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Abstract 

This paper proposes an analytical framework for scheduling decisions of road travelers that takes into 

account probability weighting using rank dependent utility theory. The fundamental difference with 

the standard scheduling model based on expected utility is that the probabilities of arrivals are treated 

in a non-linear way. This paper shows how scheduling decisions are affected by the weighted 

probabilities of the traveler. We derive the costs of non-optimal chosen departure times because of 

probability weighting and show that if the parameterized probability weighting function is 

similar to what has been found for gambling, the costs of probability weighting for morning 

peak car travelers are around 3 per cent. For the full range of parameters tested, we find costs in 

the range of 0-24 percent of total travel costs. 
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1.0 Introduction 

The last decade researchers and policy makers have paid considerable attention to user 

benefits from an increased reliability of transport systems. Stated preference and revealed 

preference estimations show that travelers are willing to pay money to avoid travel time 

variability caused by unreliable transport systems (for overviews: RAND Europe, 2004; 

Brownstone and Small, 2005; Tseng, 2008; Li et al., 2010). Early research of Gaver (1968) 

and Knight (1974) already revealed the intuitive mechanism that an increase in the standard 

deviation of travel time leads to earlier departure times and corresponding higher travel costs. 

Our model uses this intuition and builds on the work of Small (1982) and Noland and Small 

(1995), that uses the concept of schedule delay to analyze the costs of travel time variability. 

In this view, travelers are not so much concerned by statistical measures as the standard 

deviation, but dislike travel time variability primarily because they can arrive early or late. 

They, of course, to some extent can anticipate on variable travel times by choosing their 

departure time optimally.  

In the model of Noland and Small (1995), the natural assumption was made that travelers treat 

probabilities in an essentially linear way; travelers treat a probability that is twice as high as 

twice as likely. From the behavioural economic literature there is however quite some 

evidence that this is not the case in practice, and that probabilities are weighted in a non-linear 

way (Wakker, 2010). Some recent empirical evidence shows that this may also be true for 

travel decisions (Hensher and Li, 2010).  

In this paper, we show how such probability weighting affects the choice of departure time, 

and how the travel costs are affected by probability weighting. The paper is organized as 

follows: in the next section we show the relationship of our model with earlier literature. In 

section 3 we introduce probability weighting. In section 4 we present the behavioural model. 



3 
 

In section 5 this model is applied using camera data from a highway in The Netherlands. 

Section 6 concludes and gives directions for future research.      

 

2.0 Literature 

The scheduling model of Small (1982) has become the workhorse model for evaluating the 

costs of travel time variability.3 The model is based on earlier work of Vickrey (1969) and 

shows how departure time decisions affect travel costs and how travelers choose their 

departure time (th) given their preferred arrival time (tpat). The central idea is that travelers 

make a trade-off between travel time costs, and costs of being early or late. In the simplest 

setting, the cost function of a traveler with departure time from home th is linear in its 

arguments and is given by equation (1), where the headstart H is defined as tpat -th  and T as 

the total travel time. A discrete penalty for lateness, originally present in Small’s model, is not 

included to keep the model simple and because it is usually found to be insignificant, at least 

in Dutch applied research (see for example: Tseng, 2008). Other costs, such as fuel costs, are 

ignored also for simplicity. We than have: 

    ���� �  � � 	 
 � � �� 
 � � ��                                (1) 

with: 

�� � max�0, � � 	� 
�� �  max �0, 	 � �� 

In equation (1) the amount of time being early, or schedule delay early, is given by SDE and 

schedule delay late is given by SDL. The value of travel time (VOTT) is given by α, the value 

of schedule delay early (VSDE) by β, and the value of scheduling delay late (VSDL) by γ. 

                                                
3 In the literature about travel time variability the definition of travel time variability is frequently referred to as 
uncertainty or reliability. We define uncertainty as not knowing the probability distribution and variability as the 
variation of travel times. Reliability can be used for the performance of the transport system.  
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These values have been frequently estimated in the literature.4 Empirical work shows that 

usually the relation β<α<γ holds.  

This paper is not concerned with the estimation of the WTP coefficients of equation 1.  The 

main focus in this paper will be how the departure time choice of a traveler is affected by 

these parameters and by the travel time when it is stochastic.  

The original model of Small (1982) was extended to the case of stochastic travel times by 

Noland and Small (1995). They assume that the cost function is linear in its arguments and 

define the expected costs as in equation (2), where travel times are distributed with a 

probability density function f(T).  

��	� � � 	 · ��	��	�
�   

����� � � �� � 	� · ��	��	�
�   

����� � � �	 � �� · ��	��	�
�   

                                  ������� � � � ��	�  
 � � ����� 
 � � �����          (2)             

Trip time decisions in this model are thus analyzed in an expected costs framework where it is 

assumed that the travel costs are linear in its arguments. Travelers determine their optimal 

headstart given f(T), tpat and α, β and γ. For the exponential and the uniform distribution 

Noland and Small (1995) showed the relationship between the optimal total expected costs 

and the distribution parameters. Later research analyzed the model for a time dependent 

lognormal, Weibull and gamma travel time distribution (Koster et al., 2009) and for a general 

travel time distribution (Fosgerau and Karlström, 2010). The main motivation for these 

extensions was given by the fact that the parameters of the travel time distribution are not 

constant over time-of-day, and that the distribution of travel time is skewed (van Lint et al., 

2008). A particularly nice result of Fosgerau and Karlström (2010) is that the expected costs 

                                                
4 For overviews of empirical studies we refer to Brownstone and Small (2005), Tseng (2008) and Li et al. 
(2010). 
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of a traveler who chooses his optimal departure time are linear in the standard deviation of 

travel times if it is assumed that the standardized distribution is independent of the departure 

time.  

A critical assumption of the Noland and Small model is that travelers know the 

distribution of travel time, and treat probabilities in a linear way, meaning that the ratio of 

weights attached to different outcomes is equal to the ratio of the probabilities. Because the 

model is usually applied for calculating the costs of commuting, the main argument for the 

first assumption is that travelers learn from earlier experiences. Ettema and Timmermans 

(2006) noted that the assumption of perfect knowledge can be unrealistic, and they therefore 

introduce the concept of a subjective probability distribution to analyze the potential benefits 

of travel information. In their model they assumed that travel information will result in a 

better perception of the probability distribution, and therefore in lower travel costs. A major 

drawback of their analysis is that the relationship between the subjective and the objective 

probabilities is not defined explicitly. Therefore changes in the parameters of the objective 

distribution cannot be analyzed as long as the relationship with the subjective distribution is 

not known, and cost-benefit analysis is not possible. Furthermore they assume that the 

subjective probabilities are treated in a linear way. 

The second assumption of the Noland and Small (1995) model is that travelers treat 

probabilities in a linear way, so perceived probabilities are not affected by the risk attitude of 

the traveler. Batley (2007) analyzes scheduling decisions using prospect theory with a discrete 

representation of departure times. He uses a transformation of the utility value of a prospect to 

analyze the effect of variable travel times when travelers are risk averse or risk seeking. The 

risk attitude is his model is then captured by the curvature of the utility function. Our 

approach differs from the approach of Batley (2007) in that we transform the probabilities, 

instead of the utility values of the arrivals. The idea of transforming the probabilities goes 
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back to the work of Preston and Baratta (1948) and Mosteller and Nogee (1951). This 

approach is intuitive, since the risk perception of travelers is likely to primarily affect the 

perceived probabilities rather than the utility function. Recent empirical work by Hensher and 

Li (2010) in the context of travelers’ decisions, suggests that the risk perception would affect 

both perceived probabilities and the utility function. This extension could be made to our 

model, but for now we choose to focus on probability weighting. 

The risk perception of travelers is affected by at least two factors. The first factor is 

how travelers understand the concept of probability. It could be that travelers cannot make a 

distinction between different outcomes, and for example simply treat all outcomes as equally 

likely. The second factor is how pessimistic or optimistic travelers are. Pessimistic travelers 

will pay more attention to bad outcomes and therefore they assign a higher weight to these 

outcomes (Wakker, 2010).  In this paper, rank dependent utility theory is used to analyze 

departure time decisions when probabilities are weighted. The intuition behind rank 

dependence is that the attention that is given to a certain outcome does not only depend on the 

probability of that outcome, but also on the ranking of the outcomes. We use a probability 

weighting function for a general cumulative travel time distribution. This weighting function 

transforms the probabilities into decision weights (Diecidue and Wakker, 2001).  

This paper makes two contributions to the literature. First, we show analytically how 

probability weighting affects departure time decisions of travelers for a time-of-day 

independent travel time distribution. We do this to show the basic intuition of the effect of 

probability weighting on departure time choice. Second, the rank dependent scheduling model 

is formulated for a time-of-day dependent travel time distribution and is compared to the 

standard scheduling model, to analyze how large the effect of probability weighting is on 

expected travel costs. If the effect is not large, policy makers can ignore probability weighting 

and use the simpler expected costs model to analyze the effect of travel time variability on the 
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behaviour of travelers. This will be less costly to analyze, since there is no need to measure 

the probability weighting functions of individual travelers.  

 

3.0 Rank dependent utility 

This section introduces the concept of rank dependent utility which can explain the violations 

of behaviour consistent with expected utility as revealed by Allais (1953). Allais (1953) 

showed that decision makers transform probabilities when they face a risky choice, and that 

they do not treat probabilities linearly. This gave rise to the development of new behavioural 

theories that could explain why expected utility maximization is violated.  

A central element in rank dependent utility models is the probability weighting function, 

which defines a relationship between the cumulative density function (CDF) and the weighted 

CDF. In our context, this weighted CDF is used by the traveler to determine the optimal 

departure time from home. When a continuous representation of probability is used, a 

probability weighting function is needed that can describe a transformation of the cumulative 

density function of the travel times F(T). The weighting of the CDF, rather than weighting the 

probabilities themselves, is central in rank dependent utility theory and is based on the work 

of Quiggin (1982) and Schmeidler (1986). They extend the earlier theory of Kahneman and 

Tversky (1979) where the probabilities of the probability density function (PDF) were 

weighted. This model leads to problems since stochastic dominance may be violated.5 

Quiggin (1982) analyzed the case where the cumulative probabilities of events were known 

and transformed by a probability weighting function. These weighted cumulative probabilities 

are called decision weights. Schmeidler (1986) analyzed the case where the probabilities were 

unknown. In his model he proposed event-decision weights because the weights are based on 

the ordering of the events.       

                                                
5 If the weighting function of the PDF is nonlinear, there is the possibility of an increasing utility but a lower 
evaluation value of an outcome (Wakker, 2010). 
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Kahneman and Tversky (1992) based their model – which is well known as 

cumulative prospect theory (CPT), as opposed to “original prospect theory” of Kahneman and 

Tversky (1979) – on the work of Quiggin (1982) and Schmeidler (1986). The difference 

between CPT and rank dependent utility is that CPT is able to account for loss aversion and 

reference dependence. This means that travelers evaluate outcomes as gains or losses 

compared to a reference point. Loss aversion is measured through a utility function which is 

kinked at the reference point and is ignored in this paper since it is difficult to determine in 

this context whether there exists a clearly defined reference point of the traveler, and if so, 

what it is. CPT also uses separate probability weighting functions for the loss and the gain 

domain. For example, De Borger and Fosgerau (2008) estimate loss aversion in a study on the 

VOTT. An intuitive concept could be to weight the probabilities for early and late arrivals 

separately, or to use the reference arrival of th+E(T[th]). However, it is not clear if the 

travelers use the mean or the mode (or another measure) as their reference point.  

The shape of the weighting function can be explained by two behavioural factors. 

First, travelers can be ‘likelihood insensitive’. Likelihood insensitivity means that travelers do 

not understand the concept of probability well. There are two types of likelihood insensitivity, 

which we can picture by imagining a graph with the CDF on the horizontal axis and the 

weighted CDF on the vertical axis. A frequently found weighting function is the inversely S-

shaped which is relatively horizontal in the middle and steep at both ends, meaning that 

travelers overweight extreme outcomes (Tversky and Wakker, 1995). Another possibility is 

the S-shaped weighting function, where in the extreme case travelers entirely ignore the 

variability of travel times and treat the travel distribution as if it has 1 possible outcome. 

Second, travelers can be pessimistic (risk averse) or optimistic (risk seeking). In the 

rank dependent scheduling model this risk attitude is modeled with the weighting function 

instead of the utility function. The three typical cases of pessimism (risk aversion), optimism 
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(risk seeking) and likelihood insensitivity are given in figure 1 (Wakker, 2010). Here we 

assume that the outcomes are ranked from good to bad.  

 

<<insert Figure 1 about here>> 

The probabilities are weighted according to equation (3), where F(T) is the measured CDF 

and W[F(T)] the weighted CDF. 

                                               �!�	�� � "#�$�%��
"% � "#�$�%��

"$�%� · ��	�       (3)                 

The probabilities of the measured PDF are given by f(T), and are weighted by the first 

derivative of the weighted CDF with respect to the cumulative density function F(T) to obtain 

the weights. In the next section it is analyzed how probability weighting affects the choice of 

departure times. 

 

4.0 Optimal choice of departure time 

4.1 Ranking of the outcomes 

In this section we discuss the ranking of the outcomes in terms of travel costs. We assume that 

the preferences are bundled, meaning that we do not use different probability weighting 

functions for T, SDE and SDL. Therefore, the decision weights are applied to the full 

outcome, i.e. the full set of attributes jointly, and not to individual attributes separately. For 

late arrivals, it is clear that a longer travel time implies, for a given departure time, a higher 

travel cost: both travel delay and schedule delay costs would increase. But when we make the 

conventional assumption that β < α, a longer travel time also implies higher travel costs for 

early arrivals (again given the moment of departure). This assumption, β < α, is rather 

intuitive, as it boils down to assuming that an early arriving traveler prefers terminating the 

trip above making a detour and benefiting at a rate (β – α) from such a voluntary trip duration 

extension. 
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Bundling is therefore justified in our context, implying that travelers can be assumed to rank 

the possible outcomes for a given departure time according to travel times. Our approach thus 

differs from the one proposed by Hensher and Li (2010), where travel times are ranked in 

terms of late arrival (least attractive), on-time arrival (most attractive) and early arrivals (in 

between). Their approach is not applicable in our setup, in which also the size of the schedule 

delay is important in determining the rank of the outcome, and not only the fact whether a 

traveler arrives early or late.   

We rank the travel times from good to bad, which results in a travel cost ranking from 

low to high. The rank dependent travel costs are given by equation 4, where the travel time 

distribution is dependent on H. For simplicity we assume that the unit WTP values (α,β,γ) are 

independent of the time of day (see Tseng and Verhoef, 2008, for further discussion). 

                                      &������ � � ���� · "#�$�%;���"$�%;�� · ��	; ���	�
�        (4) 

Inserting the cost function of equation 1 in equation 4, this can be rewritten as: 

&������ � � · ()��� 
 � · � �� � 	�
� � · "#*$�%;��+"$�%;�� ��	;���	 
 � · � �	 � ��

� � ·
"#�$�%;���
"$�%;�� ��	;���	                                            (5) 

In equation 5, µw[H] is the weighted mean travel time which depends on the departure time 

from home and therefore on the headstart H, because the travel time distribution depends on 

H. This rank dependent cost function will be used in the next sections to determine the 

optimal headstart and the numerical analysis. 

 

4.2 Optimal choice of headstart 

In this section the optimal headstart for a traveler is determined for a time-of-day independent 

travel time distribution, so we assume F[T;H]=F[T]. Our analysis in this section follows 

Fosgerau and Karlström (2010). This section is mainly to show the intuitive effects of changes 
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in the probability weighting function on the choice of departure time. We standardize the 

travel time distribution such that T=µ+σx, where µ is the mean, σ the standard deviation of 

travel times and x is a stochastic variable distributed with a cumulative distribution function 

G[x]. Fosgerau and Karlström (2010) showed that in this case the first derivative of the 

expected cost function of equation 2 is given by: 

                                           
",�-����
"� � �� 
 �� 
 �� · . /�012 3        (6) 

The solution for the optimal headstart can be found by setting this first order condition to 0, 

and solve for H. The optimal headstart is given in equation 7 and is linear in the standard 

deviation of travel times. 

                                                      �!4 � ( 
 5 · .06 / 7
8973                    (7)                                                             

This solution holds for a general distribution and is unique because the cost function is convex 

for all values of H.6 Now assume that a traveler chooses the optimal H according to the 

weighted cumulative distribution function W[G[x]]. The first-order condition of equation 6 

changes into: 

                                             
":;���
"� � �� 
 �� 
 �� · <�. /�012 3�                   (8) 

The solution for the optimal headstart when probabilities are weighted is given by equation 

(9) where the inverse of W is taken with respect to G[x].7  

                                                 �<4 � ( 
 5 · .06 =<06 / 7
8973>                                           (9)                                              

Again the optimal headstart is linear in the standard deviation of travel times and the solution 

is unique because the rank dependent cost function is convex in H. The next figure shows the 

implication of this result.  

                                                
6 As long as G’[x]>0 the solution is unique. Note that the second derivative of the expected cost function  is 
given by: G’[(H-µ)/σ] · (β+γ)/σ >0. 
7 Suppose we want to solve W[G[x]] =z for x. First substitute y=G[x], so W[y]=z. Solving for y using the inverse 
rule gives the solution  y = W-1[z] which implies G[x]= W-1[z] if we substitute back y=G[x].Applying the inverse 
rule again for x gives x = G-1[W-1[z]]. The solution is unique because W[G[x]] is a strictly increasing function in 
G[x], and G[x] is a strictly increasing function x. 
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<<insert Figure 2 about here>> 

In figure 2 the optimal headstart for the standard scheduling model is given by HF. First, 

assume that a traveler is optimistic. This means that probabilities of low travel costs are 

overweighted and probabilities of high travel costs are underweighted. The weighting 

function is given by W1 in figure 2. This weighting function is always above the G[x] 

function (except for the corners). This means that the solution for the optimal headstart – 

which is given by H1 in the figure – is always smaller than HF. If travelers are pessimistic, 

the weighting function is given by W2 and is always below G[x]. In that case the optimal 

headstart is always larger than HF.  

The effects of optimism and pessimism on the travel costs have been analyzed by Koster 

(2009). Optimistic travelers will arrive late more frequently, and pessimistic travelers arrive 

early more frequently. In the empirical application, he finds that it is more costly to be an 

optimistic than a pessimistic traveler. 

 

<<insert Figure 3 about here>> 

The case of likelihood insensitivity is given in figure 3, where the weighting function is 

inversely S-shaped. The effect on the optimal headstart (H3) depends on the value γ/(β+γ). If 

we define c* as the intersection point of W3[.] and G[.], the optimal headstart is lower than 

HF for γ/(β+γ) < c*, and higher than HF for  γ/(β+γ) > c*. If γ/(β+γ) = c*, travelers choose the 

optimal headstart and the costs of probability weighting are 0.  

 

4.3 Extension to a model with a time-of-day dependent travel time distribution 

In this section we formulate the model for a time-of-day dependent travel time distribution. It 

is assumed that the traveler optimizes H given his rank dependent cost function of equation 5. 
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Denote the optimal headstart with probability weighting by HW, and without probability 

weighting (so when W[F[T;H]] = F[T;H]) by HF. The costs of probability weighting 

(COPW) are given by equation (10) and are equal to the extra costs because of probability 

weighting, compared to the expected costs model.  

                                         �?@< � �����!�� � �����<��         (10)                          

The COPW are always ≥ 0 because the expected costs are calculated on the basis of 

objectively expected costs. Travelers never can do better than the expected costs model. As 

already shown by Fosgerau and Karlström (2010), there is no closed-form solution available 

if the travel time distribution depends on H. Therefore we will use numerical examples in the 

next section to calculate the costs of probability weighting. 

 

5.0 Empirical application 

In this section we will analyze, for a numerical example, the effects of likelihood insensitivity, 

and of optimism and pessimism,. From a policy perspective it is useful to consider both 

phenomena, since the type of information that will improve the departure time decision will 

differ. If travelers are likelihood insensitive they need more information about how to deal 

with probabilities, how to understand differences between probabilities, and possibly 

feedback on their decisions can help to improve these on future occasions (see for example 

Van de Kuilen 2009 for a recent empirical test). If travelers are optimistic or pessimistic, more 

experience in travelling or more information on expected values can help to obtain a more 

appropriate view of the travel time distribution. In our numerical analysis we will use the 

weighting function of Prelec (1998) given in equation (11): 

                                           <ABCDCE�!�	�� � F0G·�0 HI$�%��J , K >0, η>0                (11) 

The weighted CDF of equation (11) is not defined at the point F[T] = 0, but in the limit 

<ABCDCE will go to 0 if F(T) goes to 0 and it equals 1 if F(T) equals 1. The first derivative with 
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respect to T is always larger than 0 as long as K>0. When η=θ=1, equation (11) reduces to 

F(T). When the parameter η increases, the weighting function shifts down and travelers are 

more pessimistic: they will overweigh the probabilities of bad outcomes, so high travel costs. 

The parameter K controls the shape of the weighting function. When K goes to 0, the 

weighting function will be extremely inverse S-shaped. This means that travelers treat the 

distribution as if it has two mass points at the extremes. If θ goes to infinity, the distribution 

collapses into one intermediate mass point and the weighting function will be extremely S-

shaped. 

The travel time data we use has been obtained using license plate detection for a 

highway road stretch between Gouda and Zoetermeer, located near The Hague in the dense 

south-western part of the Netherlands, between March 2008 and July 2009. Only workdays 

are included, and school holidays are omitted. The free-flow travel time is around 5 minutes. 

The individual car data is aggregated to 5 minute time-of-day intervals. For every day the 

median travel time of an interval is used as a travel time observation. The median is used 

instead of the mean, because the mean is more influenced by outliers caused by the fact that 

there are ramps along the link, allowing some travelers to temporarily leave the road between 

the two points of measurement. The final dataset is interpolated to obtain 1 minute interval 

data.  A travel time distribution has been fitted for every time period using a kernel smooth 

density estimator.8 Therefore, no distributional assumptions are needed.9 The time-of-day 

dependent mean and variance are plotted in figure 4. 

<<insert figure 4 about here>> 

                                                
8 For each time period, we fit the travel time distribution using an optimal data-driven bandwidth, and use 100 
equally spaced points (Bowman and Azzalini, 1997). All programming has been done in Matlab 7.6.0. The 
programming code is available on request. 
9 For example, Noland and Small (1995) assumed that the delays are exponential or uniformly distributed. 
Koster et al. (2009) assumed that the delays are Weibull, gamma or lognormal distributed and Fosgerau and 
Karlström (2010) assumed that the standardized distribution of travel times does not change over day-time. 
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We choose typical values for the model parameters which are based on earlier 

estimations for Dutch commuters: VOTT = 8€/h, VSDE=0.6*VOTT and VSDL = 1.4*VOTT 

(Tseng, 2008). For the parameters of equation (11) we choose the base values obtained from 

studies about gambling: θ=0.65 and η=1.1 (Wakker, 2010), and will perform a sensitivity 

analysis afterwards. First, we show in figure 5 how the optimal headstart is affected by 

probability weighting. We do so by plotting the expected costs with and without probability 

weighting for an optimistic (η=0.5) and a pessimistic (η=1.5) traveler with tpat =8:30. 

 

<<insert figure 5 about here>> 

As expected, the rank dependent costs of the optimistic traveler is lower than without 

probability weighting, and the rank dependent costs for the pessimistic travelers is higher.  

The intuitive result of section 4.2 remains the same for a time-of-day dependent distribution. 

Optimistic travelers choose a smaller headstart than that without probability weighting, and 

pessimistic travelers choose a longer headstart. Note that the optimal headstarts are given by 

the global minima of the curves in figure 5.  

The resulting optimal expected costs for all preferred arrival times are plotted in figure 

6. The travel time distribution is treated as given in our exercise, so no changes in equilibrium 

have been considered: the system is assumed to be in equilibrium already. 

<insert figure 6 about here>  

The lowest line in figure 6 line gives the expected travel time costs without probability 

weighting. Those costs are proportional to the mean travel time. The middle line includes the 

expected scheduling costs. These scheduling costs are in the range of 10-31 per cent of the 

expected costs without probability weighting, and are somewhat higher than the empirical 

results of Fosgerau and Karlström (2010). The upper line indicates the expected travel costs 

when travelers apply probability weighting. The cost of probability weighting, COPW, are 
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between 0 and 8 per cent of the total travel costs, and the average COPW over the whole peak 

period are around 3 per cent of the total travel costs. The irregularities in travel costs with 

probability weighting can be explained by the fact that the distribution of travel times at 

different times of the day are estimated independently.10  

Figure 7 shows the average share of the COPW in the total expected costs over the 

whole peak period for different parameter combinations of the weighting function. The 

COPW ranges from 0-24 per cent, and can be considered substantial when travelers are 

likelihood insensitive and pessimistic. The interpretation of the results is not straightforward 

because it is not possible to disentangle the effect of likelihood insensitivity and 

optimism/pessimism completely. For travelers that are not likelihood insensitive (θ=1), 

optimism (η<1) is more costly than pessimism (η>1). However the effect is rather small and 

the COPW are less than 3 per cent of total travel costs.  

<insert figure 7 about here>  

The effect of changes in the likelihood sensitivity parameter is higher. For values of 

θ<1, higher pessimism is slightly more costly than optimism. For values of θ>1, higher 

pessimism is approximately as costly as higher optimism. The combination of extreme 

pessimism and likelihood insensitivity results in the highest COPW (24.2 per cent).  Empirical 

investigation and estimation of the probability weighting function must show what the 

appropriate values of θ and η are that can be used in cost-benefit analysis.  

Finally, we analyze the effect of different WTP values on the average share of the 

COPW in the total expected costs. Since only the relative values of VSDE and VSDL do 

matter for this Table 1, gives the results in terms of several values of VSDE and VSDL relative 

to VOTT, keeping η and θ at the base values. 

                                                
10 We tested if for a given tpat a traveler can have an earlier (or equal) expected arrival time with a later th. This is 
never the case, and therefore the expected arrival time is strictly monotonically increasing if H decreases. 
Therefore the irregularities are not explained by the fact that there are few departure times with low expected 
costs. 
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<insert Table 1 about here> 

Table 1 shows that the average share of the COPW in the total travel costs is not so much 

changing for different WTP values and is in the range of 1.5-3.9 per cent.  

 

6.0 Conclusions 

In this paper, we developed a rank dependent scheduling model. Using the concept of 

probability weighting we are able to derive the costs of likelihood insensitivity, optimism and 

pessimism. If the parameterized probability weighting function for car travelers is similar to 

what has been found in the literature on gambling, then we find costs of probability weighting 

(COPW) for car travelers in the morning peak that are on average around 3 per cent. We show 

that this result is rather robust for different assumptions on the WTP values. This figure, 

however, naturally changes when the probability weighting function changes; for the ranges 

of parameters we tested, we found the COPW in the range of 0 – 24 per cent.  

The results must be interpreted with caution since there are very few studies in the area 

of travel behaviour that investigate the shape of the probability weighting function in the 

context of the scheduling model. The empirical estimation of probability weighting functions 

and the extension of the theoretical model using time-of-day dependent WTP values, non-

linear utility functions and loss aversion can be interesting directions for future research.  

Another extension could address our assumption that the travel time distribution is 

exogenous. Therefore an interesting direction for future work can be to use an equilibrium 

model where the travel time distribution is determined by the number of travelers and the 

variation in road capacity. 
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Figure 1: Examples of pessimism or risk aversion (left), optimism or risk seeking (middle) 

and S-shaped likelihood insensitivity (right), when outcomes are ranked from best (left) to 

worst (right). 
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Figure 2: Optimized choice of headstart for optimistic (W1) and pessimistic (W2) travelers. 
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Figure 3: Optimized choice of headstart with likelihood insensitivity 
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Figure 4: Time-of-day dependent mean and standard deviation of the observed travel time 

distribution. 
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Figure 5: The effect of optimism and pessimism on the optimal H for a time-of-day dependent 

travel time distribution (tpat =8:15). 
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Figure 6: The COPW for a numerical example. 

 

 

  



Figure 7: Average share of the total travel costs due to probability wei
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Table 1: Average percentage of the COPW in total travel costs for different WTP values. 
γ 

β α 1.2α 1.4α 1.6α 1.8α 2α 

0.2α 1.6 1.7 1.8 1.9 2.0 2.1 

0.4α 2.3 1.9 2.3 2.4 2.4 2.6 

0.6α 2.9 3.1 3.1 3.0 2.7 2.9 

0.8α 2.8 3.4 3.7 3.7 3.9 3.8 

 

 


