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1 Introduction

Researchers are often interested in how an s-dimensional covariate X affects a d-dimensional

response variable Y , using a sample of independent and identically distributed data pairs

{(X1, Y1), . . . , (Xn, Yn)} (n ≥ d + s). Conditional quantiles are a key aspect of this problem.

When the functional form is unknown a wide variety of techniques are available to estimate

univariate conditional quantiles, including kernel and nearest neighbor approaches, quantile re-

gression, and smoothing splines. In contrast, relative little attention has been paid to multivari-

ate conditional quantiles and their sample properties. The problem was recently tackled by De

Gooijer, Gannoun, and Zerom (2002) via generalizing the notion of multivariate unconditional

quantiles, based on norm minimization, given by Abdous and Theodorescu (1992).

Here we focus on an alternative formulation of multivariate conditional quantiles generalizing

a notion of geometric or spatial quantile studied by Chaudhuri (1992, 1996). Chaudhuri indexed

multivariate unconditional quantiles, based on the Euclidean distance, by the elements of a d-

dimensional open unit ball. The corresponding quantiles not only give the idea of “extreme” or

“central” observations but also about their orientations in a multivariate data cloud. The basic

idea of both the Abdous-Theodorescu approach, and the Chaudhuri approach comes from the

well-known fact that for univariate Y with IE|Y | <∞, the p-th quantile for 0 < p < 1 may be

characterized as any value θ minimizing IE{|Y − θ|+ (2p − 1)(Y − θ)}; see Serfling (2002) for
a detailed comparison of the two approaches. Chakraborty (2003) also investigated a similar

problem but for multiresponse linear regression models.

When d ≥ 2, it is relatively straightforward to extend the geometric quantile to the geo-
metric conditional quantile. For any vector u = (u1, . . . , ud)

T in the open unit ball B(d) =©
u|u ∈ IRd, kuk < 1ª and any t ∈ IRd, denote by Φ (u, t) = ktk + hu, ti, where k·k is the usual
Euclidean norm and h·, ·i is the usual Euclidean inner product. Then, the u-th geometric con-
ditional quantile of Y given X = x is defined as

Q(u|x) = arg min
θ∈IRd

IE {Φ(u, Y − θ)−Φ(u, Y )|X = x} .

The estimate of the geometric conditional quantile Q(u|x) is defined as follows through the
empirical distribution. As usual, the nonparametric estimate of the conditional distribution

F (y|x) is given by the so-called Nadaraya-Watson estimate as Fn (y|x) =
Pn

i=1wn,ilI(Yi≤y),

where the weight functions wn,i (i = 1, 2, . . . , n) are given by

wn,i =
Khn (x−Xi)Pn
i=1Khn (x−Xi)

,
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Khn (·) = 1
hsn
K
³
·
hn

´
, K (·) is the kernel function, hn > 0 is the bandwidth, and lIA denotes

the indicator function for set A. Then the estimator of the u-th geometric conditional quantile

Q(u|x) is defined subsequently by

Q̂n(u|x) = arg min
θ∈IRd

Z
IRd
{Φ(u, y − θ)−Φ(u, y)}Fn (dy|x)

= arg min
θ∈IRd

nX
i=1

wn,i {Φ(u, Yi − θ)−Φ(u, Yi)} . (1.1)

In this paper, we establish a Bahadur type linear representation of the geometric conditional

quantile estimator (1.1) and obtain the convergence rate for its corresponding remainder term.

From this, the asymptotic normality for the estimator is derived. The method avoids the strong

condition imposed by Cadre and Gannoun (2000) in the proof of the asymptotic normality of

the conditional L1-median estimator. With the asymptotic convergence and distribution we are

able to construct confidence ellipsoids for the geometric conditional quantile estimator. Also,

on the basis of these results, one can in principle formulate goodness-of-fit statistics and study

their properties. Our method of proof is somewhat similar to Chaudhuri’s (1992, 1996).

The rest of the paper is organized as follows. In Section 2 we present the conditions, under

which the main theorems are valid, followed by the statements of the main results. Asymptotic

confidence ellipsoids are constructed in Section 3. Further, we conduct a simulation study, to

asses the performance of the ellipsoids in finite sample situations. After given an empirical

illustration in Section 4, we close with a brief summary in Section 5. All proofs are relegated to

the Appendix, including proofs of lemmas which are of some general interest. Throughout the

paper, f(x, y) and g (x) denote the density functions of (X,Y ) and X, respectively. And f(y|x)
is the conditional density function of Y given X = x. The notation D→ refers to converge in

distribution. AT denotes the transpose of some matrix A. Also, we adopt the convention that

for x ∈ lRd, U(x) = x/ kxk for x 6= 0 and U(x) = 0 for x = 0. Unless otherwise specified, the

limits in this paper are taken as n→∞.

2 Main Result

Before giving the Bahadur type linear representation and asymptotic normality for Q̂n(u|x), we
list some required conditions first.

Condition 1. Suppose that for any sufficiently small kzk > 0, z ∈ IRs, there exists some

2



constants λ1, λ2 > 0 such thatZ
|f (x+ z, y)− f (x, y)| dy = O

³
kzkλ1

´
(2.1)

and Z
1

kyk |f (x+ z, y)− f (x, y)| dy = O
³
kzkλ2

´
. (2.2)

Condition 2. i). f (y|x) is bounded on every bounded set of lRd and f (y|·) is continuous at
x; ii). g (x) > 0 and g (·) is continuous at the point x; iii). the support of f (y|x) on y is not

included in a straight line.

Condition 3. There exists positive numbers r, c1, c2 such that c1II(kxk≤r) ≤ K (x) ≤ c2II(kxk≤r).

Condition 4. hn → 0, nhsn ∼ nγ for some constant 0 < γ < dmin(λ1,λ2)
(d+1)s+dmin(λ1,λ2)

.

Condition 5. For any t in the neighbor of x, the functions g (t) and IE [U (Y −Q (u|x)) |X = t]

on the variable t have the second bounded derivative in the neighbor of x. Also, the function

IE
h
(U (Y −Q (u|x) + u)) (U (Y −Q (u|x) + u))T |X = t

i
on t is continuous at the point x. nhs+4n → 0 and K(·) has the second derivative.

Theorem 2.1. Under Conditions 1 to 4, Q̂n(u|x) has the following Bahadur type representation

Q̂n (u|x)−Q (u|x) = D−11
nX
i=1

wn,i

³
U (Yi −Q (u|x)) + u

´
+Rn

with probability one, where D1 = IE [P (Y −Q (u|x)) |X = x] and P (Y ) = 1
kY k

¡
Id − U (Y )UT (Y )

¢
.

The remainder term Rn = O (logn/ (nhsn)) if d ≥ 3. And it is equal to o ((logn/ (nhsn))
w) for

0 < w < 1 if d = 2.

From Theorem 2.1, Cramér and Wold’s Theorem (see Serfling (1986), p. 18), Corollary IV.2

and Theorem II.1 of Bosq and Lecoutre (1987), the following asymptotic normality on u-th

geometric conditional quantile can be inferred as follows.

Corollary 2.2. Under conditions of Theorem 2.1 and Condition 5, it holds thats
nhsngn (x)R
K2 (t) dt

D
−1
2

(n)D1
³
Q̂n (u|x)−Q (u|x)

´ D→ N (0, Id) , (2.3)

where N (0, Id) is the normal distribution with mean 0 and variance Id, which is a d×d identity

matrix, gn (x) = 1
nhsn

nP
i=1

K
³
x−Xi
hn

´
and

D(n) =
nX
i=1

wn,i

³
U
³
Yi − Q̂n (u|x)

´
+ u

´³
U
³
Yi − Q̂n (u|x)

´
+ u

´T
.
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Furthermore, if d = 2 with the condition that IE
³

1
kY−Q(u|x)k2

´
<∞ or d ≥ 3, then (2.3) also

holds with D1 replaced by

D1,n =
nX
i=1

wn,iP
³
Yi − Q̂n (u|x)

´
.

In Theorem 2.1 and Corollary 2.2, via Remark 4 and Lemma 5.3 of Chaudhuri (1992), we

know that both the matrix D1 itself and its inverse matrix exist in view of d ≥ 2. Because the
sequence of random variables {Yi; i = 1, 2, . . . , n} is absolute continuous, it doesn’t fall into a
straight line in IRd almost surely. Then by the standard arguments on multivariate quantile

(see Chaudhuri, 1996) and Theorem 2.17 of Kemperman (1987), we know that the geometric

conditional quantile Q̂n(u|x) exists uniquely for any u ∈ B(d). Also, according to Kemperman

(1987), the existence and the uniqueness for the u-th geometric conditional quantile Q(u|x)
are judged by iii) of Condition 2. The properties on geometric quantile for the transformed

data, as mentioned in Section 2.2 of Chaudhuri (1996), will also hold analogously for geometric

conditional quantile.

3 Simulations

3.1 Design

From Corollary 2.2 it directly follows that the 100(1 − α)% (α ∈ (0, 1)) asymptotic confidence
ellipsoid for Q(u|x) is given by

c
³
Q̂n (u|x)−Q (u|x)

´T
S−1

³
Q̂n (u|x)−Q (u|x)

´
≤ χ2d(α) (3.1)

where c = nhsngn(x)/
R
K2(t)dt, S−1 = DT

1D
−1
(n)D1 and χ2d(α) denotes the 100(1−α)th percentile

of a chi-squared distribution with d degrees of freedom. To assess the performance of (3.1) in

finite samples we conduct a Monte Carlo experiment. For visual purposes, we restrict the

choice of the dimensions to the case d = 2 and s = 1. Let ρ = (ρY1,Y2 , ρY1,X , ρY2,X) be the

corresponding set of correlation coefficients. Then, all simulation results reported below will be

based on observations (Xi, Yi) (i = 1, 2, . . . , n) generated from the trivariate normal distribution

N(0,Σ) with variance-covariance matrix

Σ =

 1 ρY1,Y2 ρY1,X
ρY1,Y2 1 ρY2,X

ρY1,X ρY2,X 1

 .
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b) u = (0.8,-0.4)T ; ρ = (0.5,0.2,0.4); x = 0

Q(u1|x)
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a)  u = (-0.8,-0.58)T ; ρ = (0.5,0.2,-0.4); x = 0

Q(u1|x)
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Figure 1: 95% confidence ellipses for Q(u|x) for n = 100 (dash-dotted-dotted lines), n = 200

(dotted lines), and n = 500 (solid lines); the centers of the ellipses at (Q̂n(u1|x), Q̂n(u2|x)) are
denoted by black dots (n = 100), black squares (n = 200), and black triangles (n = 500).

Here, it should be noted that the normal distribution satisfies the conditions of Corollary 2.2

with λ1 = λ2 = 1. For the estimation of Q(u|x) we choose the kernel K(·) to be the bivariate
standard normal density N(0, I2), so

R
K2(t)dt = 1/2(π)1/2. The bandwidth hn is set at nγ−1

with γ = (2/5)− 0.01. This choice satisfies Condition 4.

3.2 Results

One way to assess the finite sample performance of (3.1) is to compute the lengths of the major

an minor axes of the confidence ellipses. As n increases, we expect from Corollary 2.2 that these

lengths will decrease. Setting u = (−0.8,−0.58)T , which corresponds to an extreme geometric
conditional quantile (k u k= 0.9764), Figure 1.a) shows 95% confidence ellipses for n = 100, 200,
and 500 when ρ = (0.5, 0.2,−0.4) and x = 0. Observe that for size n = 500 the lengths of the

principal axes of both ellipses (solid lines) are much shorter than those observed for n = 200

and n = 100. Further, the lengths of the axes of the confidence ellipses for n = 100 (dash-

dotted-dotted lines) are much shorter than those for n = 200 (dotted lines). Figures 1.b) shows

that this observation also holds in the case u = (0.8,−0.4)T (k u k= 0.8), ρ = (0.5, 0.2, 0.4),

and x = 0. Similar Monte Carlo results were obtained for other values of u, sample sizes n,
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Figure 2: Contour plots of the u-th geometric conditional quantile for u = r(cos θ, sin θ)T with

r = 0.1 (inner contour lines), 0.2, . . . , 0.9 (outer contour lines), θ = πk/16 (k = 0, 1, . . . , 31),

ρ = (0.2, 0.4, 0.9), and n = 100.

correlation coefficients ρ, levels α, and domain points x. In fact, the asymptotics of Corollary

2.2 appear to take effect already at sample sizes of 100, irrespective of the values of u, ρ, α, and

x.

To get an impression of how the u-th geometric conditional quantiles behave over a range

of different values of u, we simulated 100 observations from the trivariate normal distribution

N(0,Σ) with ρ = (0.2, 0.4, 0.9). We take u = r(cos θ, sin θ)T , with r = 0.1, 0.2, . . . , 0.9 and

θ = πk/16 (k = 0, 1, . . . , 31). For each r, we computed Q̂n(u|x) corresponding to the index
vector u at the domain point x = 0. Figure 2 shows the result in each case. Note that the

enclosed area is increasing with increasing values of r. Thus the surfaces are neatly nested. It

indicates that Q̂n(u|x) is equivariant under linear reparametrization of the design. Further we
see that conditional quantiles are not lying on concentric circles, as this should be the case if the

6



data points are i.i.d. Thus, the extent each surface deviates from a circle provides a useful way

for assessing departures from model assumptions like i.i.d. and “heteroskedasticity”. In general,

the regions enclosed by conditional quantile contours can be viewed as multivariate analogues of

QQ-plots used for univariate unconditional data analysis. They are useful for detecting outliers

in multivariate data.

4 Application

In this section we compute geometric conditional quantiles using a data set consisting of 19

variables on 403 subjects from 1046 subjects who were interviewed in a study to understand

the prevalence of obesity, diabetes, and other cardiovascular risk factors in central Virginia

for African-Americans; see http://hesweb1.med.virginia.edu/biostat/s/data/. It was observed

that Diabetes Mellitus Type II (adult onset diabetes) is associated most strongly with obesity.

From the set of variables we consider two responses: systolic (higher) blood pressure (BPS),

and diastolic (lower) blood pressure (BPD). Both variables are measured in mmHg. Averages

of BPS were taken if more than one measurement was available. As one would expect, the

correlation between BPS and BPD is high (0.608). It is well-known to physiologists that systolic

and diastolic blood pressure jointly vary with Age and Weight. Therefore, as a first covariate

we consider Age with a range from 19 to 92 years. As a second covariate we calculated from

reported heights and weights the body mass index (BMI) in kg/m2. These values ranged from

16.04 to 55.9. Observations that had missing values in any of the 5 variables were omitted from

further analysis, leaving 378 out of the 403 original observations available.

According to the guidelines from the second US National Health and Nutrition Examination

Survey (NHANES II), a man with a BMI between 27.8 and 31.1 kg/m2 and a women with

a BMI between 27.3 and 32.3 kg/m2 can be considered to have overweight. Combining these

limits and taking averages, we noted that 84 (22.2%) respondents in the analysed data set have

overweight whereas 115 (30.4%) respondents are severely overweighed with a BMI>31.7 kg/m2.

Given this information, the domain points for BMI were set at 20, 25, 30, 35, 40, and 45 kg/m2,

respectively.

Table 1 shows estimated u-th geometric conditional quantiles for some selected values of u.

If the values of the coordinates of the index vector u are both positive, it indicates that both

BPS and BPD are higher than “normal”. Similarly, if the values of the coordinates of u are

both negative, it indicates a direction toward which both BPS and BPD are lower than normal.
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Table 1: u-th geometric conditional quantile estimates for blood pressure data given values of

the covariates Age and BMI; asymptotic standard errors are in parentheses; u = (0.0, 0.0)T

represents the geometric conditional median.

Covariate x u = (0.0, 0.0)T u = (0.8, 0.4)T u = (−0.8, −0.4)T

BPS BPD BPS BPD BPS BPD

Age 30 127.230 81.099 148.605 88.752 107.561 75.195
(0.125) (0.326) (1.862) (1.569) (0.177) (0.292)

40 132.555 84.796 158.868 91.832 109.242 77.008
(0.196) (0.299) (1.128) (0.345) (0.129) (0.156)

50 138.052 86.728 171.185 93.744 113.207 78.136
(0.083) (0.264) (1.381) (0.342) (0.716) (0.340)

60 142.235 82.798 177.887 91.086 118.485 76.421
(0.197) (0.157) (1.434) (0.395) (0.478) (0.139)

70 145.708 81.665 178.917 89.241 119.600 75.151
(0.158) (0.242) (4.165) (0.327) (0.612) (0.451)

80 150.131 82.133 178.961 88.390 123.554 76.452
(1.054) (1.644) (0.623) (0.250) (0.979) (0.374)

BMI 20 133.855 81.579 168.858 89.166 110.305 75.035
(0.298) (0.179) (7.167) (3.314) (0.221) (0.227)

25 135.052 82.518 169.276 89.725 110.217 75.320
(0.218) (0.223) (2.266) (0.524) (0.222) (0.170)

30 136.209 83.631 169.775 90.496 110.571 75.939
(0.152) (0.267) (1.230) (0.248) (0.518) (0.315)

35 137.027 84.740 169.784 91.272 110.740 76.619
(0.372) (0.347) (2.401) (1.515) (0.670) (0.216)

40 137.667 85.631 169.826 91.928 110.799 77.588
(0.251) (0.190) (8.515) (3.701) (0.167) (0.201)

45 139.062 86.467 169.931 92.327 110.719 78.551
(1.569) (0.494) (37.877) (12.609) (0.528) (0.272)

Observe that the u-th geometric conditional quantile estimates, of BPS and BPD increase with

increasing values of Age. The associated asymptotic conditional standard errors, obtained from

Corollary 2.2, seem to confirm this. On the other hand, it is interesting to see that the u-th

geometric conditional quantiles of BPS and BPD increase slowly with increasing values of BMI.

Only for large values of BMI, say 40 and 45 kg/m2, the conditional standard errors become

large.

Figures 3.a)—3.d) show scatter-plots of BPS and BPD versus both Age and BMI. Plotted

in each figure is the conditional median curve (median-dashed lines), represented by the case

u = (0.0, 0.0)T in Table 1. We see that nearly a linear relationship between the variables.

Also plotted in Figures 3.a)—3.d) are the u = (0.8, 0.58)T (k u k= 0.9764) conditional quantiles

8
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Figure 3: Scatter-plots of BPS and BPD versus Age and BMI. Median-dashed lines are condi-

tional median curves; solid lines are Q̂n(u|x)’s with u = (0.8, 0.58)T and long-dashed lines are

the associated asymptotic 95% confidence bands.
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(solid lines) surrounded by the associated 95% conditional confidence bands (long-dashed lines)

obtained from Corollary 2.2.

With k u k= 0.9764, we observe from Figure 3.a) that BPS ranges between 143 and 179

mmHg in a nonlinear fashion. Similarly, from Figure 3.b), we see that BPD ranges between

89.2 and 97.2 mmHg. Using BMI as a covariate, Figures 3.c)—3.d) show values of BPS in

the range [168.6, 173.8] mmHg and BPD in the range [93.6, 97.2] mmHg. In NHANES II the

criterion for determining a respondent with a definite too high blood pressure was fixed at an

average value of 160 mmHg for BPS and 95 mmHg for BPD. Clearly, these values are based

on blood pressure data sets observed in the past covering all possible values of BMI. The results,

given in Table 1 in columns 5-8, suggest that a much “finer” way of classifying a respondent

can be based on the geometric conditional quantile and the associated conditional standard

deviation, with the conditioning on individual BMI values rather than using all BMI values

jointly in an unconditional way.

5 Summary

We have established a Bahadur type linear representation of the geometric conditional quantile

estimator. From this result the asymptotic normality for the estimator was derived. We have

demonstrated by simulation that in the case d = 2 and s = 1 the resulting confidence ellipses for

the geometric conditional quantile are adequate in finite sample situations, even in the case of

extreme quantiles. Finally, we showed that the geometric conditional quantile and its associated

conditional standard deviation can be used to “fine-tune” classification of respondents having a

too high blood pressure.

Appendix A: Proofs of the Main Results

A.1 Some lemmas

We first state a basic inequality, which can be viewed as an extension of Fact 5.1 of Chaudhuri

(1992) to the multivariate case. It plays an important role in proving the main results.

Fact A.1. Let Z1, Z2, . . ., Zn be a sequence of d-dimensional i.i.d. random vectors and

p (y1, y2, . . . , ym) be a symmetric d-dimensional kernel such that kp (·)k ≤ b for a positive con-

stant b. Assume that IE [p (Z1, Z2, . . . , Zm)] = 0 and V ar (p (Z1, Z2, . . . , Zm)) = (σij)d×d.
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Define the U-statistic as

Un =
1

Cm
n

X
1≤i1,i2,...,im≤n

p (Zi1 , Zi2 , . . . , Zim) .

Then, for each t > 0, it holds that

IP {kUnk > t} ≤ 2d exp
(
−

£
n
m

¤
t2

2d2max1≤l≤d σll + 2dbt/3

)
.

Proof. Let el (l = 1, 2, . . . , d) be the d-dimensional unit vector in which the l-th component is

equal to 1. According to Fact 5.1 of Chaudhuri (1992), it holds that

IP {kUnk > t} ≤
dX
l=1

IP

½¯̄
eTl Un

¯̄
>

t

d

¾
≤ 2

dX
l=1

exp

(
−

£
n
m

¤ ¡
t
d

¢2
2 · σll + 2b · td/3

)
,

which results in Fact A.1.

The proof of Theorem 2.1 is based on the following sequence of lemmas. These lemmas them-

selves are also of interest to characterize the properties of the estimated geometric conditional

quantile Q̂n(u|x). We first show that Q̂n(u|x) is bounded asymptotically by some constant with
probability one.

Lemma A.2. Under Condition 4, ii) and iii) of Condition 2 and Condition 3, there exists a

constant K1 = K1 (u) > 0 such that°°°Q̂n(u|x)−Q(u|x)
°°° ≤ K1

holds almost surely for all sufficiently large n.

Proof. First, we can choose some suitable constant K∗
1 > 0 such that

IP

µ
kY k > K∗

1

4
|X = x

¶
≤ 1− kuk
3 + kuk . (A.1)

From Theorem 4.2 of Devroye (1981), if we view the regression function there as the conditional

probability P
³
kY k > K∗1

4 |X = x
´
, then the following asymptotic relationship

nX
i=1

wn,ilI kYik>K∗1
4

→ P

µ
kY k > K∗

1

4
|X = x

¶
(A.2)

holds with probability one. It is easy to see that¯̄̄̄
¯
nX
i=1

[Φ (u, Yi + θ −Q(u|x))−Φ (u, Yi −Q(u|x))]K
µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k>K∗1

4

¯̄̄̄
¯

≤ (1 + kuk) kθk
nX
i=1

K

µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k>K∗1

4

. (A.3)
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If Φ (u, θ) > K∗
1 , then it holds that

nX
i=1

[Φ (u, Yi + θ −Q(u|x))−Φ (u, Yi −Q(u|x))]K
µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k≤K∗1

4

>
Φ (u, θ)

2

nX
i=1

K

µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k≤K∗1

4

≥ (1− kuk) kθk
2

nX
i=1

K

µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k≤K∗1

4

. (A.4)

From (A.3) and (A.4) above, we know that, if Φ (u, θ) > K∗
1 , it holds that

nX
i=1

(Φ (u, Yi + θ −Q(u|x))−Φ (u, Yi −Q(u|x)))K
µ
x−Xi

hn

¶

> − (1 + kuk) kθk
nX
i=1

K

µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k>K∗1

4

+
(1− kuk) kθk

2

nX
i=1

K

µ
x−Xi

hn

¶
lI
kYi−Q(u|x)k≤K∗1

4

=
(3 + kuk) kθk

2

nX
i=1

K

µ
x−Xi

hn

¶Ã
1− kuk
3 + kuk −

nX
i=1

wn,ilI kYi−Q(u|x)k>K∗1
4

!
. (A.5)

In view of (A.1) and (A.2), it can be shown that (A.5) is excess zero for all sufficiently large n.

Hence, from the definition of Q̂n(u|x), it holds that

Φ
³
u, Q̂n(u|x)−Q(u|x)

´
≤ K∗

1 .

Noting that kuk < 1, we obtain that Lemma A.2 holds.

Further, we aim to prove that the u-th geometric conditional quantile Q̂n(u|x) converges at
a special rate stated in Lemma A.7 below. In doing so, we now show the following four lemmas.

In the sequel, for simplicity of presentation, let Q(u|x) = (q1, . . . , qd)T and [nα] is the greatest
integer less than nα for some constant α > 0. Also, C > 0 denotes a constant which may take

different values in different places.

Lemma A.3. Assume that Conditions 2 to 4 and (2.1) hold. For some constant α > 0, let Bn

be the subset of IRd defined as

Bn =
n
(v1 − q1, . . . , vd − qd)

T | [nα] (vi − qi) = an integer

and |vi − qi| ≤ K1 for all 1 ≤ i ≤ d} ,

12



then there exists a constant K2 > 0 such that

max
θ∈Bn

1

nIEK
³
x−X
hn

´ °°°°°
nX
i=1

·
K

µ
x−Xi

hn

¶
U (Yi − θ −Q(u|x))

−IEK
µ
x−Xi

hn

¶
U (Yi − θ −Q(u|x))

¸°°°° ≤ K2

µ
logn

nhsn

¶ 1
2

(A.6)

holds almost surely for all sufficiently large n.

Proof. From the definition of Bn, for all sufficiently large n, the number of the elements in it

is less than γ1n
αd for some constant γ1 which is related to the constant K1. It can be shown

directly that

IEK

µ
x−X

hn

¶
∼ hsng (x) and IEK2

µ
x−X

hn

¶
∼ hsng (x)

Z
K2 (t) dt. (A.7)

Let E1n be the event defined in (A.6). According to Fact A.1 and (A.7), for some constant

C = C (x), it holds that

IP (Ec
1n) ≤ γ1n

αd · 2d exp

−
n
³
IEK

³
x−X
hn

´
K2

q
logn
nhsn

´2
2d2IEK2

³
x−X
hn

´
+ 2

3d · 2c2 · IEK
³
x−X
hn

´
K2

q
logn
nhsn


≤ 2dγ1 exp

©¡
αd−CK2

2

¢
logn

ª
.

Through choosing a suitable constant K2 = K2(x), we can obtain
P∞

n=1 IP (E
c
n) <∞. Accord-

ingly, by the Borel-Cantelli lemma, (A.6) holds.

Lemma A.4. It holds almost surely that°°°°°
nX
i=1

wn,i

³
U
³
Yi − Q̂n(u|x)

´
+ u

´°°°°° ≤ max
1≤i≤n

wn,i. (A.8)

Proof. Analogous to the proof of Theorem 2.1.2 of Chaudhuri (1996), for any h ∈ IRd, by the

definition of Q̂n(u|x), it holds thatX
1≤i≤n,Yi 6=Q̂n(u|x)

wn,i

nD
U
³
Yi − Q̂n(u|x)

´
, h
E
+ hu, hi

o
+

X
1≤i≤n,Yi=Q̂n(u|x)

wn,i {khk+ hu, hi} ≥ 0.

Because (Xi, Yi) (i = 1, 2, . . . , n) are absolute continuous random variables, Yi (i = 1, 2, . . . , n)

do not equal to each other almost surely. Then, by the property that h is arbitrary in IRd, (A.8)

holds.
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Lemma A.5. Under Conditions 2 to 4, there exists constant K3 > 0 such that

max
θ∈Bn

¯̄̄̄
¯̄ 1

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶
lI(kYi−θ−Q(u|x)k≤n−β)

¯̄̄̄
¯̄ ≤ K3

logn

nhsn
(A.9)

holds almost surely for all sufficiently large n and β > γ
d .

Proof. For any θ in Bn, noting the bound of the supported set of K (·) and i) of Condition 2,
we obtain that

IEK

µ
x−X

hn

¶
lI(kY−θ−Q(u|x)k≤n−β)

= hsn

Z Z
K (z) lI(ky−θ−Q(u|x)k≤n−β)f (x− hnz, y) dzdy

≤ Chsn

Z
lI(ky−θ−Q(u|x)k≤n−β)dy ≤ Cn−dβhsn. (A.10)

From (A.10), (A.7) and β > γ
d , it is easy to see that

IEK

µ
x−X

hn

¶
lI(kY−θ−Q(u|x)k≤n−β) = o

µ
IEK

µ
x−X

hn

¶
logn

nhsn

¶
. (A.11)

For any θ in Bn, analogous to (A.10), it holds that

var

µ
K

µ
x−Xi

hn

¶
lI(kYi−θ−Q(u|x)k≤n−β)

¶
≤ Cn−dβhsn. (A.12)

Denote the event (A.9) by E2n. From (A.7), (A.11), (A.12) and Bernstein’s inequality (see

Serfling, 1980), we get that

IP (Ec
2n)

≤ 2γ1n
αd exp


−
³
nIEK

³
x−X
hn

´
K3

logn
nhsn

´2
2nvar

³
K
³
x−Xi
hn

´
lI(kYi−θ−Q(u|x)k≤n−β)

´
+ 2
3 · 2c2 · nIEK

³
x−X
hn

´
K3

logn
nhsn


≤ 2γ1 exp {(αd−CK3) logn} .

Analogous to the proof of Lemma A.3, (A.9) holds.

The following Lemma A.6, which may be known somewhere, can be inferred directly from

Bernstein’s inequality, Borel-Cantelli lemma and (A.7).

Lemma A.6. Under Conditions 3, 4 and ii) of Condition 2, it holds thatPn
i=1K

³
x−Xi
hn

´
nIEK

³
x−X
hn

´ − 1 = O

Ãs
logn

nhsn

!
a.s.
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From the lemmas above, we can argue the convergence rate of the estimated u-th geometric

conditional quantile Q̂n(u|x). In the rest of this subsection, the following constants α and β are
restricted to µ

1 +
1

d

¶
γ < β + γ < α <

(1− γ)min(λ1, λ2)

s
. (A.13)

Lemma A.7. Under Conditions 2 to 4 and (2.1), there exists a constant K4 > 0 such that

almost surely
°°°Q̂n(u|x)−Q(u|x)

°°° ≤ K4 (logn/ (nh
s
n))

1/2 for all n sufficiently large.

Proof. Because of the bound of K (·), it can be shown directly that

max
1≤i≤n

K

µ
x−Xi

hn

¶
= o

³p
logn

´
.

Assume that θ∗n is the nearest point to Q̂n(u|x) inBn. Going along the same lines as in Chaudhuri

(1992), in the case of kYi − θ∗n −Q(u|x)k > n−β, because°°°Q̂n(u|x)− θ∗n −Q(u|x)
°°° ≤ γ3n

−α

for some constant γ3 > 0, it holds that°°°U ³Yi − Q̂n(u|x)
´
− U (Yi − θ∗n −Q(u|x))

°°°
≤ 2

°°°Q̂n(u|x)− θ∗n −Q(u|x)
°°° · kYi − θ∗n −Q(u|x)k−1 ≤ 2γ3n−(α−β).

From the two relationships above, Lemma A.6, (A.13), (A.9) and (A.8), for all sufficiently large

n > 0, the following result can be derived almost surely°°°°°° 1

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶
(U (Yi − θ∗n −Q(u|x)) + u)

°°°°°°
≤

°°°°°° 1

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶h
U (Yi − θ∗n −Q(u|x))− U

³
Yi − Q̂n(u|x)

´i°°°°°°
+

1

nIEK
³
x−X
hn

´ °°°°°
nX
i=1

K

µ
x−Xi

hn

¶³
U
³
Yi − Q̂n(u|x)

´
+ u

´°°°°°
≤ 2

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶
lI(kYi−θ∗n−Q(u|x)k≤n−β)

+
1

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶
· 2γ3n−(α−β) +

1

nIEK
³
x−X
hn

´ max
1≤i≤n

K

µ
x−Xi

hn

¶

≤ C
logn

nhsn
. (A.14)
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We now begin to prove that the following asymptotic relationship°°°IEK ³
x−X
hn

´
(U (Y − θ −Q(u|x)) + u)

°°°
IEK

³
x−X
hn

´ ∼ kIE [U (Y − θ −Q(u|x)) + u|X = x]k (A.15)

holds uniformly for θ ∈ Bn. For any θn ∈ Bn, through the variable substitution, Condition 3

and (2.1), we can see that°°°°IEK µ
x−X

hn

¶
(U (Y − θn −Q(u|x)) + u)

−hsng (x) IE [U (Y − θn −Q(u|x)) + u|X = x]k
≤ hsn

°°°°Z Z
K (z) [U (y − θn −Q(u|x)) + u] [f (x− hnz, y)− f (x, y)] dzdy

°°°°
≤ 2hsn

Z
K (z)

µZ
|f (x− hnz, y)− f (x, y)| dy

¶
dz = O

³
hs+λ1n

´
. (A.16)

Similar to the proof of Lemma 5.3 of Chaudhuri (1992), from the definition of the u-th geometric

conditional quantile Q(u|x), it is not difficult to show that

IE [U (Y −Q (u|x)) + u|X = x] = 0. (A.17)

Then, by Taylor’s expansion and the equation above, it holds that

hλ1n°°R (U (y − θn −Q(u|x)) + u) f (y|x) dy°°
=

hλ1n
kD1θnk+ o (kθnk) ≤

Chλ1n
kθnk ≤

Chλ1n
n−α

, (A.18)

where the first inequality results from the positive definite matrix D1 and the second from the

definition of Bn. From (A.13), we know that hλ1n /n−α → 0. Again noting that (A.16), (A.18)

and(A.7), then we can see that (A.15) holds. Under Condition 2, by a slight adjustment of the

proof of Lemma 5.3 of Chaudhuri (1992), the corresponding results hold analogously for the

conditional expectation relating to the variable θ on the right of the equivalent relationships

(A.15). Hence, for all n sufficiently large, there exists some constant q > 0 such that°°°IEK ³
x−X
hn

´
(U (Y − θ −Q(u|x)) + u)

°°°
IEK

³
x−X
hn

´ ≥ qtK2 (logn/ (nh
s
n))

1/2

holds for all θ in Bn and kθk ≥ tK2 (logn/ (nh
s
n))

1/2 where t > 0 is a real. Combination of this

and (A.6) results in

min
θ∈Bn

kθk≥tK2(logn/(nhsn))
1/2

°°°°°° 1

nIEK
³
x−X
hn

´ nX
i=1

K

µ
x−Xi

hn

¶
(U (Yi − θ −Q(u|x)) + u)

°°°°°°
≥ (qt− 1)K2

µ
logn

nhsn

¶ 1
2

. (A.19)
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By choosing a suitable t such that qt > 1 and a constant K4 ≥ tK2, Lemma A.7 holds from

(A.19), (A.14), (A.13) and the triangle inequality.

According to Lemma A.7, in the sequel, we redefine Bn under the further restriction that the

norm of each element in it is less than K4 (logn/ (nh
s
n))

1/2. For simplicity, we introduce the

notation Λn (θ) as

Λn (θ) =
1

nIEK
³
x−X
hn

´ nX
i=1

·
K

µ
x−Xi

hn

¶
(U (Yi −Q(u|x))−U (Yi − θ −Q(u|x)))

−IEK
µ
x−Xi

hn

¶
(U (Yi −Q(u|x))− U (Yi − θ −Q(u|x)))

¸
.

The following lemma addresses the convergence rate of Λn (θ), which will be applied to prove

Theorem 2.1.

Lemma A.8. Assume that Conditions 2 to 4 and (2.1) hold. If d ≥ 3, it holds almost surely
that

max
θ∈Bn

kΛn (θ)k = O

µ
logn

nhsn

¶
; (A.20)

if d = 2, then for any 0 < w < 1, it holds with probability one that

max
θ∈Bn

kΛn (θ)k = o

µµ
logn

nhsn

¶w¶
. (A.21)

Proof. Denote by

ξn (θ|x) = IE [(U (Y −Q(u|x))− U (Y − θ −Q(u|x)))
(U (Y −Q(u|x))− U (Y − θ −Q(u|x)))T |X = x

i
.

For simplicity, given a matrix A, diag (A) denotes a diagonal matrix the diagonal elements of

which is the same as A. For any θ in Bn and sufficiently large n it holds that

kdiag (V ar (Λn (θ)))k
≤ nhsn³

nIEK
³
x−X
hn

´´2 µZ K2 (t) dtg (x) kξn (θ|x)k+O
³
hλ1n

´¶
,

where the proof is similar to (A.15) and based on the comparison of the convergence rates

between kξn (θ|x)k and hλ1n . Applying Lemma 5.7 of Chaudhuri (1992), for d ≥ 3, it holds that
kdiag (V ar (Λn (θ)))k = O

³
logn/ (nhsn)

2
´
and for d = 2, it holds that kdiag (V ar (Λn (θ)))k

= o
³
(logn)w / (nhsn)

1+w
´
. From these, recalling Fact A.1, Borel-Cantelli lemma and the proof

of Lemma A.3, we can obtain (A.20) and (A.21) similarly.
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For any θ ∈ IRd, we introduce two notations respectively as

∆n (θ)=
1

IEK
³
x−X
hn

´ ½−IEK µ
x−X

hn

¶
U (Y −Q (u|x))

+IEK

µ
x−X

hn

¶
U (Y − θ −Q (u|x)) + IE

·
K

µ
x−X

hn

¶
P (Y −Q (u|x))

¸
θ

¾
and

∆n (θ|x) = − IE [U (Y −Q (u|x)) |X = x] + IE [U (Y − θ −Q (u|x)) |X = x] +D1θ

= IE [U (Y − θ −Q (u|x)) + u|X = x] +D1θ,

where D1 is already defined in Theorem 2.1.

Lemma A.9. Assume that Conditions 1 to 4 hold. For d ≥ 3, it holds that

sup
kθk≤K4

√
logn/nhsn

k∆n (θ)k = O

µ
logn

nhsn

¶
. (A.22)

For d = 2, it holds that

sup
kθk≤K4

√
logn/nhsn

k∆n (θ)k = o

Ãµ
logn

nhsn

¶ 1+w
2

!
. (A.23)

Proof. Analogous to the previous proof of (A.15), it is not difficult to show that

k∆n (θ)−∆n (θ|x)k ≤ Chmin{λ1,λ2}n (A.24)

holds for sufficiently large n and any θ ∈ Bn. By Taylor’s expansion, (A.17) and Lemma 5.3 of

Chaudhuri (1992) in the case of conditional probability measure, for any θ ∈ Rd, there exists

constant 0 < η < 1 such that

IE [U (Y − θ −Q (u|x) + u) |X = x] = −IE [P (Y − ηθ −Q (u|x)) |X = x] θT .

According to the same argument of Fact 5.8 of Chaudhuri (1992) and using his Lemma 5.7 in the

case of conditional probability measure, we can derive that (A.22) and (A.23) hold when ∆n (θ)

is substituted by ∆n (θ|x) in these two expressions. Then, in view of (A.24) and Condition 4,
both (A.22) and (A.23) hold.

In view of Lemma A.6 and (A.13), the following Lemma 10 can be obtained by the similar

argument as the previous Lemma A.3.

Lemma A.10. Under Conditions 1, 2, 3 and 4, it holds with probability one that°°°°°
nX
i=1

wn,i (U (Yi −Q (u|x)) + u)

°°°°° = O

Ãs
logn

nhsn

!
.
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A.2 Proof of Theorem 2.1

Proof. Recalling Lemmas A.6 and A.10, we get that°°°°°°
nX
i=1

wn,i (U (Yi −Q (u|x)) + u)

Pn
j=1K

³
x−Xj

hn

´
nIEK

³
x−X
hn

´ − 1
°°°°°° = O

µ
logn

nhsn

¶
. (A.25)

Similar to the proof of (A.15), it can be shown that°°°°°°
IEK

³
x−X
hn

´
P (Y −Q (u|x))

IEK
³
x−X
hn

´ − IE [P (Y −Q (u|x)) |X = x]

°°°°°° = O
³
hmin{λ1,λ2}n

´
. (A.26)

Accordingly, by (A.13) and Lemma A.7, it holds that°°°°°°
IEK

³
x−X
hn

´
P (Y −Q (u|x))

IEK
³
x−X
hn

´ − IE [P (Y −Q (u|x)) |X = x]

 θ∗n

°°°°°° = O

µ
logn

nhsn

¶
. (A.27)

Also, from the definitions above, we have the following relationships

nX
i=1

wn,i (U (Yi −Q (u|x)) + u)

= Λn (θ
∗
n) +

Pn
i=1K

³
x−Xi
hn

´
(U (Yi − θ∗n −Q (u|x)) + u)

nIEK
³
x−X
hn

´ −∆n (θ
∗
n)

+

IEK
³
x−X
hn

´
P (Y −Q (u|x))

IEK
³
x−X
hn

´ − IE [P (Y −Q (u|x)) |X = x]

 θ∗n

−
nX
i=1

wn,i (U (Yi −Q (u|x)) + u)

Pn
j=1K

³
x−Xj

hn

´
nIEK

³
x−X
hn

´ − 1


+IE [P (Y −Q (u|x)) |X = x] θ∗n.

Accordingly, from this, Lemma A.8, Lemma A.9, (A.14), (A.25), (A.27), (A.13) and°°°θ∗n − Q̂n (u|x) +Q (u|x)
°°° = O

¡
n−α

¢
,

we know that Theorem 2.1 holds.
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