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Stock index returns’ density prediction using GARCH models:
Frequentist or Bayesian estimation?

Lennart F. Hoogerheidea,∗, David Ardiab, Nienke Corré

aTinbergen and Econometric Institutes, Erasmus University Rotterdam, The Netherlands
baeris CAPITAL AG, Switzerland

Abstract

Using well-known GARCH models for density prediction of daily S&P 500 and Nikkei 225 index
returns, a comparison is provided between frequentist and Bayesian estimation. No significant dif-
ference is found between the qualities of the forecasts of the whole density, whereas the Bayesian
approach exhibits significantly better left-tail forecast accuracy.

JEL classification: C11, C52, C53, C58.

Keywords: GARCH, Bayesian, KLIC, censored likelihood

1. Introduction

The modeling of volatility has been at the heart of financial econometrics for decades. One of its
corner-stones is the GARCH model of Bollerslev (1986). Popular extensions include the Exponential
GARCH (EGARCH) model by Nelson (1991) and the GJR model by Glosten et al. (1993).

The common approach for estimation in GARCH-type models is Maximum Likelihood (ML). The
use of ML is appealing because of the intuitive principle underlying the approach and its ease of im-
plementation. Nevertheless, ML estimation entails some difficulties in practice due to the numerical
optimization which involves inequality constraints. The Bayesian approach offers an attractive alter-
native which enables small sample results, robust estimation, model discrimination and probabilistic
statements on (possibly nonlinear functions of) model parameters (see Ardia, 2008).

The comparison of frequentist and Bayesian GARCH has received little attention in research. In
a study by Nakatsuma and Tsurumi (1996) some attention is paid to the comparison. Based on a
small sample Monte Carlo experiment, they conclude that the Bayesian approach performs better
than the frequentist approach in terms of smaller mean square errors of the posterior mean versus
the MLE of the parameters in an ARMA-GARCH model. Their comparison is however not extended
to an empirical application or to the evaluation of the prediction of returns’ densities.

This note aims at comparing the performance of well-known GARCH models via frequentist and
Bayesian approaches. We evaluate the forecasting performance of the GARCH, GJR and EGARCH
model using index data. The performance of the models is evaluated based on the relative predictive
accuracy; both the entire density and the left tail, which is more relevant for risk management
purposes, are considered. Our results indicate that the Bayesian approach outperforms its frequentist
counterpart when forecasting the left-tail of the return’s distribution.
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2. Frequentist and Bayesian estimation of GARCH models

We consider the GARCH(1,1), GJR(1,1) and EGARCH(1,1) models, with Student-t innovations
to account for conditional excess kurtosis (see Geweke and Amisano, 2010). The mean equation is
defined as

yt = µ+ εt t = 1, 2, . . . , T

εt|It−1 ∼ S(0, ht
ν−2
ν , ν) ,

(1)

with yt the log-return at time t and where S is used for the Student-t distribution. The sequence of
innovations, given past information It−1, follows a Student-t distribution with mean zero, variance
ht and ν degrees of freedom. The restriction ν > 2 guarantees existence of the conditional variance.

In the GARCH(1,1) model the conditional variance ht is a linear function of the past squared
innovation and conditional variance:

ht = ω + α ε2t−1 + β ht−1 . (2)

The GJR(1,1) model is similar, except for the indicator variable added to allow for asymmetric effects
depending on the sign of the innovation (i.e., typically to allow for a larger effect of a negative shock
than a positive shock of the same magnitude):

ht = ω +
(
α1 I{εt−1≥0} + α2 I{εt−1<0}

)
ε2t−1 + β ht−1 . (3)

The indicator variable I{•} takes on a value of one if the condition holds and zero otherwise. Finally,
the EGARCH(1,1) model is given by:

log(ht) = ω + α
|εt−1|√
ht−1

+ γ
εt−1√
ht−1

+ β log(ht−1) , (4)

where the term εt−1/
√

ht−1 is known as the standardized residual; the occurrence of this term without
|.| allows for the asymmetric behavior of the conditional variance.

For the GARCH and GJR models the positivity constraints imposed on the model parameters in
the variance equation are ω > 0, α•, β ≥ 0.

In what follows, we regroup the model parameters into θ and the observed log-returns into y =
(y1, . . . , yT )

′. The likelihood function is given by p(y|θ) which is the product of the conditional density
values at yt.

In the frequentist approach θ is assumed to be a fixed unknown constant, which is typically esti-
mated by ML. The Bayesian approach incorporates the likelihood in a broader framework. Parameters
in θ are assumed to be stochastic variables described by a posterior density p(θ|y) given by Bayes’
theorem as

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (5)

where p(θ) is the prior density for θ, reflecting the prior beliefs before having observed the data.
For the parameters µ, ω, α and β we use non-informative flat (uniform) prior on the parameter do-
main. For ν, we use a non-informative proper prior (as an improper prior would yield an improper
posterior, see Bauwens and Lubrano (1998)): a translated exponential density as in Geweke (1993);
ν ∼ λ exp(−λ(ν−2)) with λ = 0.05. We adopt an independence chain Metropolis-Hastings algorithm
(with Student-t candidate distribution around the posterior mode, with scale matrix equal to minus
the inverse Hessian of the log-posterior at the mode, and four degrees of freedom for fat tails) to
draw random samples from the posterior density: 25000 draws after a burn-in of 5000 draws. Ac-
ceptance rates were always around 50%, indicating the good performance of the posterior simulator.
Prediction results under a more flexible candidate distribution, the mixture of Student-t distributions
of Hoogerheide et al. (2007), were qualitatively the same. Further, results stay almost the same for
somewhat different values of λ.
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3. Tests for difference in forecasting performance

This research focuses on one-day-ahead density forecasts for daily returns rather than point fore-
casts. These density forecasts provide an estimate of the probability distribution of future returns.
Our objective is to find the density forecast that comes closest to the true but unobserved density for
daily returns by comparing the relative performance of two competing density forecasts denoted by
f̂t(yt+1) and ĝt(yt+1). Given (1) the forecast densities can be expressed as

yt+1|θ,M, It ∼ S(µ, ht+1, ν) , (6)

where the forecast density is conditional on θ and modelM. In the frequentist approach we simply use
the ML estimator θ̂MLE, implicitly ignoring parameter uncertainty. On the other hand, the Bayesian
approach takes into account parameter uncertainty, which is integrated out: the Bayesian density
forecast is obtained as the mean of the density forecasts corresponding to the posterior draws.

To compare the performance of the different forecast densities we follow Mitchel and Hall (2005)
and Diks et al. (2008) and use the well-known Kullback-Leibler information criterion (KLIC). Using

the KLIC a loss differential series is constructed with dt+1 = ln ĝt(yt+1) − ln f̂t(yt+1), which can be
interpreted as the difference in the score of both models. Obviously, a high score is preferred as this
implies that the model assigns a high ‘probability’ to the observed value. Given a sequence of density
forecasts and corresponding realizations for the observed return, densities are compared based on the
average score d̄. Under the null hypothesis of equal forecast accuracy the loss differential should be
zero on average. This can be tested by a Diebold and Mariano (1995) type test statistic with robust
Newey-West standard error.

We also consider the evaluation of forecast performance in the left-tail of the forecast density,
which is of special interest for risk management applications. For testing, we rely on the censored
likelihood (CSL) scoring rule by Diks et al. (2008). For a particular model the CSL equals the total

non-tail probability (1− F̂t(r)) if yt+1 is not a tail event and the forecasted density value f̂t(yt+1) if
yt+1 is a tail event. Hence the CSL score function is obtained as

CSL(f̂t|yt+1) = I{yt+1≤r} ln f̂t(yt+1) + I{yt+1>r} ln(1− F̂t(r)) , (7)

where F̂t(r) is the Student-t cumulative density at time t evaluated at the threshold r. This term
implies that the shape of the forecasted density is ignored for observations outside the region of
interest. To evaluate the CSL of competing models a procedure similar to the evaluation procedure
based on KLIC scores is employed. This left-tail test is a natural extension of the well-known KLIC-
based test for the whole density forecasts (for r → ∞ it obviously reduces to the same test). The
CDF term I{yt+1>r} ln(1 − F̂t(r)) is required, since its exclusion would yield a criterion that would
always favor density forecasts with a fatter left-tail, even if the true density were thin-tailed like the
normal distribution. Note that a proper threshold value r needs to be specified, determining which
observations pertain to the left tail. For a fair evaluation, the number of pdf-terms and CDF-terms
included in the CSL should be the same across all competing models such that a model-independent
threshold is required. Though the threshold is allowed to be time-varying, the threshold is fixed at
-2.5% in this study, which is the 7.7% to 8.8% quantile of the unconditional return distribution during
the out-of-sample period for the S&P 500 and Nikkei 225.

4. Results and conclusions

Log-returns of the S&P 500 and Nikkei 225 stock indices are examined. Models are estimated
using a ten-year rolling window. The out-of-sample period consists of 600 daily forecasts, ranging
from January 1, 2008, to April 19, 2010.

The top panel of Table 1 reports the results of the pairwise forecast accuracy comparison of com-
peting density forecasts as measured by the KLIC. Superior predictive accuracy of the model/method
in the row (as compared with the model/method in the column) is indicated by a positive value.

Our primary interest lies in the comparison of the frequentist and Bayesian approach. Across all
models and datasets the test statistic is not significant, implying that the null hypothesis of equal
predictive accuracy of the frequentist and Bayesian approach cannot be rejected.

3



Table 1: Diebold and Mariano (1995) t-statistic (using Newey-West standard error) corresponding to average loss differential
for KLIC (whole density) or CSL (left tail of density), based on 600 density forecasts of the GARCH(1,1), GJR(1,1) and
EGARCH(1,1) models for daily log-returns of the S&P 500 and Nikkei 225. * and ** indicates (two-sided) significance at 5%
and 1% respectively. Positive (negative) values signify better forecast performance of the model specified in the corresponding
row (column).

Frequentist (MLE) Bayesian (MH)
GARCH GJR EGARCH GARCH GJR EGARCH

KLIC

S&P 500
Frequentist (MLE) GARCH -2.632* -1.602 1.007

GJR 2.632* 0.409 1.685
EGARCH 1.602 -0.409 -0.881

Bayesian (MH) GARCH -1.007 -2.376* -4.053**
GJR -1.685 2.376* -2.732**
EGARCH 0.881 4.053** 2.732**

Nikkei 225
Frequentist (MLE) GARCH -2.622** -0.477 -0.041

GJR 2.622** 0.220 0.373
EGARCH 0.477 -0.220 -0.494

Bayesian (MH) GARCH 0.041 -2.033* -2.011*
GJR -0.373 2.033* -0.408
EGARCH 0.494 2.011* 0.408

CSL

S&P 500
Frequentist (MLE) GARCH -2.143* -0.373 -5.274**

GJR 2.143* 1.454 -5.480**
EGARCH 0.373 -1.454 -4.227**

Bayesian (MH) GARCH 5.274** -1.686 -0.798
GJR 5.480** 1.686 0.246
EGARCH 4.227** 0.798 -0.246

Nikkei 225
Frequentist (MLE) GARCH -1.506 -0.007 -5.277**

GJR 1.506 0.243 -5.054**
EGARCH 0.007 -0.243 -5.422**

Bayesian (MH) GARCH 5.277** -1.743 -0.875
GJR 5.054** 1.743 0.916
EGARCH 5.422** 0.875 -0.916

The testing approach also offers a straightforward framework to compare the predictive accuracy
of the different GARCH-type models. The results indicate that the EGARCH and GJR models
perform better (significantly in the Bayesian framework) than the standard GARCH model.

The bottom panel of Table 1 reports results for the left-tail forecast accuracy quantified by the
CSL. The null hypothesis of equal predictive accuracy of the frequentist and Bayesian approach in the
left tail is convincingly rejected for all models and datasets in favor of the Bayesian approach. The
difference is mainly caused by the first term on the right-hand side of (7). Our finding makes intuitively
sense: Bayesian inference has been often found to be more appropriate in small samples, where it
is more important that the present parameter uncertainty is taken into account. Although we have
more than 2500 observations, we still have few observations from the (extreme) left tail. Especially
the degrees of freedom parameter ν may be strongly influenced by a few extreme observations in
the estimation window. In addition, note that the differences in CSL between the models are less
pronounced (if any difference exists) than the differences between frequentist and Bayesian estimation,
which further stresses the clearness of the superiority of Bayesian inference in this application.

Our results suggest that in risk management applications the Bayesian approach should be pre-
ferred, because of its superior predictive accuracy in the left tail. This result is remarkable, since
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we use large data sets (over 2500 observations) and non-informative priors. For smaller data sets or
informative priors the difference between Bayesian and frequentist inference may be even larger. In
future research we will focus on different data sets and priors, alternative model specifications (e.g.,
different error distributions such as the skewed t distribution), model combination (see Ardia and
Hoogerheide, 2010), and multi-step-ahead forecasting. In the latter case, the importance sampling
method of Hoogerheide and Van Dijk (2010) may provide a substantial reduction of the computing
time.
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