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A Non-Gaussian Panel Time Series Model for

Estimating and Decomposing Default Risk

Abstract

We model 1981–2002 annual default frequencies for a panel of US firms in different rat-

ing and age classes from the Standard and Poor’s database. The data is decomposed

into a systematic and firm-specific risk component, where the systematic component re-

flects the general economic conditions and default climate. We have to cope with (i) the

shared exposure of each age cohort and rating class to the same systematic risk factor;

(ii) strongly non-Gaussian features of the individual time series; (iii) possible dynamics of

an unobserved common risk factor; (iv) changing default probabilities over the age of the

rating, and (v) missing observations. We propose a non-Gaussian multivariate state space

model that deals with all of these issues simultaneously. The model is estimated using

importance sampling techniques that have been modified to a multivariate setting. We

show in a simulation study that such a multivariate approach improves the performance

of the importance sampler.

Key words: credit risk; multivariate unobserved component models; importance sam-

pling; non-Gaussian state space models.

JEL Codes: C32; G21.

1 Introduction

In this paper we propose a dynamic multivariate, non-Gaussian state space model to decompose

panel time series of cohort and rating specific default hazard rates. In this way we disentangle

differences in firm default behavior due to firm-specific causes from the effects due to macro-

economic conditions. The firm-specific effects may be correlated with observed heterogeneity,

such as proxies for firm age or credit quality (ratings). We include such factors in our model.

The common risk factor in the model is specified as a latent dynamic process and estimated

explicitly. We test for the stability of the common risk factor’s impact over time and across

age classes.

The dynamic modeling of default rates is an important issue in the area of risk management,

see, for example, the overview of Allen and Saunders (2003). First, there is significant empir-

ical evidence that credit rating transition probabilities in general, and default probabilities in

particular, vary over time, see Wilson (1997a,b), Nickell, Perraudin, and Varotto (2000), and

Bangia, Diebold, Kronimus, Schagen, and Schuermann (2002). Specifically, default rates tend
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to co-move with macro-economic conditions. This time variation can have a substantial impact

on required capital buffers needed to cope with on-setting credit losses, see Bangia et al. (2002).

Second, there is an increased liquidity on financial markets for credit risk related products, such

as credit derivatives and asset backed securities (e.g., Collateralized Debt Obligations). This

has led to a shift in the credit risk management process from an almost exclusive focus on

counterparty screening and selection (using for example credit scoring models) at the loan con-

tracting stage to a more active and dynamic management of credit risky portfolios. Dynamic

credit risk management obviously requires adequate models for the dynamic behavior of de-

fault risk. Third, the proposed New Capital Accord (Basel Committee on Bank Supervision

(2004)) allows banks to use their own internal estimates of counterparty default probabilities

for computing capital requirements.1 Dynamic default rate models can then help to predict

these probabilities more accurately over different stages of the business cycle. As a result,

capital buffers may be set more timely and efficiently by banks. In addition, predicted default

probabilities may be closer to their empirical time-varying counterparts, a requirement that is

explicitly tested under the New Capital Accord.

Several approaches have been suggested in the literature for modeling the dynamic behavior

of default risk. Wilson (1997a,b) uses a logistic regression to relate default frequencies to a set

of macro-economic variables. Nickell et al. (2000) and Bangia et al. (2002) compute rating

transition probabilities based on Moody’s or Standard and Poor’s databases after first splitting

their sample in expansion, neutral, and recession periods. For their sample splitting procedure,

they use either observed GDP growth or NBER business cycle classifications, respectively.

In this way, they end up with different default probabilities for different economic regimes.

Formal testing reveals that the differences in probabilities between regimes are in some cases

statistically significant. Kavvathas (2001) and Couderc, Renault, and Scaillet (2003) use a

duration based modeling approach and also conclude that macro-economic variables such as

the term structure of interest rates have a statistically significant impact on default intensities.

The basic framework underlying all of the previous papers is that credit risk is decomposed

into a systematic, economy wide component, and a firm-specific component. The systematic

component is captured by observed macro-economic variables, while the firm-specific compo-

nent is modeled using distributional assumptions. In the present paper, we follow a similar line.

The main difference with previous papers is that we model the systematic risk factor by an

unobserved dynamic component, see Harvey (1989) and Durbin and Koopman (2001). Unob-

1There is a lively debate, also known as the pro-cyclicality debate, on whether risk sensitive weighting creates

a feedback loop to the evolution of the business cycle itself, see Allen and Saunders (2003). For example, during

downturns of the economy, default probabilities increase, thus increasing credit risk. This, in turn, results in

higher capital requirements, making it more difficult for the bank to extend credit. The resulting credit rationing

may increase default rates and credit risk even further, thus amplifying the speed and depth of the recession.

We do not discuss this issue further in the present paper.
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served components models may have an advantage over models based on observables. There is

little theory as to which observables would be optimal or even correct as a proxy for systematic

credit risk. Though the informal argument in favor of using business cycle indicators to model

credit cycles is well known, there is both theoretical and empirical evidence that credit cycles

may have their own separate dynamics, see for example Gorton and He (2003) and Koopman

and Lucas (2005). The approach based on unobserved components gets around this issue by

estimating the dynamics of any underlying systematic component directly from the data.

Obtaining data for credit risk analyses is generally a difficult issue, in particular if we are

interested in the dynamic behavior of defaults. To determine the dynamics, the time series

dimension of the data has to be sufficiently long. Internal bank data on defaults are usually

proprietary and have a relatively short history. The closest relevant alternative is formed by

default data obtained from the major rating agencies. Figure 1 shows the data we use in the

present paper. Each sample year we form a new cohort of firms that received their initial rating

in that year. We follow the default performance of each cohort for the next 15 years. This gives

us a multivariate time series process as displayed in Figure 1.

<INSERT FIGURE 1 AROUND HERE>

The series in Figure 1 reveal several complicating factors. First, generally speaking, there is

a similar pattern across all time series, peaking at around 1991 and 2002. This pattern is caused

by common systematic or economy-wide risk factors. Second, there is significant variation across

time series for different cohorts due to firm-specific risk factors. Third, the common risk factor

appears to be correlated over time, as it should be if it is in some way related to business cycle

conditions. Fourth, given the level of detail in the data, the default rate for specific cohorts in

particular years may be zero. This problem is more pronounced for high ratings. The occurrence

of zeros precludes the use of (inverse) logistic or probit type transformations for modeling the

time series as in, for example, Wilson (1997a,b), and Koopman, Lucas, and Klaassen (2005).

Finally, the cohort structure of the data intrinsically creates missing observations in the initial

years of the samples. For example, in the first sample year we do not observe default hazard

rates of the cohorts that started 2 years earlier or more.

To deal with all of these intricate econometric issues simultaneously is not straightforward.

The main contribution of the present paper is to show that the problems can be overcome

both conceptually and computationally by adopting a multivariate non-Gaussian time series

perspective in state space representation. We apply this methodology empirically to the data

shown in Figure 1. By the explicit multivariate nature of the model, we can introduce both

firm-specific and common risk factors in a unified way. The general state space representation

allows us to directly include a dynamic structure for the systematic risk factor. Moreover, by

explicitly accounting for the discrete, non-Gaussian character of the default process, we can

deal with the occurrence of zeros and small default frequencies in a natural way. Also the

occurrence of missing observations is conveniently dealt with in the non-Gaussian state space
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representation and the associated filtering and smoothing algorithms.

The generality of the model permits the development of tests for hypotheses related to aging

effects in default probabilities as in Asquith, Mullins, and Wolff (1989), Altman (1983,1989),

and Altman and Suggitt (2000), default rate dynamics as in Nickell et al. (2000), Bangia et al.

(2002), Koopman and Lucas (2005) and Koopman et al. (2005), and aging effects in default

correlations over longer holding periods, see in De Servigny and Renault (2003). Our empirical

results in Section 4 show that allowing for age effects and sticky common factor risk dynamics

is empirically relevant.

The generality of the model comes at the cost of complications for likelihood evaluation.

In particular, due to the presence of both firm-specific stochastic factors and a dynamic unob-

served systematic risk factor, we have to resort to Monte Carlo maximum likelihood methods

for parameter estimation. Convenient and flexible algorithms and software to perform such

computations, however, are nowadays readily available, see Shephard and Pitt (1997), Durbin

and Koopman (1997, 2001) and other references given in Section 2. However, in this paper we

develop the methodology further for a likelihood-based analysis of a multivariate non-Gaussian

time series with possibly panel structure.

McNeil and Wendin (2004) in a recent paper build on a similar framework of generalized

mixed linear models. Both their method of estimation and the nature of their empirical applica-

tion, however, are substantially different from this paper. With regard to estimation, Wendin

and McNeil use a Bayesian estimation perspective. By contrast, we implement a simulated

maximum likelihood methodology based on efficient importance samplers. As mentioned be-

fore, this allows us to address multiple intricate econometric issues simultaneously, including

missing observations. It is less clear how the latter issue is or could be dealt with naturally

in the framework of McNeil and Wendin (2004). Note that missing values are an important

ingredient of our empirical data shown in Figure 1. With regard to the empirical application,

we test for a much richer set of model dynamics and parameter shifts than in the Wendin and

McNeil paper. Our empirical results differ in that we find much more persistent dynamics of

the common risk factor.

The paper is set up as follows. In section 2 we present the economic and the statistical

model. The statistical properties of the model and the performance of the estimation proce-

dures are studied in a thorough simulation experiment in Section 3. Section 4 presents our

empirical estimation results. Section 5 concludes, while the Appendix gathers the details on

the estimation and smoothing methodology used in this paper.
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2 Modeling defaults

2.1 The economic model

The basic structure of our model is derived from the standard decomposition of default risk

into systematic and firm-specific components, see the seminal framework of Gupton, Finger,

and Bhatia (1997), which also underlies the new regulatory framework of the Basel Committee

on Bank Supervision (2004). We consider a surplus variable Sit for each firm i at time t for

i = 1, . . . , N and t = 1, . . . , T . Default occurs if the surplus variable falls below a default

threshold cit. The default threshold may be firm-specific due to differences in credit quality

between firms, as well as time varying because of fluctuating macroeconomic conditions. To

allow for dependence among the different firms, we assume that the surplus variable Sit is driven

by a systematic risk factor ft and a firm-specific risk factor xit,

Sit = ρift +
√

1 − ρ2
i xit, i = 1, . . . , N, t = 1, . . . , T, (1)

compare Gupton et al. (1997). The firm-specific factors xit are serially and cross-sectionally

independent conditional on the systematic factor ft. The parameter ρi in (1) determines the

relative weights of the systematic and firm-specific risk component in the default mechanism.

Its value is strictly between 0 and 1. For ρi = 0, default is entirely triggered by firm-specific

factors. By contrast, for ρi = 1, default is completely driven by systematic risk. The weighting

scheme in (1) is derived from Gupton et al. (1997) and is needed to ensure identification of the

final model below. Identification is an issue, because Sit is not observed directly. For the same

reasons it is assumed that the variances of ft and xit need to be restricted. For example, in

the well-known CreditMetrics model for credit risk management, both ft and xit are assumed

to be standard normally distributed. Note that if the variances of ft and xit are unity, the

correlation between Sit and Si′t for i 6= i′ equals ρiρi′ , or ρ2
i for homogeneous entities ρi = ρi′ .

As is common in the literature, we refer to the parameter ρ2
i as the asset correlation.

Instead of focusing on individual defaults, we concentrate on the aggregate default level

within a cohort of firms that were initially rated in a particular year. A cohort is indicated by

an index j, indicating the year in which the cohort started, where ji is the cohort index for firm

i. These cohorts are observed for different initial rating classes. Rating classes are indicated

by the index s, where s represents the credit quality label assigned by the rating agency at

the time when the firm was rated for the first time. The initial rating of firm i is denoted

by si. Model (1) has too many parameters for the data at hand, see Figure 1. To reduce

the number of parameters, we impose the following restrictions. First, we restrict the asset

correlation parameter ρ2
i to be the same within a rating class, i.e., ρ2

i = ρ̄2
si
. This restriction is

usually imposed in empirical work on defaults due to the sparse nature of data, see for example

Gordy (2000), Dietsch and Petey (2004) and Cowan and Cowan (2004). Second, we restrict the

default thresholds ci to depend only on the rating class s and the time since initial rating t− j,
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i.e., ci = c̄si,t−ji
. Dependence on the rating class is standard in credit risk research, as default

probabilities vary significantly between rating classes, see for example Gupton, Finger, and

Bhatia (1997). We also allow for age dependent default probabilities, where age is interpreted

as the time since the company was rated for the first time. The inclusion of age effects in

default probabilities is important, see for example Asquith, Mullins, and Wolff (1989), Altman

(1983,1989), and Altman and Suggitt (2000). In particular, bankruptcy rates may be higher

during the initial stages of a firm’s life. By allowing the default threshold to vary with t − j,

we can test explicitly for the existence of age effects in our data. It should be kept in mind,

however, that t − j is only a proxy for the actual age of the issuer. A firm can be founded a

long time before the firm receives its initial rating.

Given the above restrictions, we can proceed to specify the economic model. Let ksjt denote

the number of firms of rating class s and cohort j still alive at the start of period t, and let

ysjt denote the number of defaulting firms in the tth period. Then ysjt can be regarded as a

realization of a binomial distribution conditional on the state of the systematic risk factor ft,

i.e.,

ysjt|ft ∼ Binomial (ksjt, πsjt) , s = 1, . . . , S, j = 1, . . . , J, t = 1, . . . , T, (2)

where πsjt is the conditional probability of default. From (1) and the restrictions imposed, it

follows that

πsjt = Pr

(
xit ≤

c̄s,t−j − ρ̄sft√
1 − ρ̄2

s

)
= F

(
c̄s,t−j − ρ̄sft√

1 − ρ̄2
s

)
(3)

where F (·) is a cumulative distribution function of the firm-specific risk factor. The default

probability can now vary between initial rating categories s, age values t− j, and stages of the

economy ft. The economic process ft can evolve slowly over time. Given that we have annual

data for roughly a 20-year time span, we assume that ft follows an autoregressive process of

order one,

ft = φft−1 +
√

1 − φ2ηt, (4)

where ηt is standard normal and with φ ∈ [0, 1]. Extensions to more general processes for ft is

straightforward.2 Note that the process ft is the same across ratings and cohorts. We can thus

use information from different rating and cohort default frequencies to improve our estimates of

current systematic risk conditions. The parameterization in (4) imposes a unit (unconditional)

variance restriction on ft, because the variance of ηt and the asset correlation ρ̄2
s cannot be

identified simultaneously.

2.2 The statistical model

The unknown parameters of the model in Section 2.1 are φ, c̄s,t−j and ρ̄s for s = 1, . . . , S and

t − j = 0, . . . , T − 1. To estimate the parameters and to measure the systematic risk factor ft

2In the empirical application, for example, we also perform a robustness check using an AR(2).
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(based on the other parameter estimates), we develop a statistical model that corresponds to the

economic model and that allows for the numerical maximization of the likelihood function. The

statistical model also provides the means for estimating the unobserved autoregressive process ft

(signal extraction). We should note that standard linear estimation methods cannot be applied

since the model is non-Gaussian and depends on a dynamic latent process ft. Monte Carlo

simulation techniques are carefully designed and employed to carry out the task of estimation

in a computationally efficient way. This is a challenging task since the dimensions of the

integrals involved are high. In the empirical section we consider a set of models introduced in

Section 2.1 with S = 2, J = 15 and T = 21 resulting in 21 observations of a 30 × 1 vector.

Computations with dimensions up to 60 also proved computationally very feasible.

We start with (2) and consider the conditional log-density function

log p(ysjt|πsjt) = ysjt{log πsjt − log(1 − πsjt)} + ksjt log(1 − πsjt) + log

(
ksjt

ysjt

)
, (5)

with ysjt = 0, . . . , ksjt. As the probability πsjt is bounded between zero and one, we introduce

the logit transformation

θsjt = log{πsjt / (1 − πsjt)} (6)

such that F (·) in (3) is effectively the logistic distribution. This leads to the following convenient

expression for the log-density of ysjt,

log p(ysjt|θsjt) = ysjtθsjt − ksjt log(1 + exp(θsjt)) + log

(
ksjt

ysjt

)
, (7)

from which it follows immediately that the binomial density belongs to the exponential family.

The model for the signal θsjt is specified as

θsjt = λs,t−j − βsft, ft = φft−1 +
√

1 − φ2ηt, (8)

where ft is the systematic risk factor in the surplus variable Sit in (1). Equation (8) can be

related to the model parameters in Section 2.1 by

ρ̄2
s = β2

s / (1 + β2
s ), c̄s,t−j = λs,t−j

/√
1 + β2

s . (9)

The unobserved, latent process ft is modeled by the stationary autoregressive (AR) process

(5). Other stationary and non-stationary processes for ft can be considered in this context as

well.

The multivariate defaults model can be represented as a non-Gaussian panel state space

model with observation equation

ysjt ∼ p(ysjt|θsjt) = Binomial (ksjt, πsjt) , (10)
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where πsjt = (1 + exp(−θsjt))
−1 and θsjt is given by (8). The dynamic latent variable ft and the

fixed effects λs,t−j are placed in a so-called state vector αt that can be modeled by the linear

time series process

αt+1 = Ttαt + Rtξt, ξt ∼ NID(0, Qt), (11)

for t = 1, . . . , T with α1 ∼ N(a, P ). The vector a and the matrices Tt, Rt, Qt and P are fixed

and known matrices for t = 1, . . . , T . The signal is then given by

θsjt = Zsjtαt, (12)

where Zsjt is a deterministic selection vector for s = 1, . . . , S, j = 1, . . . , J and t = 1, . . . , T .

For example, for S = 1 and each cohort followed for 15 years, we set αt = (λ1,1, . . . , λ1,15, ft)
′,

and obtain Qt = I16,

Tt =

(
I15 0

0 φ

)
, Rt =

(
0 0

0
√

1 − φ2

)
, (Z ′

1,1,t, . . . , Z
′
1,15,t)

′ = (I15,−β1ι),

with ι a column vector of ones.

The joint model (10) and (11) is a special case of a nonlinear and non-Gaussian state space

model as discussed in part II of Durbin and Koopman (2001). We should note that fixed

effects can be part of the state vector αt and they can be estimated simultaneously with the

unobservable ft. The estimation of the state vector with λs,t−j and ft is discussed in section

2.4. In the next section we focus on the estimation of the parameters φ and βs for s = 1, . . . , S

by Monte Carlo maximum likelihood.

2.3 Importance sampling estimation

Importance sampling techniques are used for various purposes in the statistical and econometric

literature, see, for example, Kloek and Van Dijk (1978) and Geweke (1989). Recently, these

techniques are also considered for the estimation of nonlinear and non-Gaussian time series

models. Different variants of importance sampling for time series models have been devel-

oped, for example, see Danielsson and Richard (1993), Shephard and Pitt (1997) and Durbin

and Koopman (1997). We follow the approach of Durbin and Koopman (2001, Part II). The

Appendix explores this methodology for an univariate binomial time series model. In this sec-

tion we generalize this methodology for the multivariate (panel) binomial time series model

discussed in subsection 2.2.

Consider model (10) and (11) for which the likelihood function is given by

p(y) =
∏

s,j

p(ysj1, . . . , ysjT ) =
∏

s,j

∫ { T∏

t=1

p(ysjt|α)

}
p(α) dα

=

∫ { T∏

t=1

∏

s,j

p(ysjt|αt)

}
p(α) dα (13)
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where T is the time series dimension and α denotes (α′
1, . . . , α

′
T )′. It follows from (12) that θsjt

is a linear function of αt and therefore p(ysjt|αt) = p(ysjt|θsjt) is given by (7). An analytical

expression for the high dimensional integral in (13) is not available in closed form. We therefore

rely on numerical techniques for the evaluation of (13). Here we approximate the likelihood

function by Monte Carlo integration based on efficient sampling methods.

In the Appendix the details of importance sampling for a univariate binomial time series

model is presented. We adopt this approach below but extend the methodology for a multivari-

ate panel of binomial time series. Importance sampling requires a linear Gaussian approximat-

ing model with corresponding density pG(y, α) for which it holds that pG(y, α) = pG(y|α)p(α)

since p(α) ≡ pG(α). On the basis of the linear Gaussian model we simulate α conditional on

y using a simulation smoothing algorithm. This is a computationally efficient way to sample

from pG(α|y). In the case of the multivariate model of subsection 2.2, a linear Gaussian model

should be considered for all observations, that is y = (y111, . . . , ySJT )′. The obvious multivariate

extension of the linear Gaussian “approximating” model (25) of the Appendix is given by

ỹsjt = θsjt + usjt, usjt ∼ NID(0, Hsjt), s = 1, . . . , S, j = 1, . . . , J, t = 1, . . . , T, (14)

with θsjt = Zsjtαt and where the general model for αt is given by (11). The variables ỹsjt and

Hsjt are functions of ysjt and the mode of state vector αt, that is

ỹsjt = θsjt + Hsjtysjt − (1 + exp θsjt), Hsjt = (1 + exp(θsjt))
2 exp−θsjt. (15)

where θsjt = Zsjtαt is replaced by its mode. The estimation of the mode is described in the

Appendix and is based on linearization and maximization. The process consists of iteratively

evaluating the conditional mean of αt for the model (14) with ỹsjt and Hsjt given by (15) but

with αt replaced by the current guess of its mode. The conditional mean of αt is computed by the

multivariate version of the Kalman filter and smoothing algorithm applied to the multivariate

linear Gaussian time series model

ỹ∗
t = Z∗

t αt + u∗
t , u∗

t ∼ N(0, H∗
t ), (16)

where ỹ∗
t and u∗

t are stacked elements (column-wise) ỹsjt and usjt, respectively, for the indices

s and j, while Z∗
t and H∗

t are diagonal matrices with the diagonal elements Zsjt and Hsjt,

respectively. A computationally efficient implementation of the Kalman filter and smoothing

algorithm is used to handle the high-dimensionality of ỹ∗
t ’s in large panels, see Durbin and

Koopman (2001, section 6.3). The resulting smoothed estimate of αt from model (16) is taken

as the new guess of the mode. The iterative process is initialized with an appropriate starting

value for the mode. When the iterative process has converged, we adopt the model (14) as the

basis for importance sampling, where (15) is evaluated at the mode. In this case we effectively

sample αt around its mode and with a curvature implied by model (14). The importance density

is therefore pG(αt|y) for t = 1, . . . , n.
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The likelihood function (13) is equivalent to

p(y) =

∫ { T∏

t=1

∏

s,j

p(ysjt|αt)

}
p(α)

pG(α|y)
pG(α|y) dα. (17)

We construct the Monte Carlo estimator of the likelihood function by

p̃(y) =
1

M

M∑

m=1

{
T∏

t=1

∏

s,j

p(ysjt|αm
t )

}
p(αm)

pG(αm|y)
, with αm =




αm
1
...

αm
T


 , (18)

where M is the number of Monte Carlo simulations and αm
τ is the mth simulated path based on

the importance sampler pG(ατ |y). These simulations are computed by the simulation smoother

algorithm of Durbin and Koopman (2002). The Monte Carlo estimator can be simplified to

p̃(y) =
pG(y)

M

M∑

m=1

T∏

t=1

w(αm
t ), where w(αt) =

∏

s,j

p(ysjt|αt)

pG(ysjt|αt)
, (19)

since pG(α|y) = pG(y)pG(y|α)p(α) and pG(y|α) =
∏

t

∏
s,j pG(ysjt|αt). Further note that pG(y)

is effectively the Gaussian likelihood function of the approximating linear Gaussian model (16)

that is computed by the Kalman filter via the prediction error decomposition, see Harvey

(1989).

2.4 Estimation of state vector

The state vector αt contains unobserved time series components and fixed effects. In the case

of model (10) and (11). The state vector includes the latent autoregressive process ft and the

constants λs,t−j. The estimator of the state vector at time τ is the expected value of the state

vector ατ conditional on the data vector y and can be expressed as

α̂τ =

∫
ατp(α|y) dα

= p(y)−1

∫
ατp(y|α)p(α) dα

= p(y)−1

∫
ατ

{
T∏

t=1

∏

s,j

p(ysjt|αt)

}
p(α) dα

= pG(y)p(y)−1

∫
ατ

T∏

t=1

w(αt)pG(αt|y) dα (20)

where density p(y) is given by (13) and w(αt) is given by (19). The scaling constant p(y) in

(20) can be estimated by (19) using the importance sampling method of the previous section.

Further, by considering (17) and (19), an obvious importance sampling estimator for α̂τ is given

by

˜̂ατ =
M∑

m=1

αm
τ

T∏

t=1

w(αm
t )

/
M∑

m=1

T∏

t=1

w(αm
t ), s = 1, . . . , n (21)
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where αm
τ is generated from the importance density pG(ατ |y) for τ = 1, . . . , n. The estimation

of the state vector is particularly interesting for the signal extraction of ft and the estimation

of λs,t−j at the maximum likelihood estimate of the parameters.

3 Simulation experiment

3.1 Simulation design

To investigate the performance of the estimation methodology for datasets with a relatively

small time series dimension, we have carried out a simulation study. The focus has been on the

estimation of parameters that determine the dynamic characteristics of the data. We consider

the multivariate Binomial state space model (2) for one rating class s, i.e., S = 1. The number

of cohorts J varies from 1 to 16. For J = 1, the model reduces to a univariate Binomial time

series model with signal θt = λ − βft and autoregressive process ft = φft−1 +
√

1 − φ2ηt. For

J > 1, a panel of J Binomial time series are treated simultaneously for the estimation of the

common coefficient φ. We consider a model where each βj, j = 1, . . . , J , is estimated freely,

and a ‘pooled’ model where βj ≡ β. The constant λ is a scaling parameter and does not

influence the dynamic properties of ysjt, but only its level. Therefore, we do not consider it

further in this simulation study. Finally, the sample sizes considered are T = 20, T = 40 and

T = 80. The sample size T = 20 is of particular interest since this is close to the time series

length considered in our empirical study in the next section. The results for T = 20 are then

contrasted with the results for the larger sample sizes of T = 40 and T = 80.

The true data generation process has parameter values φ = 0.8 and βj ≡ β = 0.6. These

values represent typical parameter values that are found in empirical work, cf. the empirical

results in the next section. During the estimation, φ is restricted to be in the unit interval

by employing a logistic transformation on the parameter. The simulation study is based on

1, 000 panel time series generated from the true model specification and for the three different

sample sizes. The parameter vector is estimated for each generated sample using the importance

sampling methods described in the previous section.

3.2 Simulation results

In Figure 2 the simulation results are presented graphically in a straightforward way. For a

particular model with panel size 1 or 4 and for three different sample sizes T = 20, 40, 80, the

1, 000 estimates of φ and β1 are presented as histograms. For the univariate model (J = 1)

with sample size T = 20, the histogram of φ is bimodal, revealing a peak at the true value

of φ = 0.8, and a second peak at φ = 1.0. The second peak is due to our parameterization

φ ∈ [0, 1] and signals that for very short time series, the estimation procedure sometimes has
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difficulty in distinguishing the correct stationary value of φ = 0.8 from a unit root. The problem

disappears if we extend the length of the sample to T = 40 or T = 80. The distributions for

these sample sizes are unimodal again, peaking at the correct true value of φ = 0.8.

The estimates of β1 are presented in the bottom panel of Figure 2. For the models with

J > 1 with the βjs estimated freely, the histograms for the estimates of βj for j = 2, . . . , J are

very similar to the one shown for β1, and therefore omitted. We observe that for all considered

choices of J and T the histograms are unimodal and that the bias is relatively small. Note

that the Monte Carlo variation of the β estimates reduces mildly when J increases from 1 to 4,

or significantly when the time series length increases. The latter effect is obvious. The former

effect is due to the fact that we obtain multiple measurements of the same underlying signal

ft.

3.3 Diagnostic tests for the behavior of the importance sampler

The method of importance sampling provides effective means for the evaluation of the likelihood

function and the estimation of the latent processes in the model. Geweke (1989) argues that

importance sampling should only be used if the variance of the importance weights exists. In

this case the central limit theorem applies and
√

M(w̄ − w) → N(0, σ2) as M → ∞, where w

represents the ratio in (19), w̄ is the sample mean of a series of M generated weights based on

the importance draws αm, and σ2 is the (theoretical) variance of the stochastic function w.

In the case of non-Gaussian state space models, it is intractable to prove the existence of

σ2 analytically. Monahan (1993) and Koopman and Shephard (2004) have therefore devel-

oped diagnostic statistics for testing the existence of a variance for w empirically. To do this,

we simulate a panel of multi-year defaults using the same set-up and parameter settings as

before. Based on the simulated panel, maximum likelihood estimates of the parameters are ob-

tained. These estimates are used to obtain a large number, say 100, 000, of importance sampling

weights. We then examine the right-hand tail of the empirical distribution of these weights. In

order to investigate the existence of second order moments for the importance sampler that is

used in this paper, we have applied the tests of Monahan (1993) and Koopman and Shephard

(2004) for different sample and panel sizes. In all cases considered, the statistics indicated that

the weight function has a variance.

Further evidence of a regular weighting function is obtained by using some simple extreme

value diagnostics, see Figure 3. These indicate how the performance of the importance sampler

varies with the dimensions of the panel. We approximate the 50 largest tail observations of the

100,000 samples by a Pareto distribution with tail index γ,

1 − F (w) = w−γ, w ≥ 1,

for w = w̃i/w̃0, i = 1, . . . , 50, and w̃i the sorted largest sampling weights, w̃50 ≥ w̃49 ≥ . . . ≥ w̃0.

The Hill (or maximum likelihood) estimator for γ is also presented in Figure 3. The graphs
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in Figure 3 plot the logarithm of one minus the empirical distribution function of w versus

the logarithm of w itself. If the Pareto assumption holds, we would expect a line with slope

coefficient −γ, see Embrechts et al. (1997). For the purpose of reference we also plot the

line for γ = 2 (for which second moments do not exist). We see that the distributions’ tails

are generally steeper than the reference line. This is to be expected given the testing results

mentioned earlier indicating that the variances exist.

<INSERT FIGURE 3 AROUND HERE>

It is interesting to observe the pattern in the weights over the different panel dimensions

J and time series dimensions T . For T = 20 and T = 40, it is clear that the behavior of the

sampling weights improves when the cross sectional dimension J increases. In particular, the

average value of γ̂ increases, indicating lighter tails and the existence of higher order moments

as a result. We may conclude from these graphical displays that by increasing the panel size,

importance sampling becomes even more reliable. This conclusion does not apply to the time

series length. It seems that for shorter samples importance sampling is more stable. However,

we should emphasize that in all cases the diagnostic tests indicate that the variance exists.

Therefore we may conclude that the central limit theorem for the Monte Carlo likelihood

estimator is likely to apply for this class of models.

Overall the Monte Carlo results are satisfactory. The performance of the estimation pro-

cedure becomes more reliable when more observations become available, in particular when

this is due to an increase in the panel dimension. Finally we have shown that the estimation

procedure is reliable even though it strongly depends on many computations and simulations.

4 Empirical results

In this section we apply our model to annual default data from the CreditPro6.2 database of

Standard and Poor’s. For each sample year from 1981 up to 2002, we construct cohorts of

companies that were rated for the first time in that year and received a rating in a specific

rating class. In our current application, we restrict ourselves to the broad classes of investment

grade and subinvestment grade ratings. The methodology allows for extensions to more refined

rating classes in a relatively straightforward manner. After the construction of each cohort,

its default performance is followed over the subsequent 15 years. Note that the model needs

two ingredients for each cohort, namely the number of defaults in a specific year (ysjt) and the

number of companies (in the cohort) at risk during the year (ksjt). The number of companies

at risk decreases over time due to two reasons. First, defaults obviously deplete the cohort size.

Second, ratings may be withdrawn. To account for possible endogeneity biases and strategic

behavior of firms withdrawing their ratings around default, the database records defaults even

after ratings have been withdrawn. A graph of the data was provided in Figure 1.

We estimate a number of different models for each of the separate ratings. As can be seen
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from Figure 1, the data are highly non-Gaussian. There is a significant number of zero values

for the observed hazard rates. This precludes estimation of a dynamic model using an inverse

probability transform of the hazard rates as in Koopman and Lucas (2005) or Koopman, Lucas,

and Klaassen (2005). For example, the investment grade rating has many observed hazard

rates equal to zero. Note that for the investment grade issuers, estimating the dynamics of the

common risk factor is a challenging task given the limited number of defaults. By comparing

the left-hand and right-hand graph in Figure 1, however, it is obvious that we can benefit from

pooling. High default hazard rates for investment and subinvestment grade companies appear

to coincide, giving a clearer signal on the value of the common underlying (macro) default

climate ft. Therefore, we also estimate all models using a system where all cohorts of both

ratings are stacked into a simultaneous system that is subject to a single common risk factor

ft.

For a completely unrestricted estimation of the default thresholds λt−j, at least a few de-

faults are needed for each cohort in order to estimate the thresholds reliably. This difficulty may

become problematic at longer horizons. We solve this problem by smoothing the thresholds

over the different cohorts using a cubic spline structure on the aging effect. For this purpose,

the interpolating spline methodology of Poirier (1976) is adopted. In particular, we put spline

knots at the ages of 1, 3, 7, 11, and 15 years, thus allowing for much flexibility in the term

structure of default probabilities, while at the same time reducing the number of parameters.

The spline coefficients can be put into the state vector in the same way as the original thresh-

olds λt−j. Estimates and standard errors are then obtained through the importance sampling

methodology. The dimensionality of the estimation problem consisting of a non-linear search

over the remaining parameters is then reduced significantly.

The estimation and testing results are presented in Tables 1 through 4. Tables 1 through 3

present the test results for the different model comparisons. Table 4 contains the parameter

estimates and standard errors.

Table 1 shows that default probabilities vary with the age of the rating for different rating

categories and different dynamic specifications for the common risk factor ft. The effect is

shown in Figure 4 for the AR(1) specification. The left-hand graph shows the age effect for

investment grade ratings. Default probabilities show an increasing pattern for roughly the first

10 years. Then they level off and finally decrease. The subinvestment grade ratings displayed

in the right-hand graph also reveal the familiar hump-shaped pattern. Default probabilities

increase during the first 4 years after the firm’s initial rating. Then they sharply decrease up

to a rating age of 8 to 9 years, after which they level off and slightly decrease. The estimated

patterns for the stacked rating categories is very similar and therefore omitted. Note that the

p-values in Table 1 for the investment grade rating are highest. This can be explained by

comparing Figure 1 and 4. The default events for investment grade companies are so scarce

that identifying all spline parameters of the default curve from the available data is difficult.
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Further parsimony could be imposed by reducing the number of spline knots to describe the

aging effects for investment grade companies.

<INSERT TABLE 1 AND FIGURE 4 AROUND HERE>

Given the results from Table 1, all remaining models make use of aging default probabilities.

Table 2 concentrates on the dynamic specification of the common risk component ft. We take

the modeling approach from ‘specific to general’, starting from a model without a common

risk component, and then extending the model specification with a risk factor modeled as an

independent sequence (i.i.d.), an AR(1) process, and an AR(2) process. The table shows that

the estimation results are consistent for the different rating categories. There is clear statistical

evidence for the presence of a common factor. The estimated factor shows persistence over

time, as the i.i.d. specification is clearly rejected under the AR(1) alternative. The evidence for

further dynamics is weaker. All ratings show that the AR(1) can be rejected under the AR(2)

alternative at the 10% level, but not at the 5% level. Given the short time span of the data, it

is not very surprising that it is hard to distinguish between these two dynamic specifications.

This is confirmed by the results of the Monte Carlo study in the previous section. More data in

the time series dimension is needed to answer this question in a satisfactory way. Note that the

stickiness in the common factor process ft characterizes a different data feature than the aging

effect in default probabilities. The former is identified from the time series dimension of the

data, whereas the latter is identified from the cross-sectional data properties across time points.

The current model specification and the Kalman filter methods allow us to disentangle these

different effects in one integrated estimation procedure. Interestingly, the AR(2) parameters

reveal that the factor ft may contain a cyclical component. This is discussed in more detail

after the presentation of the estimation results in Table 4.

<INSERT TABLE 2 AROUND HERE>

We now focus on the final set of tests, checking for increases or decreases in the common

factor loadings βs in (3), either across time or across age. The tests are inspired by the

controversy in the literature on whether default correlations or asset correlations change with

the age of the company, and whether they should change if we predict defaults over longer

horizons. De Servigny and Renault (2003) provide non-parametric estimates based on similar

data as ours showing that default correlations increase with the holding period of the issuer’s

bonds. In contrast to previous papers like De Servigny and Renault (2003) and the references

therein, our model based testing approach explicitly allows for the presence of common factor

dependence with possibly sticky time series dynamics. The test is based on specifying the

common factor loading as βs + ν1s · (t − j) + ν2s · t. An age shift in correlations is then tested

as H0 : ν1s = ν2s = 0 versus the alternative H1 : ν1s 6= 0, ν2s = 0. Similarly, the test for a

time shift in correlations is performed using the same null hypothesis against the alternative

H1 : ν1s = 0, ν2s 6= 0. Table 3 clearly shows that there is no significant evidence in the data for

either type of shift. Note that this test requires much of the available data. Both the time series
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dynamics of ft and the shifts in loadings can only be identified from the time series dimension

of the data, which in our case is only 21 years. A longer sample period would allow us to

obtain a more precise insight into the age change in correlations. Also note that the current

results can still be reconciled with the changing default correlations found by De Servigny and

Renault (2003). This is due to the presence of the AR dynamics of the common risk factor. Our

estimate of β indicates the magnitude of the ‘unconditional’ asset correlations. The conditional,

e.g. one-year, asset correlations, are much smaller, as they should be multiplied by
√

1 − φ2
1.

<INSERT TABLE 3 AROUND HERE>

Table 4 contains the parameter estimates of the different models. The first thing to notice

is that confidence intervals are very large for all parameters. This is due to the limited time

span of the data, and the fact that the parameters displayed in Table 4 are mainly identified

from the time series dimension. Except for the model with time shifts, the estimated factor

loadings βs for the different ratings are stable between the single rating models (I and S) and

the stacked model (IS). As we have already seen, the models with loading shifts over age or

time appear to be overparameterized, resulting in instable parameter estimates. The factor

loadings for investment grade (βI) and subinvestment grade (βS) companies are generally very

close for the current data set.

<INSERT TABLE 4 AROUND HERE>

The first order AR parameter is estimated at around 0.8 to 0.9, indicating strong persis-

tence. This is in line with the persistence generally found in macro-economic time series, but

substantially larger than the value of 0.5 found by McNeil and Wendin (2004). Interestingly,

the AR(2) specification results in an AR polynomial with complex roots. The roots imply a

(stochastic) cyclical behavior with a period of 9 to 10 years, and a persistence parameter of 0.8.

The persistence parameter is in line with the size of φ1 for the AR(1) specification. The length

of the cycle is longer than that of typical business cycles, with an average length of 5 to 6 years

for post-war data. Typical business cycle estimates are obtained from filters such as the one

of Baxter and King (1999) and aim to extract business cycle frequencies ranging from 1.5 to 8

years. The period found empirically here is in line with earlier estimates based on a completely

different default data set in Koopman and Lucas (2005) and Koopman et al. (2005). Note,

however, that cycle periods have to be interpreted with care given the span of the data.

To conclude the empirical section, we present estimates of the common risk factor ft using

the Monte Carlo method for estimating the state vector, see Section 2.4. The smoothed esti-

mates of ft are presented in Figure 5. First we note that the estimates of ft are very close across

ratings. This is in line with the interpretation of ft as a common risk component affecting all

companies in an economy. The dynamic pattern of ft based on the subinvestment grade rating

is slightly more subtle than the one based on the investment grade companies only. This can

be understood from the raw data in Figure 1. As the yearly number of defaults is much smaller

for companies that are initially rated as investment grade, the investment grade companies can
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only indicate roughly whether the common risk was generally high or low in a specific year.

For subinvestment grade companies, more detailed dynamic patterns can be extracted due to

the fact that default is just a more likely event. In this case, the measurement of the signal

ft is less subject to noise. When the two rating classes are stacked, the estimation procedure

automatically extracts most information from the subinvestment grade rating. The more noisy

signals from the investment grade data are then used to fine-tune the estimates of the signal

ft in the ‘clear’ peaks and troughs. From Figure 5 we also learn that the AR(2) specification

finds some support in the data. The pattern of ft exhibits some cyclical behavior. However,

since the sample period only covers about 1.5 cycles, it is hard to find statistically significant

evidence for cyclical behavior of the signal ft.

<INSERT FIGURE 5 AROUND HERE>

5 Conclusions

In this paper we specified and implemented a non-Gaussian multivariate dynamic model for

defaults. Despite the model’s complicated structure, it can be estimated highly efficiently

using importance sampling techniques and publicly available software (Ox and SsfPack, see

Doornik (1999)). The estimation procedure works well in both a simulation and an empirical

setting. We showed that increasing the cross-section size of a non-Gaussian panel time series

may substantially improve the performance of the importance sampler.

Our empirical model allows for the simultaneous modeling of dynamic common risk factors

and age effects in default probabilities or asset correlations. In this way, it allows for an explicit

testing of hypotheses related to age changes in default correlations, see for example De Servigny

and Renault (2003). For the Standard and Poor’s dataset we found clear age effects in default

probabilities. The evidence for shifts in asset correlations with rating age or with time, however,

was not significant, although the short time span of the data should be taken into account.

The binomial panel time series model and its empirical results constitute a first step towards

a more thorough application of multi-year default modeling in the presence of common dynamic

risk factors. The model is able to pool across initial rating classes in a straightforward way. For

example, we could further disaggregate the default frequencies along a finer rating scale (AAA

– CCC). Preliminary experiments along these lines show that the results shown in this paper

remain broadly unaffected. Other possible extensions of the current set-up include accounting

for observed heterogeneity between firms other than the initial rating and age. Industry, for

example, is a good candidate here. We leave this, however, for further research.
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Appendix

Monte Carlo estimation of binomial time series models

Consider a univariate binomial time series model where the observation yt is the number of

successes in kt independent trials with a probability of success πt, that is

yt ∼ Binomial(kt, πt), t = 1, . . . , T.

Further we assume that πt is correlated over time and is modeled as a function of the dynamic

process ft. For example, the process ft can represent a nonstationary random walk process or a

stationary autoregressive moving average (ARMA) process. The link function between πt and

ft is chosen in such a way that the density function can be formulated as a special case of the

exponential family of density functions. We have

π−1
t = 1 + exp(−θt), with θt = λ − βft,

for t = 1, . . . , T . Note that in the context of this paper, it is convenient to have θt = λ − βft

rather than θt = λ + βft, see subsection 2.2. The binomial log-density function conditional on

the unobserved variable θt, a linear function of ft, is given by

log p(yt|θt) = ytθt − kt log (1 + exp θt) + log

(
kt

yt

)
. (22)

The density p(θ), with θ = (θ1, . . . , θT )′, depends on the dynamic properties of ft but is usually

taken as a Gaussian density. To generalize the specification for the unobservable θt further, we

have

θt = Ztαt, αt+1 = Ttαt + Rtηt, ηt ∼ NID(0, Qt), (23)

for t = 1, . . . , T with α1 ∼ N(a, P ). The vector a and the matrices Tt, Rt, Qt and P are fixed

and known matrices for t = 1, . . . , T . The joint model (22) and (23) is then a special case of a

nonlinear and non-Gaussian state space model as discussed in part II of Durbin and Koopman

(2001).

For this class of models, a so-called closed expression for the density p(y), with y =

(y1, . . . , yT )′, is not available since

p(y) =

∫
p(y, θ) dθ =

∫
p(y|θ)p(θ) dθ, (24)

where p(y|θ) and p(y) refer to different density functions and their product does not reduce to

a convenient expression. We therefore rely on numerical techniques for the evaluation of p(y).

In particular, we follow the importance sampling methods of Shephard and Pitt (1997) and

Durbin and Koopman (1997).
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Importance sampling is based on the simulation of θt given the observations y. The simu-

lations can be used to evaluate the likelihood function and to estimate θt (signal extraction).

When the simulations are from a density conditional on y, the samples are informative with

respect to y and therefore effective for this purpose. For example, a Monte Carlo estimator of

the likelihood function p(y) =
∫

p(y|θ)p(θ) dθ can also be based on the unconditional density,

that is

p̂(y) =
M∑

i=1

p(y|θi), where θi ∼ p(θ).

This simple estimator is poor since many simulations of θ from p(θ) will make no contribution

to p(y|θ) and therefore a very large number of simulations M is needed to obtain only an inac-

curate Monte Carlo estimate p̂(y). Ideally, θ should be simulated from p(θ|y) = p(θ, y)/p(y) =

p(y|θ)p(θ)/p(y). In fact, in this case only one simulation for θ is needed. As it is the case

for (24), a closed expression for density p(θ|y) is usually not available. We therefore need to

find another device from which we can sample θ conditional on y. A convenient choice is to

sample from a Gaussian observation model that depends linearly on θ since the density of a

normal variable conditional on another normal variable is Gaussian. Further, sampling from a

Gaussian density is straightforward. However, the Gaussian density pG(θ|y) should be as close

as possible to p(θ|y). In our search for an appropriate density pG(θ|y), we start with a method

for finding the mode of p(θ|y).

The mode θ̂ of the log-density log p(θ|y) = log p(y|θ) + log p(θ) − log p(y) is the solution of

∂ log p(θ|y)

∂θ
=

∂ log p(y|θ)
∂θ

+
∂ log p(θ)

∂θ
= 0,

which cannot be solved directly for θ. By adopting the arguments in Durbin and Koopman

(2001, §§11.3, 11.4), the mode can be obtained by linearization through the formulation of a

linear Gaussian model and by estimating the mode from this model. The linearization takes

place around a current guess of the mode, say θ̄i, and a new guess of the mode, say θ̄i+1, is

obtained from computing the conditional mean from the linear Gaussian model. Note that the

mean and mode are the same in a Gaussian model. In more detail, we consider the Gaussian

density pG(y|θ) that corresponds to the linear Gaussian model

ỹt = θt + ut, ut ∼ NID(0, Ht), t = 1, . . . , T, (25)

where ỹt and Ht are obtained by the linearization conditions

∂ log pG(y|θ)
∂θ

=
∂ log p(y|θ)

∂θ
,

∂2 log pG(y|θ)
∂θ∂θ′

=
∂2 log p(y|θ)

∂θ∂θ′
.

We note that p(θ) ≡ pG(θ) and therefore the linearization also applies to the first and second

derivatives of the densities p(θ|y) and pG(θ|y) with respect to θ. It follows that ỹt and Ht

depend on θ and for the linearization they are functions of yt and the current guess θ̄i. In the
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case of the binomial density we obtain

ỹt = θt + Htyt − 1 − exp θt, Ht = k−1
t (1 + exp θt)

2 exp(−θt), (26)

for θt = θ̄i
t. Given values for ỹt and Ht, the conditional mean of θt for the Gaussian model (25)

can be computed by the Kalman filter and smoothing algorithm. The resulting estimate of θ is

taken as the new guess of the mode, θ̄i+1. The sequence of new estimates of θ converges to the

mode of p(θ|y). For many different non-Gaussian log-densities, convergence to θ̄t is very quick

and typically takes five to ten iterations.

The model (25) with ỹt and Ht evaluated at the mode θ̄t is referred to as the “approximating”

linear Gaussian model and the corresponding density pG(θ|y) is taken as the importance density.

By generating samples from pG(θ|y) we effectively simulate θ’s at the location of the mode of

p(θ|y) and with a curvature implied by the approximating model. Drawing samples from

pG(θ|y) is based on model (25) and is relatively straightforward given the simulation smoothing

algorithms of de Jong and Shephard (1995) and Durbin and Koopman (2002).

Given a sequence of draws θi ∼ pG(θ|y) for i = 1, . . . ,M , a Monte Carlo estimator of the

likelihood is given by

p̂(y) = M−1

M∑

i=1

p(y|θi)p(θi) / pG(θi|y) = pG(y)M−1

M∑

i=1

p(y|θi) / pG(y|θi),

since pG(θ) = p(θ) when the model for θt is linear Gaussian. In a similar way, we can obtain

estimates of θ by evaluating the conditional mean

θ̄ =

∫
θp(θ|y) dθ = p(y)−1

∫
θp(θ, y) dθ = p(y)−1

∫
θp(y|θ)p(θ) dθ, (27)

where density p(y) is given by (24). The same argumentation as for the Monte Carlo estimator

p̂(y) applies such that the importance sampling estimator of θ̄ is given by

̂̄θ =

∑M

i=1 θi p(y|θi) / pG(y|θi)
∑M

i=1 p(y|θi) / pG(y|θi)
, (28)

where θi is sampled from the importance density pG(θ|y) for i = 1, . . . ,M .
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Table 1: Aging Effects in Default Probabilities

The table contains likelihood ratio tests for the aging effects in default thresholds. The
restricted likelihoods LLR give the likelihood for a model with an age-independent
default threshold. The unrestricted likelihood LLU corresponds to a model with a spline
function for the default thresholds. The spline has 5 knots at ages of 1, 3, 7, 11, and
15 years, and thus has 4 additional parameters per rating class included. The column
ft gives the dynamics of the common risk factor for that model. The column LR is the
likelihood ratio test with degrees of freedom parameter in the df column and significance
in the p-value column.

Rating ft LLR LLU LR df p-value
I.Grade None -458.44 -451.61 13.67 4 0.008
SubI.Grade None -815.95 -756.71 118.47 4 0.000
Stacked None -1274.38 -1208.38 132.00 8 0.000

I.Grade IID -454.22 -448.04 12.36 4 0.015
SubI.Grade IID -711.88 -681.79 60.16 4 0.000
Stacked IID -1157.32 -1122.92 68.80 8 0.000

I.Grade AR1 -449.57 -443.55 12.04 4 0.017
SubI.Grade AR1 -703.27 -674.61 57.32 4 0.000
Stacked AR1 -1148.31 -1115.04 66.55 8 0.000

Table 2: Risk Factor Dynamics

The table contains likelihood ratio tests for the dynamic behavior of the common risk factor ft.
The columns Restr. and Unrestr. provide the dynamic behavior of the common risk factor, ‘none’
meaning that the model does not include a common risk factor. All models include aging effects
for the default thresholds using the splines from the note in Table 1. The LLR and LLU columns
give the likelihood of the restricted and unrestricted model, respectively. The column LR is the
likelihood ratio test with degrees of freedom parameter in the df column and significance in the
p-value column.

Rating Restr. Unrestr. LLR LLU LR df p-value
I.Grade None IID -451.61 -448.04 7.14 1 0.008
SubI.Grade None IID -756.71 -681.79 149.84 1 0.000
Stacked None IID -1208.38 -1122.92 170.91 2 0.000

I.Grade IID AR1 -448.04 -443.55 8.98 1 0.003
SubI.Grade IID AR1 -681.79 -674.61 14.37 1 0.000
Stacked IID AR1 -1122.92 -1115.04 15.77 1 0.000

I.Grade AR1 AR2 -443.55 -441.70 3.69 1 0.055
SubI.Grade AR1 AR2 -674.61 -673.02 3.17 1 0.075
Stacked AR1 AR2 -1115.04 -1113.43 3.21 1 0.073
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Table 3: Age and Time Shifts in Correlations

The table contains likelihood ratio tests for age and time shifts in the correlation
parameters. The column type gives the type of the shift. The shifts are modeled by
allowing the common factor loadings in the model to increase linearly in age and time,
respectively. The common risk factor is modeled by an AR(1) process, and all models
include aging effects for the default thresholds using the splines from the note in Table
1. The LLR and LLU columns give the likelihood of the restricted and unrestricted
model, respectively. The column LR is the likelihood ratio test with degrees of freedom
parameter in the df column and significance in the p-value column.

Rating Type LLR LLU LR df p-value
I.Grade age -443.55 -442.51 2.08 1 0.149
SubI.Grade age -674.61 -674.38 0.46 1 0.499
Stacked age -1115.04 -1113.45 3.17 2 0.205

I.Grade time -443.55 -442.17 2.76 1 0.096
SubI.Grade time -674.61 -674.41 0.41 1 0.522
Stacked time -1115.04 -1114.55 0.97 2 0.616
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Figure 1: Cohort data for default hazard rates

This figure presents time series plots of age cohort specific default hazard rates. Each year, a cohort is formed
of firms that received their initial rating in that specific year. Subsequently, the default performance of this
cohort is followed over the next 15 years.
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Table 4: Estimation results
The table contains the parameter estimates and standard errors of the cohort default model with two ratings.
Each row contains the results for a different model. Rows starting with I, S, or IS, or for investment grade,
subinvestment grade, and stacked investment and subinvestment grade data. The parameters φ1 and φ2 are
the autoregressive parameters for the first and second lag of the latent common risk factor ft, respectively.
The parameters βI and βS are the investment and subinvestment grade loadings to the common risk factor,
respectively. The loadings can increase with age or time. For example, the complete loading on the common
factor for the investment grade firms equals βS + ν1S · (t − j) + ν2S · t. Likelihood values corresponding to
the models can be read from Tables 1 through 3. All models allow for aging effects in default probabilities as
explained in the note of Table 1.

φ1 φ2 βI βS ν1I ν1S ν2I ν2S

IID factor ft

I 0.53
[0.28,1.02]

S 0.54
[0.37,0.79]

IS 0.52 0.55
[0.30,0.91] [0.38,0.80]

AR(1) factor ft

I 0.85 0.69
[-0.35,0.99] [0.19,2.47]

S 0.89 0.82
[-0.64,1.00] [0.11,6.02]

IS 0.89 0.76 0.82
[-0.53,1.00] [0.12,5.04] [0.13,5.26]

AR(2) factor ft

I 1.42 -0.75 0.67
[-1.17,4.01] [-0.97,0.11] [0.33,1.35]

S 1.22 -0.55 0.56
[-1.55,3.99] [-0.88,0.11] [0.32,1.01]

IS 1.25 -0.55 0.54 0.57
[-1.59,4.08] [-0.87,0.11] [0.27,1.10] [0.32,1.03]

AR(1) factor ft and age shift in loadings
I 0.81 1.17 -0.06

[-0.18,0.98] [0.36,3.78] [-0.16,0.04]
S 0.89 0.75 0.01

[-0.63,1.00] [0.10,5.47] [-0.04,0.06]
IS 0.90 1.28 0.73 -0.32 -0.06

[-0.54,1.00] [0.18,9.13] [0.11,4.94] [-0.46,-0.18] [-0.11,-0.01]

AR(1) factor ft and time shift in loadings
I 0.77 0.00 0.06

[0.06,0.96] [0.00,100] [0.01,0.11]
S 0.90 0.53 0.03

[-0.70,1.00] [0.04,7.81] [-0.08,0.14]
IS 0.90 0.18 0.25 -1.41 0.05

[-0.17,1.00] [0.00,100] [0.00,47.2] [-1.53,-1.29] [-0.07,0.17]
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Figure 2: Results of a Monte Carlo simulation study

This figure presents the results of estimating the model parameters based on 1, 000 simulated time series of size
T = 20, T = 40, T = 80 and based on a panel of size J = 1, J = 4. In the middle row (for J = 4, different
loadings βi are estimated for each of the 4 series (the first of which is shown in the middle row of the lower
panel). In the bottom row, estimates are based on pooling the different series by setting βj ≡ β for j = 1, . . . , 4.
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Figure 3: Tail behavior of importance sampling weights

For each time series length (T ) and cross section size of the panel (J), we draw 100,000 importance samples. We
take the 51 largest weights w̃i, i = 0, . . . , 50, sorted in ascending order, and transform them to wi = w̃i/w̃0, i =
1, . . . , 50. Each graph in the figure has on the horizontal axis ln(wi), and plots the pairs (ln(wi), ln(1−(i−0.5)/n).
If the weights wi follow a Pareto distribution F (w) = 1−w−γ , we expect the pairs to lie around a straight line
with slope γ. The Hill estimator (γ̂) of γ is presented in each graph. The line for γ = 2 (2nd moments do not
exist) is plotted as a benchmark.
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Figure 4: Default curves for investment and subinvestment grade

This figure presents the default probabilities of investment grade and subinvestment grade companies as a
function of the age of the rating. The curves presented are (1 + exp(−cs,t−j))

−1, with c̄s,t−j the default
threshold for a company of age t − j and initial rating class s, see (3). The horizontal axis gives the age of the
issuer’s rating.
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Figure 5: Smoothed estimates of the common risk factor ft

The figure contains the smoothed common factor risk ft estimates based on the investment grade data, the
subinvestment grade data, and the investment and subinvestment grade data stacked together, respectively.
The factor ft is modeled as an AR(1) process with parameter estimates as displayed in Table 4.
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