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Abstract

We present a model for hourly electricity load forecasting based on stochastically
time-varying processes that are designed to account for changes in customer be-
haviour and in utility production efficiencies. The model is periodic: it consists of
different equations and different parameters for each hour of the day. Dependence
between the equations is introduced by covariances between disturbances that drive
the time-varying processes. The equations are estimated simultaneously. Our model
consists of components that represent trends, seasons at different levels (yearly,
weekly, daily, special days and holidays), short-term dynamics and weather regres-
sion effects including nonlinear functions for heating effects. The implementation
of our forecasting procedure relies on the multivariate linear Gaussian state space
framework and is applied to national French hourly electricity load. The analy-
sis focuses on two hours, 9 AM and 12 AM, but forecasting results are presented
for all twenty-four hours. Given the time series length of nine years of hourly ob-
servations, many features of our model can be readily estimated including yearly
patterns and their time-varying nature. The empirical analysis involves an out-of-
sample forecasting assessment up to seven days ahead. The one-day ahead forecasts
from fourty-eight bivariate models are compared with twenty-four univariate mod-
els for all hours of the day. We find that the implied forecasting function strongly
depends on the hour of the day.

Key words: Kalman filter; Maximum likelihood estimation; Seemingly Unrelated
Regression Equations.
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1 Introduction

The need for accurate forecasting of electricity load goes from short to long-
term. Short-term forecasting is important because the national grid requires a
balance between produced and consumed electricity at any moment in the day.
Long-term forecasting is relevant for the planning of new electricity utilities.
Inaccurate forecasts have important financial costs. This paper aims to develop
an effective new method for short-term forecasting of hourly electricity loads.

During the past years, many papers have been dedicated to methods and mod-
els for hourly load forecasting. Contributions can be distinguished between
statistical models and exponential smoothing methods, between univariate
models and models with explanatory variables, between linear models and
nonlinear models. Earlier papers have developed both single-equation models
and multiple-equation models with different equations for the different hours of
the day. Both independent multiple-equation models and correlated multiple-
equation models have been specified. The time dependence of hourly loads
has been captured in observation driven VARIMA type models and in para-
meter driven models with unobserved components. In this paper we develop a
forecasting model based on an interpretable decomposition of electricity loads
in a trend effect, time-varying seasonal effects, calendar effects and weather
dependent effects.

Our model is inspired by Ramanathan, Engle, Granger, Vahid-Araghi & Brace
(1997) who built an extensive multiple regression model with separate fore-
casting equations for each hour of the day. Their observation driven model
included calendar effects and weather effects and outperformed a wide range
of alternative models in a forecasting competition. Taking part in the same
competition, Harvey & Koopman (1993) developed an unobserved components
model with time-varying splines to capture the evolution of intradaily seasonal
patterns of hourly electricity loads, thereby integrating the equations for the
different hours of the day. In a model for the New South Wales electricity load
Cottet & Smith (2003) also used a multi-equation approach to capture the
intradaily pattern and developed long and short-term forecast models within
a Bayesian framework, but they assumed a diagonal vector autoregressive
structure for the error terms. In our paper we follow Smith & Kohn (2002)
in allowing cross-correlation between the stochastic terms of the equations for
the different hours of the day.

Our model for the French load includes all well-known features in electricity
consumption, see e.g. the papers in Bunn & Farmer (1985) : different lev-
els of seasonality (yearly, weekly, daily), calendar events effects and weather
dependence, see also Cancelo & Espasa (1996) who built a single equation
model but for daily electricity loads thoroughly investigating the effect of spe-
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cial days and the relationship between electricity and temperature. Bruhns,
Deurveilher & Roy (2005) gave a detailed description of a non-linear forecast-
ing model of French load in use at Electricite de France (EDF), also allowing
for different levels of seasonality and weather dependence. In this paper, we
present a different multiple-equation linear time-varying regression model for
French national hourly electricity load, with one equation for each hour, like
the approach of Ramanathan et al. (1997), and more recently, Soares & Souza
(2006). We do not include periodic seasonal ARIMA components as they are
difficult to interpret from an economic point of view. Instead, like Harvey &
Koopman (1993) we capture the dynamics in a time-varying parameter regres-
sion in order to understand possible causes of changing trends and seasonal
patterns. Pedregal & Young (2006) find periodic parameter changes at differ-
ent frequencies in their analysis of twelve weeks of four-hourly load data in a
dynamic harmonic regression model. As in Young, Pedregal & Tych (1999),
they were unable to identify yearly movements. In addition to changes ac-
cording to the hour of the day we discover a yearly pattern in the effect of
temperature, which we partly model as a nonlinear heating effect.

We do not claim that univariate methods deliver bad forecasts. Structural uni-
variate modelling of hourly demand has been suggested by Martin-Rodriguez
& Caceres-Hernandez (2005), using unobserved component models and splines
to capture the different levels of seasonality in the data. Other authors, like
Soares & Medeiros (2005), prefer to build a model without weather variables,
arguing that availability and accuracy of weather data forecasts can be prob-
lematic. Taylor, De Menezes & McSharry (2006) compared the forecasting
performance of a wide range of univariate time series methods for intradaily
load forecasting. Taylor & McSharry (2007) studied the effectiveness of these
methods for forecasting hourly and halfhourly loads in 10 European coun-
tries in the period May-September 2005 and found the performance of recent
univariate methods quite promising. Taylor & Buizza (2003) exploit different
scenarios in temperature forecasting to estimate its effect on load forecasting
uncertainty. Following Taylor & McSharry (2007) we use a simple univariate
weekly random walk model as a benchmark in our forecast evaluation.

The first aim of our study is to examine the evolution of the effect of ex-
planatory variables over a long period via the time-varying structure of our
model. This evolution may be related to the gradual market penetration and
slowly changing efficiency of electricity utilities, for example for the heating
and cooling effects. These adjustments are also determined by changes in users’
behaviour, for example for the Friday afternoon effect. Such changes are not
independent across the different hours of the day, so we study the different
hourly loads in one joint model allowing for cross-equation correlations in the
innovations. The second modelling aim is to provide accurate short-term fore-
casts, from one day to one week ahead. The interpretation of the time-varying
effects helps us in understanding possible forecast inaccuracies.
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We show that our model fits in the multivariate linear Gaussian state space
models framework. It implies that we can use Kalman filtering and associ-
ated algorithms to estimate the different components of electricity load and
to do short-term forecasting. The model parameters are estimated by likeli-
hood maximisation. The interpretation of the results is consistent with expert
analysis from EDF, French national electricity producer and provider. Ex-
cept for some special thresholds in the temperature effect we confine ourselves
to linear methods, in contrast to Engle, Granger, Rice & Weiss (1986), Liu,
Chen, Liu & Harris (2006), Cottet & Smith (2003) and Hippert, Bunn & Souza
(2005), who consider semiparametric methods and artificial neural networks
to model meteorological effects and seasonal patterns.

The plan of the remainder of this paper is as follows. Section 2 describes the
dataset, Section 3 details the building of the model, describes the construction
of the explanatory variables and relates the model to the linear state space
framework. Section 4 presents the estimation results and interprets the various
time-varying patterns. Section 5 discusses the absolute and relative forecasting
performance. Section 6 concludes.

2 Description of French national hourly electricity loads

The dataset used in this study concerns French national hourly electricity
consumption from September 1, 1995 until August 31, 2004. This hourly time
series is for nine years and consists of 3, 288 daily or 78, 912 hourly observa-
tions. The dataset is compiled by Electricité de France (EDF) and is complete,
that is, no missing observations are present. However, some days are inten-
tionally considered as missing and excluded from the analysis in this study.
On these days, which are known at EDF as EJP (Effacement Jour de Pointe:
Peak Day Withdrawal) days, the load supply is subject to special tariffs. These
financial incentives are introduced to cut heavy consumption. The EJP tariffs
are activated when high levels of consumption and/or when problems with
electricity supply (production) are expected to occur. They can only be set
in place between November and March and for working days only. Clearly,
on these days, the daily load and the hourly load curve are severely affected
and standard models will overestimate electricity demand. Special treatments
for the forecasting of the EJP days are outside the scope of this paper. The
number of EJP days in our dataset is 249, that is 7.5% of the total number of
days.

Different averages of French electricity consumption are presented in Figure 1.
Display (a) shows the monthly averages for the complete sample and it shows
that January consumption is highest and consumption in the holiday month
of August is lowest. The other displays present the hourly averages for (b)
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the complete sample, (c) the winter months and (d) the summer months. In
all cases, the lowest electricity consumption is observed at 5 AM while the
consumption is highest at 13 AM except in the winter months when at 7 PM
the consumption is highest. Apart from the levels of consumption, the intra-
daily electricity load curves in winter and summer are quite similar except in
the early evening hours of 6 – 9 PM when consumption increases during the
winter period only.

Apart from calendar information for holidays and other special days, the
dataset also includes hourly temperature, cloud cover measures and one-day
ahead forecasts of hourly temperature. The source of these data is Meteo
France and they provide the data for different regions in France. Measures of
cloud cover are based on human observations. Forecasts of cloud cover are not
provided. EDF weights the temperature and cloud cover data for the different
regions to construct a national average for hourly average temperature, their
one-day forecasts and cloud cover. The use of weather variables in our fore-
casting model is regarded as crucial at EDF since much heating is generated
by electricity in France. Approximately 28% of the private homes in France
have electric heating.

Figure 2 provides some further graphical insights in our dataset. Display (a)
presents the daily French national electricity consumption at 9 AM for the
sample period of our dataset. The yearly seasonal cycle is clearly visible and a
positive trend is also detectable from the data. These features also appear to
various extents in the other hours of the day. Display (b) presents the hourly
load for the year 2002. In this graph the weekly seasonality of electricity load
becomes apparent as well as the effect of the summer holiday in August and
the effect of the special tariff EJP days. The time series with the last three
weeks of the hourly loads in our dataset, that is from Monday, August 8, 2004
until Sunday, August 29, 2004, is presented in Display (c). The magnitude
of the weekly and daily load curves becomes apparent in this way. The load
decreases during Saturday, Sunday and the night hours of all days in the
week are distinct from each other and from the working day hours generally.
Display (d) presents the well-known non-linear relationship between electricity
load and average national temperature at 9 AM. The break of the regression
curve appears to be at around 15 oC.

3 Model specification and parameter estimation

Denote yt,i as the electricity load at day t and hour i as measured in Megawatt.
The basic model for the electricity loads that we consider in our study is a
seemingly unrelated regression equations (SURE) model where each equation
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represents a particular hour i. The hourly regression equation is given by

yt,i = ft,i + X ′
t,iβt,i + W ′

tγt,i + εt,i εt,i ∼ NID(0, σ2

ε,i), (1)

where ft,i is the trend component, Xt,i is a vector of explanatory variables
that change with day t and hour i whereas Wt is a vector of explanatory
variables that only changes with day t, for t = 1, . . . , n and i = 1, . . . , k with
k typically equal to 24 in the case of hourly data. Examples of variables in
Xt,i are temperature and cloud cover since these variables change with the
hour. Examples of variables in Wt are dummies for day-type and dummies
for holidays, these variables do not change with the hour. We note that (1)
can also be considered for a subset of hourly data so that k can take a value
of 2 when two specific hours are considered. The disturbance (or irregular)
εt,i is a random term with mean zero and variance σ2

i that can be different
for different hours. Irregulars of different hours in the same day can also be
correlated with each other, that is E(εt,iεt,j) 6= 0 for i 6= j = 1, . . . , k. Irregulars
of different days are not correlated, that is E(εt,iεs,j) = 0 for t 6= s = 1, . . . , n
and i, j = 1, . . . , k.

In case of

(a) the trend component ft,i is a deterministic function of time, for example,
ft,i = ai + bit with unknown and fixed regression coefficients ai and bi for
i = 1, . . . , k;

(b) the regression coefficients in vectors βt,i and γt,i are unknown, fixed and
the same for each day, that is βt,i = βi and γt,i = γi, for i = 1, . . . , k;

the SURE system (1) is standard and the estimation of the unknown regression
coefficients can take place using generalised least squares methods. Since the
regression coefficients are different for different hours (equations), we can refer
to the SURE system as a periodic model, periodic in hours.

One focus of our study is the variation of regression coefficients over the days.
The time variation can be explicitly modelled. For example, we can specify
the trend component ft,i as a stochastic function of time, the details are given
below. The regression coefficients in the vectors βt,i and γt,i of (1) become time-
varying when we specify these as random walk coefficients. In the remainder
of this section we will discuss the details of the model that we adopt in our
empirical study.

3.1 Stochastic trend component

The trend component ft,i represents the long-term changes in electricity con-
sumption. A flexible stochastic specification of a time-varying trend compo-
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nent is given by the local linear trend model











ft+1,i = ft,i + gt,i + vt,i, vt,i ∼ NID(0, σ2
v,i), i = 1, . . . , k,

gt+1,i = gt,i + wt,i, wt,i ∼ NID(0, σ2
w,i), t = 1, . . . , n,

(2)

where vt,i and wt,i are mutually and serially uncorrelated Gaussian noise terms
with mean zero and variances σ2

v,i and σ2
w,i, respectively, for i = 1, . . . , k. The

disturbances vt,i and vs,j can only be correlated for i 6= j = 1, . . . , k and
t = s = 1, . . . , n. This correlation is also allowed for wt,i and ws,j. Special cases
of the local linear trend model (2) include the random walk (with σ2

w,i = 0
and g1,i = 0), the random walk with fixed drift (with σ2

w,i = 0 and g1,i 6= 0),
the integrated random walk (with σ2

v,i = 0) and the linear fixed trend (with
σ2

v,i = 0 and σ2
w,i = 0). The local linear trend model has yt,i = ft,i+εt,i but this

specification can be extended with other stochastic components for stationary
(cyclical) processes and time-varying seasonal components. Such models are
referred to as structural time series models or unobserved components time
series models and are discussed at length in Harvey (1989). From this textbook
treatment, we can, for example, learn that the forecasting function of the local
linear trend model (2) is the well-known non-seasonal Holt-Winters method.
The discount coefficients of this forecasting scheme are determined by the
variances of the local linear trend model, σ2

v,i and σ2
w,i.

3.2 Fixed and time-varying regressions for hourly explanatory variables

The hourly explanatory variables in Xt,i concern weather variables that are
based on temperature and cloud cover. In the model of the empirical study
below we include four Xt,i variables of which three are related to temperature
and one is related to cloud cover. The three constructed temperature variables
are designed to approximate the non-linear relationship between electricity
load and temperature into a linear relationship. Denote Tt,i as the national
average temperature in oC at day t and hour i. The first three variables are
based on Tt,i and a smoothed temperature variable T smo

t,i . Smoothed tempera-
ture is computed recursively by an exponentially weighted moving average of
temperature Tt,i of previous hours, that is

T smo
t,i+1 = κT smo

t,i + (1 − κ)Tt,i+1, i = 1, . . . , k − 1,

T smo
t+1,1 = κT smo

t,k−1 + (1 − κ)Tt+1,1, i = k,
(3)

with κ being typically close to 1, for example, 0.98. The smoothed tempera-
ture T smo

t,i is designed to take account of, for example, the physical inertia of
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buildings. The first three variables in Xt,i are constructed by



























X1
t,i = max(0, 15 − Tt,i),

X2
t,i = max(0, 15 − T smo

t,i ), i = 1, . . . , k, t = 1, . . . , n,

X3
t,i = max(0, T smo

t,i − 18),

(4)

where we refer to X1
t,i as the heating-degrees variable, X2

t,i as the smoothed-
heating-degrees variable and X3

t,i as the smoothed-cooling-degrees variable.
The threshold temperatures for heating (15 oC) and cooling (18 oC) have
been fixed at values determined internally at EDF. The last weather variable
used in our model is the cloud cover variable X4

t,i that represents national
cloud cover.

The vector of hourly explanatory variables is therefore

Xt,i =
(

X1
t,i X2

t,i X3
t,i X4

t,i

)′

.

The regression coefficients that determine the total hourly weather effect are
collected in the vector of unknown coefficients

βt,i =
(

β1
t,i β2

t,i β3
t,i β4

t,i

)′

.

A novelty in the modelling of hourly electricity loads is the evolution of these
regression coefficients over time. The time-varying coefficients are modelled by



























βj
t,i = β∗j

t,i + λj
iX

j
t−1,i, j = 1, 2,

β3
t,i = β∗3

t,i ,

β∗j
t+1,i = β∗j

t,i + uj
t,i, j = 1, 2, 3,

(5)

where the disturbance uj
t,i is distributed as NID(0, σ2

uj ,i), is serially uncorre-

lated and can only be correlated with uj
t,m, for t = 1, . . . , n, i 6= m = 1, . . . , k

and j = 1, 2, 3. The coefficient β4
t,i = β4

i for cloud cover is constant (it does not
vary over the days t), for i = 1, . . . , k, because there is no clear reasons why the
effect of cloud cover should change over time. The fixed and unknown regres-
sion coefficient λj

i determines the dependence of the heating regression coeffi-
cient on the temperature of the previous day at the same hour, that is Xj

t−1,i

for j = 1, 2 and i = 1, . . . , k. In this way we introduce a mild nonlinear temper-
ature effect into the model since Xj

t,iβ
j
t,i = Xj

t,iβ
∗j
t,i + λj

iX
j
t,iX

j
t−1,i. In case tem-

perature does not change heavily between days, we have Xj
t,iX

j
t−1,i ≈ (Xj

t,i)
2.

Furthermore, we introduce a yearly periodic dependence in the model. Since a
time series of average temperature has a strong yearly cycle, the coefficient βj

t,i

does also change with the yearly seasons of winter and summer temperatures,
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j = 1, 2. This seasonal dependence of coefficients is also referred to as periodic.
The model is periodic within the day (different coefficients for different hours)
but also within the year (some coefficients depend on a yearly cycle via the
temperature variable). Finally, the regression coefficient of the cooling effect
is time-varying and modelled by a random walk process.

3.3 Fixed and time-varying regressions for daily calendar variables

The vector of explanatory variables that only changes by day (not by hour)
is denoted by Wt and it is mainly concerned with the measurement of yearly,
weekly and daily seasonal effects. With respect to the yearly seasonal effect
in electricity load that is not captured by the temperature effects in Xt,i, we
consider the following Fourier terms as explanatory variables:

as,t = cos
(

τt

2πs

365.25

)

, bs,t = sin
(

τt

2πs

365.25

)

, s = 1, . . . , 4, (6)

where τt is the number of days elapsed since the 1st of January in the year in
which day t falls for t = 1, . . . , n. Moreover, we make a distinction between
weekdays on the one side and weekends/holidays on the other side. For this
purpose, we specify

aWD
s,t , bWD

s,t =











as,t, bs,t, if day t is a weekday;

0, if day t is a weekend;
(7)

and

aWE
s,t , bWE

s,t =











0, if day t is a weekday;

as,t, bs,t, if day t is a weekend.
(8)

As a result, the yearly cycle for electricity load is modelled by 4 Fourier series
that requires 8 coefficients (for the cosine and sine parts) for the weekday
yearly cycle and another 8 coefficients for the weekend yearly cycle. The vari-
ables aWD

s,t , bWD
s,t , aWE

s,t and bWE
s,t for s = 1, 2, 3, 4 are the first 16 explanatory

variables in the vector Wt.

The typical weekdays of Tuesday, Wednesday and Thursdays (if not a holiday)
are taken as the default day effect in the model and, obviously, no explanatory
variable is introduced for this default day to avoid multicollinearity problems.
For the weekly seasonal effect and other calendar effects, we introduce a range
of dummy variables that correspond to different day types and are based on
the operational practices at EDF, see Table 1.

The summer holiday period in France has a pronounced effect on electricity
loads. The load levels decrease heavily in this period since many production
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Table 1
Daily explanatory variables

W
1,...,16
t Fourier series for weekdays and weekends;

Dummy variables for day types:

W 17
t Mondays (if not a holiday or bridge day);

W 18
t Fridays (if not a holiday or bridge day);

W 19
t Saturdays;

W 20
t Sundays;

W 21
t Holiday (Easter Monday, Ascension Day, Whit Monday, May 1st,

May 8th, July 14th, August 15th, November 1st, November 11th,

if not a Saturday or Sunday);

W 22
t December 25th;

W 23
t January 1st;

W 24
t December 24th (if not a bridge day);

W 25
t Bridge day: Monday before a holiday or Friday after a holiday;

Other effects:

W 26
t August weekend trend 1: number of days since end of July;

W 27
t August weekend trend 2: number of days since 2nd half August;

W 28
t Dummy variable to indicate daylight saving period.

facilities are not operating at their full capacities and families live more out-
doors. The load level decrease is gradual and can be characterized as follows.
The differences in load levels between regular weekdays and weekends decrease
progressively during the first half of the summer holiday period while the dif-
ferences increase during the second half of the summer holidays. We model
this effect with the following two variables. The first variable W 26

t is always
zero except in the weekends of the last days of July and the first two weeks of
August, when it equals the number of days since the last Friday in July. The
second variable W 27

t is always zero except in August in weekend-days after
the first two weeks of the month, when it equals the number of days since
the last Friday in the second week of August. The last dummy variable of the
model, W 28

t , is created for the daylight saving period. It distinguishes periods
of winter-time and summer-time.

The values of these 28 calendar variables are collected in the vector

Wt =
(

W 1
t W 2

t . . . W 28
t

)′

.

The unknown regression coefficients for the total calendar effect are in the
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vector

γt,i =
(

γ1
t,i γ2

t,i . . . γ28
t,i

)′

.

We allow all these coefficients to change over time. However, it has been clear
from the beginning of this study that the variables concerned with Christmas,
New Year and daylight saving (W j

t for j = 22, 23, 24, 28) can not be made
time-varying since these variables refer to yearly events and our data set only
spans a limited number of years. We therefore have











γj
t+1,i = γj

t,i + ej
t,i, j = 1, . . . , 21, 25, 26, 27,

γj
t,i = γj

i , j = 22, 23, 24, 28,
(9)

where the disturbance ej
t,i ∼ N(0, σ2

ej ,i) is serially uncorrelated and can only

be correlated with ej
t,m for i 6= m = 1, . . . , k, j = 1, . . . , 21, 25, 26, 27 and

t = 1, . . . , n.

3.4 Vector representation of model with correlated errors

The time-varying regression model (1) can be formulated in vector form. Define
yt = (yt,1, . . . , yt,k)

′ as the vector with hourly electricity loads for day t. The
model for yt is given by

yt = ft + X∗
t βt + W ∗

t γt + εt, εt ∼ NID(0, Σε), (10)

where ft = (ft,1, . . . , ft,k)
′ is the vector of trends as modelled in (2) for

t = 1, . . . , n. The regression effects are represented by the parameter vec-
tors βt and γt with (fixed and time-varying) regression coefficients and the
matrices X∗

t and W ∗
t consisting of k rows with the explanatory variables in

Xt,i (i = 1, . . . , k) and Wt, respectively. The specification of the coefficient
vector βt is implied by (5) and γt is implied by (9). The disturbance vector
εt = (εt,1, . . . , εt,k)

′ is serially uncorrelated. The variance matrix Σε is possibly
a full matrix such that the k equations in (10) can be correlated with each
other. This also applies to the trends in ft and to each time-varying parame-
ter in βt and γt. The disturbance vectors driving these multivariate dynamic
processes have mean zero and full variance matrices. It is natural to assume
that the regression effects for different hours of the day have similar or related
impacts on the electricity loads for these hours. Hence we expect that these
disturbances for different hours are correlated. The same arguments apply to
the trend components. In case k = 24, variance matrices become relatively
large and this obviously leads to many unknown parameters. Therefore, var-
ious restrictions on the variance matrices may need to be imposed when k
is high. In our empirical study below, we will assume that Σε is diagonal.
The hourly periodic model in which we allow disturbances associated with
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the stochastic processes for trend components and/or time-varying regression
coefficients for different hours to be correlated is a novelty in the forecasting
of electricity loads. We discuss estimation and signal extraction next.

3.5 Estimation, signal extraction and forecasting

The multivariate model (10) with the dynamic processes for ft and elements
in βt and γt can be framed in a linear Gaussian state space model as given by

yt = Ztαt + εt, αt+1 = Ttαt + Rtηt, t = 1, . . . , n, (11)

where the vector of hourly electricity loads yt and the disturbance vector εt

are the same as in (10). The state vector αt contains the trend components
(ft,i and gt,i) in (2) and the (partly) time-varying regression coefficients βt,i in
(5) and γt,i in (9). The dynamic processes of the trend components and the
time-varying regression coefficients can be generally represented by the vector
Markov process (or Vector Autoregressive process) for αt in (11) as given by

αt =
(

f ′
t g′

t β ′
t γ′

t λ′

)′

,

where gt = (gt,1, . . . , gt,k)
′ is the vector of slope (or growth) terms associated

with ft,i in (2) and λ is the vector with elements λj
i in (5) for j = 1, 2 and

i = 1, . . . , k. The (partly) time-varying system matrices Zt, Tt and Rt are fixed
and known. For our model (10), we have

Zt =
[

I 0 X∗
t W ∗

t 0

]

, Tt =





























I I 0 0 0

0 I 0 0 0

0 0 I 0 X+
t

0 0 0 I 0

0 0 0 0 I





























,

where the matrix X+
t consists of zeroes and elements in Xj

t,i to capture the

terms λj
iX

j
t,i, for j = 1, 2 and i = 1, . . . , k, in βt of (5). The matrices I are

identity matrices with appropriate but possibly different dimensions. The se-
lection matrix Rt consists of zeros and ones; it links the appropriate elements
of ηt with αt+1 for t = 1, . . . , n. The vector ηt contains the disturbances as-
sociated with the trends, vt,i and wt,i in (2), with ut,i, the innovations for the
time-varying regression coefficients in (5) and with et,i in (9) for i = 1, . . . , k
and t = 1, . . . , n. Since the corresponding disturbances of different hours are
correlated, the variance matrix Var(ηt) is block-diagonal with k × k blocks of
variance matrices.
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The fixed regression coefficients are also placed in the state vector αt. Fixed
elements such as λ in αt have the corresponding rows of Rt in (11) equal
to zero. A more detailed discussion of how linear Gaussian time series mod-
els with regression effects can be formulated in state space is provided by
Durbin & Koopman (2001, Chapter 3). Once the model is placed in state
space form, the Kalman filter is used for predicting the state vector αt and
the associated smoothing algorithms produce estimates of αt based on the
whole sample. We have implemented filtering and smoothing algorithms that
account for unknown (diffuse) initial conditions concerning α1. The Kalman
filter also computes the loglikelihood function that depends on the unknown
fixed parameters in Var(εt) and Var(ηt). The loglikelihood maximization with
respect to the unknown parameters in these variance matrices is based on the
quasi-Newton optimization method and is typically a high-dimensional prob-
lem. We obtain good starting values via the Expectation Maximization (EM)
algorithm, see Shumway & Stoffer (1982) and Koopman (1993) for further
details. Furthermore, quasi-Newton methods rely on the score vector which
can be evaluated numerically or analytically. In our framework, the analytical
score is obtained from a single smoothing algorithm, see Koopman & Shephard
(1992) for further details. We should note that the variance matrices Var(εt)
and Var(ηt) are transformed such that they are always positive semi-definite
and maximization takes place without further constraints.

Once the variance matrices Var(εt) and Var(ηt) are estimated, the Kalman
filter and smoothing algorithms are used for signal extraction and allow us
to draw time series plots of the estimated trend components as well as the
estimated time-varying regression coefficients (both with associated standard
errors). The fixed regression coefficients can also be calculated in this way.
Since the Kalman filter equations can deal with missing observations in a
natural way, forecasting is also straightforward in our framework. By extending
the data sample y1, . . . , yn with missing values for yt with t = n + 1, n + 2, . . .
and by applying the Kalman filter to this extended sample, the forecasts are
produced as by-products. Formally we define the forecast of yn+l by Fn+ℓ.
The confidence interval of the forecast Fn+ℓ can be computed using Var(Fn+ℓ).
The econometric computations have been implemented for the object-oriented
matrix programming environment of Ox, see Doornik (2006), with state space
routines from SsfPack as described in Koopman, Shephard & Doornik (1999).

4 Empirical results

In this section we report the results of the implementation of model (10), with
k = 2, for a bivariate daily time series of electricity loads for the morning
hour of 9 AM (i = 1) and the noon hour 12 AM (i = 2). The variance
matrices for the bivariate trend components and each time-varying regression
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coefficient are full. Only the variance matrix Var(εt) of the irregular εt is taken
as diagonal. The estimation is based on the first eight years of the data from
September 1, 1995 until August 31, 2003. The last year from September 1,
2003 until August 31, 2004, is used for post-sample forecast evaluation. The
sample size of the two daily time series is n = 2, 922. The post-sample length
is 366 days.

4.1 Estimation results

The estimated standard deviations of the disturbances in (2), (5), (9) and
(10) are presented in Table 2 together with their ratios with respect to the
estimated standard deviation of the irregular (the so-called q-ratios). In case
the q-ratio is large, say, q > 1, the component or regression coefficient varies
heavily over time. Generally, the q-ratios are smaller for 12 AM than for 9 AM.
This confirms the common belief that the load at noon is more predictable
than the load in the morning hours. Large q-ratios are obtained for the time-
varying cosine coefficients of the yearly cycle, all for weekdays. These values
suggest that the yearly load cycles vary more for the weekdays than for the
weekends. The time-varying holiday dummy coefficients have particular high
q-ratios which will lead to some inaccurate forecasts for holidays in our model.
It is interesting that all q-ratios are sufficiently large so that most coefficients
do vary over time in our model.

The last column of Table 2 reports the disturbance correlations between 9 AM
and 12 AM that are implied by the full variance matrix estimates. Whereas
many standard deviations of the disturbances are clearly different for the two
hours, the implied correlations are mostly estimated at values close to unity.
The exceptions are the time-varying dummy effects for Saturdays and Sun-
days, with respective correlations of −0.70 and −0.30. This indicates substi-
tution effects in the mornings of weekends. A relatively low electricity load at
9 AM is compensated with a higher electricity load at 12 AM and vice versa.

Table 3 reports the estimated λ coefficients and the fixed regression coefficient
estimates of model (10). Almost all estimates are significant. The coefficients
λj

i in (5) determine the importance of the nonlinearity and the yearly periodic
effect in the time-varying regression coefficients of the two heating effects Xj

t,i

(j = 1, 2). All the estimated coefficients are significant, giving evidence that
temperature effects are subject to yearly (periodic) nonlinear behaviour. The
fixed regression estimates show that Cloud cover has a significant effect on the
load, whereas daylight saving effect is not significant. The latter result could
have been expected for 12 AM. The special effects for Christmas and New
Year events are, unsuprisingly, highly significant.
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4.2 In-sample signal extraction: trends and time-varying coefficients

Based on the parameter estimates as in Table 2, we apply the Kalman filter
and smoothing algorithms to produce smoothed estimates of the state vector
αt that contains the trend components and the time-varying coefficients. Our
time series plots of these estimates start only in January 1, 1997 because the
initialisation period for the filtering and smoothing is somewhat unstable due
to dummy variables that have zeroes for a long period of time (holiday effects).
Figure 3 shows the estimated local linear trends for 9 AM (a) and 12 AM (b):
they appear very smooth. They indicate that all other systematic effects in
electricity loads have been captured by model (10). Even over a long period
of various years, the underlying trends show no structural changes.

Figure 4 presents the time-varying regression coefficients for heating, smoothed
heating and smoothed cooling at 9AM - displays (a) (c) and (e) - and 12
AM - displays (b), (d) and (f). The heating coefficients exhibit a seasonal
pattern, most notably for the heating effect in displays (a) and (b). Here the
coefficient is largest for the winter period while it increases from September
onwards and it decreases from February onwards. Because temperature values
also have a yearly cycle, this confirms the nonlinear and periodic nature of this
time-varying coefficient. During the summer period the heating coefficients are
implicitly interpolated because the corresponding explanatory variables are
zero, giving no information about these coefficients. The associated standard
errors are higher in the summer as a result. The seasonal patterns of the
heating coefficients are an interesting and novel feature of our model.

The cooling regression coefficients in display (e) and (f) of Figure 4 increase
slowly over time with noticeable changes between the summers of 1999, 2000
and 2001. These increases of the cooling effect may be attributed to the grow-
ing number of installations of cooling utilities for business in France, especially
from 1999 onwards. The cooling coefficients are implicitly interpolated dur-
ing colder periods when the explanatory cooling variable is zero. Since the
number of days with a smoothed temperature larger than 18oC is relatively
small and the significance levels of the cooling coefficients are lower than those
of the heating coefficients, the standard errors are relatively constant through
summer and winter periods. It is a satisfactory empirical finding that the time-
varying cooling coefficients show a clear upward trend in the period when air
conditioning became more intensively used.

Figure 5 shows the estimated time-varying heating and cooling effects on the
electricity load, that is βj

t,iX
j
t,i for j = 1, 2, 3 in displays (a),(c),(e) for 9 AM,

i.e. i = 1 (respectively (b),(d),(f) for 12 AM, i.e. i = 2). Naturally, the heating
effects on the load are most pronounced in the winter periods. The smoothed
heating effects in display (c) and (d) have a clearer impact on the load than
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the actual heating effects in display (a) and (b). The cooling effects in display
(e) and (f) have a lower impact. However, the alternating heating and cooling
effects in winter and summer periods are clear from Figure 5.

Figures 6 and 7 show the estimated effects for the different day types of (a)
Mondays, (b) Fridays, (c) Saturdays, (d) Sundays, (e) Holidays and (f) Bridge
days, at 9 AM and 12 AM, respectively. The effects are negative for all these
dayt types and therefore the levels for those days are lower compared to the
regular (default) days of Tuesday, Wednesday and Thursday, when there are
more business activities. For example, the Monday effect is −1100 MWh at
9 AM but only −525 MWh at 12 AM. For the other day type effects, the
differences between the two hours are smaller. In general, the day type effects
for 9 AM are stronger than for noon. However, the Friday effect for 12 AM is
stronger than for 9 AM and it becomes stronger over time: from −125 MWh to
around −250 MWh at the end of the summer 2003, see Figure 7, display (b).
This change may be explained by the decrease of the official number of working
hours in France. The day type effects are, not surprisingly, most pronounced
for weekends and holidays. The Saturday effect decreases slowly from a around
−8000 to −9500 MWh at 9 AM. A similar long-term decrease from −7000 to
−7250 MWh is observed at 12 AM but this change is much smoother over
time, compare also the q-ratios for W 19

t in Table 2. The Sunday effect at
9AM varies between −13000 MWh and −15500 MWh. The strong variation
in the Sunday effects may be due to the various holidays that occur around a
Sunday. Special modelling of such effects may be considered. The significant
Bridge day effect turns out to be rather constant over time. The holiday effects
are as important as the Sunday effect and also relatively constant.

Figure 8 presents the global yearly effects for (a) 9 AM and (b) 12 AM.
The yearly effect consists of the impact via the time-varying Fourier coeffi-
cients (separated for weekdays and weekends) together with the daylight sav-
ing (fixed effect) and August trend effects, i.e. γ28

i W 28
t +

∑

j∈{1,..,16,26,27} γj
t,iW

j
t ,

i = 1, 2. The time-varying structure of the model enables the coefficients to
adapt to periods with a fast change in the yearly pattern, especially at the end
of the year and in August. The result is a more parsimonious model since it
avoids the inclusion of more special dummy variables to capture these specific
effects. This adaptiveness is captured by large q-ratios for some of the Fourier
coefficients in Table 2.

4.3 In-sample diagnostics

The standardised prediction errors are obtained from the Kalman filter. When
the model (10) is well-specified, the standardised prediction errors are serially
independent and normally distributed. Various diagnostics can be used to
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check whether the prediction errors can be regarded as independent random
deviates from a standard normal distribution. Since our main focus is on fore-
casting, we concentrate on the dynamic features of the prediction errors. A
particular interesting diagnostic is the sample autocorrelation function of the
(in-sample) standardised prediction errors. Figure 9 displays the correlogram
for lags 1 up to 365 for (a) 9 AM and (b) 12 AM. The correlations are mostly
within the 95% confidence bands which is satisfactory. For low lags, the cor-
relations are outside the interval but we view these values as acceptable. The
one exception is the correlation at lag 365 (the one-year lag) which shows that
the model does not capture all dynamics well with respect to the yearly cycle.

5 Forecasting performance

The forecasting performance of model (10) is investigated for the post-sample
observations from September 1, 2003 until August 31, 2004, using the para-
meter estimates of Section 4. Since model (10) includes weather variables as
explanatory variables, the forecasting accuracy can be based either on realised
hourly values of the weather variables or on on their one-day ahead forecasts.
The former may be preferred to avoid discussing external inaccuracies due to
weather forecast errors, while the latter is preferable to compare models as
they would be used in real situations. Since we have both realised tempera-
ture and one-day ahead temperature forecasts available in our data base, we
evaluate the forecasts of our model for both situations. Parameter estimation
and Kalman filter updating are not affected by using temperature forecasts
since at EDF the realised temperature is always available on the next day.
The one-day ahead prediction error based on realised temperature can then
be computed and the likelihood function can be adjusted. We do not have the
forecasts of the cloud cover in our data base, so here we use realised data only.

We use the mean absolute percentage forecast error (MAPE), the root mean
squared forecast error (RMSE), and the mean percentage forecast error (MPE)
to assess forecasting performance. For hour i, they are given by:

MAPE(i) = N−1
∑N

t=1 100|Eh
t,i / yt,i|,

RMSE(i) =
√

N−1
∑N

t=1(E
h
t,i)

2,

MPE(i) = N−1
∑N

t=1 100Eh
t,i / yt,i,

(12)

where F h
t,i and Eh

t,i = yt,i − F h
t,i are the actual forecast and forecast error (not

standardised), respectively, at day t and hour i for t = n + 1, . . . , n + N and
i = 1, 2 with N as the number of available forecasts, h being the forecasting
horizon, in our case h = 1, . . . , 7.
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We first analyse the results of one-day ahead forecasts for the hours of 9 AM
and 12 AM. This is particularly interesting since maximum likelihood estima-
tion optimizes one-step ahead prediction errors. Then we look at forecasting
the hourly loads up to 7 days ahead for 9 AM and 12 AM. Finally we present
and analyze one-day ahead forecasts for all 24 hours based on one univariate
model and two bivariate models.

5.1 One-day ahead forecasts for 9 AM and 12 AM

Figure 10 presents the one-day ahead forecast errors for the electricity load at
(a) 9 AM and (b) 12 AM as well as (c) their standard errors for non-EJP days.
On the whole, the forecasts seem unbiased. The largest forecast errors corre-
spond to holidays (in November, December, May, July and August). Standard
errors are large during winter periods and weekends but particular large values
are obtained for specific holidays and August weekends. These large standard
errors are typically associated with effects for which only a few observations
are available for estimation.

Figure 11 presents the correlogram of the daily prediction errors for the post-
sample observations at (a) 9 AM and (b) 12 AM. The correlations for the lags
1 up to 7 are somewhat larger compared to the in-sample correlogram but
they are not significant. However, we do not find a pattern that leads us to
believe that we have missed a structural dynamic feature in the time series.
The correlogram values for higher order lags vanish to zero since the number
of values that can be used to compute the higher lag correlations becomes
smaller (the post-sample period consists of 366 days). Therefore we cannot
use Figure 11 to comment on the long-term forecasting ability of the model.

Table 5 presents the overall MAPEs for one-day ahead forecasts of non-EJP
days for 9 AM and 12 AM. The MAPE for our full model is 1.34% and 1.31%
when using realised temperatures, and 1.44% and 1.50% when using temper-
ature forecasts. To place these measures in perspective, we also present the
results for separate subperiods and we also consider four benchmark models.
The first benchmark model is the weekly random walk (RW). This forecast
method was one of the best benchmarks in the study by Taylor & McSharry
(2007). Therefore we also report the MAPE for the RW. The basic forecast
function of the RW in our study is simply F h

t,i = yt−7,i , h = 1, .., 7. The
observed load of a week ago at the same hour is the forecast for today. We
take the value of two weeks ago if there was a holiday one week ago. Var-
ious problems arise with special days including holidays. We have deleted
these forecasts for the RW since we only need the RW to serve as a bench-
mark. We consider three restricted variants of our general model as addi-
tional benchmarks. In summary, we consider five different forecasting models:
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RW: Weekly random walk;

Reg: Model (10) with k = 2 and σv,i = σw,i = σuj ,i = σej ,i = 0 in
(2),(5) and (9) ;

Univ: Univariate version of model (10), i.e. k = 1 (trend components
and regression coefficients time-varying);

TVR: Model (10) with k = 2 and σv,i = σw,i = 0 in (2),
(regression coefficients time-varying);

TTR: Model (10) as it is, with k = 2 (trend components and regression
coefficients time-varying).

The overall forecasting performances for non-EJP days of all five models are
reported in Table 5, with separate evaluations by day type.

We first discuss the forecasting results of Table 4 where we report the MAPE as
defined in (12) for the five models separately for each month of the forecasting
period and where we compare forecasts based on realised temperature (left
part of the table) with those based on one-day ahead temperature forecasts
(right part of the table). The RW is obviously not affected by this choice
of temperature values. The number of forecast errors for each month N is
indicated in the third column of Table 4. The number of forecasts produced
by RW may be less than N . The ninth column gives the RMSE of the one-day
ahead temperature forecasts. The most interesting aspects of Table 4 are:

• The RW is performing rather poorly for all months and both hours except
for June, July and, in a less pronounced way, September. However, the RW
only outperforms the fixed regression (Reg) model for these months.

• Te univariate model, Univ, outperforms both RW and Reg, with the excep-
tion of February where Reg is the best for both 9 AM and 12 AM.

• The TVR and TTR models outperform the three other models overall.
Time-varying trends do not necessarily lead to better forecasts. Most of the
differences between the MAPEs of TTR and TVR models are small.

• The forecasting results for TTR and TVR are disappointing for January,
May, August and December. The most accurate forecasts are for June and
September. Forecasting results for both hours of the day are comparable.

Comparing the forecasting accuracy using realised temperatures and fore-
casted temperatures, we find the following. With respect to the effect of tem-
perature forecast errors on load forecast errors, we note that the one day ahead
temperature forecast RMSE of 1.16oC in March at 9 AM seems to generate
a large MAPE for TVR and TTR and, to a lesser extent, for Univ. A simi-
lar effect is observed in November and December. In April at 9 AM and in
February at 12 AM, Univ is more affected by the temperature forecast errors
than TVR and TTR. These findings illustrate the importance of temperature
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forecast accuracy. However, temperature forecast errors have a smaller impact
on forecasting accuracy in the summer months. It confirms that cooling effects
have a smaller impact on electricity load than heating effects. Forecasts from
time-varying regression models still outperform those of Reg and RW when
the forecasts are based on one-day ahead temperature forecasts.

Table 5 presents the MAPEs for each day type for 9 AM and 12 AM. It reports
the forecast results for all special days (holidays, bridge days) together in one
category. For obvious reasons, forecasts for the RW model are missing for these
days. Interesting findings of Table 5 are:

• The holiday loads are the most difficult to forecast since they come in small
numbers and the observed loads vary more than on other days.

• Overall the forecast accuracy measures for Univ, TVR and TTR are smaller
than for Reg and RW. More specifically, the forecasts of TVR and TTR
outperform those of Univ at 9 AM. At 12 AM, the forecasts of the univariate
model Univ generally outperform those of TVR and TTR.

• Default days and Fridays (Saturdays) are forecasted most accurately at 9
AM (12 AM). Loads on Mondays and Sundays are more difficult to predict.

• The forecast accuracies obtained for 9 AM and 12 AM are comparable.

Qualitatively, these findings do not alter when forecasts are based on realised
temperatures, rather than one-day ahead temperature forecasts. For complete-
ness, Table 5 also reports the mean percentage forecast error (MPE) for EJP
days. The EJP days are treated as missing for the estimation of parameters
in Section 4 but the Kalman filter can still produce forecasts for these days.
The bias in forecasting the EJP days is clear and we conclude that the model
systematically over-estimates the realised electricity loads for these days.

Overall we are satisfied with the post-sample forecasting performance of our
model. We have shown that time-varying and periodic regression effects are
important in accurately forecasting hourly loads.

5.2 Multi-day ahead forecasts

Table 6 shows the forecast precisions for multiple day ahead forecasts (one to
seven days) and for 9 AM and 12 AM. The RW has the same MAPE values
for all horizons because the one-step ahead forecast is based on the load of
a week ago. The forecasts in this table are computed using realised values of
weather variables as forecasts for the 7-day horizon were not available in our
data set.

For all forecast horizons, the RW does badly in terms of MAPE, both at 9
AM and 12 AM. All time-varying regression models perform better than model
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Reg upto five days ahead. TTR is best at 9 AM for one upto five days ahead
forecasting. At 12 AM, the Univ model is best for one upto six days ahead
forecasting. Model Reg is best for six and seven days ahead forecasting at 9
AM and for seven days ahead forecasting at 12 AM. These results confirm
that our time-varying model is primarily designed for short-term forecasting.

5.3 One-day ahead forecasts comparison for all hours

For a more general assessment of our methodology, we consider forecasting all
twenty-four hours of the day based on the models

Univ : model (10) with k = 1;

TTR-1 : model (10) with k = 2, for consecutive hours (i − 1, i);

TTR+1 : model (10) with k = 2, for consecutive hours (i, i + 1),

where i = 0, . . . , 23 and i− 1 = −1 refers to the last hour of the previous day.

In Table 7 we compare the one-day ahead forecasting accuracy for each hour
i, with i = 0, 1, . . . , 23, in terms of RMSE and MAPE. The load forecasts
are based on one day ahead temperature forecasts. Only regular days (non-
holidays, non-bridge-days, non-EJP days) are considered. In terms of RMSE,
Univ outperforms the bivariate models for seven hours: 13 upto 17, 21 and
22. However, in terms of MAPE Univ outperforms those models only for two
hours: 1 AM and 2 PM. We prefer the MAPE over the RMSE as it less sensitive
to outliers and easier to compare across different applications.

In view of these forecasting results, we comment on the estimated correlations
in the bivariate models, which we do not present here to save space. In the
morning hours, the forecasts produced by the bivariate models are better
than those produced by the univariate models. The estimated disturbance
correlations for each morning hour are all very close to one which may indicate
that these high correlations lead to more accurate forecasts. Correlations for
the disturbances for heating, smoothed heating, smoothed cooling and level
components are all close to unity in all bivariate models for all 24 hours.
These estimation results will be useful in the specification search for a more
parsimonious forecasting model for all 24 hours.

We conclude from Table 7 that a bivariate modelling approach where we allow
strong correlations between time-varying regression effects for different hours
can improve general forecasting performance.

21



6 Conclusion

We present a linear multivariate periodic state space model for the forecasting
of hourly electricity loads. The model includes a stochastic trend component
together with fixed and time-varying regression effects. Each equation in the
model is associated with a specific hour and has different coefficients and
different time-varying processes which are possibly correlated through the dis-
turbances that drive them. Kalman filter methods are used for estimation,
signal extraction and forecasting.

Our linear Gaussian time series model has a relatively simple structure: it
can be multivariate, it has trend components and regression effects (fixed and
time-varying). The EDF data set of French national loads consists of a long
time series with hourly observations for loads, temperature, cloud cover and
one-day ahead temperature forecasts. We capture interesting trends and time-
varying regression coefficients from our empirical study. Some of our empirical
findings have been known by experts at EDF but have not been properly mea-
sured earlier. For example, the slow increase of the cooling effect on loads, the
yearly patterns in the heating regression coefficients and the strong correla-
tions between the effects for different hours (9 AM and 12 AM).

The main purpose of our model is however short-term load forecasting. The
forecasting results are satisfactory for 1, 2 and 3 days ahead. Some improve-
ments can be made for longer forecast horizons. We may need to focus on find-
ing more appropriate dynamic specifications for the intra-yearly variations in
loads. The next challenge of our periodic model-based time-varying parameter
approach to forecasting loads is to extend the model to more than two hours
estimating all components simultaneously. We should be able to find parsimo-
nious formulations for multivariate models, because we have found that load
components of different hours are highly correlated.
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Table 2
Estimation results for model (10) for the in-sample period September 1, 1995 until
August 31, 2003, with estimated standard deviations (st.dev.) of irregular, of dis-
turbances driving the stochastic processes of trends (level and slope) in (2) and of
time-varying regression coefficients in (5) and (9). The q-ratio is the standard de-
viation divided by the one of the irregular. The estimates are presented for both 9
AM and 12 AM. The estimated correlations (corr.) are reported in the last column.

9 AM (i = 1) 12 AM (i = 2)

Cmp / Expl par st.dev. q-ratio st.dev. q-ratio corr.

irregular εt,i 185.4 1.000 283.2 1.000 –

level ft,i 52.7 0.284 52.4 0.185 1

slope gt,i 13.0 0.070 13.0 0.046 1

X1
t,i Heating β1

t,i 25.7 0.138 19.6 0.069 0.99

X2
t,i SmoHeating β2

t,i 95.3 0.513 68.2 0.241 1

X3
t,i SmoCooling β3

t,i 4.3 0.023 4.4 0.016 1

W 1
t = aWD

1,t γ1
t,i 471.9 2.545 468.8 1.655 1

W 2
t = bWD

1,t γ2
t,i 210.4 1.135 213.2 0.753 1

W 3
t = aWE

1,t γ3
t,i 62.4 0.337 57.1 0.202 1

W 4
t = bWE

1,t γ4
t,i 114.7 0.618 118.5 0.418 1

W 5
t = aWD

2,t γ5
t,i 105.1 0.567 117.4 0.414 1

W 6
t = bWD

2,t γ6
t,i 105.9 0.571 103.6 0.366 1

W 7
t = aWE

2,t γ7
t,i 33.9 0.183 26.8 0.095 0.97

W 8
t = bWE

2,t γ8
t,i 50.0 0.270 43.2 0.153 1

W 9
t = aWD

3,t γ9
t,i 392.9 2.119 381.5 1.347 1

W 10
t = bWD

3,t γ10
t,i 6.8 0.037 9.4 0.033 1

W 11
t = aWE

3,t γ11
t,i 32.2 0.177 33.9 0.120 1

W 12
t = bWE

3,t γ12
t,i 36.1 0.195 40.1 0.142 1

W 13
t = aWD

4,t γ13
t,i 375.6 2.026 294.4 1.040 1

W 14
t = bWD

4,t γ14
t,i 85.8 0.463 85.1 0.301 1

W 15
t = aWE

4,t γ15
t,i 23.1 0.125 22.2 0.078 1

W 16
t = bWE

4,t γ16
t,i 26.7 0.144 24.8 0.088 1

W 17
t Monday γ17

t,i 14.4 0.078 0.6 0.002 1

W 18
t Friday γ18

t,i 0.7 0.004 4.3 0.015 1

W 19
t Saturday γ19

t,i 59.2 0.319 7.1 0.025 -0.70

W 20
t Sunday γ20

t,i 133.6 0.721 107.1 0.378 -0.30

W 21
t Holiday γ21

t,i 559.5 3.018 465.8 1.645 1

W 22
t Bridge day γ22

t,i 126.0 0.679 90.7 0.320 1

W 26
t August Tr1 γ26

t,i 6.0 0.032 5.0 0.018 1

W 27
t August Tr2 γ27

t,i 110.7 0.597 89.6 0.317 1
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Table 3
Estimation results for the lagged temperature coefficients of model (10) in the time-
varying regression equations (5) for the heating and smoothed heating effects (lead-
ing to nonlinear and yearly periodic dependence of temperature on electricity loads)
and estimation results for the fixed regression coefficients of model (10) in equations
(5) and (9) related to the cloud cover effect and to four calendar effects. The esti-
mates are presented for both 9 AM and 12 AM.

Explanatory variable hour coefficient estimate stand.err. t-value

X1
t,i Heating 9 AM λ1

1 6.84 1.02 6.69

12 AM λ1
2 8.55 1.22 7.02

X2
t,i Smoothed-heating 9 AM λ2

1 16.96 4.42 3.84

12 AM λ2
2 16.58 3.44 4.82

X4
t,i Cloud cover 9 AM β4

1 147 7.9 18.6

12 AM β4
2 171 7.8 21.9

W 23
t December 25th 9 AM γ23

1 -14028 326.1 43.0

12 AM γ23
2 -10602 278.3 38.1

W 24
t January 1st 9 AM γ24

1 -15629 321.8 48.6

12 AM γ24
2 -10847 268.7 40.4

W 25
t December 24th 9 AM γ25

1 -4486 336.8 13.3

12 AM γ25
2 -4499 289.1 15.5

W 28
t Daylight saving 9 AM γ28

1 165 108.1 1.5

12 AM γ28
2 108 104.6 1.0

26



Table 4
One-day ahead forecasting results by month and by hour for the post-sample period September 1, 2003 until August 31, 2004, using real
(left) and forecast temperature (right). The MAPE in (12) is reported for five different models: weekly random walk (RW); regression
model (Reg) , i.e. model (10) with k = 2 and σv,i = σw,i = σuj ,i = σej ,i = 0 in (2),(5) and (9); univariate model (Univ), i.e. model
(10) with k = 1; time-varying regression model (TVR), i.e. model (10) with k = 2 and σv,i = σw,i = 0 in (2); local linear trend plus
time-varying regression model (TTR) given in (10) with k = 2. The RMSE in (12) is reported for temperature forecast errors (oC). The
RW model does not necessarily produce forecasts for all N observations. Overall results for all 343 non-EJP days are in Table 5.

MAPE (real temperature) RMSE MAPE (forecast temperature)
Hour Month N RW Reg Univ TVR TTR oC Reg Univ TVR TTR

9 January 25 5.84 3.03 1.97 1.67 1.65 0.58 3.07 1.93 1.58 1.53

February 20 5.76 0.98 1.30 1.50 1.49 0.77 0.92 1.31 1.46 1.46
March 27 10.79 2.35 1.16 1.17 1.12 1.16 2.21 1.47 1.71 1.69
April 30 7.59 1.15 1.24 1.13 1.27 1.00 1.37 1.52 1.40 1.47
May 31 5.38 3.24 2.33 1.86 2.02 0.75 3.35 2.20 1.84 2.03
June 30 1.14 1.79 0.60 0.64 0.63 0.37 1.81 0.61 0.64 0.62
July 31 1.16 2.22 1.02 1.12 1.06 0.61 2.24 1.03 1.14 1.08
August 31 5.36 7.07 2.22 1.99 1.97 0.56 7.07 2.21 1.99 1.97

September 30 1.78 2.26 0.66 0.72 0.72 1.05 2.31 0.69 0.74 0.75
October 31 6.40 2.00 1.26 1.02 1.00 1.06 1.92 1.24 1.02 1.01

November 30 5.24 1.65 1.30 1.45 1.27 1.00 1.68 1.48 1.72 1.52
December 27 5.70 3.64 1.78 1.98 2.04 0.76 3.67 1.97 2.23 2.29

12 January 25 5.57 2.75 1.83 1.77 1.73 1.19 2.36 1.85 1.68 1.74
February 20 6.82 1.06 1.16 1.26 1.31 1.82 2.02 2.23 2.08 2.10
March 27 10.05 1.67 1.02 1.17 1.16 1.55 1.51 1.60 1.76 1.71
April 30 6.80 1.12 1.41 1.35 1.48 0.67 1.38 1.38 1.52 1.55
May 31 4.50 2.75 1.72 1.76 1.94 0.70 2.70 1.75 1.82 1.98
June 30 1.26 2.04 0.66 0.61 0.64 0.61 2.04 0.66 0.61 0.64
July 31 1.15 1.89 1.05 1.19 1.12 0.80 1.89 1.05 1.19 1.12
August 31 4.71 5.85 1.53 1.62 1.60 0.82 5.85 1.53 1.62 1.60
September 30 0.97 2.24 0.69 0.75 0.72 0.94 2.24 0.69 0.75 0.73
October 31 5.97 2.06 1.03 1.09 1.08 0.97 2.03 1.13 1.17 1.16
November 30 5.18 1.20 1.27 1.34 1.19 1.45 1.16 1.87 2.01 1.90
December 27 4.80 2.69 1.71 1.77 1.82 1.33 2.65 1.96 2.05 2.12
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Table 5
One-day ahead forecasting results by day type and by hour for the post-sample period September 1, 2003 until August 31, 2004, using
real (left) and forecast temperature (right). The MAPE in (12) is reported for five different models: weekly random walk (RW); regression
model (Reg) , i.e. model (10) with k = 2 and σv,i = σw,i = σuj ,i = σej ,i = 0 in (2),(5) and (9); univariate model (Univ), i.e. model
(10) with k = 1; time-varying regression model (TVR), i.e. model (10) with k = 2 and σv,i = σw,i = 0 in (2); local linear trend plus
time-varying regression model (TTR) given in (10) with k = 2. Total MAPE for all 343 non-EJP days is also reported as well as the
MPE in (12) for EJP days. The RW model does not necessarily produce forecasts for all N observations.

MAPE (real temperature) MAPE (forecast temperature)

Hour Day type N RW Reg Univ TVR TTR Reg Univ TVR TTR

9 Default 132 4.63 2.23 0.93 0.92 0.92 2.26 1.02 1.06 1.05

Monday 47 4.88 2.66 1.39 1.39 1.36 2.73 1.45 1.47 1.44

Friday 48 4.50 1.93 1.01 1.02 1.01 1.86 1.06 1.09 1.10

Saturday 49 5.41 2.38 1.42 1.22 1.23 2.38 1.35 1.22 1.27

Sunday 51 6.39 2.73 1.69 1.59 1.55 2.77 1.87 1.71 1.68

Special 16 – 9.03 5.49 5.33 5.40 9.16 5.47 5.48 5.44

Total 343 5.04 2.66 1.40 1.34 1.34 2.68 1.47 1.45 1.44

12 Default 132 4.51 1.90 0.94 0.96 0.97 1.91 1.13 1.18 1.19

Monday 47 4.27 2.15 1.35 1.40 1.42 2.16 1.53 1.53 1.53

Friday 48 4.38 1.92 1.17 1.16 1.12 1.89 1.43 1.33 1.30

Saturday 49 4.80 2.08 1.09 1.01 1.01 2.12 1.18 1.14 1.13

Sunday 51 5.50 2.81 1.26 1.44 1.45 2.81 1.54 1.69 1.70

Special 16 – 6.61 4.23 4.68 4.82 6.95 4.33 4.97 5.03

Total 343 4.66 2.34 1.25 1.30 1.31 2.34 1.44 1.50 1.50

MPE(real temperature) MPE (forecast temperature)

Hour Day type N RW Reg Univ TVR TTR Reg Univ TVR TTR

9 EJP 23 – -1.52 -4.25 -4.87 -4.77 -1.71 -4.52 -5.21 -5.13

12 EJP 23 – -2.36 -4.55 -4.64 -4.55 -3.66 -6.36 -6.15 -6.09
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Table 6
Forecasting results for different forecast horizons, for the post-sample period Sep-
tember 1, 2003 until August 31, 2004 (total non-EJP days is 343, N decreases
with forecasting horizon). The MAPE in (12) is reported for five different models:
weekly random walk (RW); regression model (Reg) , i.e. model (10) with k = 2
and σv,i = σw,i = σuj ,i = σej ,i = 0 in (2),(5) and (9); univariate model (Univ),
i.e. model (10) with k = 1; time-varying regression model (TVR), i.e. model (10)
with k = 2 and σv,i = σw,i = 0 in (2); local linear trend plus time-varying regression
model (TTR) given in (10) with k = 2. The RW model does not necessarily produce
forecasts for all N .

MAPE (Real temperature)

Hour Horizon N RW Reg Univ TVR TTR

9 1 day 343 5.04 2.66 1.40 1.34 1.34

2 days 342 5.04 2.68 1.92 1.84 1.85

3 days 341 5.04 2.70 2.26 2.19 2.21

4 days 340 5.04 2.72 2.47 2.36 2.39

5 days 339 5.04 2.74 2.71 2.57 2.57

6 days 338 5.04 2.76 2.87 2.83 2.85

7 days 337 5.04 2.77 3.07 3.06 3.09

12 1 day 343 4.66 2.34 1.25 1.30 1.31

2 days 342 4.66 2.32 1.58 1.70 1.72

3 days 341 4.66 2.36 1.87 2.00 2.02

4 days 340 4.66 2.38 2.01 2.11 2.14

5 days 339 4.66 2.40 2.10 2.24 2.25

6 days 338 4.66 2.41 2.30 2.45 2.49

7 days 337 4.66 2.42 2.49 2.67 2.66
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Table 7
One-day ahead forecasting results by day type and by hour for the post-sample
period September 1, 2003 until August 31, 2004, using forecast temperature. Total
non-special and non-EJP days is 327 (326 at 3AM). The RMSE and the MAPE in
(12) are reported for three different models: Univariate Model (Univ), i.e. model (10)
with k = 1; TTR model given in (10) with k = 2, for consecutive hours (i-1,i) (TTR-
1), TTR model given in (10) with k = 2, for consecutive hours (i,i+1) (TTR+1).
Total RMSE and MAPE for the 24 hours is also reported (7847 observations).

RMSE MAPE

Hour N Univ TTR-1 TTR+1 Univ TTR-1 TTR+1

0 327 966 755 993 1.43 1.11 1.42

1 327 986 984 971 1.40 1.41 1.40

2 327 992 961 957 1.54 1.50 1.47

3 326 946 929 910 1.52 1.52 1.50

4 327 922 894 846 1.50 1.49 1.44

5 327 859 858 823 1.44 1.44 1.38

6 327 1028 1067 1027 1.56 1.54 1.55

7 327 1178 1170 1164 1.64 1.61 1.55

8 327 983 1016 979 1.32 1.32 1.29

9 327 958 954 964 1.27 1.27 1.25

10 327 1097 1043 1041 1.44 1.33 1.31

11 327 1128 1091 1070 1.43 1.37 1.34

12 327 1041 1041 1032 1.30 1.30 1.25

13 327 1050 1080 1074 1.38 1.38 1.39

14 327 1025 1088 1062 1.39 1.45 1.43

15 327 1046 1108 1057 1.47 1.53 1.47

16 327 1089 1099 1132 1.61 1.59 1.63

17 327 1139 1158 1164 1.61 1.60 1.59

18 327 1137 1217 1111 1.55 1.64 1.54

19 327 1057 1065 1050 1.46 1.48 1.42

20 327 942 922 1003 1.34 1.32 1.45

21 327 795 867 814 1.20 1.26 1.20

22 327 759 785 759 1.07 1.12 1.06

23 327 722 728 680 1.06 1.07 0.92

Total 7847 993 995 987 1.41 1.40 1.39

30



1 2 3 4 5 6 7 8 9 10 11 12

40
00

0
50

00
0

60
00

0
M

ea
n 

Lo
ad

 (
M

eg
aW

at
ts

)

4 8 12 16 20 24

40
00

0
50

00
0

60
00

0

M
ea

n 
Lo

ad
 (

M
eg

aW
at

ts
)

Hour    (b)

4 8 12 16 20 24

40
00

0
50

00
0

60
00

0
M

ea
n 

Lo
ad

 (
M

eg
aW

at
ts

) Month      (a)

Hour     (c)
4 8 12 16 20 24

40
00

0
50

00
0

60
00

0

M
ea

n 
Lo

ad
 (

M
eg

aW
at

ts
)

Hour     (d)

Fig. 1. Data description of French national electricity loads from September 1, 1995
until August 31, 2004: (a) monthly averages; (b) hourly averages; (c) hourly averages
for winter months (October – March); (d) hourly averages for summer months (April
– September).
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Fig. 2. Data description: (a) French national daily electricity loads from Septem-
ber 1, 1995 until August 31, 2004, at 9 AM; (b) Hourly electricity loads in 2002
(including special tariff EJP days); (c) Hourly electricity loads in three weeks after
August 8, 2004; (d) Daily electricity load versus national average temperature from
September 1, 1995 until August 31, 2004.
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Fig. 3. French national hourly electricity load in MWh from January 1, 1997 until
August 31, 2003 and smoothed estimates of the stochastic trend in model (10): (a)
at 9 AM, stochastic trend ft,1 ; (b) at 12 AM, stochastic trend ft,2 .
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Fig. 4. Stochastic temperature coefficients for 9 AM and 12 AM: smoothed estimates
and associated 95% confidence intervals. Coefficient for heating degrees (a) at 9 AM
(β1

t,1) and (b) at 12 AM (β1
t,2) ; Coefficient for smoothed-heating degrees (c) at 9

AM (β2
t,1) and (d) at 12 AM (β2

t,2) ; Coefficient for smoothed-cooling degrees (e) at

9 AM (β3
t,1) and (f) at 12 AM (β3

t,2) .
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Fig. 5. Stochastic regression effect for heating degrees (a) at 9 AM (β1
t,1X

1
t,1) and

(b) at 12 AM (β1
t,2X

1
t,2) ; Stochastic regression effect for smoothed-heating degrees

(c) at 9 AM (β2
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2
t,1) and (d) at 12 AM (β2
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2
t,2) ; Stochastic regression effect for

smoothed-cooling degrees (e) at 9 AM (β3
t,1X

3
t,1) and (f) at 12 AM (β3

t,2X
3
t,2).
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Fig. 6. Time-varying day-type coefficients for 9 AM: smoothed estimates and asso-
ciated 95% confidence intervals. (a) Coefficient for Mondays, γ17

t,1; (b) Coefficient for

Fridays, γ18
t,1; (c) Coefficient for Saturdays, γ19

t,1; (d) Coefficient for Sundays, γ20
t,1; (e)

Coefficient for Holidays, γ21
t,1; (f) Coefficient for bridge days, γ25

t,1 .
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Fig. 7. Time-varying day-type coefficients for 12 AM: smoothed estimates and as-
sociated 95% confidence intervals. (a) Coefficient for Mondays, γ17

t,2; (b) Coefficient

for Fridays, γ18
t,2; (c) Coefficient for Saturdays, γ19

t,2; (d) Coefficient for Sundays, γ20
t,2;

(e) Coefficient for Holidays, γ21
t,2; (f) Coefficient for bridge days, γ25

t,2.
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Fig. 8. Stochastic yearly patterns in the hourly loads. Smoothed estimates of
the total effect of yearly Fourier series for weekdays and weekends plus the
effect of daylight saving and August trends for weekends. (a) Yearly pattern
at 9 AM, γ28
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Fig. 9. Empirical ACFs of in-sample scaled one-day ahead prediction errors (stan-
dardised) for lags 1, . . . , 366, at (a) 9 AM (i = 1) and at (b) 12 AM (i = 2).
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Fig. 10. Post-sample hourly one-day-ahead forecast errors F 1
t,i based on weather

forecasts at (a) 9 AM (i = 1) and at (b) 12 AM (i = 2), with (c) associated
standard errors, for t = n + 1, .., n + 366, .
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Fig. 11. Empirical autocorrelation function for post-sample one-day ahead forecast
errors yt,i − F 1

t,i based on weather forecasts, standardised, for t = n + 1, .., n + 366,
at (a) 9 AM (i = 1) and at (b) 12 AM (i = 2).
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