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1 Introduction

During the last decade, the new auction format of the lowest-unique-bid auction appeared

in several countries.1 This format is typically organized by media such as TV, radio and

internet. Unlike other types of auctions, this auction does not to seek to generate maximal

bids, rather it seeks to maximize bidders�participation from a large �audience�. Participa-

tion is increased by declaring as winner the lowest bid among the unique bids made, being

those bids that are made only once.2 The items auctioned are new high-priced consumer

electronics, cars or monetary prizes. Bids are typically made by sending a costly SMS-call to

the auctioneer with the bid expressed in euro cents. Most of the time, the winning bid pays

almost nothing. In order to make money, the auctioneer needs to generate revenue from a

su¢ ciently large number of bids, the producer�s willingness to pay for having the product on

display in the auction and, in case of broadcasting as a TV or radio show, the advertisement

revenues from commercial blocks. In some cases, this auction format is used as a marketing

instrument meaning the producer is willing to bear losses.

Lowest-unique-bid auctions form a new, rich and nontrivial auction format that is not

yet captured by mainstream auction theory, as e.g. surveyed in Krishna (2002). Since

such auctions are already run in real life, there is an interest in better understanding this

auction format, which is the research topic in Eichberger and Vinogradov (2008), Östling

et al. (2007), Rapoport et al. (2007) and this paper. The main focus of these references

is to confront theoretical predictions with empirical evidence from either �eld or laboratory

experiments. In contrast, our main focus is a game theoretic analysis in which we focus on

two essential issues of these auctions: endogenous costly entry induces uncertainty of how

many bids will be made, and how to bid in this auction. For reasons of exposition, we �rst

discuss the main results of our approach and, next, relate these to the references.

1These countries are Germany, Netherlands, the UK and the US, see Eichberger and Vinogradov (2008),
Östling et al. (2007), Rapoport et al. (2007) and Veldhuizen (2006).

2Raviv and Virag (2007) report a closely related auction format that ran in Sweden in which bids are
restricted to be below 5 or 10 percent of the monetary value of the prize and the highest unique bid wins
the auction. This format is also studied in Rapoport et al. (2007).
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In this paper, we study a sealed-bid version of the lowest-unique-bid auction in which

bidders make a single bid, being a discrete number. Endogenous entry is modelled by

allowing the costless bid "do not participate". Since the monetary costs of making a bid are

only incurred when the bid (through say SMS) is actually made, this model o¤ers a natural

framework to analyze simultaneous entry and bid behavior. Under symmetric strategies,

the expected number of bidders follows a binomial distribution with the complementary

probability of nonparticipation as the endogenous probability that individual bidders enter.

If the probability of nonparticipation is (close to) zero, each bidder enters with probability

of (almost) one meaning the variance in the number of participating bidders is (almost) zero.

This last property of our model is fundamentally di¤erent to the large variance in e.g. large

Poisson games, see Myerson (1998) and Myerson (2000), where the variance can only be

close to zero if and only if the expected number of participants is close to zero.3

Numerical investigation of Nash equilibria in the lowest-unique-bid auction, reveals a large

number of asymmetric Nash equilibria (NEs) and this number rapidly increases as value of

the monetary prize or the number of bidders increases. This makes a full characterization

of NEs impossible. For the parameter values investigated, the lowest-unique-bid auction

also admits a unique symmetric NE, to which we turn our main focus. We show that the

symmetric NE is always in mixed strategies, always contains the lowest bid in its support,

and its support on the subset of numerical bids is always a set of consecutive bids that

is typically smaller than the full support on such bids. Moreover, higher bids within the

support are played with a lower probability. This re�ects the intuition that one should try

to bid low, but if everyone would do so, it is better to avoid the overcrowded lower bids and

consider the somewhat larger bids. Since larger bids have more potentially winning lower

bids, these are less attractive and this is re�ected in the decreasing pattern of probabilities.

The nonnegative expected gains in this auction format may be positive, in which case all

3If the number of players X is Poisson distributed with parameter N > 0, then E (X) = N and
V AR (X) = N2. So, arbitrary combinations of E (X) � 0 and V AR (X) 6= N2 cannot be studied in
large Poisson games.
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bidders participates for sure. A positive probability of nonparticipation, however, implies

that these gains are zero. We also report a partial invariance of symmetric NE bidding

strategies with respect to bidding costs: If, for bidding costs equal to 0, a bidding strategy

is a NE strategy with positive expected gains of say 11:3, then this NE strategy remains a

NE strategy under all bidding costs 1 up to 11. For larger bidding costs, there exists a NE

with expected gains equal to zero. We also perform comparative statics and �nd su¢ cient

conditions stating that if either the number of bidders or the costs of making a bid becomes

too large, then the probability of nonparticipation becomes positive and the expected gains

in the symmetric NE are zero. For a su¢ ciently large value of the prize or zero bidding

costs, there is always a positive expected gain and, hence, full participation. This implies

that zero bidding costs form a special case and not the general case.

Although the simple two-bidder case allows a closed-form solution, we cannot report such

solution for any larger number of bidders, or a proof of uniqueness of the symmetric NE.

Under positive expected NE gains and a technical condition, however, we characterize the

symmetric NE with lowest expected NE gains as the minimum of a mathematical program.

The interpretation of this symmetric NE is that it is the maximin value within the class

of symmetric strategies. So, a bidder�s bidding strategy also minimizes what this bidder

"gives away" in expected NE gains to the other bidders. Recall that positive expected NE

gains include the case of zero bidding costs. In case the mathematical program returns

expected gains equal to zero, then the symmetric NE with the lowest expected NE also has

this property.

From mid-2005 until late 2006, the unique-lowest-bid auction featured in a daily Dutch

TV show called Shop4Nop, where "Nop" means "for free", see e.g. Veldhuizen (2006).

This raised the question whether the TV audience would learn to play the symmetric NE

over time. In addition, we report that the two-bidder case is similar in interpretation to the

Hawk-Dove game and, therefore, possesses an evolutionary stable strategy. Since the model

is very complex, we resort to a numerical investigation of asymptotic stable equilibria of the
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replicator dynamics as a proxy for evolutionary stable strategies, see Bukowski and Miekisz

(2004). For the parameter values run, we observe convergence of these dynamics to the worst

symmetric NE.

Our results are complementary to the results in Eichberger and Vinogradov (2008),

Östling et al. (2007) and Rapoport et al. (2007). In these references, the emphasis is

on the theory needed to derive theoretical predictions for empirical testing. The complexity

of the unique-lowest-bid auction is re�ected in the di¤erent approaches taken in each of these

references, and a common conjecture that the symmetric NE is unique.

Under single bids and no bidding costs, Rapoport et al. (2007) provide an innovative

unifying framework for analyzing both lowest-unique-bid auctions and highest-unique-bid

auctions, as also studied in Raviv and Virag (2007). For this framework, they design a

numerical method for approximating the symmetric NE by embedding the model in a non-

stationary Markov chain, which is for zero bidding costs a numerically robust alternative to

our mathematical program. They do not report other theoretical results and do not mention

the issue of endogenous entry.

Östling et al. (2007) assume single bids, no bidding costs and that the winning bidder

does not pay his bid, which turns the auction into a guessing game. Their main approach is to

model this guessing game as a Poisson game.4 Poisson games are somewhat easier to analyze

than a standard game in normal form, but these also require a very rigid assumption about

the expected number of participants and its variance. For the Poisson guessing game, Östling

et al. (2007) show uniqueness, a full support over all feasible bids, bidding probabilities that

decrease as the bids increase, and convergence to the uniform distribution as the number

of bidders goes to in�nity. Our results indicate that some of these results are also valid

in a standard game. There are, however, also subtle di¤erences: The full support result

is due the assumption of a guessing game. And, for positive bidding costs, we also have

convergence to a limit distribution over numerical bids as the number of bidders goes to

4They also analyze the guessing game as a classical game and report that numerically solving the equi-
librium conditions is explosive in the number of bidders and is better avoided for more than eight bidders.
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in�nity, albeit a trivial sort of uniform distribution with limit probabilities equal to zero

because the individual probability of nonparticipation goes to one. This once more illustrates

that endogenous costly entry cannot be ignored in either the lowest-unique-bid auction or

its related guessing game.

The extension of our model to multiple bids is analyzed in Eichberger and Vinogradov

(2008). In this reference, a closed-form solution is stated that is the symmetric NE for the

cases of two-bidders and three-bidders, but they also report a counter example with seven

bidders. Generally speaking, their main result states that, for some endogenous consecutive

sets of bids that contains the lowest bid, bidders randomize over all subsets (of this endoge-

nous set) that contain the lowest bid. Therefore, single bids do not arise endogenously from

the multiple-bids model. This implies that the single bid model requires an analysis on its

own, as is done in this paper.

The overall conclusion is that the results in Eichberger and Vinogradov (2008), Östling

et al. (2007), Rapoport et al. (2007) and this paper all indicate at similar qualitative

insights that are quite robust with respect to a standard game-theoretic versus Poisson-game

approach and single versus multiple bids. Our paper enriches the literature by raising the

issue of endogenous entry, the maximin interpretation of the symmetric NE and numerical

evidence for evolutionary stability.

This paper is organized as follows. We �rst introduce our model in Section 2. In Sec-

tion 3, we discuss several motivating examples that identify the main issues of concern. All

theoretical results are derived in Section 4 and 5, where the latter section contains the math-

ematical program. A numerical analysis of the replicator dynamics and the mathematical

program are reported in Section 6. This paper concludes with some remarks.

2 The lowest-unique sealed-bid auction

The lowest-unique sealed-bid auction is an anonymous auction in which n + 1 � 2 bidders

either stay out or enter by making a single sealed bid for some mass-produced consumer
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good. This good is for sale everywhere at (internet) shops for M � 0 monetary units,

say cents. Making a bid costs 0 < c � M monetary units. We assume that n, M and c

are common knowledge. The winning bid is the lowest bid among all bids that are unique

among the monetary bids made. The winner of the auction pays his own bid. Note that the

existence of a winning bid is not guaranteed, as for example n + 1 identical monetary bids

demonstrate. In the absence of a winner, the item remains with the auctioneer.

Formally, bidders are numbered b = 1; 2; : : : ; n+ 1 and each bidder faces the same set of

feasible bids, denoted as B. We write �b 2 B for bidder b�s bid. Participation is voluntary,

and we capture the option not to participate (N) by including the bid �b = N .5 All other

bids are monetary bids �b 2 N that cost 0 < c�M and that are all consecutive multitudes

of the monetary unit with zero as the smallest bid.6 Since the winner pays his own bid and

the item is elsewhere for sale forM , bidding strictly more thanM�c is irrational. Therefore,

it is without loss of generality to assume B = fNg [ f0; 1; : : : ;M � cg. For its subset of

monetary bids we write BN = B \ N. The simplex of mixed strategies on B is denoted as

� =
�
x 2 RM�c+2

+ j
P

i2B xi = 1
	
and we write xb 2 � for bidder b�s mixed strategy.

An outcome of the auction is denoted as � = (�b; ��b) 2 Bn+1. Every outcome � 2 Bn+1

speci�es a possibly empty set of unique monetary bids and, if not empty, the winner is the

bidder who has the lowest unique bid in this set. Given � 2 Bn+1, we de�ne the identity of

the winning bidder as I (�) 2 ff1g ; : : : ; fn+ 1gg [ ; with the understanding that I(�) = ;

indicates no winner. Bidder b�s risk neutral utility function ub : Bn+1 ! R is de�ned as

ub(�
b; ��b) =

8<:
0; if �b = N;
M � c� �b; if I(�b; ��b) = b;
�c; otherwise.

This completes the description of the lowest-unique sealed-bid auction as a game in normal

form with complete information and �nite, discrete pure strategy sets. Hence, the standard

5The normal-form game speci�ed can be seen as the reduced form of a two-stage game with unobservable
entry in which bidders �rst decide whether to participate (P ) and, if so, then decide on the sealed bid. In
such extensive form, a bidder�s strategy speci�es two pairs of the form (P; �) and (N; �), � 2 N, where all
bids of the second form are payo¤ equivalent making the P in the �rst form super�uous.

6Our setup captures all cases in which the rules specify a minimum bid of bmin > 0, because then an item
worth M � bmin normalizes the auction to one with a lowest bid of zero.
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existence result for a mixed-strategy Nash equilibrium (NE) applies.

We conclude this section by characterizing the minimax value as the nonparticipation

payo¤ by identifying a NE strategy pro�le that supports it.

Proposition 1 Bidder b�s minimax value is 0 and can be supported by a pure NE strategy

pro�le. Moreover, for every NE, the NE payo¤s are nonnegative.

Proof. The bid �b = N secures a payo¤ of 0 for bidder b. All other bidders can hold

bidder b down to 0 by appropriate coordination on ��b such that a single bidder k 6= b bids

�k = 0 and all others bid �l = N , l 6= b; k. Hence, 0 is bidder b�s minimax value. It can be

veri�ed that these pure minimax strategies describe a Nash equilibrium. For every NE, the

NE payo¤s weakly dominate the minimax payo¤s, which is 0.

Corollary 2 There exist asymmetric pure NE strategy pro�les supporting each bidder�s non-

participation payo¤ 0 and this bidder�s utopia payo¤ M � c.

The asymmetric NE strategy pro�le in the proof of Proposition 1 that supports the

minimax values requires that all bidders coordinate who will be the single bidder bidding zero

and obtains the auctioned item against cost of bidding c, while all others do not participate.

There are always n + 1 of such asymmetric pure-strategy NE. From the perspective of the

auctioneer, the bidding behavior is identical to that of a bidding ring.

3 Motivating examples

A formal analysis of the lowest-unique sealed-bid auction would aim at the characterization

of the set of NE. In this section, however, we argue that such aim is too ambitious for the

auction under consideration. This insight is derived from the following examples.

For n + 1 = 2 we have a closed form solution of the set of all NE. In this case, we have

the following bi-matrix game:
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N 0 1 � � � M � c
N 0; 0 0;M � c 0;M � c� 1 � � � 0; 0
0 M � c; 0 �c; �c M � c; �c � � � M � c;�c
1 M � c� 1; 0 �c;M � c �c; �c � � � M � c� 1;�c
...

...
...

...
. . .

...
M � c 0; 0 �c;M � c �c;M � c� 1 � � � �c;�c

The asymmetric pure-strategy NE already described are (N; 0) and (0; N). Furthermore,

there is a symmetric mixed-strategy NE in which each bidder bids 0 with probability 1� c
M

and does not participate with probability c
M
.7 In the symmetric NE, the probability that

nobody participates is
�
c
M

�2
meaning the expected number of bidders increases in M and

decreases in c. None of the bidders expects to make a pro�t from participating because

expected NE utility is always zero. The probability that nobody wins the auction is
�
c
M

�2
+�

1� c
M

�2
.

There is an interesting similarity in interpretation with the Hawk-Dove (HD) game. In

the HD game two animals might �ght for a single prize but face individual costs of �ghting

that are larger than the worth of this prize, see e.g. the survey in Weibull (1995). In both

games, the "bidders" contest for a valuable object, but contesting is costly. Both games have

two asymmetric NE in which only one bidder contests for the object, while the other refrains

from doing so. Similar, they both have a symmetric mixed NE. So, the general unique-

lowest sealed-bid auction can be seen as a generalized HD game with a single prize, multiple

contesters and a richer strategy structure for each contester. The similarity for n+1 = 2 goes

even further: If we restrict the auction�s strategy space to fN; 0g, then both this restricted

auction and the HD game can be reduced to the same generic form with negative diagonal

elements. Hence, the mixed NE is also the unique evolutionary stable equilibrium (ESS) in

the restricted auction.

Next, consider the lowest-unique sealed�bid auction with n + 1 = 3, M = 5 and c = 1.

In order to numerically compute all NE, we applied the software tool GAMBIT, see e.g.

McKelvey et al. (2006). Doing so, yields twenty-one asymmetric NE and one symmetric

7Note that in the limit as c goes to 0 participation would be costless and each bidder bids �b = 0 for sure
in the symmetric NE, meaning no winner for sure.
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Bidder 1 Bidder 2 Bidder 3
x0 x1 x2 xN x0 x1 x2 xN x0 x1 x2

1:0000 1:0000 1:0000
1:0000 :2000 :8000 :2000 :8000

:7000 :3000 :6667 :3333 :6667 :3333
:6851 :3149 :6351 :3649 :5842 :3649 :0509
:6049 :3951 :4495 :5505 :4495 :5505
:5672 :4328 :4882 :2133 :2986 :4882 :2133 :2986

Table 1: Asymmetric NE ordered by bidder 1�s expected NE payo¤s, see Table 3.2.

Exp. NE payo¤
Bidder 1 Bidder 2 Bidder 3 Sum
4:0000 0:0000 0:0000 4:0000
1:7200 0:0000 0:0000 1:7200
1:2222 0:0000 0:0000 1:2222
1:0166 0:0000 0:0000 1:0166
0:5153 0:0876 0:0876 0:6905
0:3098 0:1076 0:1076 0:5250

Table 2: Asymmetric NE utilities of Table 1 ordered by bidder 1�s expected NE payo¤s.

NE, which is more than seven times the number of NE found for the two-bidder auction.

Of these asymmetric NE, many are essentially the same in the sense that these only di¤er

with respect to the permutation of the bidders�roles. Omitting such permutations, these

twenty-one reduce to the six cases reported in Table 1 and 2 that are ordered with respect

to bidder 1�s expected NE payo¤s. In all asymmetric NE, bidder 1 enters for sure and for

that reason we omitted x1N in Table 1. Five of these six asymmetric NE feature symmetric

strategies for bidders 2 and 3 and each allows for three permutations, which accounts for

�fteen asymmetric NE. The fourth asymmetric NE has di¤erent roles for each bidder and

has six permutations of the bidders�roles.

These asymmetric NE feature a variety of equilibrium behavior. Bidder 1�s second-best

asymmetric NE features bidder 2 and 3 bidding as if participating in the two-bidder auction

while bidder 1 gambles that bidding 1 wins, which has probability
�
1
5

�2
+
�
4
5

�2
= 17

25
. Bidder

1�s third-best asymmetric NE features similar bidding behavior by bidder 2 and 3 but they
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participate by bidding 0 with the lower probability of 1
3
, while bidder 1 spreads his bid over

the two lowest bids. From the perspective of bidder 1, �1 = 0 and �1 = 1 win with probability

4
9
, respectively, 4

9
+ 1

9
and both bids have an expected payo¤ of 11

9
. These two types of NE

illustrate that slightly bidding more than the other bidders might be a pro�table strategy to

avoid the �erce competition for the lowest bid. Bidder 1�s fourth-best NE features bidder 1

and 2 spreading their risk over the two lowest bids, albeit that bidder 1 participates for sure

while bidder 2 is less bold, and bidder 3 only competes for the lowest bid if he participates.

Bidder 1�s one but worst NE has all three bidders participating for sure, all compete with

positive probability for the lowest bid, and bidder 1 avoids the expected competition for the

one but lowest bid between bidder 2 and 3. In bidder 1�s worst NE, all bidders enter for sure

and bidder 1 has less spread over monetary bids than the other two bidders.

This numerical example also is a counter example in showing that several types of results

cannot be obtained for all asymmetric NEs:

1. Bidder 1�s second-best NE excludes that the support of monetary bids always includes

the lowest bid 0.

2. Bidder 1�s �fth-best NE excludes that the support of monetary bids always consists of

consecutive numbers.

3. Bidder 1�s second-best NE and third-best NE exclude a negative relation between

bidder 1�s expected NE payo¤ and the (sum of) participation probabilities of the other

bidders.

4. Bidder 1�s expected NE payo¤s show no obvious relation with the supports of monetary

bids.

As mentioned, there is also a unique symmetric NE. It is in mixed strategies that are

not fully mixed over B. Comparative statics with respect to the value of M in GAMBIT,

as reported in Table 3, shows that M = 5 is the lowest M for which all bidders participate

10



M xN x0 x1 x2 x3 NE payo¤ Sum payo¤s
3 :5669 :4227 :0105 0:0000 0:0000
4 :2887 :5000 :2113 0:0000 0:0000
5 :5191 :3407 :1403 0:1565 0:4695
6 :5093 :3189 :1717 0:4447 1:3342
10 :4904 :2902 :2154 :0040 1:5969 4:7907
15 :4801 :2769 :1750 :0680 3:0544 9:1632
25 :4713 :2659 :1577 :1051 � � � � � �

Table 3: Symmetric NEs for several values of M , n+ 1 = 3 and c = 1.

for sure because the expected NE payo¤s are positive. For smaller M , nonparticipation has

positive probability in the symmetric NE and the bidders�expected NE payo¤s are zero.

The support of monetary bids consists of decreasing probabilities on consecutive numbers

and its size increases inM . The symmetric NE under GAMBIT can also be computed as the

quantal response equilibrium, see McKelvey and Palfrey (1995). Although this equilibrium

concept suggest an evolutionary underpinning, examples exist for which such equilibrium

fails to be evolutionary stable.

We also ran other parameter values under n + 1 = 3 in GAMBIT. The number of NEs

grows very rapidly, for example for M = 15 and c = 1, we obtained 43 NEs in total of which

only one was symmetric. All these numerical examples are devastating for the prospect

of characterizing the set of NEs for arbitrary n + 1, c and M . In the next sections we

investigate symmetric NE for the following reasons. The existence of so many asymmetric

NE demands a lot of coordination that goes beyond the correct anticipation on a particular

NE, because the coordination also involves each bidder playing the correct role. For people

on the internet community we expect n to be large and that they hardly know each other.

This suggests that the required coordination on asymmetric NE is very implausible to occur.

Since the unique symmetric NE is the only NE that does not require coordination on bidders�

roles, this makes symmetry somewhat less demanding. Besides, these internet auctions are

run regularly and bidding behavior might evolve over time. The similarity with the HD

game mentioned earlier then suggest the stability of the symmetric NE should be part of
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the analysis. We split our analysis into an investigation of the properties and, next, the

evolutionary stability of symmetric NEs.

4 Symmetric Nash Equilibrium

In this section, we establish several properties of symmetric NEs and, then, perform some

comparative statics with respect to the number of bidders. Since we already characterized

the class of two-bidder auctions, we assume without loss of generality that n+ 1 � 3.

We �rst establish existence of a symmetric NE in our symmetric model.

Proposition 3 There exists a symmetric NE and every symmetric NE features randomiza-

tion.

Proof. The conditions of Theorem 1 in Becker and Damianov (2006) hold, which proves

the existence of a symmetric mixed-strategy NE. Any symmetric NE must involve the ran-

domization over at least two bids in B. Suppose not, then for some � 2 B the pure strategy

pro�le � = (�; : : : ; �) forms a symmetric NE. In such NE: I(�b; ��b) = ; and b�s payo¤

is at most 0, if not negative. If � 6= 0, then �b = 0 is bidder b�s optimal deviation with

I(0; ��b) = b for sure and ub(0; �
�b) =M � c > 0. Similar, for � = 0, �b = 1 is the optimal

deviation I(1; ��b) = b for sure and ub(1; �
�b) = M � c � 1 > �c. Hence, there does not

exist any pure symmetric NE.

From here on, we mean by x 2 � is a symmetric NE that that xb = x for all b = 1; : : : ; n+1

is a symmetric mixed strategy NE. The non-empty set of symmetric NE is denoted as �NE.

The support of x is denoted as S(x) � B and for its subset of monetary bids we write

SN (x) � BN .

The numerical examples of Section 3 all had a symmetric NE in which the lowest bid

was chosen with a positive probability, the support of numerical bids is a set of consecutive

numbers and the probabilities decreases when bids in the support increase. The following

theorem states that these properties generally hold in any symmetric NE.
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Theorem 4 Let x 2 �NE. Then, the support SN (x) is a set of consecutive numbers that

contains the lowest bid of 0. The probability xi is strictly monotone decreasing in i 2 SN (x)

and the probability of winning the auction with bid i is strictly monotone increasing in i 2

SN (x).

Before proceeding to the formal proof, we �rst discuss this result. A support of consecu-

tive numbers means that there are no gaps of bids that will never be chosen. The rationale

is that any bid in such gap would allow to undercut all NE bids above it by making a unique

bid for sure, and if such bid would prevail as the winning bid, it is also less expensive. Since

the probability is positive that such undercutting bid is winning it does therefore strictly

better than the NE bids above this gap. This argument also implies that the lowest bid

should not be part of any gap and, therefore, must be included in the support.

Symmetric NE underpin the complicated deliberations of bidding in the lowest-unique

sealed-bid auction. On the one hand, the rules imply that bidding the lowest bid or close

to it should be considered, because otherwise someone else might undercut. On the other

hand, if everybody bids very low, the lower bids become overcrowded and it is better to

contemplate a somewhat higher bid. Since such bids have more potential lower bids that

might be winning, these bids are less attractive. This is re�ected in that such bids are made

with lower probabilities. The mixed symmetric NE indicates that lower bids are more likely

to be observed in such an auction than the higher bids. To make the more costly higher bids

more attractive, they o¤er a higher probability of winning to o¤set the extra costs and the

risk that lower bids prevail as the winning bid.

We now turn our attention to the proof of Theorem 4. For notational convenience, we

take the perspective of bidder 1 and, then, de�ne Fi � Bn, i 2 BN , as the set of partial

outcomes ��1 =
�
�2; : : : ; �n+1

�
such that I

�
i; ��1

�
= 1, meaning i is a winning bid for

bidder 1 given ��1. This implies that, if kj
�
��1

�
is the number of bids equal to j 2 BN in

��1, then ��1 2 Fi if and only if kj
�
��1

�
6= 1 for all j = 1; : : : ; i� 1 and ki = 0.

13



Given the mixed strategy x 2 �, let fi(x) be the probability that bidder 1 can win

by making the bid i 2 BN given that all other bidders use the mixed strategy x, i.e.,

x�1 = (x; : : : ; x). Then, we have for every i 2 BN that

fi(x) =
X
s2Fi

Pr(��1 = s) =
X
s2Fi

xs2 � : : : � xsn+1 �
X
s2Fi

Pr(s); (1)

where s = (s2; : : : ; sn+1) 2 Bn. Obviously, fi (x) is continuous in x. Bidder 1�s expected

utility of bid i 2 BN against x�1 is denoted as u (i; x) and it is equal to (M � i) fi(x) � c.

The expected symmetric NE utility is denoted as u (x; x) and it is a continuous function in

both x1 = x and x�1 = (x; : : : ; x).

We have the following property for the support of any symmetric NE.

Lemma 5 Let x 2 �NE. There exists a �� 2 BN such that SN (x) =
�
0; : : : ; ��

	
.

Proof. By Proposition 3, SN (x) 6= ;. Suppose SN (x) is not a set of consecutive

numbers, then there exists a number i 62 SN (x) and a partitioning of SN (x) into L (low)

and H (high) such that both L;H 6= ;, L [ H = SN (x) and i is larger than all bids in L

but smaller than all bids in H. For every h 2 H it holds that fh (x) > 0, because otherwise

the expected payo¤ of bidding h would be �c < 0, a contradiction. If h 2 H turns out to

be the winning bid, then so would have done the bid i < h.

Consider the deviation x0 2 � such that x0j = xj � 0 for j 2 fN; 0; : : : ; i � 1g, x0i =P
h2H xh > 0, and x

0
j = 0 for all j � i + 1. Then, i) i is the winning bid in all cases where

some h 2 H would have been the winning bid, ii) the event "i wins" occurs with positive

probability under x�1 and iii) i < h for all h 2 H implies bidder b pays less if he wins. But

then, the deviating strategy x0 has a higher expected utility than x 2 �NE, a contradiction.

Hence, the support SN (x) of x 2 �NE is a set of consecutive numbers.

Finally, we cannot have minSN (x) > 0, because then the previous argument applies for

i = 0, L = ; and H = SN (x). Hence, minSN (x) = 0.

The following lemma follows directly from the de�nition of the NE concept: All pure

strategies in the support of a mixed NE are optimal pure strategies and payo¤ equivalent.

14



Lemma 6 Let x 2 �NE. For all i 2 SN(x) and j 2 BN , (M � i)fi(x) � (M � j)fj(x) and

equality holds if also j 2 SN(x). Moreover, N 2 S (x) implies u (x; x) = 0.

Lemma 6 implies the following result, which completes the proof of Theorem 4.

Lemma 7 If x 2 �NE, then xi and fi (x) are strictly monotone decreasing, respectively,

increasing in i 2 SN (x).

Proof. Suppose that for i; i + 1 2 SN (x) we would have xi+1 � xi. Let �
�1 2 Fi+1.

Then for j = 0; : : : ; i we have that kj(x) 6= 1 and ki+1 = 0. From �1 we construct bids

�̂
�1
= �̂

�1 �
��1

�
such that �̂

�1 2 Fi by moving all bids �
b = i, b = 2; : : : ; n + 1, to

�̂
b
= i + 1. Formally, let �̂

�1
= �̂

�1 �
��1

�
= (�̂

2
; : : : ; �̂

n+1
), where for b = 1; : : : ; n we

take �̂
b
= i + 1 if �b = i and �̂ = �b otherwise. Then, for �̂

�1
we have that kj 6= 1 for

j = 0; 1; : : : ; i � 1 and ki = 0. Hence, �̂
�1 2 Fi. Moreover, from xi+1 � xi it follows that

Pr(�̂
�1
(��1)) � Pr(��1), because all xsb = xi become xsb = xi+1 in (1). But then we have

fi+1(x) =
X

��12Fi+1

Pr(��1) �
X

�̂
�1
(��1);��12Fi+1

Pr(�̂
�1
(��1)) �

X
s2Fi

Pr(s) = fi(x)

and this implies (M � (i+1))fi+1 (x) < (M � i)fi (x) with i; i+1 2 SN (x). This contradicts

Lemma 6. Thus, if i; i+1 2 SN then xi+1 < xi. Finally, by Lemma 6, for any i; i+1 2 SN (x),

we have that fi(x) = M�i�1
M�i fi+1(x) < fi+1 (x).

The probability fi (x) of bid i being the winning bid can also be expressed by the following

formulas:

f0 (x) = (1� x0)n ;

f1 (x) =
nP

k0 6=1

�
n

k0

�
xk00 (1� x0 � x1)

n�k0 ;

fi (x) =
X

k0+k1+:::+ki�1+ki=n
kj 6=1;j=0;1;:::;i�1

�
n

k0; k1; : : : ; ki�1; ki

�
� xk00 � xk11 � : : : � x

ki�1
i�1 � rkii (x) ; (2)
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where ri (x) = 1�x0� : : :�xi is the complementary probability that an individual bid does

not belong to the set f0; 1; : : : ; ig and the multinomial coe¢ cient is de�ned as�
n

k0; k1; : : : ; ki�1; ki

�
=

n!

k0! � k1! � : : : � ki�1! � ki!
:

From f0 (x) = (1� x0)n and u (x; x) = u (0; x) � 0, we can derive

x0 = 1�
�
c+ u (x; x)

M

� 1
n

� 1�
� c
M

� 1
n
: (3)

However, except for the quadratic case n + 1 = 3, the powers in these probabilities for

i � 1 become too large in order to obtain similar closed-form solutions for x1; x2; : : : or to

characterize all NEs. So, one has to resort to numerical analyses in studying symmetric NEs

or comparative statics.

We conclude this section with a comparative static result for large numbers of bidders,

large costs of making a bid and large value of the prize. In order to state this result, we need

to de�ne �NE (M; c; n+ 1) as the set of symmetric NE for M , c and n+ 1.

Theorem 8 If the number of bidders is su¢ ciently large (n+1 � M
c
) or the cost of making

a bid are su¢ ciently large (c � maxx2�NE(M;1;n+1) f0 (x)M), then in any symmetric NE

there is a positive probability of nonparticipation and the expected NE payo¤s are zero. In

particular, as the number of bidders goes to in�nity, the probability of nonparticipation goes

to one. For su¢ ciently large monetary value of the prize, all bidders participate for sure and

expect to make a positive gain. Moreover, as the monetary value goes to in�nity, the highest

bid in the support also goes to in�nity.

The intuition behind Theorem 8 is quite intuitive, an increased probability of participa-

tion deteriorates the probability of winning the auction and, therefore, erodes the pro�tability

of entering the auction. If too many bidders enter, then the entire expected surplus van-

ishes. Indeed, when this number goes to in�nity, the individual probability of participating

becomes negligible and the remaining probabilities over bids all converge to zero. Similar, if
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the costs of bidding become too high, these costs cannot be recovered by the expected gains

of winning and bidders start to increase their probability of nonparticipating. Whenever,

the probability of nonparticipation is positive, the expected NE payo¤s are zero by Lemma

6. In that case, we arrive at a result similar to the classic result known for markets with

endogenous entry: under a �xed market entrance fee, potential producers enter as long as

there are expected net pro�ts from doing so are larger than the entrance fee. In the symmet-

ric NE of the auction, costly bidding erodes expected positive net gains until these expected

gains are equal to the payo¤ of nonparticipation. The value of the prize has a di¤erent

e¤ect compared to the previous two parameters: If it becomes large enough, all bidders will

participate and expect to make a pro�t. Moreover, a higher monetary value make higher

bids more attractive and, therefore, increases the support.

This theorem is shown in three lemma�s, each involves one of the three key parameters,

that also provide some additional insights. First, we consider large numbers of bidders.

Lemma 9 Let x 2 �NE (M; c; n+ 1). For any n + 1 � M
c
, then xN > 0 and u (x; x) = 0.

If n+ 1 goes to in�nity, then xN goes to 1.

Proof. For arbitrary n+ 1 and x 2 �NE (M; c; n+ 1), de�ne Pr (x;n+ 1) � 1
n+1

as the

probability that bidder 1 wins the auction. Note that the positive probability that nobody

wins the auction, which is at least xn+10 > 0, yields p (x;n+ 1) < 1
n+1
. As n + 1 goes to

1, this probability converges to 0. Suppose for all n + 1 that xN (n+ 1) = 0, x (n+ 1) 2

�NE (M; c; n+ 1). Then, the expected NE payo¤ is at most p (x;n+ 1)M � c < 1
n+1
M � c.

The upper bound converges to �c as n + 1 goes to 1. Negative NE payo¤s contradict

Proposition 1. So, for large enough n+ 1, xN > 0. Since p (x;n+ 1) < 1
n+1
, bidder 1 would

certainly make a loss if the upper bound 1
n+1
M � c becomes non-positive, which yields the

lower bound on n + 1. Finally, for all n + 1 � M
c
, u (x; x) = 0 = Mf0 (x) � c implies that

x0 = 1� ( cM )
1
n ! 0 as n+ 1 goes to 1. By Lemma, 7, x0 is the largest probability in S (x)

and, therefore, all probabilities in the support converge to 0. Hence, in the limit xN = 1.
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The lower bound on the number of bidders is derived from the intuition that the prob-

ability of winning the auction should yield a su¢ ciently large expected revenue to cover

the cost of making a bid. In case all bidders enter the auction for sure, the probability of

winning would converge to 0 if the number of bidders would go to in�nity, which means

that for too many bidders nonparticipation becomes a pro�table deviation. Note that this

intuition provides a su¢ cient condition for xN > 0 that is, however, not necessary because it

is derived under overestimation of the true probability of winning by comparing it to a stan-

dard lottery. Note that the lower bound on the number of bidders can also be rewritten as

c � M
n+1
, meaning that the expected gain of a standard lottery ticket would be non-positive.

Since the true probability of winning will be strictly smaller than in a lottery, there might

be a set of consecutive n + 1 just below M
c
for which xN > 0 also holds. This statement is

illustrated by the numerical example of Section 3 where xN = :2887 and n+ 1 < M
c
in case

of n + 1 = 3, M = 4 and c = 1. So, for given M and c, we may only expect symmetric

NE with positive expected NE payo¤s for a subset of su¢ ciently small consecutive numbers

n+1 < M
c
. As the number of bidders approaches in�nity, the probability that an individual

bidder enters becomes negligible. The probability distribution over the numerical support

has limit probabilities of zero. Under zero bidding costs, Östling et al. (2007) derive a

uniform limit distribution over numerical bids with positive probabilities. Our result shows,

however, that when bidding costs are positive, it is nonparticipation that prevails in the

limit.

The second lemma puts an upper bound upon the costs for positive expected NE payo¤s.

Lemma 10 For any x (1) 2 �NE (M; 1; n+ 1) such that u (x (1) ; x (1)) = f0 (x (1))M �

1 � 0 and all c � f0 (x (1))M it holds that x (1) 2 �NE (M; c; n+ 1). Moreover, for

c > 1, x (c) 2 �NE (M; c; n+ 1) such that u (x (c) ; x (c)) = f0 (x (c))M � c > 0 implies that

x (c) 2 �NE (M; 1; n+ 1).
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Proof. Consider x 2 �NE (M; 1; n+ 1). By Lemma 6, for all i 2 SN(x) and j 2 BN :

(M � i)fi(x)� 1 � (M � j)fj(x)� 1, (M � i)fi(x)� c � (M � j)fj(x)� c;

and equality holds if also j 2 SN(x). So, di¤erent c do not a¤ect these inequalities. Then,

x is also a NE for c provided that the expected utility under c, which is f0 (x)M � c, obeys

the non-negativity implied by Proposition 1. Starting with arbitrary c � 1 yields the second

statement, where the condition f0 (x (c))M � c > 0 ensures that S (x (c)) = SN (x (c)) and

x0 (ĉ) < 1�
�
ĉ
M

� 1
n for all ĉ = 1; : : : ; c by (3).

This last result is based upon the observation that the equilibrium conditions for numeric

bids in BN are invariant with respect to the costs of making a bid. So, as long as the expected

payo¤s of participating for sure under x (1) 2 �NE (M; 1; n+ 1) under di¤erent costs c cover

at least the opportunity costs of nonparticipation, participation by playing x (1) remains

a NE. This invariance cannot hold for any NE x (c) 2 �NE (M; c; n+ 1) with a positive

probability of nonparticipation, that is xN (c) > 0, because then u (x; x) = 0 implies that

x0 (c) = 1 �
�
c
M

� 1
n depends upon c. Moreover, the probability x0 (c) is decreasing in c.

Therefore, x (c) 2 �NE (M; c; n+ 1) such that xN (c) > 0 implies x (c) =2 �NE (M; c0; n+ 1)

for c0 6= c. A similar invariance also fails for M and M 0. Therefore, x 2 �NE (M; c; n+ 1)

implies x =2 �NE (M 0; c; n+ 1).

The following result states that for large enough monetary values, all bidders participate

for sure and expect to make a pro�t.

Lemma 11 Let x (M) 2 �NE (M; c; n+ 1). For su¢ ciently large M , xN (M) = 0 and

u (x (M) ; x (M)) > 0. If M goes to in�nity, then �� (M) also goes to in�nity, where �� (M)

is the upper bound on the numerical support SN (x (M)).

Proof. Suppose not, then for all M > 0 and x (M) we would have xN (M) > 0 and

u (x (M) ; x (M)) = 0. By (3), as M goes to 1, x0 (M) = 1 �
�
c
M

� 1
n ! 1 and, therefore,
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xN (M)! 0, x1 (M)! 0 and

f1 (x (M)) =
nP

k0 6=1

�
n

k0

�
xk00 (M) (1� x0 (M)� x1 (M))

n�k0 ! 1:

Then, for su¢ ciently large M , x̂1 = (0; 0; 1; 0; : : : ; 0) yields u (x̂1; x (M)) > 0, which is a

pro�table deviation from the NE x (M), a contradiction. Hence, for su¢ ciently large M ,

x0 (M) < 1 �
�
c
M

� 1
n and, by (3), this implies u (x (M) ; x (M)) > 0. Finally, we show that

limM!1 inf �� (M) = 1. Suppose not, then for the symmetric NE x (M) with the smallest

numerical support SN (x (M)) we would have limM!1 �� (M) = �� < 1. By Lemma 6 we

have fi (x (M)) < fi+1 (x (M)) for i; i + 1 � ��. The arguments in this lemma�s proof also

apply to i = �� and i + 1 = �� + 1. Hence, f0 (x (M)) < : : : < f�� (x (M)) < f��+1 (x (M)).

By de�nition of the NE concept,
�
M � ��

�
f�� (x (M)) � c �

�
M � �� � 1

�
f��+1 (x (M)) �

c. However, as M goes to 1, f�� (x (M)) � M����1
M��� f��+1 (x (M)) ! f��+1 (x (M)), which

contradicts f�� (x (M)) < f��+1 (x (M)). Hence, limM!1 inf �� (M) =1.

Under symmetric strategies, the random number of participating bidders follows a Bi-

nomial distribution with n + 1 draws and a probability 1 � xN of participation. There-

fore, the expected number of bidders is (n + 1) (1� xN) with a standard deviation ofp
(n+ 1)xN (1� xN). Obviously, if xN = 0, then all n + 1 bidders enter for sure. Simi-

lar, xN = 1 implies no bidder enters for sure.

A �nal remark concerns the case no bidding costs case c = 0. The assumption c > 0 is

motivated by eradicating many counter intuitive asymmetric NEs, such as bidder 1 bids 0

and all others bidders bid at least 1. In case of symmetric NEs, the above results also hold

for c = 0. Then, in any symmetric x 2 �NE we have u (0; x) = Mf0 (x) > 0 and, hence,

u (x; x) > 0 and xN = 0 (all bidders participate for sure).

5 Computation of Symmetric Nash Equilibria

The results derived in the previous section state general properties of symmetric NEs. In

this section, we identify a mathematical program and su¢ cient conditions under which the
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optimum of this program coincides with one of these symmetric NEs. This program also can

answer whether the expected NE utilities are positive or zero. As in the previous section,

we assume without loss of generality that n+ 1 � 3.

The mathematical program is given by

minz�0;x�0 z
s.t.
u(i; x) � z; i 2 BN ;P

i2BN xi � 1;

(4)

where u(i; x) = (M � i)fi(x)� c for i 2 BN . Since all u (i; x) are independent of xN we have

implicitly de�ned this probability as the slack in the last constraint.

The following results are rather straightforward. Let x 2 �NE and z = u (x; x) � 0, then

the standard properties of the NE concept imply that (z; x) is a feasible solution of (4). This

fact implies a non-empty set of feasible solutions and that the optimal z � 0 is bounded from

above by minx2�NE u (x; x). Furthermore, the subset of x � 0 such that
P

i2BN xi � 1 is a

non-empty, compact and convex set and, by (2), u(i; x), i 2 BN , is a continuous function in

x. This su¢ ces for program (4) to admit an optimal solution.

Recall that, depending upon the parameter values, the expected NE utilities could be

positive or zero. In case there exists an x 2 �NE such that z = u (x; x) = 0, then (0; x) is

an optimal solution. Unfortunately, every y 2 � such that (0; y) is feasible in (4) is also an

optimal solution and, therefore, not every such (0; y) corresponds to a NE. For example, for

n+1 = 3,M = 4 and c = 1, we obtain from Table 1 and 2 that x 2 �NE implies u (x; x) = 0.

Implementation of (4) in the optimization package GAMS8 yields the optimal solution (z; y)

with z = 0 and y = (0:0000; 0:289; 0:500; 0:211; 0:000; 0:000), which di¤ers from the NE x.

Moreover, u (1; y) = �0:244 < 0 implies that y fails the NE conditions.

Based upon this example, one may easily discard program (4) as being of limited interest,

but we will argue that this would be the wrong conclusion. The natural question is under

what conditions the optimal solution correspond to a symmetric NE. As will become clear

from the mathematical proofs, there are two conditions under which the optimal solution
8For more information on GAMS, we refer to Brooke et al. (1998).
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(z; x) of (4) implies x 2 �NE: The expected utility z in the optimal solution has to be

positive and a technical condition on the probabilities of winning.

The technical condition on the winning probabilities is associated with a particular re-

distribution of probability mass over two consecutive bids ceteris paribus keeping all other

bidding probabilities �xed. Formally, for j 2 BN , consider the function fj (x) in case all x

variables on which it depends are �xed, except for xi and xi+1, where i + 1 � j � 1. Note

that by �xing all other variables, the sum xi + xi+1 is also �xed. Let b = xi + xi+1 2 [0; 1]

and de�ne the one-dimensional function g : [0; b]! [0; 1] as

gi;j (a) = fj(x0; : : : ; xi�1; a; b� a; xi+2; : : : ; xj�1; rj (x)): (5)

The technical condition is as follows:

Assumption 12 For all j 2 BN and i+ 2 � j, gi;j (a) is strictly quasi-convex in a 2 [0; b].

We postpone discussing this assumption after having established the main result of this

section.

Theorem 13 Let Assumption 12 hold and (z; x) is an optimal solution of (4) such that

z > 0. Then, x 2 �NE and u(x; x) = z and
P

i2BN xi = 1 in (4).

We prove this result in a number of lemmas. The �rst lemma is easily veri�ed from (2)

and stated without a proof.

Lemma 14 For i 2 BN , fi(x) is continuous on �, fi(x) is symmetric in the variables

x0; x1; : : : ; xi�1.

The next lemma states some properties of the following modi�cation of fi in which the

variable ri 2 R+ replaces the function ri (x). We call this function the modi�ed function fi.

These properties are also easily veri�ed from (2).

Lemma 15 The modi�ed function fi(x) is non-decreasing in the variables x0; x1; : : : ; xi�1; ri

and, increasing if all x0; x1; : : : ; xi�1; ri are positive.
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The next result relates any optimum of program (4) to the property of the support derived

in Lemma 5.

Lemma 16 Let (x; z) be an optimal solution of (4) such that z > 0. Then, there exists a

�� � 0 such that SN (x) =
�
0; : : : ; ��

	
Proof. Suppose not. Then, there exists an optimal solution (x; z) of (4) for which there

exists some i 2 BNn f0g such that xi�1 = 0 and xi > 0. The proof consist of redistributing

part of the variable xi over x0; : : : ; xi�1 such that a new feasible solution (z0; y) is constructed

with u(j; y) < u(j; x) for all j 2 BN and 0 � z0 < z.

First, choose "0; "1; : : : ; "i > 0 such that
Pj�1

m=0 "m � "j for all j � i and "i < xi. De�ne

yj =

8<:
xj + "j; j � i� 1;
xj � "j; j = i;
xj; j � i+ 1;

and z0 = max f0; u(0; y); : : : ; u(M � c; y)g :

Then, for all j 2 BN , yj � 0 (with strict inequality for all j � i) and
PM�c

i=0 yi =
PM�c

i=0 xi+Pi�1
j=0 "j � "i � 1. Thus, (y; z0) is a feasible solution of (4).

Next, we show that z0 < z. We partition all j 2 BN according to j � i and j � i� 1.

1. j � i : By xi�1 = 0, it follows for every j � i that Fj � Fi�1 and, thus, fj(x) � fi�1(x).

Moreover, from xi > 0 it follows that fi�1(x) � xni > 0 and, thus for all j � i :

u(j; x) = (M�j)fj(x)�c � (M�j)fi�1(x)�c < (M�i+1)fi�1(x)�c = u(i�1; x):

Hence, z � u(i� 1; x) > u(j; x) for j = i; i+ 1; : : : ;M � c and, in particular, u(i; x) <

z. Since the maximal component-wise di¤erence between x and y is "i it follows by

continuity that u(j; y) < z for all j � i if all "0; : : : ; "i are small enough. To the precise

speci�cation of su¢ ciently small "0; : : : ; "i we turn next under 2.

2. j � i� 1 : By (2), we have that the modi�ed function fj only depends on the variables

x0; : : : ; xj�1; rj � 0, where rj = 1�
Pj

m=0 xm. Furthermore, xi > 0 implies
Pj

m=0 xm �

1� xi < 1 and, therefore, rj = rj(x) > 0. By Lemma 15, the modi�ed function fj (x)
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is continuous and non-decreasing in all j + 1 variables. Similar, y0; : : : ; yj�1; r0j > 0

with r0j = 1 �
Pj

m=0 ym and, by Lemma 15, modi�ed function fj (y) is increasing in

all these j + 1 variables. Note that ym = xm + "m > xm for all m � j � 1 implies

r0j < rj. Therefore, we must choose all "0; : : : ; "i such that for every j � i � 1 the

decrease from rj to r0j by "j dominates the combined increases from xm to ym by "m

for all m � j � 1. Since modi�ed fj (x) is continuous, symmetric in x0; : : : ; xj�1 and

non-decreasing x0; : : : ; xj�1; rj, there exist 0 < "0 � : : : � "i�1 � "i < xi such that

fj (y) < fj (x) for all j � i � 1, where we write a � b if 0 < a < b and a
b
> 0 is

arbitrarily small. Then, u(j; y) < u(j; x) for all j 2 BN , including for those under 1.

Hence, z0 = maxj f0; u(1; y); : : : ; u(M � c; y)g < z for all j 2 BN and this contradicts that

(x; z) is an optimal solution of (4).

Corollary 17 Let (x; z) be an optimal solution of (4) such that z > 0. Then, �� � 1.

Proof. Suppose not, meaning �� = 0. Then, z > 0 and �� = 0 imply x0 = 1, f0 (x) = 0 and

fi (x) = 1 for all i � 1meaning u (0; x) = 0 and z = u (1; x) =M�c�1. By Proposition 3 and

Lemma 5, the support on BN of any x̂ 2 �NE such that ẑ = u (x̂; x̂) > 0 contains the subset

f0; 1g. Furthermore, in any symmetric NE there is a positive probability that no bidder wins

the auction, i.e., fi (x̂) < 1 for all i 2 S (x̂). Therefore, ẑ = u (1; x̂) < M � c� 1 = z, which

violates that the optimal (z; x) is such that z 2 [0; ẑ]. Clearly, a contradiction.

The previous result is independent of Assumption 12, but the following result also needs

this assumption.

Lemma 18 Let Assumption 12 hold and (z; x) is an optimal solution of (4) such that z > 0.

Then, i 2 S(x) implies u(i; x) = z.

Proof. Suppose not. Then, for the optimal solution (x; z) of (4) de�ne i 2 S (x) as the

largest i � �� for which u (i; x) < z. Then, xi+1; : : : ; x�� > 0 (by Lemma 16), ui+1(x) = : : : =
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u��(x) = z and u��+1(x) � z, And uj(x) < z for all j � �� + 2, because x��+1 = : : : = xj�1 = 0

implies fj (x) = f��+1 (x). The proof consist of redistributing part of the probability xi over

x0; : : : ; xi�1 and xi+1 such that a new feasible solution (z0; y) is constructed with u(j; y) < z

for all j 2 BN and 0 � z0 < z.

Without loss of generality, let i < M � c. Otherwise, (z0; y) as constructed in the proof

of Lemma 16 immediately applies in case i =M � c to improve upon (z; x). Here, we need a

di¤erent (z0; y). Choose "0; "1; : : : ; "i; "i+1 > 0 such that
Pj�1

m=0 "m � "j for all j � i, "i < xi

and "i+1 = "i �
Pi�1

j=0 "j. De�ne y such that

yj =

8>><>>:
xj + "j; j � i� 1;
xj � "j; j = i;
xj + "j; j = i+ 1
xj; j � i+ 2;

and z0 = max f0; u(0; y); : : : ; u(M � c; y)g : (6)

Then, for all j 2 BN , yj � 0 (with strict inequality for all j 2 S (x) and, possibly, also for

j = �� + 1 in case i = ��) and
PM�c

i=0 yi =
PM�c

i=0 xi � 1. Note that y is constructed such that

rj (y) = rj (x) for all j � i + 1, which is exploited below. Thus, (y; z0) is a feasible solution

of (4). We consider two cases: j � i+ 1 and j � i+ 2.

1. j � i + 1: Similar as in the proof of Lemma 16, 0 < "0 << : : : << "i�1 << "i � xi

and continuity ensures fj (y) < fj (x) for all j = 0; : : : ; i � 1 and, thus, u(j; y) <

u (j; x) � z. For j = i, fj (y) > fj (x), but for su¢ ciently small "�s we can ensure

u (i; y) < z. Finally, for j = i + 1 we have ri+1(y) = ri+1(x) and the e¤ect in "i

dominates fi+1 (y) through yi = xi � ". Hence, by continuity, fi+1 (y) < fi+1 (x) and,

thus, ui+1(y) < ui+1(x) � z.

2. j � i + 2: For these j, the issue is that "i and "i+1 are of the same magnitude (in

contrast to "m � "i for all m � i � 1) and yi = xi � "i and yi+1 = xi+1 + "i+1

have opposite e¤ects on fj (y). We have to make sure that the decrease from xi to yi

dominates the increase from xi+1 to yi+1. We �rst establish the following claim.

Claim 1: xi+1 < xi.
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The arguments in the proof of Lemma 7 apply: xi � xi+1 =) fi(x) � fi+1(x). This

implies the contradiction u(i; x) > u(i+ 1; x) = z. Hence, xi+1 < xi.

Next, we concentrate on "i and "i+1 that are of the same magnitude.

Claim 2: gi;j (xi � "i) < fj (x) for all j � i+ 2.

Consider gi;j(a) and note that i 2 S (x) implies that b = xi+ xi+1 > 0. By Lemma 14,

gi;j(a) = gi;j(b� a) for every a 2 [0; b]. By de�nition of strictly quasi-convexity in the

variable a, for every a 2 [0; b
2
)

gi;j(
b

2
) = gi;j(

1

2
a+

1

2
(b� a)) < max fgi;j(a); gi;j(b� a)g = gi;j (a) = gi;j(b� a):

Hence, gi;j is minimal in a = b
2
and, as a gets closer to b

2
, gi;j (a) strictly decreases.

Since xi+1 < xi, we have that xi > b
2
and, thus, gi;j(xi � "i) < gi;j(xi) = fj (x) for

xi � "i > b
2
.

Claim 3: fj(y) < fj(x).

De�ne y0 2 � by y0i = xi � "i, y0i+1 = xi+1 + "i and y0l = xl if l 6= i; i + 1. Then, the

length (norm) j y� y0 j is arbitrary small compared to j x� y j. Thus, by continuity of

the function fj we have that fj(y0) = gi;j (xi � "i) < fj(x) implies that fj(y) < fj(x).

Claim 3 implies that uj(y) < uj(x) for j = i+ 2; i+ 3; : : : ;M � c.

Hence, u(j; y) < z for all j 2 BN and, thus, z0 < z which contradicts that (x; z) is an

optimal solution of (4).

The following lemma completes the proof of Theorem 8.

Lemma 19 Let Assumption 12 hold and (z; x) is an optimal solution of (4) such that z > 0.

Then, x 2 � is a symmetric NE, u(x; x) = z, and
P

i2BN xi = 1 in (4).

Proof. By Lemma 18, for every i 2 S(x) : u(i; x) = z. Hence, u(x; x) = z. Next, for

every j 2 BN : u(j; x) � z and, thus, for every y 2 � : u(y; x) � z. Hence, x is a symmetric
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NE such that u(x; x) = z. Finally, we show that xN = 0. Suppose not, then (z; x) is such

that xN = 1 �
P

i2BN xi > 0. For 0 < " < xN , de�ne y 2 � such that yN = xN � ",

y�� = x�� + " and yi = xi for all other i 6= ��. Then, for su¢ ciently small ", u (i; y) < z for all

i � ��. Since also u (i; y) = u (i; x) = z for all i � ���1, we have that (z; y) is another optimal

solution in (4). Since y fails the property of Lemma 18, we arrived at a contradiction. Hence,

xN = 0 implies
P

i2SN (x) xi =
P

i2BN xi = 1 in (4).

Note that the proof of Theorem 8 consists of two crucial steps: Lemma 16 and 18.

The proof of Lemma 16 is independent of Assumption 12, but does require z > 0, because

otherwise the arguments would fail. Similar, z > 0 is necessary in the proof of Lemma

18 and, additionally, Assumption 12 is a su¢ cient condition. Under this assumption, the

redistribution of probabilities described by y in (6) improves the objective function of the

program (4).

It is unclear whether Assumption 12 covers the entire class of auctions considered in

this paper. By the symmetry of Lemma 15, we may without loss of generality take i = 0

in verifying this assumption for all M and c. Veri�cation whether gi;j (a) is strictly quasi-

convex for all i, j � i+2, all n+1 � 3 and all x 2 � is a Herculean task. Assumption 12 is

less restrictive than assuming fj (x) is strictly (quasi-)convex in all x0; : : : ; xj�1. Note that

strictly convex can be shown for n + 1 = 3; 4, all a 2 [0; 1] and all other xm 2 R+, which

follows directly from g00i;j (a) > 0.
9 So, Assumption 12 does specify a non-empty subclass of

auctions. The latter approach, however, is too crude and breaks down for n+1 � 5, because

then odd powers of the third degree or higher with negative coe¢ cients might appear in

g00i;j (a). Introducing the constraints a � b = x0 + x1 and x 2 � make veri�cation of the sign

of g00i;j (a) unworkable for arbitrary parameter values, because the function gi;j (a) is highly

nonlinear and the length of the support is unknown. For the same reasons, application of

the necessary and su¢ cient conditions for additively decomposed quasi-convex function in

Crouzeix and Lindberg (1986) to (5) is also unworkable.

9Upon request, a proof is available from the authors.
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The optimal strategy of program (4) can also be interpreted as the maximin value of a

game where a single bidder faces a bidding ring formed by all other bidders that are restricted

to all follow the same bidding strategy. Then, the larger the single bidder�s expected utility,

the lower the ring�s expected utility is, which suggests a competitive game. So, by minimizing

the single bidder�s expected utility the ring gives away the least expected amount. By sym-

metry of all bidders in the auction, the ring�s minimizing bidding strategy is also one of the

single bidder�s best responses to this minimizing bidding strategy. Therefore, if (z; x) solves

(4) such that z > 0, then (x; x) 2 argmaxx02�minx002� u (x0; x00). By von Neumann�s famous

maximin equals minimax theorem, we also have that (x; x) 2 argminx002�maxx02� u (x0; x00).

The results obtained thus far have several implications (under Assumption 12):

1. If all symmetric NE have positive expected NE utilities, then (4) identi�es the sym-

metric NE with the lowest expected NE utilities and, consequently, z > 0.

2. If (z; x) is an optimal solution and z > 0, then this rules out any symmetric NE with

expected NE utilities equal to 0.

3. If (z; x) is an optimal solution and z = 0, then there exists a symmetric NE with

expected NE utilities of 0 (because the if of point 1. cannot hold).

These implications make program (4) very interesting for numerical analyses, because

this program can answer the question whether for certain parameter values the expected NE

utilities are positive or zero and, if positive, it yields a symmetric NE.

6 Numerical Analysis of Symmetric NEs

As has become clear from the previous sections, the functional form of the winning prob-

abilities in (2) is the complicating factor in fully characterizing the symmetric NE of the

unique-lowest-bid auction. To obtain additional insights, we resort to three numerical meth-

ods. First, we further explore GAMBIT. Second, we implement the optimization program (4)
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in the numerical optimization package GAMS. Third, simulation of the replicator dynamics

in Maple10 to touch upon an issue neglected thus far: The evolution of bidding behavior.

In GAMBIT, we computed all NE and implemented a su¢ ciently large subset of B. This

slowed down the computations considerably in computing NEs when n+ 1 and M increase.

Since also the implementation in GAMBIT is time consuming, we restricted the use of this

package to n+1 = 3 or 4, and parameter valuesM in the range of 3 to 25 and c = 1. GAMBIT

always reported a single symmetric NE. A fast and e¢ cient way to compute the symmetric

NE under GAMBIT is to compute the quantal response equilibrium, see McKelvey and

Palfrey (1995). Since the quantal response equilibrium may fail to be evolutionary stable,

we cannot conclude evolutionary stability from this equilibrium concept.

Program (4) is implemented in GAMS and, for all parameter values run, GAMS reports

normal completion. For n+1 � 8, our computer program becomes very slow due to the need

to compute a large amount of multinomial coe¢ cients prior to the numerical optimization.

For that reason, we did not perform any computations in GAMS for n+ 1 � 10.

Next, we brie�y introduce the replicator dynamics. Bidders in the lowest-unique-bid

auction come from a single population and any vector in� represents the population fractions

of bids in this population. Time t 2 R+ is continuous and x (t) 2 � represents the population

fractions at time t, where x (0) represents the initial population fractions. We assume that

the population size N � n + 1 such that modi�cations due to �nite populations can be

neglected. The replicator dynamics are de�ned as in e.g. Weibull (1995) and given by the

following system of di¤erential equations:

_xb(t) = xb(t)[u(b; x(t))� u(x(t); x(t))]; b 2 B: (7)

In Bukowski and Miekisz (2004), it is shown that the set of evolutionary stable strategies

(ESS) is a subset of the set of asymptotically stable equilibrium (ASE) strategies and that

the latter is a subset of the set of NE. Formally, �ESS � �ASE � �NE. Veri�cation of the

de�nition of ESS for the lowest-unique-bid auction or of the optimum of program (4) is too

10For more information on Maple we refer to www.maplesoft.com.
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di¢ cult given that we cannot fully characterize NEs or this optimum. The quantal response

equilibrium may not be ESS, see McKelvey and Palfrey (1995). For that reason, we resort

to numerically solving for stationary distributions of (7). In case of convergence, numerical

methods for simulating time paths of replicator dynamics (7) yield ASE strategies and this

is as close as we (numerically) can get to ESS. All numerical simulations were performed

in the software package Maple by invoking the fourth-order Runga-Kutta method with a

step size of 0:01, see e.g., Betounes (2001). The initial population fractions were chosen as

the uniform distribution over a large support of consecutive numbers containing 0. In all

simulations, the initial support S (x (0)) � S (x�), where x� = limt!1 x (t). The replicator

dynamics converged in all parameter values run, but convergence slows down considerably

for n+ 1 � 8.

For n+ 1 = 3 or 4, we �rst computed all NEs with Gambit for several parameter values

3 � M � 25 and c = 1. Then, we ran the replicator dynamics and obtained convergence to

the symmetric NE. In case x 2 �NE such that u (x; x) > 0, we also performed the numerical

optimization algorithms in GAMS. This was done to check the numerical accuracy of the limit

solution of the replicator dynamics. Since GAMS returned approximately (u (x�; x�) ; x�), all

limit solutions x� of the replicator dynamics are very accurate and (u (x�; x�) ; x�) is feasible

in (4). In all these cases, all three numerical methods provide consistent and reinforcing

results.

Table 4 reports several numerical solutions obtained from both (4) and the replicator

dynamics (7), where :000 indicates a positive probability that is insigni�cant. Blank spaces

indicate a solution with at least 7 digits equal to 0 that, therefore, we presume are zero.

Roughly speaking, the support of the symmetric NE grows if either M increases or the

number of bidders n + 1 increases, where c is �xed. More bidders increase the competition

for the single item for sale and bidders spread out their bids in order to seek pro�table

opportunities. However, for small numbers of bidders, roughly the range n+ 1 � 6, Table 4

shows non-monotonic behavior with respect to the size of the support. For n + 1 = 3, this
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n+ 1 M x0 x1 x2 x3 x4 x5 x6

3 50 0.464 0.258 0.148 0.091 0.040
100 0.460 0.253 0.142 0.083 0.057 0.005
200 0.458 0.251 0.139 0.079 0.047 0.026
400 0.457 0.250 0.137 0.076 0.044 0.028 0.007

4 50 0.452 0.428 0.119
100 0.450 0.427 0.122 0.000
200 0.449 0.426 0.124 0.001
400 0.448 0.425 0.125 0.001

5 50 0.364 0.320 0.193 0.095 0.028
100 0.361 0.318 0.192 0.096 0.033
200 0.359 0.316 0.192 0.095 0.034 0.003
400 0.359 0.316 0.191 0.095 0.035 0.004

6 50 0.331 0.301 0.234 0.118 0.016
100 0.329 0.299 0.233 0.120 0.019
200 0.328 0.298 0.232 0.122 0.020
400 0.327 0.298 0.232 0.122 0.021 0.000

7 50 0.299 0.274 0.228 0.140 0.054 0.005
100 0.297 0.272 0.226 0.140 0.056 0.008
200 0.296 0.271 0.226 0.141 0.057 0.010
400 0.295 0.271 0.225 0.141 0.058 0.010

8 50 0.275 0.255 0.220 0.157 0.078 0.014
100 0.273 0.253 0.219 0.157 0.080 0.017
200 0.272 0.252 0.218 0.157 0.081 0.019 0.000
400 0.272 0.252 0.218 0.157 0.082 0.019 0.001

9 50 0.256 0.238 0.211 0.165 0.098 0.031 0.000
100 0.254 0.237 0.210 0.165 0.099 0.034 0.003
200 0.253 0.236 0.209 0.164 0.100 0.035 0.004
400 0.252 0.235 0.209 0.164 0.100 0.036 0.004

Table 4: Symmetric NEs for several values of M , n+ 1 and c = 1.

can be explained by the fact that the highest bid wins if the other two bidders make the

same (lower) bid. In case of n+1 = 4, the highest bid can only win if the other three bidders

all make the same bid, which is less likely then two bidders making the same bid. So, the

higher bids are less attractive and the support retracts. For n + 1 = 5, the probability of

winning with the highest bid is somewhat better again, because it also wins for example if two

opponents both bid some lower bid and the other two opponents both bid some other lower

bid. When n + 1 increases further, these kind of odd/even considerations loose signi�cance
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n+ 1 M xN x0 x1 x2 x3 x4 x5 x6 x7

4 1000 0.4480 0.4251 0.1253 0.0016
10000 0.4478 0.4249 0.1256 0.0017
100000 0.4477 0.4249 0.1257 0.0017
1000000 0.4477 0.4249 0.1257 0.0017
10000000 0.4477 0.4249 0.1257 0.0017

6 1000 0.3268 0.2977 0.2315 0.1223 0.0214 0.0003
10000 0.3266 0.2975 0.2314 0.1225 0.0216 0.0004
100000 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005
1000000 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005
10000000 0.3266 0.2975 0.2314 0.1225 0.0216 0.0005

8 1000 0.2712 0.2514 0.2178 0.1571 0.0821 0.0196 0.0008
10000 0.2710 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010
100000 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010
1000000 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010 0.0000
10000000 0.2712 0.2512 0.2176 0.1571 0.0822 0.0199 0.0010 0.0000

Table 5: Symmetric NEs for several values of M , n+ 1 and c = 1.

M
c

n+ 1
3 4 5 6

3 0 0 0 0
4 0 0 0 0
5 + 0 0 0
6 + 0 0 0
7 + 0 0 0
8 + + + 0
9 + + + +

Table 6: Parameter values for which the expected NE utilities are either positive (+) or zero
(0) under c = 1.

and, then, it seems that the numerical support is non-decreasing in n+ 1.

Table 5 represents simulation results for increasingly large values of the prizeM for n+1

equal to 4, 6 and 8. The change in probabilities and the growth of the support is very slow.

For n+1 = 4, this table might give the false impression that there is convergence to a �nite

support, but according to Theorem 8 this is not the case.

Table 6 reports parameter values with zero and positive expected utilities. As n + 1

increases, the consecutive set of low values M for which the expected NE utilities are 0
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grows. If the su¢ cient condition n + 1 � M
c
in Theorem 8 for zero pro�ts would also be a

necessary condition, then the entire lower triangular matrix would be �lled with +�s. Since

it is not, the su¢ cient condition is only a rough indication for the parameter values for which

the expected NE utilities are zero.

To summarize, GAMBIT returns a single symmetric NE. Furthermore, the replicator

dynamics always converge to a symmetric NE and, if it has positive NE utilities, this limit

solution is one-to-one related to the optimal solution of program (4). This gives numerical

support for the following conjecture.

Conjecture 20 The lowest-unique-bid auction has a unique symmetric NE that is also ASE.

If x 2 �NE and u (x; x) > 0, then (u (x; x) ; x) is an optimal solution of (4).

One �nal remark is in place. The replicator dynamics always converges, in particular

if u (x; x) = 0. Under u (x; x), computing limit solutions in Maple takes considerably more

time than optimization in GAMS. Therefore, we regard simulating (7) and program (4) as

two complementary methods in computing the symmetric NE.

7 Concluding Remarks

The lowest-unique-bid auction is a very complicated auction to analyze. Nevertheless, sev-

eral interesting insights are obtained for symmetric NEs such as costly endogenous entry,

comparative statics, the maximin interpretation that allows for a mathematical program and

the issue of evolutionary stability.

In Eichberger and Vinogradov (2008), Östling et al. (2007) and Rapoport et al. (2007)

the testing of either �eld or laboratory experiments is the motivating issue. In the last two

references, the no bidding costs assumption implies that it is always pro�table to participate

and endogenous entry is trivial. In contrast, our results indicate that the expected pro�ts

are zero in case the number of bidders is above a particular threshold. This threshold can

be rewritten as a condition stating that the costs of purchasing a ticket in a standard single-

prize lottery is at least the expected monetary gain from such a ticket if all bidders present
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have equal chance. We know from lotteries that people buy lottery tickets even though they

face an expected loss. In the symmetric NE, however, bidders will avoid expected losses.

This issue is currently lacking in testing laboratory experiments under zero bidding costs.

Negative expected losses might also be the reason why the unique-lowest-bid auction that

featured in the daily Dutch TV show Shop4Nop was terminated in 2006. The monetary

values of the daily prizes were below 1000 euro and a bid could be made by SMS at the costs

of 70 euro cents, see e.g. Veldhuizen (2006). By Theorem 8, there are no positive expected

gains if n + 1 � 1; 429 and if more participants actually enter expected losses are for sure.

This number is very low for a nation wide TV show in a country with 16 million inhabitants.

It seems that the audience eventually learned to play this game and found out that there

is little fun in placing bids in an auction that theoretically has no positive expected gains.

This might explain why the show�s popularity dropped over time and new activity rules to

attract more bids were introduced after more than a year. Eventually, the show was canceled

because of its low pro�table for the biggest commercial TV station in The Netherlands. This

anecdotal evidence suggests that the life cycle of lowest-unique-bid auctions as a commercial

activity will be short. Only if the organizer is willing to accept substantial losses as part of

a marketing campaign, then it might be fun playing this auction format. Whether it is a

more e¤ective marketing campaign than a standard lottery remains to be seen.
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