58.71) 
Observations 16002 12039 13682 
‘censored’  3963 3963  

16002 
2320 

log likelihood –29120.83 –22801.03 –28752.54 –32788.54 
F-statistic 20998.82  173.79   
Wald-statistic  30423.08  48028.97  

εµρ     0.01 

εσ     1.98 

Inverse Mills ratio (λ )    0.03 
Adjusted R-squared   0.74   
Notes: Absolute value of t-statistic in parentheses; * significant at 10%; ** significant at 5%; *** significant at 
1%. Dependent variable: log bilateral export (1999). 
†: Mean expected value for zero flows ($18916) is based on the OLS results for the non-zero sample. ‡: The 
selection equation (4b) had to be estimated without fixed effects, including GDPs instead. The fixed effects in 
the regression equation (4a) capture all country-specific effects, including market size as conventionally 
reflected by GDP. Therefore, the regression-stage estimation does not suffer from omitted variables bias vis-à-
vis the selection equation. 

 

6 Conclusions 

Zero flows may bias the estimation results for the gravity equation of bilateral trade. This 

paper has argued that a careful choice of the method to deal with zero flows is needed. The 

solutions often applied, substituting small values for zero flows or using Tobit or truncated 

regression, are not suited to the gravity model. First, zeros do not reflect unobservable trade 

values. In the gravity model with lognormal disturbance term, desired trade cannot be 

negative, which excludes censoring at zero as an explanation for observed zeros. Second, 
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rounding of trade flows as a cause of censoring does not appear to be an important 

explanation for zero flows either. Instead, zero flows are the result of economic decision-

making based on the potential profitability of engaging in bilateral trade at all. Apart from the 

decision to trade or not, the size of expected potential trade is determined by the conventional 

gravity model. In case of actual zero trade, potential trade is unobserved. This combination of 

simultaneous and partly interdependent economic decisions regarding bilateral trade should 

be explicitly modelled at the macroeconomic level. The sample selection model forms a well-

established approach to model bilateral trade in the presence of zero flows. It allows for 

correlation between both decisions, as the profitability of trade depends on the size of 

potential flows, but does not require that profitability perfectly reflects potential trade. Other 

microeconomic factors that do not affect the size of trade can be important for profits. 

We have estimated a sample selection model as well as alternative approaches to deal with 

zero flows. The empirical findings show the sensitivity of the results with respect to the 

method chosen to deal with zero flows. Because the regression outcomes differ, it is important 

to make a well-motivated decision on how to deal with zero flows. The paper shows that 

censored or truncated regression, and replacement of zero flows with arbitrary numbers are 

not preferable. These approaches may yield misleading results, as they rely on ad-hoc 

assumptions, and artificial censoring. The sample selection model, on the other hand, allows 

zero flows and the size of potential trade to be explained jointly. This method correctly takes 

into account the information provided by zero-valued observations. Moreover, it encompasses 

censored regression as well as independent Probit and (truncated) regression as special cases. 

Starting from an explicit theoretical framework on the causes of zero flows, sample selection 

allows for all kinds of data structures to emerge in practice, and provides information on the 

decision processes underlying zero flows as well.  

Apart from the extra information provided by the selection model, the regression results 

sugges that OLS on a non-zero sample may not lead to much bias in practice. The results have 

shown only limited residual correlation between the decision whether to trade at all and the 

decision how much to trade. Hence, OLS does not suffer greatly from selection bias. As a 
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result, we draw the conclusion that omitting zero flows from the regression sample leads to 

satisfactory results in our case, and is preferred to the use of a Tobit model or ad-hoc 

substitutions for zero flows. One has to keep in mind, however, that the OLS estimates only 

consider the non-zero sample. In this context, Greene (2000) notes that the extent of bias in 

OLS estimates depends on the distribution of the regressors in this sub-sample. So, it is not 

possible to determine beforehand whether the bias of OLS is likely to be serious. Therefore, 

even though the OLS results prove to be fairly close to the results in the sample selection 

model, it is preferable to use the sample selection model. 
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Appendix A. Estimation of the sample selection model 

In this appendix, we present the likelihood function of the sample selection model estimated 

in Section 5. We will illustrate sample selection bias when the correlation between the 

selection and regression model is positive. 

 

A.1. Maximum Likelihood estimation 

In general terms, the sample selection model of bilateral trade can be defined as follows: 

 
1 1 2 2 3 3

1 1 2 2 3 3

1 2 3

ln( ) ln( ); 1 if 0

ln( ) not observed; 0 if 0
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β γ ∈

ε µ σ σ ρ∼

 (1) 

The parameters in equation (1) can be estimated using Maximum Likelihood. We follow 

Verbeek (2000, section 7.4.2) to derive the likelihood functions for an individual observation. 

Although both decisions in the model are most naturally thought of as occurring 

simultaneously, it is instructive to view the two parts separately when constructing the 

likelihood function. The selection equation essentially describes a binary choice problem. 

Therefore, the contribution to the likelihood is the probability of observing 1ijs =  ( 0ijπ >ɶ ), 

if trade is non-zero, and 0ijs =  ( 0ijπ ≤ɶ ), if trade is zero. The contribution for non-zero trade 

furthermore consists of the conditional probability density of observed trade given that trade 

is actually taking place, (ln( ) | 1)ij ijf T s = . This results in the following log-likelihood 

function: 

 ( )
0 0

ln ( , , , ) ln { 0} ln ln( ) | 1 ln { 1}
ij ij

ij ij ij ij
T T

L P s f T s P sε εµ
= >

 β γ σ ρ = = + = + = ∑ ∑ . (2) 
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The conditional distribution of ln( )ijT , given that 1ijs = , is rather complicated. However, a 

reformulation simplifies matters substantially (Verbeek, 2000; Bikker and De Vos, 1992). We 

can use a general rule for joint distributions: 

 ( ) ( )ln( ) | 1 { 1} { 1 | ln( )} ln( )ij ij ij ij ij ijf T s P s P s T f T= = = = . (3) 

The probability density of log trade follows a normal distribution, whereas the probability in 

the first term on the right-hand side is from a conditional normal density function. Using the 

underlying latent selection variable, this conditional normal density function has the following 

mean and variance. 
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With the modification in equation (3) and the conditional distribution in equation (4), the log 

likelihood can be written as follows. 

( )
0 0

ln ( , , , ) ln { 0} ln ln( ) ln { 1| ln( )}
ij ij

ij ij ij ij
T T

L P s f T P s Tε εµ
= >

 β γ σ ρ = = + + = ∑ ∑ . (5) 

The relevant probabilities and probability density for an individual observation, with either 

observed trade or zero trade, directly result from equations (1) and (4): 
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where ( ) ( ).  and .φ Φ stand for the standard normal probability density and cumulative 

distribution function, respectively. 

The log likelihood function in equation (5), maximized with respect to the unknown 

parameters from the sample selection model, leads to consistent and asymptotically efficient 

estimators for the parameters of the selection and regression equations (Verbeek, 2000, p. 

211). 

 

A.2. Sample selection bias 

The most important property of the sample selection model is its flexibility with respect to the 

influence of zero-trade observations. The model includes separate explanatory equations for 

selection and potential size of the action of primary interest, but allows correlation between 

both stages. If the residuals in both stages are correlated, the non-random sampling implied by 

the selection equation leads to sample selection bias in the observed (i.e., positive trade) 

sample. We can illustrate this by confining ourselves to the model in equation (1), as it applies 

to the non-zero observations in our sample. In particular, consider the conditional expectation 

of log trade, given that trade is profitable to begin with (for further details, see Greene, 2000; 

Verbeek, 2000): 
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 (7) 

The expectation of the conditional disturbance term in the selection equation (ijµ ) exceeds 

zero, given that it is truncated from below in the observed-trade sample. To judge whether this 

leads to sample selection bias in the regression equation, we have to consider the expectation 

of the regression disturbance term (ijε ), conditional on the truncation in the selection 

equation. From equation (7), the expectation of ijε , given that ijµ  is truncated from below, 

exceeds zero if εµρ  is positive. The estimates in the main text of this paper indeed show a 

positive correlation between ijε  and ijµ . Thus, the conditional expected value of (log) trade, 

given that trade is observed, exceeds expected potential trade, unconditional on being 

observed or not. In other words, OLS regression of log trade on the regressor variables, using 

only non-zero trade observations, produces inconsistent estimates of the regression parameters 

in , {1,2,3}k kβ ∈ . This bias is known as sample selection bias. It can be seen most intuitively 

by summarizing the complete model as it applies to the non-zero sub-sample. 
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If 0λβ ≠ , an OLS regression omitting λ  from the model suffers from omitted variable bias.5 

To determine the direction of bias in OLS results due to sample selection, we have to take a 

closer look at the relation between selection and regression in the non-zero sample. 

As shown by equations (7) and (8), the conditional expectation of log trade is different 

from the unconditional expectation of potential trade, because of the term 

( ) ( )1 1 2 2 3 3 0ij i j ijx x x′ ′ ′λ α = λ − γ − γ − γ > . For positive εµρ , the conditional expected value 

exceeds unconditional expected potential trade. Figure A.2.1 below illustrates how the size of 

this difference depends on the expected value of the latent selection variable (profitability).6 

 

Figure A.2.1 ( ) ( )ij ij ijE ln T | ln(T ) is observed E ln T   −   
ɶ  as a function of ijE  − π ɶ . 

 

( )ijεµ ερ σ λ α  

1 1 2 2 3 3ij i j ijx x x′ ′ ′α = − γ − γ − γ  
0 

 

                                                
5
 On the other hand, if we can include λ  in the specification, OLS will produce consistent estimates of 

( ){1,2,3}k kβ ∈ , although inefficient because ijν  is heteroskedastic (see Greene, 2000, section 20.4.1 for more 

details). Equation (8) is the basis for an alternative method often used in empirical applications to estimate the 

selection model, without the need to estimate the full model by maximum likelihood. The two-step estimation 

procedure, due to Heckman (1979) and also known as the ‘Heckit’ estimator, estimates equation (8) by OLS. 

First, the selection equation is estimated as a Probit model, to determinêijλ , as estimates of ijλ . These estimated 

values are subsequently inserted in the second-step OLS regression. 
6 The figure is based on Figure 20.2 in Greene (2000). 
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The figure shows that conditional expected trade is highest, compared to unconditional 

expected potential trade, for low values of expected profitability. Given the positive 

correlation εµρ , this makes sense. In order to assure profitability, the realization for the 

disturbance term ijµ  should be high. Given the truncation in the selection equation, the 

expected value of trade will be high as well. 

Apart from the relationship between expected profitability and conditional expected trade, 

it is important to establish the potential consequences of truncation in the selection equation 

for sample selection bias of OLS. We may conclude from our estimation results in Section 5 

that the difference between conditional and unconditional expected trade is highest for low 

values of unconditional expected trade, because most explanatory variables in our model have 

the same sign in both the selection and the regression equation. This corresponds to the 

intuitive argument in the main text. A low expected profitability coincides with low 

unconditional expected trade. Therefore, trade flows that we observe between countries that 

are more distant will be relatively more above their unconditional expected value, on average. 

The regression plane tends to be flattened by the sample selection process. As a result, the 

OLS regression coefficients for the ‘observed’ sample of non-zero bilateral trade will 

underestimate the true effect on unconditional expected potential trade. 

 

Appendix B. Description of the data 

This appendix describes the data used in the paper, and their sources. A table that lists all the 

countries included in the analysis is presented at the end of the Appendix. 

 

B.1. Data sources and variables used in the empirical analysis 

The empirical analysis uses both country-specific and bilateral data from various sources. The 

GDPs of the exporting and importing countries are examples of country-specific variables, 

while geographic distance, adjacency, and common language and religion, among others, are 

examples of bilateral characteristics for each pair of countries. Below we have described the 

data and sources in more detail. The analysis applies to 1999. 
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Trade 

The dependent variable in the gravity model is the log of the value of bilateral merchandise 

exports, which results in two observations for each country pair, i.e. the export flows from 

country i to j, and those from j to i. We have used the UN COMTRADE database for bilateral 

trade flows in 1999. We have used reported imports rather than reported exports, because 

import data provide a better coverage. We have used mirror import flows between i and j; the 

direction of these mirror import flows corresponds to that of the export flows from i to j. 

Although mirror import data have fewer missing trade observations than export data, some 

trade flow observations are reported missing in mirror imports whereas corresponding exports 

are non-zero. We have confronted missing observations in reported mirror imports with 

corresponding flows in reported exports; when corresponding reported exports were non-zero, 

these values have been substituted in reported mirror imports. Thus, only trade flows that are 

missing in both reported mirror imports and reported exports have been treated as zero-entried 

trade values (or non-availables, in regressions that omit zero flows). 

 

GDP 

The source of GDP data is the World Development Indicators (World Bank, 2000 - on CD 

Rom). GDP levels are in constant US $ at 1995 prices and refer to 1999.  

 

Bilateral characteristics: distance, adjacency, trade area, language, colonial history and 

religion  

The data on geographic distance, common border, common official language, common 

regional trade agreement, common dominant religion and common colonial history have been 

collected from diverse sources, which have kindly been made available by several researchers 

and research institutes on the internet. We have used OECD data for regional integration 

agreements, Sala-i-Martin’s (1997)7 database for religions and colonial backgrounds, and Jon 

                                                
7 See: http://www.columbia.edu/~xs23/data.htm. 
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Haveman’s International Trade Data8 for distance, contiguity and language. This part of the 

database is available upon request. Some remarks on these variables are: 

o Distance is measured as straight line distance (‘as the crow flies’) between nation 

capitals. The data are from the data website of Jon Haveman. In line with previous 

research, geographic distance is measured as the distance from home to foreign ‘as the 

bird flies’, using the principal city of each country as its centre of gravity. This implies 

that the distance between the two centres of gravity of neighboring countries is likely 

to overestimate the average distance of trade between them. The relative impact of 

mismeasurement is much larger in neighboring countries than in countries that are 

located far away from each other. For a discussion on the use and usefulness of other, 

more sophisticated measures of geographic distance, we refer to Frankel (1997, 

chapter 4). In general, more sophisticated geographic distance measures produce 

similar results, and cannot eliminate the measurement error for contiguous countries 

either. 

o The border dummy takes the value of one if two countries are adjacent. Adjacency 

requires either a land border or a small body of water as border. Measurement error in 

the distance variable, as well as the effect of historical relations between adjacent 

countries are captured by this dummy variable. The contiguity data are from the 

website of Jon Haveman. 

o Whether pairs of countries take part in a common regional integration agreement 

(RIA) has been determined on the basis of OECD data on major regional integration 

agreements.9 A dummy variable indicates whether a pair of countries enters into at 

least one common RIA. 

o To assess whether two countries have the same official language, we use a database 

collected by Jon Haveman, that distinguishes fourteen languages: Arabic, Burmese, 

                                                
8
 See: http://www.macalester.edu/research/economics/page/haveman/trade.resources/tradedata.html.  

9 See: http://www.oecd.org/dataoecd/39/37/1923431.pdf 
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Chinese, Dutch, English, French, German, Greek, Korean, Malay, Persian, 

Portuguese, Spanish and Swedish. This data has been extended to cover more 

countries and languages with CIA’s World Factbook10. In case none of the above 

applied and no further language data were available, countries were assigned to the 

categories ‘other language’ or ‘non available’. A language dummy variable reflects 

whether or not two countries have a common language. 

o Cultural and/or historical ties between countries may also consist of a shared colonial 

past or a common dominant religion. Data for these variables come from Sala-i-Martin 

(1997).The colonial dummy variable reflects whether country pairs share a colonial 

history. The data consider the British, French and Spanish empires only. In contrast to 

the original data source, we also included these colonizers themselves into the 

respective empires. In this way, the figures identify shared colonial relations for pairs 

of countries. 

o Based on the percentage of the population adhering to one of seven major religions 

(i.e., Buddhism, Catholicism, Confucianism, Hinduism, Jewish religion, Islam, and 

Protestantism), country pairs score a value of one on the religion dummy if their 

dominant religion is the same. For some countries, two religions were equally 

dominant over the others. In these cases, both religions were considered to be 

dominant.  

 

                                                
10 See: http://www.cia.gov/cia/publications/factbook/. 
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B.2. List of countries included in the sample 

The database includes 127 countries, listed in the table below. 

Country    

Albania Gabon Mauritius Togo 
Algeria Gambia Mexico Trinidad & Tobago 
Argentina Georgia Moldova Tunisia 
Armenia Germany Mongolia Turkey 
Australia Ghana Morocco Turkmenistan 
Austria Greece Nepal Uganda 
Azerbaijan Guatemala Netherlands Ukraine 
Bahamas, The Guinea New Zealand United Kingdom 
Belarus Guyana Nicaragua United States 
Belgium Honduras Niger Uruguay 
Belize Hong Kong, China Nigeria Venezuela 
Benin Hungary Norway Vietnam 
Bhutan Iceland Pakistan Yemen, Rep. 
Bolivia India Panama Yugoslavia 
Brazil Indonesia Paraguay Zambia 
Bulgaria Iran, Islamic Rep. Peru Zimbabwe 
Burkina Faso Ireland Philippines  
Burundi Israel Poland  
Cameroon Italy Portugal  
Canada Jamaica Romania  
Chile Japan Russian Federation  
China Jordan Rwanda  
Colombia Kazakhstan Saudi Arabia  
Costa Rica Kenya Senegal  
Cote d'Ivoire Korea, South (Rep.) Singapore  
Croatia Kuwait Slovak Republic  
Cyprus Kyrgyzstan Slovenia  
Czech Republic Latvia South Africa  
Denmark Lebanon Spain  
Dominican Rep. Lithuania Sri Lanka  
Ecuador Luxembourg Sudan  
Egypt, Arab Rep. Macedonia, FYR Suriname  
El Salvador Madagascar Sweden  
Estonia Malawi Switzerland  
Ethiopia Malaysia Syrian Arab Republic  
Finland Mali Tanzania  
France Malta Thailand  
 


