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Abstract

This paper proposes an analytical framework foedaling decisions of road travelers that takes into
account probability weighting using rank dependaeitity theory. The fundamental difference with
the standard scheduling model based on expectiéy istihat the probabilities of arrivals are trec
in a non-linear way. This paper shows how scheduliecisions are affected by the weighted
probabilities of the traveler. We derive the cadtaon-optimal chosen departure times because of
probability weighting and show thitthe parameterized probability weighting functisn
similar to what has been found for gambling, thets@f probability weighting for morning
peak car travelers are around 3 per demtthe full range of parameters tested, we finstsmn
the range of 0-24 percent of total travel costs.
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1.0 Introduction
The last decade researchers and policy makersgaadeonsiderable attention to user
benefits from an increased reliability of transmy$tems. Stated preference and revealed
preference estimations show that travelers aréngitb pay money to avoid travel time
variability caused by unreliable transport systéfosoverviews: RAND Europe, 2004;
Brownstone and Small, 2005; Tseng, 2008; Li et2811,0). Early research of Gaver (1968)
and Knight (1974) already revealed the intuitivech@nism that an increase in the standard
deviation of travel time leads to earlier departimees and corresponding higher travel costs.
Our model uses this intuition and builds on theknarSmall (1982) and Noland and Small
(1995), that uses the concept of schedule delapatyze the costs of travel time variability.
In this view, travelers are not so much concernestatistical measures as the standard
deviation, but dislike travel time variability prarily because they can arrive early or late.
They, of course, to some extent can anticipateasialle travel times by choosing their
departure time optimally.
In the model of Noland and Small (1995), the ndtassumption was made that travelers treat
probabilities in an essentially linear way; travelreat a probability that is twice as high as
twice as likely. From the behavioural economicréitere there is however quite some
evidence that this is not the case in practice thadprobabilities are weighted in a non-linear
way (Wakker, 2010). Some recent empirical evidesta®ys that this may also be true for
travel decisions (Hensher and Li, 2010).
In this paper, we show how such probability weigdtaffects the choice of departure time,
and how the travel costs are affected by probghilgighting. The paper is organized as
follows: in the next section we show the relatidpstf our model with earlier literature. In

section 3 we introduce probability weighting. Irctsen 4 we present the behavioural model.



In section 5 this model is applied using camera @@m a highway in The Netherlands.

Section 6 concludes and gives directions for futasearch.

2.0 Literature
The scheduling model of Small (1982) has becomevtirghorse model for evaluating the
costs of travel time variability The model is based on earlier work of Vickrey @pénd
shows how departure time decisions affect travelscand how travelers choose their
departure timetg) given their preferred arrival timé). The central idea is that travelers
make a trade-off between travel time costs, antsadeing early or late. In the simplest
setting, the cost function of a traveler with deéye time from homé, is linear in its
arguments and is given by equation (1), where #aglstart is defined a$y; -tn andT as
the total travel time. A discrete penalty for lass, originally present in Small’'s model, is not
included to keep the model simple and becauseauguslly found to be insignificant, at least
in Dutch applied research (see for example: Ts20@8). Other costs, such as fuel costs, are
ignored also for simplicity. We than have:
C[Hl= a-T +B-SDE +y-SDL (1)
with:

SDE =max(0,H —T)

SDL = max (0,T — H)
In equation (1) the amount of time being earlysdredule delay early, is given BRE and
schedule delay late is given BPL. The value of travel time/OTT) is given by, the value

of schedule delay earlW§DE) by 5, and the value of scheduling delay Ia¥&DL) by y.

% In the literature about travel time variabilityetdefinition of travel time variability is frequéptreferred to as
uncertainty or reliability. We define uncertainty mot knowing the probability distribution and \adility as the
variation of travel times. Reliability can be udedthe performance of the transport system.
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These values have been frequently estimated ilitéhature? Empirical work shows that
usually the relatiofi<a<y holds.
This paper is not concerned with the estimatiothefWTP coefficients of equation 1. The
main focus in this paper will be how the departime choice of a traveler is affected by
these parameters and by the travel time wherstbshastic.
The original model of Small (1982) was extendethtocase of stochastic travel times by
Noland and Small (1995). They assume that thefaastion is linear in its arguments and
define the expected costs as in equation (2), winevel times are distributed with a
probability density functio(T).
E(T)= [, T f(TdT
E(SDE) = [\'(H = T) - f(T)dT
E(SDL) = [ (T — H) - f(T)dT

E(C[H]) =a-E(T) + B - E(SDE) +y - E(SDL) )
Trip time decisions in this model are thus analyireain expected costs framework where it is
assumed that the travel costs are linear in itsraemts. Travelers determine their optimal
headstart givef(T), tox anda, # andy. For the exponential and the uniform distribution
Noland and Small (1995) showed the relationship/ben the optimal total expected costs
and the distribution parameters. Later researclyzed the model for a time dependent
lognormal, Weibull and gamma travel time distribat{Koster et al., 2009) and for a general
travel time distribution (Fosgerau and Karlstrofd1@). The main motivation for these
extensions was given by the fact that the paramefahe travel time distribution are not
constant over time-of-day, and that the distributd travel time is skewed (van Lint et al.,

2008). A particularly nice result of Fosgerau aratlstrom (2010) is that the expected costs

* For overviews of empirical studies we refer to\Bnstone and Small (2005), Tseng (2008) and Li.et al
(2010).
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of a traveler who chooses his optimal departure tme linear in the standard deviation of
travel times if it is assumed that the standarddisttibution is independent of the departure
time.

A critical assumption of the Noland and Small madehat travelers know the
distribution of travel time, and treat probabilitim a linear way, meaning that the ratio of
weights attached to different outcomes is equétiéaatio of the probabilities. Because the
model is usually applied for calculating the caftsommuting, the main argument for the
first assumption is that travelers learn from eamixperiences. Ettema and Timmermans
(2006) noted that the assumption of perfect knogdechn be unrealistic, and they therefore
introduce the concept of a subjective probabilistribution to analyze the potential benefits
of travel information. In their model they assuntleat travel information will result in a
better perception of the probability distributi@md therefore in lower travel costs. A major
drawback of their analysis is that the relationdi@pnveen the subjective and the objective
probabilities is not defined explicitly. Therefartbanges in the parameters of the objective
distribution cannot be analyzed as long as the¢ioelship with the subjective distribution is
not known, and cost-benefit analysis is not possiBurthermore they assume that the
subjective probabilities are treated in a lineay.wa
The second assumption of the Noland and Small (1®@&lel is that travelers treat
probabilities in a linear way, so perceived probads are not affected by the risk attitude of
the traveler. Batley (2007) analyzes schedulingsitats using prospect theory with a discrete
representation of departure times. He uses a tranation of the utility value of a prospect to
analyze the effect of variable travel times wheweters are risk averse or risk seeking. The
risk attitude is his model is then captured bydhersature of the utility function. Our
approach differs from the approach of Batley (208#hat we transform the probabilities,

instead of the utility values of the arrivals. Tilea of transforming the probabilities goes



back to the work of Preston and Baratta (1948)Maosteller and Nogee (1951). This
approach is intuitive, since the risk perceptiotratelers is likely to primarily affect the
perceived probabilities rather than the utility ¢tian. Recent empirical work by Hensher and
Li (2010) in the context of travelers’ decisionsggests that the risk perception would affect
both perceived probabilities and the utility fuoecti This extension could be made to our
model, but for now we choose to focus on probahbitieighting.

The risk perception of travelers is affected bieast two factors. The first factor is
how travelers understand the concept of probabllityould be that travelers cannot make a
distinction between different outcomes, and fomepke simply treat all outcomes as equally
likely. The second factor is how pessimistic orimjitic travelers are. Pessimistic travelers
will pay more attention to bad outcomes and theeetbey assign a higher weight to these
outcomes (Wakker, 2010). In this paper, rank ddeertutility theory is used to analyze
departure time decisions when probabilities aregiateid. The intuition behind rank
dependence is that the attention that is givencertain outcome does not only depend on the
probability of that outcome, but also on the ragkirfi the outcomes. We use a probability
weighting function for a general cumulative tratigie distribution. This weighting function
transforms the probabilities into decision weigtidgecidue and Wakker, 2001).

This paper makes two contributions to the litematdirst, we show analytically how
probability weighting affects departure time demns of travelers for a time-of-day
independent travel time distribution. We do thishow the basic intuition of the effect of
probability weighting on departure time choice. @&t the rank dependent scheduling model
is formulated for a time-of-day dependent traveltidistribution and is compared to the
standard scheduling model, to analyze how largetieet of probability weighting is on
expected travel costs. If the effect is not lapmicy makers can ignore probability weighting

and use the simpler expected costs model to antigzeffect of travel time variability on the



behaviour of travelers. This will be less costhatwlyze, since there is no need to measure

the probability weighting functions of individuabwelers.

3.0 Rank dependent utility
This section introduces the concept of rank depatnatdity which can explain the violations
of behaviour consistent with expected utility ageaded by Allais (1953). Allais (1953)
showed that decision makers transform probabilitiben they face a risky choice, and that
they do not treat probabilities linearly. This gaige to the development of new behavioural
theories that could explain why expected utilityxin@zation is violated.
A central element in rank dependent utility modelhe probability weighting function,
which defines a relationship between the cumuladimesity function CDF) and the weighted
CDF. In our context, this weighte@DF is used by the traveler to determine the optimal
departure time from home. When a continuous reptatien of probability is used, a
probability weighting function is needed that casctibe a transformation of the cumulative
density function of the travel timégT). The weighting of th€DF, rather than weighting the
probabilities themselves, is central in rank dependitility theory and is based on the work
of Quiggin (1982) and Schmeidler (1986). They edttdre earlier theory of Kahneman and
Tversky (1979) where the probabilities of the piabty density function PDF) were
weighted. This model leads to problems since sstzhdominance may be violated.
Quiggin (1982) analyzed the case where the cumelgtiobabilities of events were known
and transformed by a probability weighting functi@hese weighted cumulative probabilities
are called decision weights. Schmeidler (1986)yaeal the case where the probabilities were
unknown. In his model he proposed event-decisioighte because the weights are based on

the ordering of the events.

® If the weighting function of th€DF is nonlinear, there is the possibility of an irasiag utility but a lower
evaluation value of an outcome (Wakker, 2010).
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Kahneman and Tversky (1992) based their model €wisiwell known as
cumulative prospect theor€PT), as opposed to “original prospect theory” of Kamman and
Tversky (1979) — on the work of Quiggin (1982) &ahmeidler (1986). The difference
betweenCPT and rank dependent utility is th@PT is able to account for loss aversion and
reference dependence. This means that travelelisageautcomes as gains or losses
compared to a reference point. Loss aversion isuared through a utility function which is
kinked at the reference point and is ignored ia gaper since it is difficult to determine in
this context whether there exists a clearly defireddrence point of the traveler, and if so,
what it is.CPT also uses separate probability weighting functionshe loss and the gain
domain. For example, De Borger and Fosgerau (286i8nate loss aversion in a study on the
VOTT. An intuitive concept could be to weight the prbitiies for early and late arrivals
separately, or to use the reference arrivaj(T[ty] ). However, it is not clear if the
travelers use the mean or the mode (or anotheruraaas their reference point.

The shape of the weighting function can be expthlmgtwo behavioural factors.
First, travelers can be ‘likelihood insensitiveikélihood insensitivity means that travelers do
not understand the concept of probability well. fEhare two types of likelihood insensitivity,
which we can picture by imagining a graph with @2F on the horizontal axis and the
weightedCDF on the vertical axis. A frequently found weightifugction is the inversely S-
shaped which is relatively horizontal in the middfed steep at both ends, meaning that
travelers overweight extreme outcomes (Tversky\&fattker, 1995). Another possibility is
the S-shaped weighting function, where in the exérease travelers entirely ignore the
variability of travel times and treat the travedtdibution as if it has 1 possible outcome.

Second, travelers can be pessimistic (risk avenseptimistic (risk seeking). In the
rank dependent scheduling model this risk attiisdaodeled with the weighting function

instead of the utility function. The three typicaises of pessimism (risk aversion), optimism



(risk seeking) and likelihood insensitivity are givin figure 1 (Wakker, 2010). Here we

assume that the outcomes are ranked from goodito ba

<<insert Figure 1 about here>>
The probabilities are weighted according to equatR), wherd=(T) is the measure@DF

andW F(T)] the weightedCDF.

WI[F(T)] _ OW[F(T)
aT  9F(T)

W[F(T)] = L f(1) 3)

The probabilities of the measurB®F are given by(T), and are weighted by the first
derivative of the weighte@DF with respect to the cumulative density functk() to obtain
the weights. In the next section it is analyzed Ipobability weighting affects the choice of

departure times.

4.0 Optimal choice of departure time
4.1 Ranking of the outcomes
In this section we discuss the ranking of the outes in terms of travel costs. We assume that
the preferences are bundled, meaning that we doseodifferent probability weighting
functions forT, SDE andSDL. Therefore, the decision weights are applied ¢ofifi
outcomej.e. the full set of attributes jointly, and not to imdual attributes separately. For
late arrivals, it is clear that a longer traveldiimplies, for a given departure time, a higher
travel cost: both travel delay and schedule detsyscwould increase. But when we make the
conventional assumption thak «, a longer travel time also implies higher travests for
early arrivals (again given the moment of depajturlis assumptiorf; < a, is rather
intuitive, as it boils down to assuming that anyearriving traveler prefers terminating the
trip above making a detour and benefiting at a [fatea) from such a voluntary trip duration

extension.



Bundling is therefore justified in our context, ilyipg that travelers can be assumed to rank
the possible outcomes for a given departure tincserding to travel times. Our approach thus
differs from the one proposed by Hensher and LL(@0where travel times are ranked in
terms of late arrival (least attractive), on-timmg\wal (most attractive) and early arrivals (in
between). Their approach is not applicable in etms, in which also thgze of the schedule
delay is important in determining the rank of thkcome, and not only the fact whether a
traveler arrives early or late.

We rank the travel times from good to bad, whidults in a travel cost ranking from
low to high. The rank dependent travel costs arergby equation 4, where the travel time
distribution is dependent di. For simplicity we assume that the unit WTP val(@sgg,y) are

independent of the time of day (see Tseng and \&y2008, for further discussion).

OWI[F[T;H]]

o] fIT; H]dT 4)

RD(C[H]) = [, C[H] -

Inserting the cost function of equation 1 in equat, this can be rewritten as:

RD(CIHY = a- uy[H]+ B - [} 1 = 1) - 2 £ myar + - [T = H) -
OW[F[T;H]] )
OF[T;H] f [T’ H] dT (5)

In equation 54,[H] is the weighted mean travel time which dependtherdeparture time
from home and therefore on the headdtaitbecause the travel time distribution depends on
H. This rank dependent cost function will be usethnext sections to determine the

optimal headstart and the numerical analysis.

4.2 Optimal choice of headstart
In this section the optimal headstart for a traveleletermined for a time-of-day independent
travel time distribution, so we assufAl;H] =F[T]. Our analysis in this section follows

Fosgerau and Karlstrom (2010). This section is ipamshow the intuitive effects of changes
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in the probability weighting function on the chokdeparture time. We standardize the
travel time distribution such thatu+ox, whereu is the meang the standard deviation of
travel times and is a stochastic variable distributed with a curtivéadistribution function
G[X]. Fosgerau and Karlstrom (2010) showed that indhse the first derivative of the

expected cost function of equation 2 is given by:

aE(aclgH]) =—y+@B+7y)-G [%] (6)

The solution for the optimal headstart can be fooydetting this first order condition to O,
and solve foH. The optimal headstart is given in equation 7 iarithear in the standard

deviation of travel times.

HF* =p+o-G1 [ﬁ] @)

This solution holds for a general distribution andnique because the cost function is convex
for all values oH.° Now assume that a traveler chooses the opfifradcording to the
weighted cumulative distribution functiodh] G[x]] . The first-order condition of equation 6

changes into:

ORD(H) _ H—u
o =y + @ +y) - WG [ZH) (8)
The solution for the optimal headstart when prolitéds are weighted is given by equation

(9) where the inverse & is taken with respect B[x] .

* = Gl lwr |
HW*=pu+a-G [W [ﬁ+y]] (9)
Again the optimal headstart is linear in the staddakeviation of travel times and the solution
is unique because the rank dependent cost funisticonvex inH. The next figure shows the

implication of this result.

® As long as G'[x]>0 the solution is unique. Notattthe second derivative of the expected cost fomcis

given by: G'[H-w)/o] - (B+y)lo >0.

" Suppose we want to solve{ G[x]] =z for x. First substitutg=G[x], soWy] =z. Solving fory using the inverse
rule gives the solutiory = W'[Z which impliesG[x] = W'[7] if we substitute back=G[x] .Applying the inverse
rule again for x gives = G{W'[Z]]. The solution is unique becausfG[x]] is a strictly increasing function in
G[X], andG[¥] is a strictly increasing function
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<<insert Figure 2 about here>>

In figure 2 the optimal headstart for the standantdeduling model is given ByF. First,
assume that a traveler is optimistic. This meaasphobabilities of low travel costs are
overweighted and probabilities of high travel caats underweighted. The weighting
function is given byVL1 in figure 2. This weighting function is always aleaheG[ X]
function (except for the corners). This means thatsolution for the optimal headstart —
which is given byH1 in the figure — is always smaller thédf-. If travelers are pessimistic,
the weighting function is given B2 and is always belo[X] . In that case the optimal
headstart is always larger thef.

The effects of optimism and pessimism on the trawsts have been analyzed by Koster
(2009). Optimistic travelers will arrive late mdrequently, and pessimistic travelers arrive
early more frequently. In the empirical applicatibie finds that it is more costly to be an

optimistic than a pessimistic traveler.

<<insert Figure 3 about here>>

The case of likelihood insensitivity is given igdire 3, where the weighting function is
inversely S-shaped. The effect on the optimal heaid@!3) depends on the valyép+y). If

we definec* as the intersection point @f3[.] andG][.], the optimal headstart is lower than
HF for y/(B+y) < c*, and higher thaklF for y/(+y) >c*. If y/(B+y) = c*, travelers choose the

optimal headstart and the costs of probability Wweigy are O.

4.3 Extension to a model with a time-of-day dependetravel time distribution
In this section we formulate the model for a tinfeday dependent travel time distribution. It

is assumed that the traveler optimitegiven his rank dependent cost function of equasion
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Denote the optimal headstart with probability weiigdn by HW, and without probability
weighting (so wheM[F[T;H]] = F[T;H]) by HF. The costs of probability weighting
(COPW) are given by equation (10) and are equal to Xt €osts because of probability
weighting, compared to the expected costs model.

COPW = E(C[HF]) — E(C[HW]) (10)
The COPW are alway$ 0 because the expected costs are calculated dxasieof
objectively expected costs. Travelers never cabetter than the expected costs model. As
already shown by Fosgerau and Karlstrom (2010jetiseno closed-form solution available
if the travel time distribution depends bin Therefore we will use numerical examples in the

next section to calculate the costs of probabiligyghting.

5.0 Empirical application

In this section we will analyze, for a numericaamyple, the effects of likelihood insensitivity,
and of optimism and pessimism,. From a policy peesipe it is useful to consider both
phenomena, since the type of information that mviprove the departure time decision will
differ. If travelers are likelihood insensitive theeed more information about how to deal
with probabilities, how to understand differencesieen probabilities, and possibly
feedback on their decisions can help to improveelan future occasions (see for example
Van de Kuilen 2009 for a recent empirical test}rdfvelers are optimistic or pessimistic, more
experience in travelling or more information on esed values can help to obtain a more
appropriate view of the travel time distribution.dur numerical analysis we will use the
weighting function of Prelec (1998) given in eqoat{11):

Wereiec[FIT]] = e "M FITD? g 50, 1150 (11)
The weightedCDF of equation (11) is not defined at the pdtT] = 0, but in the limit

Wpreree Will go to O if F(T) goes to 0 and it equals 1R{T) equals 1. The first derivative with

13



respect tdl is always larger than 0 as longé0. Wheny=6=1, equation (11) reduces to
F(T). When the parameterincreases, the weighting function shifts down tadelers are
more pessimistic: they will overweigh the probalal of bad outcomes, so high travel costs.
The parametef controls the shape of the weighting function. Whegoes to 0, the

weighting function will be extremely inverse S-skdpThis means that travelers treat the
distribution as if it has two mass points at theexes. 1f0 goes to infinity, the distribution
collapses into one intermediate mass point anaveighting function will be extremely S-
shaped.

The travel time data we use has been obtained lisenge plate detection for a
highway road stretch between Gouda and Zoeterdmated near The Hague in the dense
south-western part of the Netherlands, between IM2808 and July 2009. Only workdays
are included, and school holidays are omitted. fig=flow travel time is around 5 minutes.
The individual car data is aggregated to 5 minute tof-day intervals. For every day the
median travel time of an interval is used as aefréine observation. The median is used
instead of the mean, because the mean is moreindéd by outliers caused by the fact that
there are ramps along the link, allowing some tiexrgeto temporarily leave the road between
the two points of measurement. The final datasetépolated to obtain 1 minute interval
data. A travel time distribution has been fitted évery time period using a kernel smooth
density estimatot.Therefore, no distributional assumptions are néédde time-of-day
dependent mean and variance are plotted in figure 4

<<insert figure 4 about here>>

8 For each time period, we fit the travel time disition using an optimal data-driven bandwidth, asd 100
equally spaced points (Bowman and Azzalini, 198H)programming has been done in Matlab 7.6.0. The
programming code is available on request.

° For example, Noland and Small (1995) assumedtiieatelays are exponential or uniformly distributed
Koster et al. (2009) assumed that the delays aibWegamma or lognormal distributed and Fosgexad
Karlstrém (2010) assumed that thandardized distribution of travel times does not change aley-time.

14



We choose typical values for the model parametéisiware based on earlier
estimations for Dutch commuteMOTT = 8€/h, VSDE=0.6YOTT andVSDL = 1.4*VOTT
(Tseng, 2008). For the parameters of equation&lg¢hoose the base values obtained from
studies about gambling=0.65 and;=1.1 (Wakker, 2010), and will perform a sensitivity
analysis afterwards. First, we show in figure 5 hbe/ optimal headstart is affected by
probability weighting. We do so by plotting the exged costs with and without probability

weighting for an optimistic/=0.5) and a pessimistig£1.5) traveler witrtpy =8:30.

<<insert figure 5 about here>>
As expected, the rank dependent costs of the cgitiiraveler is lower than without
probability weighting, and the rank dependent ctimtshe pessimistic travelers is higher.
The intuitive result of section 4.2 remains the sdor a time-of-day dependent distribution.
Optimistic travelers choose a smaller headstart that without probability weighting, and
pessimistic travelers choose a longer headstate that the optimal headstarts are given by
the global minima of the curves in figure 5.

The resulting optimal expected costs for all preférarrival times are plotted in figure
6. The travel time distribution is treated as giweour exercise, so no changes in equilibrium
have been considered: the system is assumed toduagiilibrium already.
<insert figure 6 about here>

The lowest line in figure 6 line gives the expedtedel time costs without probability
weighting. Those costs are proportional to the niemrel time. The middle line includes the
expected scheduling costs. These scheduling cests the range of 10-31 per cent of the
expected costs without probability weighting, anel somewhat higher than the empirical
results of Fosgerau and Karlstrom (2010). The upperlindicates the expected travel costs

when travelers apply probability weighting. Thetoofsprobability weightingCOPW, are
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between 0 and 8 per cent of the total travel casid,the averageéOPW over the whole peak
period are around 3 per cent of the total travetsadl he irregularities in travel costs with
probability weighting can be explained by the féett the distribution of travel times at
different times of the day are estimated indepetigléh

Figure 7 shows the average share ofG¥W in the total expected costs over the
whole peak period for different parameter combuoradiof the weighting function. The
COPW ranges from 0-24 per cent, and can be considefestantial when travelers are
likelihood insensitive and pessimistic. The intetation of the results is not straightforward
because it is not possible to disentangle the ediidlikelihood insensitivity and
optimism/pessimism completely. For travelers thatreot likelihood insensitived€l),
optimism ¢<1) is more costly than pessimisp®(). However the effect is rather small and
the COPW are less than 3 per cent of total travel costs.
<insert figure 7 about here>

The effect of changes in the likelihood sensitiyigrameter is higher. For values of
0<1, higher pessimism is slightly more costly thatimism. For values a#>1, higher
pessimism is approximately as costly as highentpth. The combination of extreme
pessimism and likelihood insensitivity resultstie highesCOPW (24.2 per cent). Empirical
investigation and estimation of the probability glging function must show what the
appropriate values ¢fandy are that can be used in cost-benefit analysis.

Finally, we analyze the effect of different WTPwed on the average share of the
COPW in the total expected costs. Since only the nedatalues oWVSDE andVSDL do
matter for this Table 1, gives the results in teohseveral values 6/SDE andVSDL relative

to VOTT, keepingy andé at the base values.

9 We tested if for a givety, a traveler can have an earlier (or equal) expeatiedal time with a latet;,. This is
never the case, and therefore the expected atiivalis strictly monotonically increasinghf decreases.
Therefore the irregularities are not explainedhmyfact that there are few departure times with éaypected
costs.
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<insert Table 1 about here>
Table 1 shows that the average share o€&EW in the total travel costs is hot so much

changing for different WTP values and is in thegewof 1.5-3.9 per cent.

6.0 Conclusions
In this paper, we developed a rank dependent stihgduodel. Using the concept of
probability weighting we are able to derive thetsa¥ likelihood insensitivity, optimism and
pessimism. If the parameterized probability weigdtiunction for car travelers is similar to
what has been found in the literature on gamblingn we find costs of probability weighting
(COPW) for car travelers in the morning peak that areeerage around 3 per cent. We show
that this result is rather robust for differentuaptions on the WTP values. This figure,
however, naturally changes when the probabilitygiing function changes; for the ranges
of parameters we tested, we found @@PW in the range of 0 — 24 per cent.

The results must be interpreted with caution stheee are very few studies in the area
of travel behaviour that investigate the shapéefdrobability weighting function in the
context of the scheduling model. The empiricalreation of probability weighting functions
and the extension of the theoretical model usimgtof-day dependent WTP values, non-
linear utility functions and loss aversion can iketesting directions for future research.

Another extension could address our assumptiorthieatravel time distribution is
exogenous. Therefore an interesting directiondture work can be to use an equilibrium
model where the travel time distribution is detered by the number of travelers and the

variation in road capacity.
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Figure 1: Examples of pessimism or risk aversieft)| optimism or risk seeking (middle)
and S-shaped likelihood insensitivity (right), whmrtcomes are ranked from best (left) to

worst (right).
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Figure 2: Optimized choice of headstart for optitmi§W1) and pessimistic (W2) travelers.
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Figure 3: Optimized choice of headstart with likeldbd insensitivity

1 -

v/(B+v)

H3

23

W3

HF H3



Figure 4: Time-of-day dependent mean and standariibn of the observed travel time

distribution.
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Figure 5: The effect of optimism and pessimismtandptimaH for a time-of-day dependent

travel time distributiontgy =8:15).

7 -
------ costs without
probability
6 - weighting
——rank dependent costs
(n=1.5)

- S - = = rank dependent costs
o) ) (n=0.5)
>
\_J
%) 4 -
1%
o
(&)
©
s

2 .

1 .

O T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

0 5 10 15 20 25 30
Headstart in minutes

25



Figure 6: TheCOPW for a numerical example.

28

24

22

£

fravel costs in euros
>

(k=)

I
travel costs with linear weighting

travel costs with non-linear weighting

— ——expected travel fime costs with linear weighting

100 150
preferred arrival ime in minutes from 6:30

26

200

260



Figure 7: Average shard the total travel costs due to probability ghting
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Table 1: Average percentage of tb®PW in total travel costs for different WTP values.

Y
§ a 1.2 1.40 1.60 1.8 20
0.20 1.6 1.7 1.8 1.9 2.0 2.1
0.4 2.3 1.9 2.3 2.4 2.4 2.6
0.60 2.9 3.1 3.1 3.0 2.7 2.9
0.8x 2.8 3.4 3.7 3.7 3.9 3.8
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