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Abstract

We introduce a new efficient importance sampler for nonlinear non-Gaussian

state space models. We propose a general and efficient likelihood evaluation

method for this class of models via the combination of numerical and Monte

Carlo integration methods. Our methodology explores the idea that only a small

part of the likelihood evaluation problem requires simulation. We refer to our

new method as numerically accelerated importance sampling. The method is

computationally and numerically efficient, facilitates parameter estimation for

models with high-dimensional state vectors, and overcomes a bias-variance trade-

off encountered by other sampling methods. An elaborate simulation study and

an empirical application for U.S. stock returns reveal large efficiency gains for a

range of models used in financial econometrics.

Keywords : Kalman filter, Monte Carlo maximum likelihood, numerical integration,

stochastic copula, stochastic conditional duration, stochastic volatility.
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1 Introduction

The evaluation of analytically intractable likelihood functions is a challenging problem

for a variety of statistical and econometric models. The difficulty is the numerical

calculation of a high-dimensional integral, which we may typically carry out by the

method of importance sampling. Advances in importance sampling over the past three

decades have contributed to the interest in state space models that in many cases

lack a tractable likelihood expression. Examples include stochastic volatility models

as in Ghysels, Harvey, and Renault (1996), stochastic conditional intensity models

as in Bauwens and Hautsch (2006), non-Gaussian unobserved components time series

models as in Durbin and Koopman (2000), and flexible non-linear panel data models

with unobserved heterogeneity as in Heiss (2008).

In this paper we propose a new importance sampling method with a high level

of computational and numerical efficiency for a general class of nonlinear and non-

Gaussian state space models. Our proposed methodology explores the idea that we

can solve a substantial part of the likelihood evaluation problem by fast numerical

integration rather than by Monte Carlo integration only. The contribution consists

of two parts. First, we use numerical integration methods for the construction of an

importance density that efficiently approximates the likelihood function. Second, we

develop new control variables which we use as efficient variance reduction tools in

evaluating the likelihood via importance sampling. Numerical integration is highly

accurate when applicable, but its feasibility is typically limited to low dimensional

problems. Monte Carlo integration, by contrast, is subject to simulation error but is

more easily applicable in high-dimensional problems. By relying on both methods, we

carry the virtues of numerical integration over to high-dimensional state space models.

As a result, we depart from the numerical approaches of Kitagawa (1987) and Fridman

and Harris (1998) as well as from the simulation based methods of Danielsson and

Richard (1993) and Durbin and Koopman (1997). We refer to our new method as

numerically accelerated importance sampling (NAIS).

We integrate two different importance sampling approaches into our method. The

approach of Shephard and Pitt (1997) and Durbin and Koopman (1997) (referred

to as SPDK) is based on an approximating linear Gaussian state space model that

generates importance samples using Kalman filter and smoothing (KFS) methods.
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The approximation model of SPDK is optimal in providing the mode estimate of the

signal but it is also a local approximation of the entire likelihood integral. The efficient

importance sampling (EIS) approach of Liesenfeld and Richard (2003) and Richard

and Zhang (2007) establishes a global approximation of the likelihood. Koopman and

Nguyen (2011) show how to implement the EIS method using the KFS methods of

SPDK.

The NAIS method provides an accurate numerical solution for obtaining the optimal

importance parameters leading to a global approximation of the likelihood function.

The method of Liesenfeld and Richard (2003) and Richard and Zhang (2007) relies

instead on Monte Carlo simulations for estimating the optimal sampling parameters.

At the same time, the NAIS method generates additional computational efficiency via

the combination of fast numerical integration techniques with the KFS methods of

SPDK. Finally, by using NAIS we eliminate a bias-variance trade-off inherent to the

EIS method. We show that the practice of re-using random numbers both to select

the optimal importance parameters and to estimate the likelihood function induces a

bias in the resulting estimate. We avoid this problem by replacing the first step by

numerical integration.

We conduct an extensive simulation study to analyse the efficiency gains of the

NAIS method. To validate the robustness of our results, we consider three different

model specifications: the stochastic volatility model, for example, see Ghysels, Harvey,

and Renault (1996); the stochastic duration model of Bauwens and Veredas (2004);

and the stochastic copula model of Hafner and Manner (2011). Each of these models

requires likelihood evaluation by numerical techniques such as importance sampling.

We show that we can efficiently implement our methods for each of these different

models.

The Monte Carlo study reveals three major findings. First, we show that the lin-

ear state space model approximation always performs substantially faster than the

standard implementation of the EIS method. This holds even without considering nu-

merical acceleration. Second, when we increase the number of importance sampling

trajectories, our NAIS method proves to be faster and more accurate than the standard

EIS method: the NAIS method significantly improves the trade-off between computa-

tional and numerical efficiency in choosing the number of Monte Carlo samples. Third,

for the different classes of models we consider in our simulation study we are able to
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reduce the variance of the likelihood estimates by more than 40% with the use of our

new control variables, relative to the use of antithetic variables as a variance reduction

device.

To illustrate the NAIS method in an empirical setting, we consider a two-component

stochastic volatility model for the time series of returns of a set of major U.S. stocks.

The two-component structure of the volatility specification makes estimation by means

of EIS a non-trivial and time-consuming operation which is frequently subject to numer-

ical instability. However, we are able to implement the NAIS approach using standard

hardware and software without further complications. The NAIS method reduces the

estimation times in this application by as much as 90% and results in Monte Carlo

standard errors for the estimated parameters which are small compared to the respec-

tive statistical standard errors. This application hence illustrates that we can use the

NAIS method effectively for estimation and inference in many practical situations of

interest.

The structure of the paper is as follows. Section 2 presents the nonlinear non-

Gaussian state space model, introduces the necessary notation, and reviews the key

importance sampling methods. Section 3 develops the new numerically accelerated

importance sampling (NAIS) method, identifies the finite sample bias in EIS, and

provides the details for the computation of the importance sampling parameters and

our new control variables. Section 4 presents our simulation study and our empirical

application. Section 5 concludes.

2 Importance sampling for state space models

2.1 Nonlinear and non-Gaussian state space model

The general ideas of importance sampling are well established and developed in the

contributions of Kloek and van Dijk (1978), Ripley (1987), Geweke (1989) and others.

Danielsson and Richard (1993), Shephard and Pitt (1997), Durbin and Koopman (1997)

and others explore the implementation of importance sampling methods for the analysis

of nonlinear non-Gaussian time series models. Richard and Zhang (2007) provide

a short review of the literature with additional references. For the application of

importance sampling in the context of time series, the main task is to evaluate the

4



likelihood function for the nonlinear non-Gaussian state space model as given by

yt|θt ∼ p(yt|θt;ψ), θt = Ztαt, t = 1, . . . , n,

αt = dt + Ttαt−1 + ηt, α1 ∼ N(a1, P1), ηt ∼ N(0, Qt),
(1)

where yt is the p × 1 observation vector, θt is the q × 1 signal vector, αt is the m × 1

state vector, and Zt is the p ×m selection matrix; the m × 1 constant vector dt, the

m ×m transition matrix Tt and the m ×m variance matrix Qt jointly determine the

dynamic properties of the model. The system matrices Zt, Tt and Qt are time-varying

in a deterministic way. The unknown fixed parameter vector ψ contains the unknown

coefficients in the observation density and in the system matrices.

The nonlinear non-Gaussian state space model as formulated in equation (1) allows

the introduction of time-varying parameters in the density p(yt|θt;ψ). The time-varying

parameters depend on the signal θt in a possibly nonlinear way. The signal vector θt

depends linearly on the state vector αt, for which we formulate a linear dynamic model.

Our general framework can accommodate autoregressive moving average, long mem-

ory, random walk, cyclical and seasonal dynamic processes and combinations thereof.

Harvey (1989) and Durbin and Koopman (2001) provide a detailed discussion of state

space representations and unobserved components time series models.

We emphasise that the integration methodology we propose in this paper relies

on the low dimensionality of the signal θt, which contrasts with the typically higher

dimensionality of the state vector αt. The shift of focus from αt to θt enables large

computational gains and eases many of the computational complications in the speci-

fication of the dynamic model for θt when compared to existing methods.

2.2 Likelihood evaluation via importance sampling

Define θ′ = (θ′1 , . . . , θ
′
n) and y′ = (y′1 , . . . , y

′
n). If p(yt|θt;ψ) is a Gaussian density

with mean θt = Ztαt and some variance Ht, for t = 1, . . . , n, Kalman filtering and

smoothing methods analytically evaluate the likelihood and compute the minimum

mean squared error estimates of the state vector αt together with its mean squared

error matrix. In all other cases, the likelihood for (1) is given by the analytically
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intractable integral

L(y;ψ) =

∫
p(θ, y;ψ) dθ =

∫ n∏
t=1

p(yt|θt;ψ)p(θt|αt−1;ψ) dθ1 . . . dθn, (2)

where p(θ, y;ψ) is the joint density of y and θ following from (1). Kitagawa (1987) has

developed a numerical integration method for evaluating the likelihood integral above.

This approach is in practice only practical when yt, θt and αt are scalars.

To evaluate the likelihood function in a feasible manner by means of importance

sampling, we consider the Gaussian importance density g(θ, y;ψ) = g(y|θ;ψ)g(θ;ψ)

where g(y|θ;ψ) and g(θ;ψ) are both Gaussian densities. It follows from (1) that

p(θ;ψ) = g(θ;ψ). We then express the likelihood function as

L(y;ψ) =

∫
p(θ, y;ψ)

g(θ, y;ψ)
g(θ, y;ψ) dθ

= g(y;ψ)

∫
p(θ, y;ψ)

g(θ, y;ψ)
g(θ|y;ψ) dθ

= g(y;ψ)

∫
ω(θ, y;ψ)g(θ|y;ψ) dθ, (3)

where g(y;ψ) is the likelihood function of the Gaussian importance model and where

the importance weight function is given by

ω(θ, y;ψ) = p(y, θ;ψ) / g(y, θ;ψ) = p(y|θ;ψ) / g(y|θ;ψ). (4)

The last equality is valid since p(θ;ψ) = g(θ;ψ). We estimate the likelihood function

(3) by generating S independent trajectories θ(1) , . . . , θ(S) from the importance density

g(θ|y;ψ) and by computing

L̂(y;ψ) = g(y;ψ)ω̄, ω̄ =
1

S

S∑
s=1

ωs, ωs = ω(θ(s), y;ψ), (5)

where ωs is the realised importance weight function in (4) for θ = θ(s). Under standard

regularity conditions, the weak law of large numbers ensures that

L̂(y;ψ)
p−→ L(y;ψ), (6)
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when S → ∞. A central limit theorem is applicable only when the variance the

importance weight function exists, see Geweke (1989). The failure of this condition

leads to slow and unstable convergence of the estimate. Monahan (1993) and Koopman,

Shephard, and Creal (2009) have developed diagnostic tests for validating the existence

of the variance of the importance weights based on extreme value theory. Richard and

Zhang (2007) discuss more informal methods for this purpose. We argue in Section 3.1

that the importance sampler proposed in this paper is robust to this problem.

2.3 The Gaussian importance density

We represent the Gaussian importance density as

g(α, y;ψ) =
n∏
t=1

g(yt|θt;ψ)g(αt|αt−1;ψ), (7)

where g(αt|αt−1;ψ) is the Gaussian density for θt as implied by (1) and where

g(yt|θt;ψ) = exp

{
at + b′t θt −

1

2
θ′tCt θt

}
, (8)

with at, bt and Ct defined as functions of the data vector y and the parameter vector

ψ, for t = 1, . . . , n. The constants a1, . . . , an ensure that g(θ, y;ψ) integrates to one.

The set of importance sampling parameters is

χ = {b1, . . . , bn, C1, . . . , Cn}. (9)

Shephard and Pitt (1997) and Durbin and Koopman (1997), which we refer to as

SPDK, treat the importance density (8) as equivalent to the density function associated

with observation y∗t = C−1t bt and the linear Gaussian observation equation

y∗t = θt + εt, εt ∼ N(0, C−1t ), t = 1, . . . , n, (10)

where we specify θt as in (1). We can easily verify the equivalence of (8) with the
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Gaussian logdensity log g(y∗t |θt;ψ) for y∗t in (10) since

log g(y∗t |θt;ψ) = −1

2
log 2π +

1

2
log |Ct| −

1

2
{(C−1t bt − θt)′Ct (C−1t bt − θt)}

= at + b′t θt −
1

2
θ′tCt θt,

(11)

where the constant at collects all the terms that are not associated with θt. It follows

that g(yt|θt;ψ) ≡ g(y∗t |θt;ψ) for t = 1, . . . , n. Hence, we have g(θt, yt;ψ) ≡ g(θt, y
∗
t ;ψ)

for t = 1, . . . , n. Shephard and Pitt (1997) and Durbin and Koopman (1997) choose χ

such that the mean (or mode) estimate of θ with respect to g(θ|y∗;ψ) equals the mode

estimate of θ with respect to p(θ|y;ψ), where y∗ = (y∗ ′1 , . . . , y
∗ ′
n )′.

The SPDK method is based on the linear state space model (10) with θt specified

by (1) to sample θt from g(θ|y∗;ψ), for t = 1, . . . , n. de Jong and Shephard (1995)

and Durbin and Koopman (2002) have developed simulation smoothing methods for

the sampling of θ from g(θ|y∗;ψ) in a computationally efficient way. The vector θ(s)

collects the simulations to compute the importance sampling weights ωs in (5) for

s = 1, . . . , S. The evaluation of the Monte Carlo estimate of the likelihood is similar to

(5) but with g(y;ψ) ≡ g(y∗;ψ). The Kalman filter calculates g(y∗;ψ) via its evaluation

of the likelihood function for the linear state space model (10).

Jungbacker and Koopman (2007) argue that the individual matrices Ct only need

to be non-singular for the sampling density g(θ|y∗;ψ) to be well defined. When any

matrix Ct is not positive definite, we adopt their simulation smoothing scheme and

modifications for computing the simulated likelihood function.

2.4 Selecting the importance sampling parameters

The choice of importance parameters in χ determines the efficiency of the importance

sampling procedure. Koopman and Nguyen (2011) apply the EIS method of Liesenfeld

and Richard (2003) and Richard and Zhang (2007) to the SPDK importance model

and consider the selection of the importance parameters in χ of (9) based on a global

approximation to p(y|θ;ψ). We obtain this approximation via the minimisation of the

variance of the log-weights logω(θ, y;ψ) where we have defined ω(θ, y;ψ) in (4). The
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variance minimisation problem is given by

min
χ

∫
λ2(θ, y;ψ)ω(θ, y;ψ)g(θ|y;ψ) dθ, (12)

where

λ(θ, y;ψ) = log p(y|θ;ψ)− log g(y|θ;ψ)− λ0, (13)

g(y|θ;ψ) =
∏n

t=1 g(yt|θt;ψ), and g(yt|θt;ψ) is given by (8). The normalising constant

λ0 sets the mean of λ(θ, y;ψ) to zero.

The minimisation (12) is high-dimensional and numerically not feasible in most

cases of interest. We follow Richard and Zhang (2007) and approximate the minimisa-

tion problem (12) by considering each time point t separately. The efficient importance

parameters χt = {bt, Ct} are therefore the solutions of the minimisation problem

min
χt

∫
λ2(θt, yt;ψ)ω(θt, yt;ψ)g(θt|y;ψ) dθt (14)

where

ω(θt, yt;ψ) =
p(yt|θt;ψ)

g(yt|θt;ψ)
, (15)

and

λ(θt, yt;ψ) = log p(yt|θt;ψ)− log g(yt|θt;ψ)− λ0t, (16)

for t = 1, . . . , n, where λ0t is the normalising constant.

The EIS method of Richard and Zhang (2007) and its modification by Koopman

and Nguyen (2011) rely on simulations and least squares computations for obtaining

importance parameters; see Appendix A for further details.

3 Numerically Accelerated Importance Sampling

When a continuous function ϕ(x) is known analytically for any x, we can efficiently

evaluate integrals of the form ∫
ϕ(x) dx, (17)
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by numerical integration methods which are fast, reliable, and accurate. Numerical

integration is not prone to simulation uncertainty and conforms to any desired degree

of precision.

The numerical evaluation of the integral in (17) via a Gauss-Hermite quadrature

designates a set of M abscissae zj and associated weights h(zj) with j = 1, . . . ,M . We

compute the numerical approximation as

∫ ∞
−∞

ϕ(x) dx =

∫ ∞
−∞

e−x
2

[ex
2

ϕ(x)] dx ≈
M∑
j=1

h(zj)e
z2jϕ(zj), (18)

where M is typically between 20 and 30. We can tabulate the weights h(zj). For a

more detailed discussion on Gauss-Hermite quadrature, we refer to Monahan (2001).

Even though we always refer to numerical integration in our discussion, we aim to

work with Gaussian integrals for which analytical solutions may be available in specific

applications. In such cases, the use of the analytical expression will bring further

efficiency to the importance sampling procedure.

Our exposition below focuses on model (1) with a scalar signal θt, that is q = 1.

Although all results are valid for a high dimensional vector θt, this setting brings

additional computational challenges that are beyond the scope of this paper. We note,

however, that our treatment below still allows for a high dimensional state vector αt.

We provide an empirical illustration of this advantage in Section 4.

3.1 The construction of the importance sampler via numerical

integration

Our importance sampler is the global approximation associated with the minimisation

of the variance of the log-weights logω(θt, yt;ψ) in (14). The key insight leading to our

method is that the marginal density g(θt|y∗;ψ) is available analytically for the linear

state space approximation (10) from the output of the Kalman filter and smoother

(KFS). This result allows us to directly minimise the low dimensional integral (14)

for each time t by means of a Gauss-Hermite quadrature. In previous methods, only

high dimensional importance densities g(θ|y;ψ) or g(α|y;ψ) were available for similar

purposes; see Appendix A. In contrast with the resulting Monte Carlo approaches
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based on simulated trajectories for the signals or the states, we therefore obtain our

likelihood approximation entirely by numerical integration. In practical settings, our

solution for (14) will be virtually exact.

For a given set of values in χ = χ+ =
{
b+1 , . . . , b

+
n , C

+
1 , . . . , C

+
n

}
of (9), we have that

the smoothed importance density g(θt|y;ψ) = g(θt|y∗;ψ) based on the linear Gaussian

model (10) is given by

g(θt|y∗;ψ) = N(θ̂t , Vt) = exp

{
−1

2
V −1t (θt − θ̂t)2

}
/
√

2π Vt, (19)

where we compute θ̂t and Vt by KFS methods applied to the importance model (10)

for y∗t = (C+
t )−1b+t and θt specified as in (1), for t = 1, . . . , n. For χ = χ+, we evaluate

the integral in (14) numerically as in (17) with x = θt and

ϕ(θt) = λ2(θt, yt;ψ)ω∗(θt, yt;ψ)g(θt|y∗;ψ), t = 1, . . . , n,

where ω∗(θt, yt;ψ) = p(yt|θt;ψ) / g(y∗t |θt;ψ). The minimisation is with respect to χt.

We express the minimisation in (14) as

min
χt

M∑
j=1

λ2(θ̃tj, yt;ψ)wtj, wtj = g(θ̃tj|y∗;ψ)ω∗(θ̃tj, yt;ψ)h(zj)e
z2j , (20)

where θ̃tj = θ̂t + V
1/2
t zj, for j = 1, . . . ,M . It follows from (19) that

g(θ̃tj|y∗;ψ) = exp

{
−1

2
z2j

}
/
√

2π, t = 1, . . . , n.

The minimisation (20) takes place via an iterative method. For a given χ = χ+, we

obtain θ̂t and Vt from the KFS applied to (10), for t = 1, . . . , n. Minimisation (20) for

a scalar θ̃tj reduces to weighted least squares computations, for each t, with dependent

variable p(yt|θ̃tj;ψ), explanatory variables θ̃tj, θ̃
2
tj (including a constant) and weights

wtj. We obtain the minimum in (20) by setting χt = {bt, Ct} equal to the least squares

estimates associated with explanatory variables θ̃tj and θ̃2tj, respectively. The new

value for χt becomes χ+
t in the next iteration. The iterative procedure terminates after

convergence. We initialise the recursion by choosing an appropriate starting value for
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χ. The mode estimate of SPDK provides efficient initial parameters for this problem.

We can also set arbitrary starting values for the parameters in χ; convergence typically

takes only a few iterations even if the initialisation is inaccurate.

Richard and Zhang (2007) argue that their EIS method becomes numerically more

stable when they omit the term ω∗(θ̃tj, yt;ψ) from the weight wtj at the initial iterations.

We can also remove this term from wtj as it does not lead to any important loss of

numerical efficiency. This option has the advantage of increasing the computational

speed of the algorithm. The weight wtj becomes

wtj = wj = (2π)−
1
2h(zj) exp(

1

2
z2j ), j = 1, . . . ,M.

The use of parallel computing techniques reduces the computing time required for

the iterative optimisation procedure. For a given χ = χ+ and having θ̂t and Vt, with

t = 1, . . . , n, calculated by KFS, we can compute θ̃tj for j = 1, . . . ,M in parallel over

all t.

Our variance minimisation procedure based on numerical integration is guaranteed

to evaluate the log importance weights at all the extremes of the sampling space. This

implies that the NAIS algorithm is more robust to numerical instability than earlier

approaches, since it is not directly confronted by unusual draws from the importance

density at the sampling stage. In case the importance sampling procedure is altogether

inappropriate, the auxiliary regressions are likely to crash. Hence we have implicitly

introduced an automatic numerical diagnostic checking procedure for the infinite vari-

ance problem discussed in Section 2.2. However, we have not encountered this problem

for any of the several importance samplers we construct in Section 4.

Given the optimal importance parameter values in χ, we use model (10) for drawing

samples θ(s) ∼ g(θ|y∗;ψ), for s = 1, . . . , S, via a simulation smoothing method. We

estimate the likelihood function of the nonlinear non-Gaussian state space model as

in (5) on the basis of this set of draws. This procedure is the first ingredient of our

numerically accelerated importance sampling (NAIS) method. We introduce the second

ingredient of NAIS in Section 3.2.

The NAIS approach brings further advantages to the importance sampling estima-

tion of likelihood (2). In Appendix A, we show that the linear state space approxima-

tion (10) leads to faster procedures in comparison to the EIS method of Richard and
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Zhang (2007). In Appendix B, we show that the Monte Carlo approach to obtain the

importance sampling parameters in the EIS method results in a bias-variance trade-off

in the importance sampling procedure. The NAIS method does not entail the same

issue.

3.2 Importance sampling and control variables

We introduce a new set of control variables to improve the numerical efficiency of

our importance sampling procedure. The control variable is constructed from the

simulated trajectories such that it is negatively correlated with the likelihood estimate.

In contrast to earlier applications, which have relied on analytical results, we adopt

control variables that evaluated by numerical integration. We then use the difference

between the Monte Carlo estimate of the mean and the mean evaluated via numerical

integration to reduce the variance of the importance sampling estimate. This method

of variance reduction replaces the use of antithetic variables such as those developed

by Ripley (1987) and Durbin and Koopman (2000).

The likelihood estimate (5) is the sample average ω̄ = S−1
∑S

s=1 ωs multiplied by

g(y;ψ) where

ωs = ω∗(θ(s), y;ψ) =
n∏
t=1

ωts, ωts = ω∗(θ
(s)
t , yt;ψ), t = 1, . . . , n, s = 1, . . . , S,

for a sample of S draws of θ we generate from the smooth importance density g(θ|y∗;ψ).

We denote these draws by θ(1), . . . , θ(S), with θ
(s)
t as the tth element of θ(s). The Kalman

filter computes the density g(y;ψ) = g(y∗;ψ). The densities g(y∗;ψ) and g(θ|y∗;ψ)

refer to the importance model (10) with θt specified as (1) and with the importance

parameter set χ obtained as in Section 3.1. The variance of the sample average ω̄

determines the efficiency of the importance sampling likelihood estimate (5).

To reduce the variance of ω̄, we construct control variates based on

x(θ, y;ψ) = logω∗(θ, y;ψ) = log p(y|θ;ψ)− log g(y∗|θ;ψ).

The tth contribution of x(θ, y;ψ) is given by x(θt, yt;ψ) = logω∗(θt, yt;ψ) such that

x(θ, y;ψ) =
∑n

t=1 x(θt, yt;ψ). Given the draws θ(1), . . . , θ(S), we have xs = log(ωs) =
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∑n
t=1 xts where

xts = log(ωts), ωts = exp(xts),

for t = 1, . . . , n and s = 1, . . . , S. We can express the sample average of ωs in terms of

xs = logωs by means of a Taylor series around some value x, that is

ω̄ = exp(x)
1

S

S∑
s=1

(
1 + [xs − x] +

1

2
[xs − x]2 + . . .

)
. (21)

We adopt the terms involving xts, t = 1, . . . , n, in this expansion as control variables.

Our method consists of replacing the highest variance terms of the Taylor series by

their probability limits, which we compute efficiently via the NAIS algorithm. This

step further reduces the reliance of the method on simulation, improving the numerical

efficiency of the importance sampling estimate at a low computational cost.

3.3 First new control variable

We base our first control variable on the first order term (xs−x) of the Taylor expansion

(21). Under the same regularity conditions required for importance sampling, we have

x̄ =
1

S

S∑
s=1

xs
p−→ x̂, (22)

where x̂ = Egx(θ, y;ψ) and where Eg is expectation with respect to density g(θ|y;ψ).

The Taylor expansion (21) around x = x̂ can now be used to construct a first order

control variable.

Since

x̂ =
n∑
t=1

Eg [x(θt, yt;ψ)] ,

we can evaluate x̂ by means of the Gauss-Hermite quadrature method for each t sepa-

rately as discussed in Section 3.1, that is

x̂t = Eg [x(θt, yt;ψ)] =

∫
x(θt, yt;ψ)g(θt|y;ψ) dθt ≈

M∑
j=1

x(θ̃tj, yt;ψ)g(θ̃tj|y;ψ)h(zj)e
z2j ,
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where θ̃tj = θ̂t+V
1/2
t zj and with the numerical evaluation as in (18). The Kalman filter

and smoother computes θ̂t and Vt for t = 1, . . . , n. Furthermore, we have x̂ =
∑n

t=1 x̂t.

The likelihood estimate (5) corrected for the first control variable is given by

L̂(y;ψ)c = g(y;ψ)

(
exp(x̂)x̂+

1

S

∑
s

[ωs − exp(x̂)xs]

)
= L̂(y;ψ) + g(y;ψ) exp(x̂) (x̂− x̄).

It follows from (6) and (22) that

L̂(y;ψ)c
p−→ L(y;ψ).

When the importance model (10) provides an accurate approximation to the likelihood,

ωs is close to one and xs is close to zero, such that ωs ≈ 1 +xs. Hence ωs and exp(x̂)xs

are typically highly and positively correlated. When the importance model is a less

accurate approximation, the positive correlation remains, but at a more moderate level.

Therefore L̂(y;ψ)c is a more efficient estimate of the likelihood function compared to

L̂(y;ψ).

3.4 Second new control variable

We base our second control variable on the second order term (xs − x)2 of the Taylor

expansion (21). We aim to correct for the sample variation of (xts − x̂t)2 within the

sample of draws θ
(1)
t , . . . , θ

(S)
t for each t individually, where x̂t is the tth element of x̂.

Using the same arguments as in Section 3.3, we write

σ̄2
t

p−→ σ̂2
t ,

where

σ̄2
t =

1

S
(xts − x̂t)2, σ̂2

t = Eg(xts − x̂t)2 =

∫
(xts − x̂t)2g(θt|y;ψ) dθt.
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We compute the variance σ̂2
t using the Gauss-Hermite quadrature. Define

L̂(y;ψ)cc = L̂(y;ψ)c +
1

2
g(y;ψ) exp(x̂)

n∑
t=1

(σ̂2
t − σ̄2

t ),

from which it follows that L̂(y;ψ)cc
p−→ L(y;ψ). Since we can replace the sample

variation of (xts − x̂t)2 by its probability limit, we can expect estimate L̂(y;ψ)cc to be

more efficient than L̂(y;ψ) and L̂(y;ψ)c.

The Taylor expansion (21) justifies the weights of 1 and 1
2

for the first and second

control variables respectively. However, these values may not be optimal as they do

not fully take into account the covariances between L̂(y;ψ), x̄ and
∑n

t=1 σ̄t. For a finite

sample θ(1), . . . , θ(S), we can estimate the variance minimising weights β1 and β2 by

ordinary least squares applied to the regression equation

exp(−x̂)ωs = β0 + β1(x̂− xs) + β2

n∑
t=1

(σ̂2
t − [x̂t − xts]2) + εs,

where βk are regression coefficients for k = 0, 1, 2 and εs is an error term. We denote the

resulting estimator as L̂(y;ψ)∗cc. The use of least squares estimates for assigning weights

to control variables is due to Ripley (1987). A drawback of this modification is the

introduction of a small sample bias, which arises because the least squares regression

involves random independent variables.

4 Monte Carlo and empirical evidence

4.1 Likelihood estimation

We examine the performance of the importance sampling methods we list in Table 1 for

likelihood estimation. The design of the simulation study is as follows. We consider fifty

random time series of the three stochastic models we discuss below. We have taken fifty

simulations to avoid the dependence of our conclusions on particular trajectories of the

observed series. For each simulated time series, we estimate the loglikelihood function

at the true parameters a hundred times using different common random numbers.

Each cell in the subsequent tables therefore reflects 5, 000 (= 50 × 100) simulations.
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For each method, we report average bias, standard deviations, computation times, and

root mean square error (Rmse) values over all 5, 000 simulations. We use different

sample sizes n = 1, 000 and n = 3, 000 and different numbers of importance samples

S = 20 and S = 200.

Table 1: Importance sampling methods.
The table presents the importance sampling methods with their acronyms that are

adopted in the simulation and empirical studies.

SPDK the method of Section 2.4 by Shephard and Pitt (1997) and
Durbin and Koopman (1997).

EIS the high-dimensional efficient importance sampling method by
Richard and Zhang (2007) and described in Appendix A.

MEIS the method Koopman and Nguyen (2011) (see Appendix A).
NAIS the method of Section 3.1.
NAIScc the method of Section 3.1 with the two control variables of

Sections 3.3 and 3.4.

NAIScc∗ the estimate L̂(y;ψ)∗cc of Section 3.4.

To measure the bias, standard deviation and Rmse for the estimated loglikelihood

values, we require the true loglikelihood value which is unknown. We approximate it by

the average of loglikelihood estimates from the NAIS and NAIScc methods for S = 200.

This is similar to an NAIS likelihood estimate based on S = 200 × 2 × 100 = 40, 000

importance samples. The approximation error of the true likelihood is hence negligible.

We compute the reported statistics as given by

Bias = 5000−1 ·
∑50

i=1

∑100
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)
,

Stand.dev = 50−1 ·
∑50

i=1

[
100−1 ·

∑100
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)2]1/2
,

Rmse = 50−1 ·
∑50

i=1

[
100−1 ·

∑100
j=1

(
log L̂j(yi;ψ)− logL(yi;ψ)

)2]1/2
,

where yi is the ith simulated time series, log L̂j(yi;ψ) is the “true” loglikelihood value,

log L̂j(yi;ψ) is the jth estimate of the loglikelihood function for a particular method

and logL(yi;ψ) = 100−1
∑100

j=1 logLj(yi;ψ). We denote Rmse∗ as the ratio of Rmse in
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relation to the Rmse of the MEIS method which we have selected as our benchmark.

Since computational efficiency is the main objective of importance sampling, we

report the median computing times for each method and setting based on a machine

equipped with an Intel Duo Core 2.5GHz. For our simulation study below we also

present the Rmse ratio normalised by the associated computing times. This statistic

summarises the key efficiency of each method. We calculate it as

TNRi =
Rmsei ×

√
Ti

Rmseb ×
√
Tb
,

where Rmsei and Ti are Rmse and median computing time for method i, respectively,

and with the benchmark method index i = b. All reported computing times include

the fixed time costs required for obtaining the sampling parameters.

We implement all methods as described above. The number of nodes for numerical

integration calculations is M = 20. We verify the sensitivity of our results to this

choice at the end of Section 4.3 and in Table 7. Antithetic variables for location and

scale, as proposed in Durbin and Koopman (2000), are the variance reduction tools in

all likelihood evaluations, except for the NAIScc and NAIScc∗ methods. We have found

no evidence of importance sampling weights with an infinite variance for the models

we discuss below; see the discussions in Koopman, Shephard, and Creal (2009). Our

diagnostics include the verification of how sensitive the importance sampling weights

are to artificial outliers as in Richard and Zhang (2007). We have implemented all

methods using MATLAB and C.

4.2 Three models

Here we provide details of three stochastic models which are special cases of the non-

linear and non-Gaussian state space model we discuss in Section 2.1.

4.2.1 Stochastic volatility model

The stochastic volatility (SV) model is an example of a nonlinear state space model.

The key references to the development of the SV model are Tauchen and Pitts (1983),

Taylor (1986) and Melino and Turnbull (1990). Ghysels, Harvey, and Renault (1996)

and Shephard (2005) provide reviews of SV models. Liesenfeld and Richard (2003)
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apply efficient importance sampling methods for the simulated maximum likelihood

estimation of a wide range of stochastic volatility specifications. For a time series of

log-returns yt, we consider the model

yt ∼ N(0, σ2
t ), σ2

t = exp(αt),

αt = d+ Tαt−1 + ηt, ηt ∼ N(0, Q), (23)

α1 ∼ N(d/(1− T ), Q/(1− T 2)),

for t = 1, . . . , n, where d is a scalar constant, T is the autoregressive coefficient with

|T | < 1, and Q is the variance of the disturbance ηt of the stochastic log-volatility

process αt. We have two sets of parameter values for the unknown coefficients of the

SV model. The first set consists of d = 0.01, T = 0.98 and Qt = 0.01 which reflects

a typical set of parameters found for daily stock returns. The second set is the same

but with a lower value for the autoregressive coefficient, T = 0.9 (the constant is set

to d = 0.05 to imply the same unconditional mean). This allows us to investigate how

importance sampling methods perform when the volatility process is less persistent.

4.2.2 Stochastic conditional duration model

Bauwens and Veredas (2004) propose the stochastic conditional duration (SCD) model

for modelling durations between high-frequency financial transactions. Bauwens and

Galli (2009) study the efficient importance sampling estimation of SCD models. For a

time series of durations yt, we consider the model specification

yt ∼Weibull(λt, ψ), λt = exp(αt),

for t = 1, . . . , n, where λt is the time varying scale parameter, ψ is the shape parameter

of the Weibull distribution and with αt as the autoregressive process (23). The set of

parameters is chosen to reflect the estimation results of Bauwens and Galli (2009), that

is d = 0, T = 0.98, Q = 0.0225, and ψ = 1.2. The choice of d = 0, T = 0.96, Q = 0.01,

ψ = 1.7 approximates the parameters for volume durations in the same paper, while

the parameter set d = 0, T = 0.9, Q = 0.0225, ψ = 1.2 illustrates the performance of

the methods for less persistent price durations.

19



4.2.3 Stochastic copula

Banachewicz (2009) and Hafner and Manner (2011) introduce the stochastic copula

(SC) class of models for estimating and forecasting time-varying and possibly non-linear

dependence between multiple time series. Schmidt (2006) provides a short introduction

of the main concepts and results for (static) copulas, while Nelsen (1999) and Joe (1997)

provide a more comprehensive discussion. Patton (2006) introduces dynamic copula

models and extends the copula theory to specifications with conditionally time-varying

parameters.

We consider a dynamic stochastic bivariate t-copula. Let u1t and u2t be two random

variables with uniform (0, 1) marginal distributions. In our simulation study, we take

ut = (u1t, u2t)
′ as probability integral transforms of two independent univariate series.

The converse of Sklar’s theorem implies that the combination of any set of univariate

distributions together with a copula function characterises a well defined bivariate

distribution. This result implies that the modelling of the dependence between the

two random variables is completely disentangled from the modelling of the marginal

distributions. We denote tν as the standardised Student’s t distribution and 2×2 matrix

P as the correlation matrix with unity values on the main diagonal and the correlation

coefficient ρ on the two off-diagonal elements. The t-copula function Cν,P (ut) describes

the dependence structure for ut and is given by

Cν,P (ut) = Tν,P
[
t−1ν (u1t), t

−1
ν (u2t)

]
,

where Tν,P (a, b) is the cumulative density function associated with the standardised

bivariate Student’s t distribution with degrees of freedom ν and correlation matrix P

for any set of variables (a, b). The copula is invariant under any standardisation of the

marginal distributions. It follows that

Cν,P (ut) =

∫ t−1
ν (u1t)

−∞

∫ t−1
ν (u2t)

−∞

Γ(ν+2
2

)

Γ(ν/2)
√

(πν)2|P |

(
1 +

x′P−1x

ν

)− ν+2
2

dx. (24)

A possible state space model for the stochastic copula with a time-varying correlation
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coefficient ρt, and hence a time-varying correlation matrix

Pt =

[
1 ρt

ρt 1

]
,

is given by

ut ∼ Cν,Pt(ut), ρt = (1 + exp(−αt))−1,

for t = 1, . . . , n, where we model αt as the autoregressive process (23). We take our set

of parameters from the empirical study of a bivariate financial time series of log-returns

in Hafner and Manner (2011). The typical parameter estimates in their analysis are

approximately equal to d = 0.017, T = 0.98, Q = 0.01. The constant d implies an

unconditional correlation coefficient of approximately 0.7. Since Hafner and Manner

(2011) do not consider a t-copula, we take the degrees of freedom ν = 5 in order to

introduce relevant tail dependence in our simulations.

4.3 Simulation results

Table 2 presents the results for the persistent stochastic volatility model specification.

We summarise our findings as follows. For S = 20, the EIS and MEIS methods produce

a substantial bias in their likelihood estimates; this bias is approximately 30% higher

than the standard deviation of the estimates. Although the SPDK method is fast

and the reported bias is moderate, it comes with a high variance. The relative low

variance of the EIS and MEIS methods illustrates the numerical efficiency of the global

approximation on which these methods are based. However, when we normalise the

computing times by the Rmse statistic, the SPDK method turns out to be nearly

as efficient as the EIS method for this problem. The MEIS method (EIS based on

state space methods) is 50% faster in computing time than the EIS method, while its

numerical efficiency is the same. For sample size n = 3000 and S = 20, the MEIS

likelihood evaluation procedure takes 0.11 seconds, while the EIS method takes 0.39

seconds, a computational saving of more than 70%.

The increase in the number of importance samples to S = 200 mostly eliminates

the bias in the EIS and MEIS methods, at the cost of a proportional tenfold increase

in computing time. On the other hand, the reduction in standard deviation from the
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Table 2: Loglikelihood Errors for Stochastic Volatility I.

The table shows average bias, standard deviation and Rmse of loglikelihood estimation errors for different

importance sampling methods. The reported Rmse∗ statistic is the ratio of the Rmse over the Rmse of

the MEIS method. We simulate 50 different realisations from the model. For each of these realisations,

we obtain loglikelihood estimates for 100 different sets of random numbers and then calculate the bias,

variance and Rmse with the unknown loglikelihood being approximated by the average of estimates of

the NAIS and NAIScc methods (with S = 200). We also report TNR as computing time normalised for

an Rmse ratio of unity. The reported values are the average statistics across the 50 realisations. The

methods (with their acronyms) are discussed in Table 1. The stochastic volatility model is specified

as: yt ∼ N(0, σ2
t ) with σ2

t = exp(αt) and αt = 0.01 + 0.98αt−1 + ηt where ηt ∼ N(0, Q = 0.12) for

t = 1, . . . , n.

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.014 0.163 5.52 1.99 0.01 -0.107 0.423 4.93 1.66 0.01
EIS 0.025 0.016 0.99 1.74 0.13 0.079 0.042 1.00 1.88 0.39
MEIS 0.026 0.015 1.00 1.00 0.04 0.079 0.043 1.00 1.00 0.11
NAIS -0.001 0.035 1.19 1.25 0.05 -0.002 0.094 1.06 1.08 0.12
NAIScc -0.001 0.026 0.91 0.89 0.04 -0.006 0.068 0.77 0.80 0.12
NAIScc∗ -0.007 0.024 0.84 0.82 0.04 -0.024 0.066 0.79 0.82 0.12

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.001 0.069 5.53 1.93 0.05 -0.023 0.203 6.00 2.05 0.13
EIS 0.003 0.012 1.00 1.61 0.98 0.009 0.034 1.02 1.69 3.02
MEIS 0.003 0.012 1.00 1.00 0.38 0.009 0.033 1.00 1.00 1.10
NAIS 0.000 0.014 1.15 0.54 0.08 -0.001 0.039 1.15 0.53 0.23
NAIScc 0.000 0.009 0.71 0.33 0.08 0.000 0.023 0.67 0.32 0.25
NAIScc∗ -0.001 0.008 0.61 0.28 0.08 -0.001 0.021 0.62 0.30 0.25
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increase to S = 200 in the EIS and MEIS methods falls short of the 1/
√

10 factor we

expect in the absence of a bias-variance trade-off. For both S = 20 and S = 200 the

NAIS method (without control variables) produces slightly higher variance and Rmse

values when compared to the MEIS method. This result suggests that the biased EIS

algorithm is mean square efficient in the SV case. However, when S = 200 the NAIS

method is able to compute the likelihood function four times faster, being therefore

more efficient in real time. By obtaining the optimal sampling coefficients at a small

and fixed cost, the NAIS method significantly improves the trade-off between numerical

and computational efficiency in the number of samples relative to the SPDK, EIS and

MEIS methods. This result is one of our main findings from the simulation study.

We further highlight the minimal additional computational time required for the NAIS

method to increase the number of samples from 20 to 200.

The NAIScc and NAIScc∗ methods are substantially more efficient in Rmse com-

pared to the NAIS algorithm, while likelihood evaluation is just as fast. For S = 20,

the results show that the control variates reduce the Rmse by 30%, relative to the

NAIS method with antithetic variables. The relative efficiency of the NAIScc method

also improves in the number of samples. For S = 200, the NAIScc is 36% more efficient

in Rmse for n = 1000 and 42% more efficient for n = 3000. The results show that the

NAIScc∗ method further improves the Rmse of the estimates by around 10% relative

to the NAIScc procedure. Although this difference is small, the NAIScc∗ method is

still an useful extension when S is large since the additional computational cost is low.

Finally, we note that the bias statistics suggest no systematic differences between the

average estimates for the NAIS and NAIScc methods, supporting the claim that we

can ignore the numerical integration error in constructing the control variables.

Table 3 for the stochastic volatility model with the autoregressive coefficient of

0.9 reveals new results. Our simulations suggest that the EIS bias becomes a larger

problem for less persistent specifications of the state space model. The bias now almost

completely dominates the Rmse of the EIS and MEIS methods when S = 20; it is 10

times larger then the standard deviation for this low number of draws. Our new

methods become comparatively more effective in this setting: by switching from the

EIS method with S = 20 to the NAIS method with S = 200, we obtain a 95% reduction

in Rmse without any important increase in computational cost. The NAIScc method

further reduces the variance of the likelihood estimate by 75% in relation to the NAIS
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Table 3: Loglikelihood Errors for Stochastic Volatility II.
We report the same results as Table 2 for a less persistent stochastic volatility model given
by yt ∼ N(0, σ2

t ) with σ2
t = exp(αt) and αt = 0.05 + 0.9αt−1 + ηt where ηt ∼ N(0, Q = 0.12)

for t = 1, . . . , n.

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.001 0.025 1.01 0.41 0.00 -0.004 0.069 0.94 0.37 0.01
EIS 0.024 0.003 1.00 1.72 0.09 0.074 0.007 1.00 1.81 0.26
MEIS 0.024 0.003 1.00 1.00 0.03 0.074 0.007 1.00 1.00 0.08
NAIS 0.000 0.006 0.23 0.26 0.04 0.000 0.014 0.19 0.20 0.09
NAIScc 0.000 0.004 0.15 0.16 0.03 0.000 0.010 0.14 0.15 0.09
NAIScc∗ -0.001 0.004 0.16 0.16 0.03 -0.003 0.011 0.15 0.16 0.09

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK 0.000 0.009 1.99 0.78 0.05 0.000 0.028 2.07 0.82 0.13
EIS 0.004 0.002 1.00 1.57 0.74 0.013 0.005 1.01 1.62 2.12
MEIS 0.004 0.002 1.00 1.00 0.30 0.012 0.005 1.00 1.00 0.83
NAIS 0.000 0.002 0.51 0.25 0.07 0.000 0.006 0.43 0.22 0.20
NAIScc 0.000 0.001 0.25 0.13 0.07 0.000 0.003 0.24 0.12 0.22
NAIScc∗ 0.000 0.001 0.25 0.12 0.07 0.000 0.003 0.23 0.12 0.22

method.

Tables 4, 5 and 6 report the findings for the different specifications of the stochastic

conditional duration and the stochastic copula models. Although the likelihood evalua-

tion algorithms become more time consuming for these models, the results confirm our

previous findings. For S = 200, the NAIScc and NAIScc∗ methods consistently bring

Rmse reductions of 25-50% or more when compared to the simpler NAIS alternative.

For the SCD model and S = 20, we find that the EIS and MEIS methods produce

estimates with the lowest Rmse but with substantial biases. Hence certain parameter

combinations may favour the MEIS method if S is low. However, the cost of increasing

the number of simulations from S = 20 to S = 200 is small for all NAIS methods. We

therefore conclude that the results strongly favour the NAIS methods with a higher

value for S.

Tables 7 and 8 present additional results. Table 7 reports the standard deviation

of the log importance sampling weights for different choices of S under the MEIS

method, both in-sample and out-of-sample, for the SV and SC models. As S increases,

the variance of the MEIS log importance sampling weights converges to the limiting
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Table 4: Loglikelihood Errors for Stochastic Conditional Duration I.
We report the same results as Table 2 for the model given by yt ∼ Weibull(λt, ψ = 1.2),
λt = exp(αt), αt = 0.98αt−1 + ηt, ηt ∼ N(0, Q = 0.152).

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.144 0.493 6.27 2.68 0.02 -0.492 0.616 6.54 2.45 0.04
EIS 0.061 0.054 0.99 1.44 0.22 0.093 0.079 1.02 1.48 0.67
MEIS 0.062 0.054 1.00 1.00 0.10 0.093 0.077 1.00 1.00 0.32
NAIS -0.008 0.115 1.41 1.07 0.06 -0.032 0.160 1.37 1.05 0.19
NAIScc -0.005 0.086 1.06 0.84 0.06 -0.029 0.138 1.18 0.95 0.21
NAIScc∗ -0.026 0.086 1.10 0.87 0.06 -0.064 0.134 1.24 1.00 0.20

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.039 0.246 6.08 1.93 0.09 -0.197 0.386 6.45 1.86 0.25
EIS 0.002 0.043 1.04 1.52 1.84 -0.002 0.065 0.96 1.33 5.73
MEIS 0.001 0.041 1.00 1.00 0.87 0.002 0.067 1.00 1.00 3.03
NAIS -0.002 0.049 1.18 0.45 0.12 -0.006 0.076 1.13 0.40 0.38
NAIScc 0.000 0.032 0.77 0.30 0.13 -0.003 0.056 0.83 0.32 0.43
NAIScc∗ -0.002 0.030 0.74 0.29 0.13 -0.007 0.051 0.77 0.29 0.43

Table 5: Loglikelihood Errors for Stochastic Conditional Duration II.
We report the same results as Table 2 for the model given by yt ∼Weibull(λt, ψ), λt = exp(αt),
αt = Tαt−1 + ηt, ηt ∼ N(0, Q).

n = 1000 n = 1000
T = 0.96, Q = 0.12, ψ = 1.7 T = 0.9, Q = 0.152, ψ = 1.2

S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.110 0.422 5.76 2.50 0.02 -0.060 0.331 3.56 1.46 0.01
EIS 0.061 0.043 0.98 1.44 0.19 0.089 0.036 1.01 1.47 0.16
MEIS 0.062 0.044 1.00 1.00 0.09 0.088 0.035 1.00 1.00 0.08
NAIS -0.008 0.094 1.25 0.98 0.06 -0.003 0.075 0.80 0.78 0.07
NAIScc -0.001 0.074 0.98 0.80 0.06 -0.001 0.056 0.60 0.58 0.07
NAIScc∗ -0.020 0.071 0.97 0.80 0.06 -0.014 0.057 0.63 0.62 0.07

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.034 0.197 5.81 1.82 0.09 -0.009 0.150 5.32 1.76 0.08
EIS 0.004 0.035 1.02 1.44 1.74 0.009 0.026 0.99 1.41 1.45
MEIS 0.004 0.035 1.00 1.00 0.88 0.009 0.027 1.00 1.00 0.72
NAIS -0.001 0.041 1.17 0.43 0.12 -0.001 0.031 1.12 0.47 0.13
NAIScc 0.000 0.025 0.72 0.28 0.13 0.000 0.018 0.64 0.28 0.14
NAIScc∗ -0.002 0.023 0.67 0.26 0.13 -0.001 0.017 0.60 0.26 0.14

25



Table 6: Loglikelihood Errors for Stochastic Copula.
We report the same results as Table 2 for the model given by u1t, u2t ∼ Cν=5,Pt(ut), ρt =
(1 + exp(−αt)−1, αt = 0.017 + 0.98αt−1 + ηt, ηt ∼ N(0, Q = 0.12).

n = 1000 n = 3000
S = 20 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.014 0.148 4.58 6.64 0.16 -0.092 0.342 3.90 5.12 0.35
EIS -0.032 0.015 1.00 1.45 0.16 -0.093 0.037 1.01 1.55 0.48
MEIS -0.032 0.015 1.00 1.00 0.07 -0.093 0.037 1.00 1.00 0.20
NAIS -0.003 0.035 1.04 0.82 0.05 -0.001 0.095 0.96 0.77 0.13
NAIScc -0.001 0.026 0.75 0.63 0.05 0.000 0.078 0.82 0.72 0.15
NAIScc∗ -0.008 0.019 0.59 0.50 0.05 -0.021 0.062 0.67 0.58 0.15

S = 200 Bias SD Rmse∗ TNR Time Bias SD Rmse∗ TNR Time
SPDK -0.002 0.063 4.56 2.32 0.22 -0.015 0.161 4.56 2.35 0.55
EIS -0.007 0.013 1.02 1.34 1.46 -0.023 0.032 1.01 1.42 4.05
MEIS -0.007 0.013 1.00 1.00 0.85 -0.022 0.032 1.00 1.00 2.05
NAIS 0.000 0.016 1.12 0.41 0.12 -0.001 0.041 1.09 0.44 0.34
NAIScc 0.000 0.012 0.81 0.31 0.13 -0.001 0.026 0.68 0.29 0.37
NAIScc∗ -0.002 0.007 0.51 0.21 0.13 -0.003 0.021 0.55 0.23 0.38

value obtained by our NAIS method. The table further illustrates the source of the

EIS bias: for low values of S, the sample variance of the weights is artificially small in

this method. Table 8 focuses on the robustness of the NAIS method with respect to

the choice of the number of numerical integration nodes. As typical in other applica-

tions of Gauss Hermite integration, values of M between 20 and 30 guarantee a high

degree of accuracy. A comparison between the results in Table 8 and in the previous

tables confirms that the numerical integration error is negligible in relation to standard

deviation of the likelihood estimates.

4.4 Parameter estimation for a higher dimensional model

To further illustrate the performance of the NAIScc method, we consider the simulated

maximum likelihood estimation of a multiple component stochastic volatility model in

both a Monte Carlo exercise and an empirical application. We specify the model as in

(23) but with

σ2
t = exp(θt), θt = d+ α1,t + . . .+ αk,t,
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Table 7: Standard Deviations for Importance Sampling Weights.
For R = 100 replications of the stochastic volatility specification as in Table 2
and the stochastic copula specification in Table 6, we obtain auxiliary coefficients
for different numbers of Monte Carlo trajectories S (using the MEIS method) and
different numbers of integration nodes M (using the numerical procedure of section
of 3.1). We then simulate a thousand independent Monte Carlo paths from these
coefficients and compute the variance of the resulting log importance sampling
weights. The displayed results are the average standard deviations across the R
replications.

SV, n = 3000 SC, n = 3000
In-sample Out-sample Time In-sample Out-sample Time

MEIS
S = 20 0.4179 0.7815 0.85s 0.3675 0.7070 1.68s
S = 40 0.4728 0.7294 0.97s 0.4143 0.6528 1.90s
S = 80 0.5254 0.6871 1.18s 0.4719 0.6185 2.25s
S = 200 0.5761 0.6495 2.07s 0.5275 0.5870 3.48s
S = 1000 0.6025 0.6262 5.78s 0.5556 0.5678 10.34s

Numerical
M = 10 - 0.6190 0.86s - 0.5609 1.88s
M = 20 - 0.6190 0.88s - 0.5609 1.90s
M = 30 - 0.6190 0.95s - 0.5609 2.00s

Table 8: Robustness to Choice of Number Integration Nodes.
For R = 1000 replications of the stochastic volatility specification of Table 2 and
the stochastic copula specification of Table 6, we obtain auxiliary coefficients under
different numbers of integration nodes M (see Section 3.1). We simulate 1,000
Monte Carlo paths from these coefficients and compute the variance of the resulting
log importance sampling weights. We report average standard deviations over R

replications. We denote log(L̂(y;ψ)M=m) by `m for m = 10, 20, 30,.

n = 1000 n = 3000
Model Stoch Volatility Stoch Copula Stoch Volatility Stoch Copula
Std. Dev. `10 0.0075 0.0072 0.0236 0.0203
Std. Dev. `20 0.0069 0.0067 0.0216 0.0189
Std. Dev. `30 0.0069 0.0067 0.0216 0.0189
|`30 − `10| 0.0059 0.0032 0.0183 0.0102
|`30 − `20| 6.24× 1−6 5.55× 1−7 1.91× 1−5 1.94× 1−6
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with k × 1 state vector αt = (α1,t, . . . , αk,t)
′, with k × k diagonal matrices T and Q

given by

T =


φ1 0 0

0
. . . 0

0 0 φk

 , Q =


σ2
η,1 0 0

0
. . . 0

0 0 σ2
η,k

 ,
and with unknown coefficients |φi| < 1 and qi > 0, for i = 1, . . . , k. We identify the

model by imposing φ1 > . . . > φk. The scalar signal θt represents the log-volatility.

Liesenfeld and Richard (2003) investigate their EIS method for a two component SV

model. We can motivate the k-component SV model as a stochastic counterpart of the

two component GARCH model of Engle and Lee (1999).

We adopt the following steps for parameter estimation:

1. Set starting values for the parameter vector.

2. Set starting values for the sampling coefficients.

3. Maximise the loglikelihood function using an approximate but fast method. We

suggest to take the NAIScc method with S = 0 (no simulation, only numerical

integration). We carry out the maximisation of the loglikelihood function by

direct numerical optimisation.

4. Update the starting values for the importance parameters.

5. Re-start maximisation of loglikelihood function using the NAIScc method with

S > 0.

The computational efficiency of this algorithm is due primarily to the accurate

approximation of the loglikelihood function calculated by the NAIScc method using

S = 0. As a result, the convergence of the maximisation in the last step is fast,

requiring a small number of iterations. This two-step maximisation method gives the

procedure the desirable property that we can set S at a high value with only a relatively

small increase in computing time. Common random numbers ensure smoothness of the

likelihood function, which is necessary for the application of numerical optimisation

methods.
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For our simulation exercise, we set the parameter values as d = 0.5, φ1 = 0.99,

φ2 = 0.9 φ3 = 0.4, σ2
η,1 = 0.005, σ2

η,2 = 0.016, and σ2
η,3 = 0.05. The number of

observations is set equal to n = 5000. The estimation of the multi-state specification

requires a large time series dimension since the third volatility component has low

persistence and may be hard to identify from a short sample. We set the number of

simulated trajectories to S = 200. We draw 50 different time series realisations of the

model. For each realised time series, we obtain 20 parameter estimates under different

sets of common numbers and compute their Monte Carlo standard errors. We report

the standard errors as the averages across the 50 realisations. Since we have set the

true parameters ourselves, we also calculate the Rmse of the estimates, which allows

us to directly compare the relative importance of the simulation and statistical errors

in estimating the parameters.

We summarise the results in Table 9. The average estimation time for each reali-

sation has been slightly under two minutes, despite the complexity of the model and

the large sample size. Table 9 further presents the simulation errors, which are small

for all parameters in absolute and in relative terms. In the estimation results, Monte

Carlo standard errors represent only between 1% and 3% of the total Rmse.

4.5 Empirical application

Finally, we investigate whether the NAIScc method extends its good performance to

empirical applications. Table 10 reports the estimation of a two-component stochastic

volatility specification for the daily returns of six Dow Jones index stocks in the period

between January 2001 and December 2010 (in a total of 2512 observations). As before,

we set the number of simulated trajectories in the importance sampling estimation of

the likelihood to S = 200. We repeat the estimation process a hundred times with

different random numbers.

The results show that the Monte Carlo errors in the parameter estimates are vir-

tually zero for persistent states, with autoregressive coefficients larger than about 0.9.

For three of the stocks, parameter estimation has been challenging because the second

component is weakly persistent and noisy. The Monte Carlo standard errors of the

associated parameters have reached 10-20% of the statistical standard errors in these

cases. However, the relatively low estimation times (between one and two minutes)
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Table 9: Three Component SV Model: Monte Carlo Errors.
Based on 50 realisations of a three component stochastic volatility model, we obtain 20

simulated maximum likelihood parameter estimates based on difference random values

and using the NAIScc method, for each realisation. We report the average Monte Carlo

standard error (SE) across the 50 realisations. The Rmse column reports the total root

mean squared error by comparing the estimates to the true parameters. The number of

observations is n=5000. The number of MC trajectories is S = 200. Average estimation

time: 116 seconds. We specify the model as yt ∼ N(0, σ2
t ), t = 1, . . . , n, σ2

t = exp(θt),

θt = d + α1,t + α2,t + α3,t, αt = Tαt−1 + ηt, α1 ∼ N(a1, P1), ηt ∼ N(0, Q), where T is

a diagonal matrix with elements φ1, φ2 and φ3 and Q is a diagonal matrix with elements

σ2
η,1, σ2

η,2 and σ2
η,3 .

Parameter True Value Monte Carlo SE Rmse Monte Carlo SE / Rmse
d 0.5 0.0016 0.103 0.016
φ1 0.99 0.0001 0.006 0.009
σ2η,1 0.005 0.0000 0.003 0.011

φ2 0.9 0.0006 0.049 0.011
σ2η,2 0.015 0.0002 0.010 0.018

φ3 0.4 0.0032 0.280 0.012
σ2η,3 0.05 0.0008 0.029 0.029

indicate that we may consider larger samples to better identify the second volatility

component. Figure 1 illustrates the signal and state estimates we have obtained for

the parameter estimates reported in Table 10.

To examine computational efficiency, we compare the NAIS and EIS methods for

estimation of parameters in the stochastic volatility model. For the implementation

of the EIS method we have followed Liesenfeld and Richard (2003). To avoid the bias

problem and to make the computational burden comparable between the two methods,

we consider S = 20 simulated trajectories in the regression stage and S = 200 samples

for calculating the likelihood.

We present the estimation results for the EIS method in Table 10 as well. The

averages of the parameter estimates are similar to the ones we have obtained with

the NAIS method. However, the use of the EIS method for this problem has three

important disadvantages. First, the EIS method produces large Monte Carlo standard

errors for parameters associated with non-persistent states. Second, the EIS method
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is computationally less efficient. We obtain up to 90% computing time reductions by

using the NAIS method. This finding is partly due to the fact that the EIS method

simulates the two-dimensional state, rather than the one-dimensional signal; the aux-

iliary EIS regressions are based on six regressors, against three in the NAIS method

(see Appendix A). Third, the low number of samples in the EIS regressions make the

algorithm numerically unstable, leading to many numerical errors during the estima-

tion. Numerical crashes affected between 15% and 80% of the EIS replications, while

the NAIS method has not crashed in any of the replications. This result illustrates

both the practical difficulties with importance sampling and the stability of the NAIS

method. Finally, we note that increasing the number of samples in the first step of

the EIS algorithm is very costly, as it requires the computation of a large number of

auxiliary regressions.

5 Conclusion

We have developed a new efficient importance sampling method for the evaluation of

the likelihood function of nonlinear non-Gaussian state space models. The numerically

accelerated importance sampling (NAIS) approach is a non-trivial mix of numerical and

Monte Carlo integration methods. We use Gauss-Hermite quadratures for constructing

the importance sampler. The Monte Carlo evaluation of the likelihood function is

primarily based on Kalman filtering and smoothing methods. We introduce new control

variables to further reduce the sampling variance of the Monte Carlo estimate of the

likelihood function. We have carried out a comprehensive simulation study to verify

the performance of our approach relative to other importance sampling methods for a

variety of financial time series models. Our empirical application to U.S. stock returns

has shown that the NAIS produces reliable results in a numerically and computationally

efficient way.
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Appendix

A The high-dimensional EIS method

The high-dimensional EIS method of Liesenfeld and Richard (2003) and Richard and

Zhang (2007) applied to (1) considers the Gaussian importance model density

g(α, y;ψ) =
n∏
t=1

g(yt|αt;ψ)g(αt|αt−1;ψ), (25)

where

g(yt|αt;ψ) = exp

{
at + b′t αt −

1

2
α′tCt αt

}
. (26)

We can merge the expressions for g(yt|αt;ψ) and g(αt|αt−1;ψ) and interpret them

as a Gaussian density g(αt|yt, αt−1;ψ) by completing the squares. The mean vector

and variance matrix are given by

α̂t = Vt(b
′
t + (dt + Ttαt−1)

′Q−1t )′, Vt = (Q−1t + Ct)
−1, (27)

respectively, provided that we set the constant at = at(χt, αt−1) equal to

at(χt, αt−1) =
1

2
log(|Q|/|Vt|) +

1

2
(dt + Ttαt−1)

′Q−1t (dt + Ttαt−1)−
1

2
α̂′tV

−1
t α̂t. (28)

We may then sample the state vectors sequentially from g(αt|yt, αt−1;ψ) for a given

set of importance parameters χ. In contrast to the importance density (11) we adopt in

Section 2.4, the constant at depends on αt−1 in the EIS approach. This property marks

the essential difference between the EIS algorithm and the modified EIS method of

Koopman and Nguyen (2011), leading to different simulation frameworks for selecting

χ. Liesenfeld and Richard (2003) have originally suggested the recursive structure we

apply in Section 3.1. Let k index the iterations. The EIS method minimises

min
χ
[k+1]
t

∫
λ[k](αt, yt;ψ)2ω(αt, yt;ψ)g(αt|y;ψ), (29)
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backwards from t = n to t = 1, where

λ[k](αt, yt;ψ) = log p(yt|αt;ψ) + at+1(χ
[k+1]
t+1 , αt)− log g(yt|αt;ψ)− λ0t,

with constant λ0t and where we define the weight ω(αt, yt;ψ) in (15). In this algorithm

it is fundamental that the updated integration constant at+1(χ
[k+1]
t+1 , αt) appears in the

period t regression as above. Richard and Zhang (2007) argue that the integration

constants at, t = 1, . . . , n, capture the dynamic structure of model (1). For this reason,

it is necessary to base the EIS regressions on the state αt rather than the signal θt.

The EIS and MEIS methods rely on similar importance density approximations of

p(yt|θt;ψ) as given by (25) and (8) respectively. This implies that the two procedures

are numerically close to each other, although not identical because of the role of the

integration constants in the EIS method. The simulation results presented in Section

4.3 confirm this observation. From a computational perspective, however, we point out

that the SPDK importance model brings four advantages. First, it avoids the large

number of computations required by the EIS method to track the integration constants

at. Second, it relies on fast linear state space methods such as the Kalman filter. Third,

it is based on directly simulating the signal θt rather than the possibly high dimensional

state αt. It also leads to the estimation of a smaller number of importance parameters

when the state has higher dimension than the signal. Fourth, it enables the use of

parallel computing for running the auxiliary regressions

B The bias in the EIS method

The EIS method is subject to a finite sample bias when the same set of random numbers

is used for obtaining the importance parameters χ via the sampling variance minimisa-

tion (29) and for computing the likelihood estimate (5) via importance sampling. We

denote the common random numbers by a vector u. The choice of χ depends on u in

the EIS method, that is χ = χ(u). The simulated signal θ(s) also depends on u, that

is θ(s) = θ(s)(u) for s = 1, . . . , S. Hence, we argue that g(θ(s)(u)|χ(y, u);ψ) is not well

defined as an importance density.

Consider the Taylor series expansion of the likelihood estimate round some value x
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given by (21)

ω̄ = exp(x)
1

S

S∑
s=1

(
1 + [xs − x] +

1

2
[xs − x]2 + . . .

)
, (30)

where xs = logω(θ(s), y;ψ) and θ(s) does not necessarily depend on u. For the EIS

method, χ(u) is explicitly selected to minimise the sample variance of the log impor-

tance sampling weights logω[θ(s)(u), y;ψ]. The minimised variance of logω[θ(s)(u), y;ψ]

is therefore artificially low when we compare it with the variance evaluated over the

full support of g(θ|y;ψ). As a result, the third term in the Taylor expansion (30) is

biased downwards for θ(s) = θ(s)(u). This problem also contaminates the other terms,

with ambiguous net effects for the likelihood estimate.

38



(a) General Electric (b) JP Morgan

(c) Coca-Cola (d) AT&T

(e) Wal-Mart (f) Exxon

Figure 1: Estimated log-variance (top) and states (bottom) for six Dow Jones stocks.
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