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Abstract

In this paper we investigate whether the dynamic properties of the U.S. business cycle have
changed in the last fifty years. For this purpose we develop a flexible business cycle indicator
that is constructed from a moderate set of macroeconomic time series. The coincident
economic indicator is based on a multivariate trend-cycle decomposition model that accounts
for time variation in macroeconomic volatility, known as the great moderation. In particular,
we consider an unobserved components time series model with a common cycle that is shared
across different time series but adjusted for phase shift and amplitude. The extracted cycle
can be interpreted as the result of a model-based bandpass filter and is designed to emphasize
the business cycle frequencies that are of interest to applied researchers and policymakers.
Stochastic volatility processes and mixture distributions for the irregular components and
the common cycle disturbances enable us to account for all the heteroskedasticity present in
the data. The empirical results are based on a Bayesian analysis and show that time-varying
volatility is only present in the a selection of idiosyncratic components while the coefficients
driving the dynamic properties of the business cycle indicator have been stable over time in
the last fifty years.

Keywords: Bandpass filter; Markov chain Monte Carlo; Stochastic Volatility,
Trend-cycle decomposition; Unobserved components time series model
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1 Introduction

The existence of common cyclical movements across macroeconomic time series has been a

common theme of business cycle research since Burns and Mitchell (1946). Their contributions

inspired future researchers to build business cycle indicators that would be valuable for economic

policy and financial decision making. The techniques used to construct the indicators vary widely

across the literature. The leading and coincident indicators of Stock and Watson (1989, 1991),

Diebold and Rudebusch (1996), and Kim and Nelson (1998) are factor models containing a

common business cycle component. Valle e Azevedo, Koopman, and Rua (2006) and Harvey,

Trimbur, and van Dijk (2007) are recent examples where the traditional structural time series

approach based on a multivariate trend-cycle model is adopted. Closely related to the former

methods are the indicators of Forni, Hallin, Lippi, and Reichlin (2000, 2001), Stock and Watson

(2002a, 2002c) and Altissimo, Riccardo, Forni, Lippi, and Veronese (2007), which are built from

a combination of principal components analysis and factor models. Finally, some researchers

prefer to apply nonparametric filters rather than explicitly formulating a model for the data.

Given the a priori belief that periods of 1.5 to 8 years are of primary importance, interest centers

on building an ideal filter. An ideal filter has a spectral gain function that carves out exactly

the movements in a frequency range specified by the researcher. Baxter and King (1999) and

Christiano and Fitzgerald (2003) constructed univariate bandpass filters that approximate an

ideal filter, while Valle e Azevedo (2007) extends the ideal filter towards a multivariate setting.

Concurrent research documents sizeable changes in the volatility of U.S. macroeconomic time

series; e.g., see Kim and Nelson (1999a), McConnell and Pérez-Quirós (2000), Stock and Watson

(2002b), and Sensier and van Dijk (2004). Most of the evidence from this literature suggests a

sizeable reduction in volatility for many series; many of them used to construct business cycle

indicators. With the exception of the beginning and the end of the series, the gain function

of a lowpass filter such as the Hodrick and Prescott (1997) filter or a bandpass filter remains

constant through time. Consequently, the estimates provided by these filters do not account

for the great moderation. The contribution of this paper is the construction of a business

cycle indicator that has bandpass filter properties and also accounts for time varying volatility.

Our indicator is constructed from the multivariate unobserved components time series model of

Valle e Azevedo, Koopman, and Rua (2006), where we extend the model to include stochastic

volatility in both the common cycle and irregular components of the model. The common cycle

is a higher-order stochastic cycle formulated by Harvey and Trimbur (2003) which ensures that

the extracted business cycle has bandpass filter properties. We further adjust the stochastic

cycle for phase shift and amplitude between series using the device of Rünstler (2004). The
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innovations of the stochastic cycle and the irregulars are made subject to stochastic volatility

processes which enable us to account for the heteroskedasticity present in the data. Finally,

we introduce mixture distributions for the innovations of the trend component and for the

stochastic volatility processes. Although the coefficients of the mixture distributions are given

known values, the specification remains sufficiently flexible and appears to be robust to other

values for the coefficients and for aberrant observations.

Whereas Valle e Azevedo, Koopman, and Rua (2006) estimate the parameters of their model

by maximum likelihood, we use Bayesian methods for inference. In particular, we use Markov

chain Monte Carlo methods for the estimation of all parameters including the trend, cycle

and irregular components. In this respect, our paper complements the work of Kim and Nelson

(1998), Chauvet and Potter (2001), and Harvey, Trimbur, and van Dijk (2007) who use Bayesian

methods for estimating business cycle indicators within a state space framework. Our work

differs from theirs in several respects. Kim and Nelson (1998) and Harvey, Trimbur, and van

Dijk (2007) do not account for time-varying volatility. Although Chauvet and Potter (2001)

account for changes in volatility through a one-time structural break in the common cyclical

component, they do not do so in the idiosyncratic component nor does their cyclical component

isolate business cycle frequencies.

We discuss the results of an empirical analysis based on eleven U.S. macroeconomic time

series that are commonly used for constructing a business cycle indicator. The modeling frame-

work allows time series that are coincident, leading or lagging the business cycle to be included

in the analysis. The empirical results reveal that unemployment and inflation are lagging the

business cycle while productivity, manufacturing and consumption are leading the cycle. The

NBER recession dates are picked up by the estimated cycle of our model. Our model also in-

cludes an irregular component that captures the high-frequency movements in the time series.

The empirical results suggest that the irregular component with a stochastic variance captures

the majority of the time-varying volatility in the data. The estimated volatility associated with

the cycle does not vary significantly over time. Although evidence of the great moderation is

widely available, the persistence of the business cycle appears to be constant through time. We

may therefore conclude that the time-varying volatility in the macro-economic time series is

associated with the high-frequency movements only. These empirical findings have not been ob-

served earlier and may provide a justification for modeling the cycle component as a stationary

process with time-invariant parameters.

The multivariate trend-cycle decomposition time series model with stochastic volatility and

mixture distributions is presented in section 2. In section 3, we describe the data, our priors,
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and the Markov chain Monte Carlo (MCMC) algorithm used to estimate the model. Section

4 contains our empirical results including the new business cycle indicator and the estimated

stochastic volatility components. Section 5 concludes.

2 A Model-Based Bandpass Filter with Stochastic Volatility

Unobserved components models consist of stochastic components with dynamic specifications

that have a direct interpretation. A classic model-based decomposition of a time series into trend,

seasonal and irregular can be accomplished in this framework by specifying the trend component

as a random walk process (low frequency), the seasonal component as a dynamic seasonal process

(periodic frequency) and the irregular component as a white noise process (high frequency). For

macroeconomic time series, which are often seasonally adjusted, a stationary component in

its decomposition is of interest as well since it may detect dynamic characteristics associated

with the business cycle. The dynamic properties of a business cycle are well documented. For

example, much of the business cycle literature cite the seminal paper of Burns and Mitchell

(1946) who argue that business cycle fluctuations should typically last between 1.5 years and

8 years. Autoregressive moving average processes with complex roots in the autoregressive

polynomial can be designed that ensure the implied cyclical fluctuations to last within a certain

band of years. A component with such specifications can then be interpreted as a business cycle

component.

We adopt a multivariate class of unobserved components models in which all time series

variables have separate trend and irregular components but where they share a business cycle

component. The model framework is sufficiently flexible for the inclusion of time series that

either lead, lag or coincide with the business cycle. Furthermore, time-varying heteroskedasticity

components are introduced for many equations and components in the model such that the model

is robust to the impact of the great moderation.

2.1 The model without stochastic volatility and mixture innovations

We develop a multivariate unobserved components time series model that decomposes an M ×1

vector time series into trend, cycle, and irregular components. The tth observation for the ith

macroeconomic variable is denoted by yit for i = 1, . . . ,M and t = 1, . . . , n. The ith equation

of the multivariate model is given by

yit = τit + δiψ
(k)
t + εit, i = 1, . . . ,M, t = 1, . . . , n, (1)

where τit and εit are the idiosyncratic trend and irregular components, respectively, for the ith

variable. The cycle component ψ
(k)
t is specified as a smooth cyclical process where k is an integer
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for the level of smoothness. The cycle is common to all series and scaled for each series by the

coefficient δi. The stochastic specifications of the three different components are given next.

The individual trend component is modeled as the smooth local linear trend process ∆2τit =

ζ∗it where ∆ is the difference operator (∆xt = xt − xt−1) and ζ∗it is a disturbance term. Alterna-

tively, we can represent this trend specification as

τi,t+1 = τit + βit, (2)

βi,t+1 = βit + ζit, ζit ∼ NID
(

0, σ2
i,ζ

)

, (3)

where βit can be interpreted as the growth or slope term of the trend τit while it follows that

ζ∗it = ζi,t−2. The irregular component εit in (1) has mean zero, variance σ2
i,ε and is normally

distributed, that is

εit ∼ NID
(

0, σ2
i,ε

)

. (4)

The disturbances ζit and εi′t′ are serially and mutually uncorrelated at all times t, t′ = 1, . . . , n

and for all variables i, i′ = 1, . . . ,M .

The common cycle ψ
(k)
t component is the kth-order stochastic cycle and modeled by

(

ψ
(j)
t+1

ψ
+(j)
t+1

)

= ρ

[

cosλ sinλ
− sinλ cos λ

]

(

ψ
(j)
t

ψ
+(j)
t

)

+

(

ψ
(j−1)
t

ψ
+(j−1)
t

)

, j = k, k − 1, . . . , 1, (5)

where ρ is the damping parameter with restriction 0 < ρ < 1 to ensure the stationarity of

ψ
(k)
t and λ is the frequency of the cycle measured in radians with p = 2π / λ as the period of

the cycle. The dynamic process of stochastic cyclical components ψ
(k)
t is determined by (5) for

j = k, k − 1, . . . , 1 and with
(

ψ
(0)
t

ψ
+(0)
t

)

=

(

κt

κ+
t

)

,

(

κt

κ+
t

)

∼ NID
(

0, σ2
κI2
)

, (6)

where I2 is the 2 × 2 identity matrix and σ2
κ is the common variance for both disturbances κt

and κ+
t for t = 1, . . . , n. We refer to Harvey and Trimbur (2003) for a detailed discussion of

this stochastic specification of the cycle component ψ
(k)
t . We extend the specifications of the

irregular and cyclical components below in section 2.2 by including stochastically time-varying

variances.

For the decomposition model (1) with trend (2), slope (3), irregular (4) and common cycle (5),

Harvey and Trimbur (2003) demonstrate that the spectral gain function of the cycle component

ψ
(k)
t approximates a bandpass filter as the number of cycles k increases. As it is the case for the

nonparametric filters of Baxter and King (1999) and Christiano and Fitzgerald (2003), the cycle

is a function of a specific range of frequencies from the observed data. The frequency parameter

λ corresponds roughly to the center of the gain function while the damping factor ρ determines
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its width. Bandpass filters eliminate the high-frequency variation that is not considered part

of the business cycle and may cause difficulty identifying a turning point. In an unobserved

components model with higher-order cycle (5), the irregular component (4) receives the high-

frequency variation. In previous research carried out by, e.g., Harvey and Trimbur (2003) and

Valle e Azevedo, Koopman, and Rua (2006), the frequency parameter λ has been fixed. Harvey,

Trimbur, and van Dijk (2007) refer to fixing λ as one of their motivations to use a Bayesian

approach for parameter estimation and signal extraction.

It is often argued that bandpass filters perform poorly at the end of the sample because the

cycle component estimates of the last two or three periods may be heavily revised when new

data arrives. Valle e Azevedo, Koopman, and Rua (2006) sought to alleviate this problem by

combining monthly and quarterly data within the phase shift methodology of Rünstler (2004).

Following their work, the model specification (1)–(5) is extended to include phase shifts in

the common cycle. Adding the phase shift parameters allows the model to gather cyclical

information from other series, particularly leading and lagging series that may be omitted from

other indicators. The recent contribution of Altissimo, Riccardo, Forni, Lippi, and Veronese

(2007) have adopted a similar approach to improve their estimates at the end of the sample.

The cycle component in the model is based on the similar stochastic cycle specification of

Harvey and Koopman (1997). In a similar stochastic cycle model, the parameters ρ and λ

are shared across series. This assumption reduces the number of parameters in the model and

may be regarded as reasonable for extracting a business cycle indicator that is common across

multiple time series.

The suggested modifications for the common cycle component require the measurement

equation (1) for the ith variable to be replaced by

yit = τit + δi

{

cos (ξiλ)ψ
(k)
t + sin (ξiλ)ψ

+(k)
t

}

+ εit, (7)

for i = 1, . . . ,M and t = 1, . . . , n, where the coefficient ξi determines the extent of the shift of

the common cycle for the ith variable. When ξi ≥ 0, the shift is forwards in time while it is

backwards otherwise. The phase shift parameters are measured in calendar time according to

the highest observed frequency. The parameters δi scale the remaining cycles by expanding or

contracting the base cycles ψ
(k)
t and ψ

(+k)
t to fit each series. It is necessary for identification

purposes to choose one of the time series’ cycles as the base cycle and set δ1 = 1 and ξ1 = 0

for this series. For convenience, we group the trend, slope, and cyclical components and denote

them as α1:n =
[

{τit, βit}
M
i=1 , ψt, ψ

+
t

]n

t=1
.

Valle e Azevedo, Koopman, and Rua (2006) argue that signal extraction based on the trend-

cycle model (2)–(7) is effectively applying a multivariate model-based bandpass filter because it
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extracts a cycle with bandpass filter properties from multiple time series. As the model imposes

a common cycle (adjusted for phase shift and amplitude) across series, it is however not an

attempt to approximate the true joint data generating process of all series. The properties of

this method are instead best evaluated by taking it as a filter and by inspecting the gain function

of the cycle, see section 2.3 below.

2.2 The model with stochastic volatility and mixture innovations

In this section, we extend the model (2)–(7) to account for recently documented changes in

macroeconomic volatility. We therefore allow the variances of the irregular components σ2
i,ε in

(4) to vary over time using independent stochastic processes. In particular, we consider the

stochastically time-varying variance processes with mixture innovations given by

σ2
i,t,ε = exp(hi,t,ε), (8)

hi,t+1,ε = hi,t,ε +Ki,t,εωi,t,ε, ωi,t,ε ∼ NID (0, 1) , (9)

for i = 1, . . . ,M and t = 1, . . . , n. The ith log-variance hi,t,ε is modeled by a random walk process

whose innovations are a mixture of a Gaussian noise sequence and a stochastic indicator variable

with known probabilities. The initial value of the log-variance, that is hi,1,ε, is treated as a diffuse

prior (or non-informative) variable. In this model specification, the latent indicator variables

Ki,t,ε takes two values k
(1)
ε and k

(2)
ε , for all i = 1, . . . ,M and t = 1, . . . , n, with prior probabilities

p
(1)
ε and p

(2)
ε = 1 − p

(1)
ε , respectively. This specification of a stochastic volatility model based

on mixture innovations is recently introduced by Giordani and Kohn (2008). The mixture

framework can be designed to reflect the prior belief that changes in the variance structure of

macroeconomic time series are reasonably rare. In this case, for example, one can take k
(1)
ε = 0

and k
(2)
ε as a small positive value with probabilities set to p

(1)
ε = 0.95 and p

(2)
ε = 0.05. The

choices of these values can be set differently for each ith time series. Since the specification

is flexible by design, we adopt the same k and p values for all indicator variables Ki,t,ε in the

log-variance processes hi,t,ε for i = 1, . . . ,M . All indicator variables are mutually and serially

independent. Also, the disturbance sequences ωi,t,ε are mutually and serially independent.

In a similar fashion, the common variance shared by the cyclical components (6) is also

allowed to change stochastically over time via

σ2
t,κ = exp(ht,κ), (10)

ht+1,κ = ht,κ +Kt,κωt,κ, ωt,κ ∼ NID (0, 1) , (11)

for t = 1, . . . , n where the log-variance ht,κ follows a random walk process that is independent

of all random walk processes hi,t,ε in (9) for i = 1, . . . ,M . The indicator variables Kt,κ for
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t = 1, . . . , n can take on the values k
(1)
κ and k

(2)
κ with prior probabilities p

(1)
κ and p

(2)
κ , respectively.

and are independent of the indicator variables Ki,t,ε in (9). The disturbance sequence ωt,κ is

also independent of all other disturbance sequences in the model.

The specifications for the stochastic log-variances with mixture innovations complete our

model for the empirical study regarding the U.S. business cycle presented in section 4. From

a preliminary empirical study we have learned that for most macroeconomic time series the

trend component (2) – (3) is estimated as a smooth trend function with a very small estimate

for σ2
i,ζ , with i = 1, . . . ,M . In other words, changes in the trend are reasonably rare which

makes the variance σ2
i,ζ hard to estimate accurately. Therefore, as an alternative approach, we

adopt a similar strategy as for the log-variances by introducing mixture innovations for the trend

component τi,t. For this purpose we replace the specification for the slope or growth term of the

trend τi,t in (3) by

βi,t+1 = βit +Ki,t,ζζit, ζit ∼ NID (0, 1) , (12)

where the indicator variables Ki,t,ζ take on the values k
(1)
ζ

and k
(2)
ζ

with prior probabilities p
(1)
ζ

and p
(2)
ζ

, respectively. This specification enables the model to account for possible large but

infrequent changes in the trend.

The full model is specified by the equations (2) and (4) – (12). We extend the set of latent

variables α1:n (for trend, slope and cycle) by two additional sets of latent variables. The first

set is for the indicator variables associated with the M irregular log-variance innovations, the

M slope innovations and for the common cycle log-variance innovations which we denote by

χ1:n =
[

{Ki,t,ε}
M∗

i=1 , {Ki,t,ζ}
M
i=1 ,Kt,κ

]n

t=1
. The second set is for the log-variances of the M

irregulars and the common cycle innovation which we denote by γ1:n =
[

{hi,t,ε, }
M∗

i=1 , ht,κ

]n

t=1
.

In applications with stochastic volatility models for time series of financial returns, the log-

variance is typically specified as an autoregressive process. The random-walk specification for

the M+1 log-variance processes in γ1:n of our model imposes smoothness on their evolution and

reduces the overall number of parameters to estimate. In practice, only a subset of, say, M∗ of

the M measurement equations may require stochastic volatility for the irregular component εit,

while a constant variance may be more appropriate for the remaining series. We discuss these

issues in more detail in section 3.5 below.

The motivation to use stochastic volatility instead of a model with discrete breaks in the

variances and to allow both irregular and cycle components to have time-varying variances

originates from our aim to develop a flexible model to construct a business cycle indicator. It

is also based on earlier contributions in the literature on the great moderation. Some of this

literature concentrates on finding a one-time break in U.S. real GDP estimated around 1984;
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e.g., see Kim and Nelson (1999a), McConnell and Pérez-Quirós (2000), and Blanchard and

Simon (2001). Other work, including Chauvet and Potter (2001), Stock and Watson (2002b),

Kim, Nelson, and Piger (2004), Ahmed, Levin, and Wilson (2004), and Sensier and van Dijk

(2004), analyzes a larger number of time series using a plethora of methods. Researchers are

also concerned whether one or more breaks exist, e.g. Sensier and van Dijk (2004). The findings

in this work do not yet suggest a consistent, definitive pattern. Some real and nominal series

break only once while other real and nominal series may break more often. If each series breaks

only once, it is not clear that this date is the same for all the series. Whether the break in

each series was sharp versus gradual is still debated. We regard the specification of stochastic

volatility with mixture innovations as a flexible means for developing a robust indicator, which

is our primary interest in this study.

Another key question of interest is at what frequencies the break or breaks exist in each

macroeconomic time series. Ahmed, Levin, and Wilson (2004) analyzed this question in detail

by using two different frequency-domain estimators. They found evidence of structural change

at both business cycle and high frequencies. The stochastic volatility processes in the irregular

and cycle components are intended to capture this possibility.

The number of breaks, relative timing, and underlying causes of the great moderation are

still open research questions. Stock and Watson (2002b) reviewed the arguments proposed by

many authors concerning the causes. They concluded, based partially on univariate stochastic

volatility models, that most of the reduction is due to good luck, i.e. a reduction in the size

of structural shocks hitting the economy. This conclusion is shared by Primiceri (2005), who

analysed macroeconomic time series using a structural VAR with stochastic volatility. Our

flexible model specification is consistent with this view as well.

2.3 Time-varying gain and weight functions

The properties of a bandpass filter are evaluated in the frequency domain through the gain

function. When constructing a trend or a cycle indicator from a single time series using a

filter, the gain function describes which frequencies of the original time series are being used

to construct the indicator. With the exception of the beginning and the end of the series, the

gain function of a lowpass filter such as the one of Hodrick and Prescott (1997) or a bandpass

filter remains constant through time. Consequently, the estimates provided by these filters do

not account for the great moderation.

In a model-based approach, the trend and cycle indicators are constructed by the Kalman

filter and associated smoothing algorithms, see Harvey (1989) and Durbin and Koopman (2001).

These indicators are effectively the minimum mean square linear estimators of the trend and cycle
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components based on all observations y11, . . . , yMT . In case of the trend-cycle decomposition

model (1) – (6) with M = 1 and δ1 = 1, the implicit gain functions for the trend and cycle

indicators are determined by the signal-to-noise ratios σ2
1,ζ /σ

2
1,ε and σ2

κ /σ
2
1,ε, see Harvey (1989).

For the multivariate model (M > 1), the gain functions are intricate functions of all such

signal-to-noise ratios. In case of the full model specification with stochastic volatility, the gain

function for the cycle indicator will implicitly vary over time because the signal-to-noise ratios

in the model vary. It is of interest to investigate these changes in some detail. A method for

computing the gain functions for our model specification is described in section 3.4.

3 Design of the empirical study and estimation

3.1 The data-set with missing values

Our analysis includes eleven time series that are commonly used to construct business cycle

indicators. All series were taken from the FRED database at the Federal Reserve Bank of St.

Louis. The monthly time series are industrial production, unemployment, manufacturing (PMI

composite index), real retail sales, and retail sales and food services. The first three monthly

series are measured from 1953:M4 to 2007:M9. The retail sales series is available for the period

1953:M4 to 2001:M4 while retail sales and food services is collected from 1992:M1 to 2007:M9.

Real GDP, consumer price index inflation (all goods), consumption of durables, investment,

productivity of the non-farm business sector, and hours of the non-farm business sector are

available as quarterly time series for the period 1953:Q4-2007:Q3. Although consumption and

investment are components of real GDP, they are included because their dynamics help in iden-

tifying the business cycle. The inflation series is constructed following Stock and Watson (2007)

who average the three prior months of the monthly index, take logarithms, first differences, and

multiply by 400. The unemployment rate has been multiplied by 100. All other series are in

logarithms and have been multiplied by 100.

The resulting panel of macro-economic time series is unbalanced and consists of a mix of

monthly and quarterly time series. Its treatment requires the handling of missing observations.

For example, we include both monthly and quarterly data in our analysis as policy-making

decisions typically occur between data releases at a higher than quarterly frequency. The state

space framework handles this efficiently by treating the months in which quarterly data are

unavailable as missing. Other data idiosyncracies can be handled analogously. For example,

the monthly real retail sales series started prior to 1953 but was discontinued in 2001. A

newly defined series, real retail sales and food services, began in 1992 and continues to the

present. We treat this situation by assuming that both series share a common cyclical feature,
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namely the phase shift parameter ξi. Otherwise, the two series have separate trend, slope, and

irregular components. Visual inspection of the manufacturing index indicates the existence of

four large outliers in M12:1960, M1:1982, M12:1995, and M1:1996, respectively. We also treat

these observations as missing.

3.2 The prior distribution for the parameters

The full model for the 11 selected time series has a total of 25 parameters which we denote

collectively as Θ. The prior distribution p (Θ) for the parameters are independent of each other

except for the phase shifts ξi. Our base cycle is industrial production for which we define δ1 = 1

and ξ1 = 0. An outline of the priors of the parameters is given below. Specific details of the prior

settings for each of the parameters can be found in an Appendix associated with this paper. We

have located this additional material at http://staff.feweb.vu.nl/dcreal/.

For the parameters of the common cyclical component, we chose a uniform prior for ρ on

the interval [0, 0.99) to ensure stationarity. Following Harvey, Trimbur, and van Dijk (2007),

the frequency parameter λ has a beta distribution. We position the mode equal to 2π/60 while

the standard deviation of this prior is set to be wide for a beta distribution, that is 0.1. The

mode implies a business cycle with a period of five years for monthly data. However, we stress

that in practice the parameter λ does not correspond exactly to the center of the spectral gain

function of the cycle component.

Due to the periodicity of the sine and cosine functions of the cycle component, the phase

shift parameters must be restricted within the interval −1
2π < ξiλ <

1
2π to remain identified.

We specify a conditional prior p (ξi|λ) for these parameters. It is set as a truncated normal

distribution with mean zero and standard deviation 2.5 while the left and right truncation

points are set equal to ±1
2πλ

−1, respectively. The scale parameters δi have normal distributions

as priors which are centered at zero with standard deviations equal to 2.0. The priors on ξi

and δi are relatively uninformative and are intended to see whether the information in the data

enable the probability mass to move away from the prior mean of zero. An alternative strategy

for eliciting informative priors might be to use information from an another source such as

European data on similar series. We have not pursued this further. For the variances of the

irregular components that do not have stochastic volatility, we adopt standard non-informative

inverse gamma priors.

3.3 Parameter estimation using Markov chain Monte Carlo

We estimate the model using Bayesian methods and have developed a Markov chain Monte

Carlo (MCMC) algorithm; see, e.g. Kim and Nelson (1999b) and Robert and Casella (2004) for

11



an overview of MCMC. We describe the MCMC algorithm only briefly here. A more detailed

description is presented in the Appendix 5 of this paper.

The posterior distribution of our model can be derived using Bayes’ rule as

p (α1:n, γ1:n, χ1:n,Θ|y1:n) ∝ p (y1:n|α1:n, γ1:n, χ1:n,Θ) p (α1:n|γ1:n,Θ) p (γ1:n|χ1:n,Θ) p(χ1:n)p (Θ) ,

where γ1:n includes the stochastic volatility processes in (9) and (11), α1:n includes the un-

observed components of the model (trend τit, slope βit and cycle ψ
(k)
t ) and χ1:n contains the

indicator variables for the volatility and slope innovations. We have adopted data-augmentation

methods to expand the posterior for including the latent state variables. The first term on the

right hand side is the data-augmented likelihood, the second and third terms are the transition

density of the state space model, and the last term is the prior described above.

Given initial values for the parameters Θ(0), log-variances γ
(0)
1:n, and indicator variables χ

(0)
1:n,

the MCMC algorithm consists of making a series of N draws using four blocks where N is a large

number. In the jth round (with j = 1, . . . ,N), we first draw α
(j)
1:n conditional on the parame-

ters Θ(j−1), the log-variances γ
(j−1)
1:n , and the indicators χ

(j−1)
1:n using the simulation smoothing

algorithm of Durbin and Koopman (2002). This Monte Carlo method is for linear Gaussian

state space model and is based on the Kalman filter and an associated smoothing algorithm.

Next, we draw the indicator variables χ
(j)
1:n using the reduced conditional sampling algorithms

for mixture models developed independently by Gerlach, Carter, and Kohn (2000) and Doucet

and Andrieu (2001). Conditional on Θ(j−1), α
(j)
1:n, and χ

(j)
1:n, we draw new log-variances using the

mixture of normals approximation to the stochastic volatility model developed by Kim, Shep-

hard, and Chib (1998). We use the more accurate 10 component mixture from Omori, Chib,

Shephard, and Nakajima (2007) which improves upon the original 7 component mixture in the

former paper. Given the latent variables in γ
(j)
1:n and χ

(j)
1:n, we draw the parameters Θ(j) using

a combination of so-called Gibbs sampling and Metropolis-Hastings steps. In practice, we use

a burn-in of 10, 000 draws and then make 60, 000 draws, skipping every 20 to retain a total of

3, 000 draws for inference.

Calculation of the exact likelihood function for the MH acceptance probabilities as well as

draws from the simulation smoother require that careful attention is paid to the initialization

of the Kalman filter for both the stationary and nonstationary components of the model. In

particular, the initial distribution of the cycle depends on its order and is based on the uncon-

ditional mean and variance of the cycle process; details and derivations are given by Trimbur

(2006). For the nonstationary components, we follow the exact initiliazation methods described

in Koopman (1997). Textbook treatments of the Kalman filter and associating methods can be

found in Anderson and Moore (1979), Harvey (1989) and Durbin and Koopman (2001).
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3.4 Estimation of time-varying gain functions

In a linear Gaussian state space model, the estimates of the components (in α1:n) obtained by

the Kalman filter and associated smoothing methods are linear functions of all observations.

Koopman and Harvey (2003) demonstrate how to compute the observation weights for this

linear function conditional on the model parameters and, in our case, the latent variables in χ1:n

and γ1:n. These weights can then be transformed into the gain function for a given component

of the model. In a frequentist setting, the weights and gains are computed at the maximum

likelihood parameter estimate while in a Bayesian framework they are functions of the posterior.

Consequently, in a Bayesian analysis they are computed by averaging over successive iterations

of the MCMC algorithm. In particular, for each jth round of the MCMC algorithm, we can

compute the weights and gains in the first block before we draw α
(j)
1:n using the simulation

smoother. In section 4, we demonstrate how the gain function remains centered over the business

cycle frequencies for each time period and that it adjusts over time according to the variations

in volatility.

3.5 Final details of the model

For the empirical study in section 4, we consider the full model specification as given by (2) and

(4) – (12). The stochastic volatility processes are introduced in section 2.2 for all M irregular

components in the model. However, we may only need a subset of M∗ ≤M irregular components

that have time-varying variances in the model under consideration. We have started to estimate

the parameters from the full model specification with stochastic volatility for allM irregulars and

the cycle innovations. By inspection of the empirical results, we have concluded that a constant

variance was more appropriate for the time series of hours, productivity and unemployment.

The stochastic volatility processes have innovations with a mixture of an indicator variable

and a standardized Gaussian noise component. A similar specification is used for the innovations

of the slope component of the trend. In all cases, the indicators have two possible values with

certain probabilities. These values and probabilities are pre-fixed and given in Table 1.

Finally, we have selected k = 2 for the cycle in (5) and have found that this setting produces

a sufficiently smooth cycle. We notice that it has also been the preferred specification in Harvey,

Trimbur, and van Dijk (2007).

4 Empirical study for the U.S. business cycle

In this section we present the empirical results of our study for the U.S. business cycle. Given

the multivariate nature of the model, both the estimation output in tables and the graph-
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Indicator k(1) k(2) p(1) p(2)

Ki,t,ε 0 5×10−2 0.97 0.03
Kt,κ 0 5×10−2 0.97 0.03
Ki,t,ζ 5×10−5 1×10−3 0.95 0.05

Table 1: Fixed possible values (k(1) and k(2)) and their probabilities (p(1) and p(2), respectively)
for the mixture indicator variables Ki,t,ε, Kt,κ and Ki,t,ζ .

ical output is potentially large. We present and discuss below the empirical results based

on the multivariate model with cycle shifts and mixture innovations to the slope and sto-

chastic volatility components. Various other extensions of the model are considered and dis-

cussed at the end of this section. The main results are presented here while additional tables

and graphical output are reported in a separate online Appendix of this paper available at

http://staff.feweb.vu.nl/dcreal/. The results from a selection of alternative model speci-

fications are reported there as well.

4.1 The business cycle indicator

Figure 1 depicts smoothed estimates of the four components of our base series of industrial

production. The estimated business cycle indicator in the top left graph matches the NBER

dates well with 2 additional small downturns, one in the late 1960’s and one in the mid-1990’s.

Based on our data-set that covers a period upto the end of 2007, the cycle indicator at the end

of the sample provides evidence that the U.S. economy is on the brink of a recession at the end

of 2007. In a multivariate framework, the highest posterior density intervals are considerably

smaller than for a univariate model. The cycle component estimates with 95% highest posterior

density intervals are pictured in Figure 2, where it can be seen that there still remains con-

siderable uncertainty of the business cycle over the last 2 to 3 quarters in 2007. We observe

from Figure 1(iii) that the estimated slope component corresponds closely to the growth rate of

industrial production. Smoothed estimates of the irregular component in (iv) show evidence of

a considerable amount of heteroskedasticity. The irregular or idiosyncratic component is larger

in the 1950’s and early 1960’s. Estimates of the stochastic volatility components presented in

section 4.3 below will confirm this observation.

Table 2 compares the posterior mean and standard deviation of the key parameters of the

model compared to their prior mean and standard deviation. The estimated phase shift parame-

ters ξi imply that inflation lags industrial production by just over a quarter and unemployment

lags it by 1 month. In turn, industrial production lags real GDP by 3 to 4 months. Interestingly,

Valle e Azevedo, Koopman, and Rua (2006) found the opposite relationship between these two
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Figure 1: (i) Business cycle indicator; (ii) smoothed estimates of the trend in industrial pro-
duction; (iii) smoothed estimates of the slope and the growth rate of industrial production; (iv)
smoothed estimates of the irregular component. NBER recession dates are represented by the
vertical bands.

variables for the Euro area. This may be explained by the different structures and dynamics in

the U.S. and Euro area economies. Productivity and consumption of durables lead real GDP

while manufacturing, retail sales, and investment appear to be roughly coincident with real

GDP.

4.2 Time-varying gain functions

The gain function from a multivariate filter is a high-dimensional object and therefore cannot

be as conveniently graphed as in a univariate framework. This makes interpretation of the gain

function slightly more complicated. In Figure 3, we present the gain functions of the cycle in the

model for two different quarters, Q1 1982 and Q1 1997. They are computed during the MCMC

algorithm from the linear Gaussian model conditional on the log-variances for that date, the

latent indicators, and the parameters of the model Θ. We observe several characteristics of

interest for our analysis. Both gain functions in 1982 and 1997 eliminate the high frequency

variation from each series because the gain function returns to zero by frequency 0.30. The
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Figure 2: Business cycle indicator with 95% HPDI. NBER recession dates are represented by
the vertical bands.

functions are centered over the business cycle frequences with their peaks varying from 0.08

to 0.14. This is despite the fact that the posterior estimate of λ in Table 2 is 0.151, which

demonstrates the known fact that λ does not correspond exactly to the middle of the gain

function for this model. Finally, it is interesting to see that the gain function in 1997 has

adjusted to include more high frequency movements from each series. This typically leads to

more short-lasting cyclical movements in the time series. For example, the estimated cycle

period in 1982 is 6.5 years while in 1997 it is 4.4 years, approximately.

4.3 Stochastic volatility estimates

A major goal of this paper is the development of a monthly business cycle indicator with

bandpass-filter properties that accounts for time-varying volatility. We have not intended to

build a model to explain the joint data-generating process of all 11 time series. However, it

remains interesting to compare the estimated stochastic volatility components from our pro-

cedure to the literature on the great moderation. Any conclusions drawn from the estimated

components are of course dependent on the method used to extract them; a point that is made

clearly by Canova (1998).
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Prior δi Posterior δi Prior ξi Posterior ξi
mean st. dev. mean st. dev. mean st. dev. mean st. dev.

unemployment 0.00 2.00 -0.255 0.010 0.00 2.50 -1.013 0.185
manufacturing 0.00 2.00 0.352 0.014 0.00 2.50 3.923 0.228
inflation 0.00 2.00 0.318 0.034 0.00 2.50 -3.883 0.614
retail 0.00 2.00 0.679 0.033 0.00 2.50 2.983 0.343
retail/food 0.00 2.00 0.506 0.092 – – – –
productivity 0.00 2.00 0.312 0.024 0.00 2.50 8.538 0.584
real GDP 0.00 2.00 0.548 0.020 0.00 2.50 3.417 0.259
hours 0.00 2.00 0.546 0.021 0.00 2.50 0.621 0.264
consumption 0.00 2.00 1.245 0.061 0.00 2.50 4.682 0.370
investment 0.00 2.00 2.662 0.103 0.00 2.50 2.713 0.260

Prior ρ Posterior ρ Prior λ Posterior λ

0.50 0.08 0.974 0.004 0.09 0.10 0.151 0.012

Table 2: Prior and posterior means and standard deviations for ρ, λ, and for each series δi and
ξi. Industrial production has δ = 1 and ξ = 0.

Chauvet and Potter (2001) built a factor model with a common component for four times

series and provided evidence that there exists a break in the common cycle in 1984. Given two

different definitions of the trend, Kim, Nelson, and Piger (2004) also concluded that the break

in real GDP volatility occurred in the cycle in 1984. The estimated volatility from our common

cycle is pictured in Figure 4(i). It contains a marked increase from 1974 through 1984 with

two peaks in 1976 and 1980. This timing agrees approximately with the oil price shocks in the

1970’s as well as the U.S. monetary experiment from 1979-1984. These increases appear however

insignificant relative to their 95% highest posterior density intervals. The overall dynamics of

volatility in the common cycle is small compared to the changes in volatility of the irregular

components, which are depicted in the remaining panels of Figures 4 and 5. The irregular

component of real GDP in Figure 5(ii) indicates a moderate decline in volatility beginning in

1979 and ending in 1984. Other series such as manufacturing, consumption of durables, and

investment suggest a reduction in volatility but at different dates and with different dynamics

than for real GDP. These graphs also imply that the decrease in volatility was mostly in the high

frequency shocks hitting the economy. This agrees with the interpretation given in Stock and

Watson (2002b) and Primiceri (2005) that most of the volatility changes are in the idiosyncratic

component. Finally, we observe that the volatility of quarterly CPI inflation pictured in Figure

4(iv) appears to be increasing over the last two years.

The differences between our estimates and those of Chauvet and Potter (2001) and Kim,

Nelson, and Piger (2004) are likely due to two sources. Our definition of the cycle intentionally

eliminates most of the high-frequency variation from the cycle and separates it into the irregular
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Figure 3: Gain functions from Q1 1982 (straight lines) and Q1 1997 (boxes) for clockwise
from top left: industrial production, unemployment, real GDP, investment, consumption, and
productivity.

component. The former papers do not differentiate between business cycle and high-frequency

movements. It is also important to note that our procedure forces a common cycle among the

series. Periods when this common cycle does not hold exactly may result in a larger irregular

component.

4.4 Robustness of our findings

In this section, we investigate the robustness of our main findings discussed in the previous

sections. First, we consider the multivariate trend-cycle model without stochastic volatility

components. Second, the main results give evidence of considerable changes in the volatility of

most of the series considered. However, we also inspect the model to detect possible changes

that are not accounted for by time-varying volatility.

Model without stochastic volatility and mixture innovations

In section 2.1 we have introduced the model without stochastically time-varying log-variances

and mixture innovations. Some elaborations of the MCMC algorithm for the linear Gaussian
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Figure 4: (i) Smoothed estimates of the stochastic volatility σt,κ of the common cycle with 95%
HPDI. Smoothed estimates of the stochastic volatility σi,t,ε of the irregular components with 95%
HPDI for (ii) industrial production; (iii) manufacturing; and (iv) inflation. NBER recession
dates are represented by the vertical bands.

model (2) – (7) reduces since we do not need to integrate over χ1:n and γ1:n. The top left graph

in Figure 6 provides estimates of the cycle and slope from a model without stochastic volatility.

The amplitude of the estimated cycle is larger while the peaks and troughs continue to match

the NBER recession dates. The largest difference between this cycle and the estimated cycle

from the model with stochastic volatility comes in several quarters at the end of the sample.

The model without stochastic volatility implies that the economy is at or even slightly below

trend during the final months of 2007.

Estimates of some of the parameters, ξi, ρ, and λ, for the current model are reported in

Table 3 with the remaining values available in the online Appendix. The parameters of this

model are estimated to be slightly different from the model with stochastic volatility reported

in the previous section. Unemployment and inflation lag industrial production and real GDP

by roughly two more months. The estimated persistence of the businesss cycle ρ is also smaller.

However, we note that the order in which the cycles are estimated (in terms of the phase shifts)

remains the same in both specifications.
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Figure 5: Smoothed estimates of the stochastic volatility σi,t,ε of the irregular components with
95% HPDI for (i) real retail sales; (ii) real GDP; (iii) consumption of durables; and (iv) invest-
ment. NBER recession dates are represented by the vertical bands.

The model with breaks in Q1 1984

It is possible that additional changes in the business cycle have occurred which have not been

accounted for in our model. For example, changes in the persistence of macroeconomic time

series have also been reported in the literature. To investigate the possible instability of other

parameters of the model, we reestimate the model from sections 4.1 – 4.3 conditional on a known

break in ρ, λ, and ξi, in Q1 1984. Estimation of all parameters and unobserved components

continues to be performed jointly. In other words, we do not need to separate the data into

sub-periods and do not estimate parameters for the two periods separately.

Columns 2 and 3 of Table 3 contain estimates of the parameters in the model with a break;

additional results are available in the online Appendix. The persistence parameter ρ does not

appear to change between the two sub-periods. The estimated values for ρ in both periods

correspond to the value reported in Table 2 for the main model. Interestingly, the value of

λ is estimated to decrease from 0.160 to 0.112 after 1984. This is consistent with the fact

that on average periods between business cycles are now longer than in the past. Estimates
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No-SV Model with a known break

ξi ξi 1953:Q1-1983:Q4 ξi 1984:Q1-2007:Q3

mean st. dev. mean st. dev. mean st. dev.

unemployment -2.401 0.292 -1.058 0.164 -2.329 0.560
manufacturing 4.132 0.373 3.284 0.201 8.015 0.798
inflation -5.731 0.958 -4.416 0.602 -1.247 1.702
retail 3.796 0.461 2.362 0.325 5.271 1.154
productivity 9.323 0.751 7.386 0.528 10.150 1.866
real GDP 3.732 0.395 2.796 0.233 6.561 0.822
hours -0.111 0.313 0.497 0.247 -0.079 0.929
consumption 4.724 0.503 4.176 0.366 5.195 1.307
investment 3.086 0.322 2.406 0.286 4.206 0.585

ρ 0.873 0.009 0.981 0.003 0.971 0.005
λ 0.120 0.009 0.160 0.003 0.112 0.007

Table 3: Posterior means and standard deviations for ρ, λ, and ξi for two different models.
Column 1 is the model with no stochastic volatility. Columns 2 & 3 are for the model with a
structural break in 1984:Q1. The priors are the same as in Table 2.

from the model also indicate substantial changes in a few of the phase shift parameters. For

example, productivity, real GDP, and manufacturing lead industrial production by several more

months after 1984. There is also considerably more uncertainty associated with the post-1984

parameter estimates. The standard deviations of the marginal distributions for each of the

parameters are significantly larger. This raises the possibility that the relative position of the

cycles may be different before and after 1984. Furthermore, the relationships between the series

and the common cycle are potentially more unstable afterwards. This is an interesting finding

that we leave for future research.

The estimated cycle and slope from this specification are shown in panels (iii) and (iv) of

Figure 6. Although some of the parameters in the model with breaks appear to change in the

second half of the sample, it does not appear to affect the estimated business cycle indicator.

The indicator shares the same features as the indicator produced from the main model in Figure

1 without the structural break. Estimates of the stochastic volatility components from this

specification are also similar to those found in the Figures 4 and 5 and are available in the online

Appendix.

5 Conclusion

In this paper, we propose the construction of a business cycle indicator that explicitly accounts

for the time variation in macroeconomic volatility commonly known as the great moderation.

Our indicator is constructed from a multivariate unobserved components time series model with a
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Figure 6: (i) Business cycle indicator from a model with no stochastic volatility; (ii) smoothed
estimates of the slope from a model with no stochastic volatility; (iii) Business cycle indicator
from a model with a known break in Q1 1984; (iv) smoothed estimates of the slope from a model
with a known break in Q1 1984. NBER recession dates are represented by the vertical bands.

common stochastic cycle that is adjusted for phase shift and amplitude and that is shared across

series. A novelty is the introduction of stochastic volatility processes (with innovations from mix-

ture distributions) for irregular and common cycle disturbances. All parameters are estimated

simultaneously using the MCMC algorithm that consists of Gibbs sampling and Metropolis-

Hastings steps. We interpret our approach as a model-based bandpass filter method because

the extracted cycle emphasizes the business cycle frequencies that are of interest to applied

researchers and policymakers. The methods are applied to a panel of eleven macroeconomic

time series which are indicative for the U.S. business cycle. The empirical results reveal that

unemployment is counter-cyclical to all other macroeconomic time series, the cycle in inflation

lags those in other variables while productivity, consumption and manufacturing (in this order)

are leading the U.S. business cycle. The estimated volatility patterns are significantly changing

over time for the irregular (high frequency) components of real retail sales, real GDP, durable

consumption and investment. However, the disturbances associated with the common business

cycle appear not to be subject to stochastic volatility processes and therefore we regard the
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dynamic behaviour of the business cycle as stable over time. These empirical findings have

so far not been documented in the context of business cycle studies. We have found that our

main empirical findings are robust towards other model specifications. However, some evidence

is given that the duration and the persistence of the business cycle are subject to structural

breaks before and after the first quarter of 1984. Nevertheless, such breaks do not alter the

other empirical findings when using our flexible modeling framework.
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Appendix: some details of the MCMC algorithm

The MCMC algorithm begins with initial values for the parameters Θ(0), indicator variables

χ
(0)
1:n, and log-variances γ

(0)
1:n. It continues by making draws for j = 1, ...,N by an algorithm

consisting of four main steps. The fourth step requires the sampling of parameters from different

distributions.

Step 1. Drawing α
(j)
1:n conditional on Θ(j−1), γ

(j−1)
1:n , χ

(j−1)
1:n , and the data.

Conditional on Θ(j−1), γ
(j−1)
1:n , χ

(j−1)
1:n , and the data, the model reduces to a conditionally linear,

Gaussian state space model. The states α
(j)
1:n are drawn using the simulation smoothing algorithm

of Durbin and Koopman (2002). The simulation smoothing algorithm runs the Kalman filter

forward, the Kalman smoothing algorithm backward, and another run forward to produce the

required sequence of draws. We follow Trimbur (2006) and Koopman (1997) to initialize the

stationary and nonstationary components of the model, respectively.

Step 2. Drawing indicators χ
(j)
1:n conditional on Θ(j−1), α

(j)
1:n, and the data.

Conditional on α
(j)
1:n, Θ(j−1), and the data, we have to draw M + M∗ + 1 series of indicator

variables that are independent of one another. We construct conditionally linear Gaussian state

space models from the data. This allows us to apply the reduced conditional sampling algorithm

of either Gerlach, Carter, Kohn (2000) or Doucet and Andrieu (2001). See also Giordani and

Kohn (2008) for more details.

Step 3. Drawing log-variances γ
(j)
1:n conditional on Θ(j−1), α

(j)
1:n, χ

(j)
1:n, and the data.

Conditional on χ
(j)
1:n,α

(j)
1:n, Θ(j−1), and the data, we have to draw M∗ + 1 series of log-variances

that are independent of one another. We construct M∗ +1 stochastic volatility models from the

data and α
(j)
1:n. This allows us to apply the mixture of normals approximation to the SV model

developed by Kim, Shephard, and Chib (1998). In practice, we use the 10 component mixture

recently provided in Omori, Chib, Shephard, and Nakajima (2007).

Setp 4. Drawing Θ(j) conditional on γ
(j)
1:n, α

(j)
1:n, and the data.

(a) Drawing δi: Given ψi, ψ
+
i , and τit, the other parameters of the model, and the data, the

priors on δi are conjugate allowing these parameters to be drawn from their full conditional

distributions via a Gibbs sampling step. The full conditional distributions are normal

distributions and are standard; e.g., see Kim and Nelson (1999, pp. 173).
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(b) Drawing σ2
i,ε for those series with no stochastic volatility : Given the cycles ψ

(k)
t , ψ

(k)+
t ,

the trend τit, other parameters of the model, and the data, the non-informative inverse

gamma prior on these parameters mean that each variance σ2
i,ε can be drawn from its full

conditional distribution via a Gibbs sampling step. The full conditional distributions are

inverse gamma distributions and are standard; e.g., see Kim and Nelson (1999 pp. 175).

(c) Drawing σ2
i,ζ : Given the slopes βit, the inverse gamma prior on these parameters mean that

each variance σ2
i,ζ can be drawn from its full conditional distribution via a Gibbs sampling

step. Draws from the full conditional distributions which are inverse gamma distributions

are standard; e.g., see Kim and Nelson (1999 pp. 175).

(d) Drawing ρ, ξi, and λ: Our priors on these parameters are not conjugate requiring Metropolis-

Hastings steps. We use a standard random-walk Metropolis algorithm where we grouped

all the parameters ρ, ξi, and λ together in one block labeled Θ−c. The other parameters

of the model in Θ that remain constant are labeled Θc. The covariance matrix on the

random walk was estimated over several initial runs. We then tuned the scales on the

random walk to have roughly a 35% acceptance rate. For example, given Θ
(j−1)
−c , we draw

a new candidate value Θ∗

−c from a multivariate normal distribution centered at Θ
(j−1)
−c and

accept this candidate with probability

min





p(y1:n|Θc,Θ
∗

−c, γ
(j),χ

(j)
1:n

1:n )p(Θ∗

−c)

p(y1:n|Θc,Θ(j−1), γ
(j)
1:n, χ

(j)
1:n)p(Θ

(j−1)
−c )

, 1



 ,

where p(y1:n|Θc,Θ
∗

−c, γ
(j)
1:n, χ

(j)
1:n) can be computed by the Kalman filter conditional on the

current log-variances γ
(j)
1:n and the remaining parameters of the model Θc. See Robert and

Casella (2004) for more details on the Metropolis-Hastings algorithm.
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