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Reference priors for discrete graphical models

GUIDO CONSONNI VALENTINA LEUCARI

Dipartimento di Economia Politica e Metodi Quantitativi, University of Pavia,

Via S. Felice 5, 27100 Pavia, Italy

guido.consonni@unipv.it, vl@dimat.unipv.it

SUMMARY

The combination of graphical models and reference analysis represents a powerful

tool for Bayesian inference in highly multivariate settings. It is typically difficult

to derive reference priors in complex problems. In this paper we present a suitable

mixed parameterisation for a discrete decomposable graphical model and derive the

corresponding reference prior.

Some key words: Decomposable model; Fisher information matrix; Mixed parameterisation;

Natural exponential family.

1 Introduction

This paper brings together two broad statistical methodologies, namely graphical models

and reference analysis.

In this paper we deal with undirected graphical models, and assume that each variable,

corresponding to a vertex in the graph, is discrete. Our results are therefore relevant also

for the analysis of contingency tables under multinomial sampling.
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A major breakthrough in the Bayesian analysis of graphical models was achieved with

the paper of Dawid & Lauritzen (1993) wherein, among other things, the crucial notion

of hyper-Markov laws was introduced. However, subjective elicitation of specified prior

distributions for graphical models is still a very hard task, and it is important to develop

default, or reference, priors. For informative accounts of reference analysis, see § 5.4 of

Bernardo & Smith (1994) an the recent paper by Bernardo (2005).

Finding a reference prior in multiparameter settings is typically highly laborious. More-

over, its derivation and structure may depend on technical aspects that are difficult to justify

from a substantive viewpoint. However, under some circumstances, the choice of a suitable

parameterisation allows one to derive reference priors uniquely and straightforwardly.

For ease of exposition, in this paper we limit ourselves to the case of decomposable

graphical models with binary variables, and focus on a specific parameterisation.

2 Parameterisations for discrete decomposable

graphical models

2.1 Graphical models

In this section we present the basic prerequisites and notation on graphs and graphical

models that are needed. We rely on, and refer to, Lauritzen (1996) for concepts and

terminology; see also Cowell et al. (1999).

A graph is a pair G = (V,E), where V is a set of vertices and E is a set of edges

between any two vertices. We only deal with undirected graphs, in which edges do not

have a direction. To each vertex v there is associated a random variable Xv. If A ⊆ V

we let XA = {Xv : v ∈ A}; for simplicity we set XV = X. A graphical model M(G) is

a family of distributions for X, satisfying the Markov property with respect to G, namely
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that Xu and Xv are conditionally independent given all the remaining variables, written

Xu⊥⊥Xv|XV \{u,v}, whenever u and v are not connected by an edge in G.

A graph is said to be complete if it possesses all possible edges; that is the corresponding

graphical model, also named complete, embodies no conditional independence relationship.

A maximal, with respect to inclusion, complete subset of V is a clique. We deal with

decomposable graphs, and corresponding models, that are amenable to simpler statistical

analysis and interpretation. A notable property of a decomposable graphical model is that

the joint density of X, with respect to a product measure, can be factorised in terms of the

clique marginal densities; that is

f(x) =
∏k

i=1 fCi(xCi)∏k
i=2 fSi(xSi)

, (1)

where the cliques C1, . . . , Ck are assumed to be arranged in a perfect ordering, and S2, . . . , Sk

denote the corresponding separators, defined as Si = {C1 ∪ . . . ∪ Ci−1} ∩ Ci. This will be

tacitly understood in the sequel.

2.2 Exponential family representation

Throughout the paper we consider the special case of binary random variables; that is Xv ∈

{0, 1} for each v ∈ V . The extension to the polytomous case is conceptually straightforward,

although laborious. We shall offer some comments in § 4. The main theoretical results of

this subsection, including notation and proofs, are in the unpublished 2004 University of

Pavia Ph. D. thesis by V. Leucari.

We review below briefly a few essential facts about exponential families that shall be

needed later on; for a general treatment, see Brown (1986). A recent informative account

is provided by Casalis; see Chapter 54 of Kotz et al. (2000).

We regard vectors as column vectors, and denote by yT the transpose of y. Let ν be

a σ-finite positive measure on the Borel sets of IRd. Suppose ν is not concentrated on an
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affine hyperplane of IRd and consider an exponential family F whose densities with respect

to ν are of the form

f(y|θ) = exp{θTy −M(θ)}, θ ∈ Θ, (2)

with Θ non-empty. When Θ is the interior of the natural parameter space{
θ ∈ IRd :

∫
exp{θTy} ν(dy) < ∞

}
, the family F is said to be a natural exponential family

on IRd, with natural, or canonical, statistic Y and corresponding parameter θ.

The expectation µ of Y is

µ = µ(θ) = E(Y |θ) =
∂M(θ)

∂θ
;

let Ω = µ(Θ) be the mean space. If Ω coincides with the interior of the convex hull of the

support of ν, the family F is said to be steep.

The function

V (µ) = var(Y |θ) =
∂2M(θ)
∂θT∂θ

∣∣∣∣
θ=θ(µ)

, µ ∈ Ω,

is called the variance function of the family F . Here θ(·) denotes the inverse of the mapping

µ(θ) = ∂M(θ)/∂θ.

Another useful concept is that of a cut (Barndorff-Nielsen, 1978, p. 50). Consider a

general parametric family for the observable X, f(x|φ), with φ ∈ Φ. A statistic S = s(X) is

said to be a cut if there exists a parameterisation λ(φ) = λ, λ ∈ Λ = λ(Φ), with λ = (λ1, λ2),

λ1 ∈ Λ1 and λ2 ∈ Λ2, such that Λ = Λ1 × Λ2 and

f(x|λ) = f1(s|λ1)f2(x|λ2, s),

where s = s(x). As a consequence λ1 and λ2 are likelihood independent.

It is known that undirected graphical models with no hidden variable are exponential

families (Geiger et al., 2001). Here we are particularly concerned with alternative parame-

terisations of graphical models, and we find it useful to treat separately the complete and

the general decomposable case.
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Consider first the marginal complete model for clique Ci. We denote by Ci the collection

of all non-empty subsets of Ci, namely

Ci = {D : D ⊆ Ci, D 6= ∅},

and similarly Si = {D : D ⊆ Si, D 6= ∅} for a separator Si. Define the marginal cell

probabilities for clique Ci as

p∗Ci
= {p∗Ci

(D) : D ⊆ Ci, D 6= ∅},

where

p∗Ci
(D) = pr(XD = 1, XCi\D = 0|p∗Ci

).

In general we shall employ an asterisk to denote quantities, such as parameters, related

to marginal models, as opposed to quantities pertaining to the joint distribution. At this

stage we introduce a second parameterisation which is inherent in the exponential family

representation.

Proposition 1. Let M(G) be a discrete complete graphical model for the random vari-

ables X ∈ {0, 1}|V |. Then the joint distribution of X is a natural exponential family,

f(y|θ) = exp{θTy −M(θ)},

with M(θ) = log
[
1 +

∑
D⊆V,D 6=∅ exp

{∑
F⊆D,F 6=∅ θ(D)

}]
. The canonical statistic is

Y = {Y (D) : D ⊆ V,D 6= ∅},

where

Y (D) =
∏
v∈D

Xv,

and the canonical parameter is

θ = {θ(D) : D ⊆ V,D 6= ∅},
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where

θ(D) =
∑
F⊆D

(−1)|D\F | log p(F ).

Proposition 2. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |. Then, for any complete subset A ⊆ V , XA = {Xv : v ∈ A} is a

cut.

Proof. From Theorem 5.4 in Frydenberg (1990), XA is a cut if and only ifM(G) is collapsible

on to A. Asmussen & Edwards (1983) prove that a necessary and sufficient condition for

collapsibility is completeness of the boundary of each connected component of V \A. If A

is complete the boundary of each connected component of V \A is also complete, being a

subset of A. �

Corollary 1. Let M(G) be a discrete decomposable graphical model for the random vari-

ables X ∈ {0, 1}|V |. Then, for i = 1, . . . , k, the marginal distribution of XCi is a natural

exponential family,

fCi(yCi |θ∗Ci
) = exp

{
θ∗

T

Ci
yCi −MCi(θ

∗
Ci

)
}

, (3)

with MCi(θ
∗
Ci

) = log
[
1 +

∑
D⊆Ci,D 6=∅ exp

{∑
F⊆D,F 6=∅ θ∗Ci

(F )
}]

. The canonical statistic is

YCi = {YCi(D) : D ⊆ Ci, D 6= ∅},

where

YCi(D) =
∏
v∈D

Xv,

and the canonical parameter is

θ∗Ci
= {θ∗Ci

(D) : D ⊆ Ci, D 6= ∅},
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where

θ∗Ci
(D) =

∑
F⊆D

(−1)|D\F | log p∗Ci
(F ). (4)

Proof. From Proposition 2 M(G) is collapsible on to each clique, and therefore each clique

marginal model coincides with the family of Markov distributions over the corresponding

subgraph. Such a distribution must then have the structure given in Proposition 1. �

The mean parameter for the model in (3) is

µCi = {µCi(D) : D ⊆ Ci, D 6= ∅},

where

µCi(D) = E{YCi(D)|θ∗Ci
} =

∑
F⊆Ci\D

p∗Ci
(D ∪ F ). (5)

Note that there is no need to use an asterisk for the mean parameter in the marginal model

since this is just the corresponding subvector of the mean parameter in the joint model. An

analogous comment holds for the canonical statistic YCi . Clearly Corollary 1 holds more

generally for any complete subset of V , and in particular for separators.

If we let D ⊆G V denote a complete, with respect to G, subset of V , a result similar to

that in Proposition 1 can be shown for a general, non-complete, decomposable model.

Proposition 3. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |. Then the joint distribution of X is a natural exponential family,

f(y|θ) = exp
{
θTy −M(θ)

}
, (6)

with M(θ) = log
[
1 +

∑
D⊆GV,D 6=∅ exp

{∑
F⊆D,F 6=∅ θ(F )

}]
. The canonical statistic is

Y = {Y (D) : D ⊆G V,D 6= ∅},

where

Y (D) =
∏
v∈D

Xv,
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and the canonical parameter is

θ = {θ(D) : D ⊆G V,D 6= ∅},

where

θ(D) =
k∑

i=1

θ∗Ci
(D)−

k∑
i=2

θ∗Si
(D),

with θ∗Ci
(D) = 0 whenever D is not contained in Ci, and similarly for θ∗Si

(D).

The mean parameter for the model in (6) is

µ = {µ(D) : D ⊆G V,D 6= ∅},

where

µ(D) = E{Y (D)|θ}.

With reference to the joint model (6), we let [V (µ)−1]Ci denote the submatrix of V (µ)−1

corresponding to YCi , while [V (µ)−1]0Ci
is the matrix obtained from [V (µ)−1]Ci by filling up

with zero entries to obtain full dimension, and similarly for Si.

Proposition 4. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |. Then

V (µ)−1 =
k∑

i=1

[V (µ)−1]0Ci
−

k∑
i=2

[V (µ)−1]0Si
.

Example. Throughout the paper we shall use for illustration an example reported in Ed-

wards & Havranek (1985). A 15-year follow-up study of probable risk factors for coronary

heart disease involved 1841 employees of a car factory. Six binary variables are considered:

a = smoking, yes or no, b = strenuous mental work, yes or no, c = strenuous physical work,

yes or no, d = systolic blood pressure, <140 or ≥140, e = ratio of α and β lipoproteins, < 3
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or ≥ 3, f = family history of coronary heart disease, yes or no. Based on the data collected,

Madigan & Raftery (1994) evaluated all possible undirected graphical models for the six

variables. The graph in Fig. 1 corresponds to the highest posterior probability model based

on 25% of the observations; see Table 6 in Madigan & Raftery (1994). The remaining 75%

of the data were allocated for prediction purposes.

FIGURE 1 ABOUT HERE

Cliques and separators are respectively C1 = {b, c}, C2 = {b, e}, C3 = {a, e}, C4 = {d, e}, C5 =

{f} and S2 = {b}, S3 = {e}, S4 = {e}, S5 = ∅.

The natural exponential family representation is based on the following collections of

subsets: C1 = {b, c, bc}, C2 = {b, e, be}, C3 = {a, e, ae}, C4 = {d, e, de}, C5 = {f},S2 =

{b},S3 = {e},S4 = {e}. To be more precise

f(y|θ) =
fC1(yC1 |θ∗C1

)× · · · × fC5(yC5 |θ∗C5
)

fS2(yS2 |θ∗S2
)× · · · × fS4(yS4 |θ∗S4

)
,

where, for instance, the marginal density for clique C1 is

fC1(yC1 |θ∗C1
) = exp{θ∗C1

(b)y(b) + θ∗C1
(c)y(c) + θ∗C1

(bc)y(bc)−MC1(θ
∗
C1

)},

with MC1(θ
∗
C1

) = log
(
1 + e

θ∗C1
(b) + e

θ∗C1
(c) + e

θ∗C1
(bc)+θ∗C1

(b)+θ∗C1
(c)
)
. The canonical statistic

and parameter are respectively

Y (b) = Xb,

Y (c) = Xc,

Y (bc) = XbXc,

θ∗C1
(b) = log

p∗C1
(b)

p∗C1
(∅)

,

θ∗C1
(c) = log

p∗C1
(c)

p∗C1
(∅)

,

θ∗C1
(bc) = log

p∗C1
(bc)p∗C1

(∅)
p∗C1

(b)p∗C1
(c)

,
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where the cell probabilities are those in Table 1.

TABLE 1 ABOUT HERE

An example of the relationship between joint and marginal parameters is the following:

θ(c) = θ∗C1
(c),

θ(b) = θ∗C1
(b) + θ∗C2

(b)− θ∗S2
(b).

2.3 Mixed parameterisation

Consider a steep natural exponential family on IRd with canonical statistic Y . Partition

Y as Y = (Y1, Y2), and similarly for the canonical parameter θ = (θ1, θ2) and the mean

parameter µ = (µ1, µ2). Suppose now that Y1 is a cut. From Theorem 3.1 of Barndorff-

Nielsen & Koudou (1995) it follows that (µ1, θ2) is a reparameterisation of the natural

exponential family whose density can be written as

f(y1, y2|µ1, θ2) = f1(y1|µ1)f2(y2|y1, θ2).

Moreover both f1 and f2 are natural exponential families, although the latter may be

concentrated on an affine hyperplane of lower dimension for specific values of y1.

Gutiérrez Peña & Rueda (2003) provide details about the structure of f1 and f2. Note

that the Fisher information matrix for the mixed parameterisation, H(µ1, θ2), is block-

diagonal; that is

H(µ1, θ2) =

 H11(µ1) 0

0 H22(µ1, θ2)

 , (7)

with H11 only depending on µ1. This fact will prove extremely useful in § 3 in the con-

struction of reference priors.

Our objective is to identify a suitable mixed parameterisation for a general discrete

decomposable model. Again we shall start by considering first the complete case corre-

sponding to a marginal clique model.
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2.4 Mixed parameterisation for a clique marginal model

Before deriving mixed parameterisations for clique marginal models we need some prelim-

inary results. Consider a decomposable model with cliques C1, . . . , Ck and corresponding

separators S2, · · · , Sk. Define the subset of Ci

C1
i = ∪j 6=i{Ci ∩ Cj},

and the collection

C1
i = {D : D ⊆ C1

i , D 6= ∅},

containing all subsets of Ci with nonempty intersection with the collection of remaining

cliques. Then, if we let C2
i = Ci\C1

i , we have generated a partition of Ci. Note that C1
i

contains subsets of Ci that are in common with other cliques, whereas those of C2
i are

specific to clique Ci. Such collections of subsets satisfy several useful properties, namely

Property 1. C1
i is complete for i = 1, . . . , k.

Property 2. C1
1 ∪ . . . ∪ C1

k = S2 ∪ . . . ∪ Sk.

Property 3. C1
1 ∪ . . . ∪ C1

k = {D : D ⊆G (C1
1 ∪ . . . ∪ C1

k), D 6= ∅}.

Property 4. YC1
i

is a cut for fCi(yCi |θ∗Ci
) for i = 1, . . . , k.

Property 5. C2
1 , . . . , C2

k are pairwise disjoint.

Property 6. [θ∗Ci
]C2

i
= {θ∗Ci

(D) : D ∈ C2
i } = θC2

i
= {θ(D) : D ∈ C2

i }.

Property 6 means that the subvector, corresponding to the components in C2
i , of the canon-

ical parameter θ∗Ci
indexing the marginal natural exponential family of clique Ci, coincides

with the corresponding subvector of the canonical parameter θ indexing the joint natural

exponential family for Y .
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Recall the partition Ci = C1
i ∪ C2

i and consider the corresponding partition for YCi ,

namely

YCi = (YC1
i
, YC2

i
), (8)

with the allied mixed parameterisation

ζCi = (µC1
i
, θC2

i
), (9)

where (9) makes use of Properties 4 and 6.

Proposition 5. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the marginal density of YCi, param-

eterised by ζCi, factorises as

fCi{yCi |θ∗Ci
(ζCi)} = fC1

i
(yC1

i
|µC1

i
)fC2

i |C1
i
(yC2

i
|yC1

i
, θC2

i
), (10)

with µC1
i

and θC2
i

likelihood independent.

Proof. The marginal density of YCi is obtained in Corollary 1. Since YC1
i

is a cut by Property

4, the result follows from Theorem 3.1 of Barndorff-Nielsen & Koudou (1995). �

Both densities on the right-hand side of (10) have an exponential family structure, so that

they can be written as

fC1
i
(yC1

i
|µC1

i
) ∝ exp

{
θ∗C1

i
(µC1

i
)TyC1

i
−MC1

i
(θ∗C1

i
(µC1

i
))
}

,

fC2
i |C1

i
(yC2

i
|yC1

i
, θC2

i
) ∝ exp

{
θT
C2

i
yC2

i
−MC2

i
(θC2

i
|yC1

i
)
}

, (11)

where MC2
i
(θC2

i
|yC1

i
) = KCi(θC2

i
)− yT

C1
i
GCi(θC2

i
) for some real function KCi and vector-valued

function GCi , see also § 3 of Gutiérrez Peña & Rueda (2003). Note that using this partition

we do not need to compute marginal parameters, since µC1
i

and θC2
i

are subvectors of µ and

θ respectively.
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2.5 Mixed parameterisation for a decomposable model

Consider the following partition of Y and the associated mixed parameterisation:

Y = (YC1
1∪...∪C1

k
, YC2

1∪...∪C2
k
) = (YC1 , YC2),

ζ = (µC1
1∪...∪C1

k
, θC2

1∪...∪C2
k
) = (µC1 , θC2). (12)

Proposition 6. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then YC1 is a cut for f(y|θ).

Proof. The result can be shown using Proposition 3 on the induced subgraph GC1
1∪...∪C1

k
. In

order to make use of Proposition 3, we first need to prove that GC1
1∪...∪C1

k
is decomposable

and that the marginal density of {Xv : v ∈ C1
1 ∪ . . . ∪ C1

k} is Markov with respect to such

a graph.

Decomposability is preserved when considering induced subgraphs, see § 4.2 in Cowell

et al. (1999), and hence GC1
1∪...∪C1

k
is decomposable. In order to prove the Markov property,

let p denote the cell probabilities for the joint model, namely p = {p(D) : D ⊆ V,D 6= ∅},

where p(D) = pr(XD = 1, XV \D = 0|p). Consider the density obtained via marginalisation,

fC1
1∪...∪C1

k
(xC1

1∪...∪C1
k
|p∗C1

1∪...∪C1
k
) =

∑
x

V \C1
1∪...∪C1

k

f{y(x)|θ(p)}.

Using (1) and Property 2 of § 2.4 we can write this as

1∏k
i=2 fSi{ySi(xSi)|θ∗Si

(p)}
×

∑
x

V \C1
1∪...∪C1

k

k∏
i=1

fCi{yCi(xCi)|θ∗Ci
(p)}

=
1∏k

i=2 fSi{ySi(xSi)|θ∗Si
(p)}

×
k∏

i=1

hC1
i
{yC1

i
(xC1

i
)|θ∗C1

i
(p)}

=
∏

D∈C1
1∪...∪C1

k

φD{y(D)}

=
∏

D∈C1

φD{y(D)},

for some, possibly constant, functions hC1
i

and φD, where the last equality follows from

Property 3. We have thus shown that the density associated with GC1
1∪...∪C1

k
can be written
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as the product of functions defined on the complete subsets of C1
1 ∪ . . . ∪ C1

k . This is

equivalent to the Markov property with respect to GC1
1∪...∪C1

k
, (Lauritzen, 1996, § 3.2.1).

Finally, since the hypotheses of Proposition 3 are satisfied, namely that M(GC1
1∪...∪C1

k
) is

a decomposable graphical model, we can conclude that YC1 is distributed according to a

natural exponential family and is therefore a cut. �

We can now state a result analogous to that of Proposition 5.

Proposition 7. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the following factorisation holds:

f{y|θ(ζ)} = fC1(yC1 |µC1)fC2|C1(yC2 |yC1 , θC2). (13)

Proof. By Proposition 6 YC1 is a cut, and the result follows from Theorem 3.1 of Barndorff-

Nielsen & Koudou (1995). �

Note that, since results in the previous subsection hold for each clique and the Markov

property is assumed, the joint density can also be written as

f(y|θ) =

∏k
i=1 fCi(yCi |θ∗Ci

)∏k
i=2 fSi(ySi |θ∗Si

)

=

∏k
i=1 fC1

i
(yC1

i
|µC1

i
)fC2

i |C1
i
(yC2

i
|yC1

i
, θC2

i
)∏k

i=2 fSi(ySi |θ∗Si
)

. (14)

As a consequence, if we define V = {D : D ⊆G V,D 6= ∅}, the following result holds.

Proposition 8. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then YC2
i
⊥⊥YV\C2

i
|YC1

i
for each i = 1 . . . , k.

Proof. Omitting the dependence on parameters, write

hCi(yC1
i
, yC2

i
) = fC1

i
(yC1

i
|µC1

i
)fC2

i |C1
i
(yC2

i
|yC1

i
, θC2

i
),

gCi(yV\C2
i
) =

∏
j 6=i fC1

j
(yC1

j
|µC1

j
)fC2

j |C1
j
(yC2

j
|yC1

j
, θC2

j
)∏k

i=2 fSi{ySi |µSi(θ
∗
Si

)}
.

14



Then, from equation (14), we have

f{y|θ(ζ)} = hCi(yC1
i
, yC2

i
)gCi(yV\C2

i
),

which is the definition of conditional independence of YC2
i

and YV\C2
i

given YC1
i
. �

Since equations (13) and (14) are both representations of the joint density, Proposition 8

yields

fC2|C1(yC2 |yC1 , θC2) =
k∏

i=1

fC2
i |C1

i
(yC2

i
|yC1

i
, θC2

i
), (15)

whence

fC1(yC1 |µC1) =

∏k
i=1 fC1

i
(yC1

i
|µC1

i
)∏k

i=2 fSi{ySi |µSi(θ
∗
Si

)}
.

Note that µSi , i = 2, . . . , k, is contained in µC1 since each Si is a subset of some clique Cj .

Example (continued). In order to define the mixed parameterisation we first construct the

following partitions of C1, . . . , C5:

C1
1 = {b} C2

1 = {c, bc}

C1
2 = {b, e, be} C2

2 = ∅

C1
3 = {e} C2

3 = {a, ae}

C1
4 = {e} C2

4 = {d, de}

C1
5 = ∅ C2

5 = {f}.

As a consequence,

C1 = C1
1 ∪ . . . ∪ C1

5 = {b, e, be},

C2 = C2
1 ∪ . . . ∪ C2

5 = {a, c, d, f, bc, ae, de},

so that the overall partition and associated mixed parameterisation is Y = (YC1 , YC2), ζ =

(µC1 , θC2), with

µC1 = (µ(b), µ(e), µ(be)),

θC2 = (θ(a), θ(c), θ(d), θ(f), θ(bc), θ(ae), θ(de)),
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where for instance µ(b) = p∗C1
(b) + p∗C1

(bc), and similarly for the remaining components of

µC1 .

3 Reference priors for discrete decomposable

models

3.1 Reference priors

Let X be an observable random quantity with density function f(x|φ), where φ ∈ Φ ⊆ IRd

denotes an unknown parameter. Berger & Bernardo (1992) describe an algorithm for finding

reference priors. Such an algorithm is rather elaborate for the general case; it greatly

simplifies, however, in the so-called regular case, that is if the posterior distribution of φ is

asymptotically normal whenever the class of continuous priors for φ is strictly positive on

Φ.

A reference prior for a given parameter depends on the grouping and ordering of the

parameter components. This is why one should strictly speak of ordered-group reference

priors. We shall see, however, that in some circumstances order does not matter, so that

typically it is the grouping structure that is more important.

We assume that φ is decomposed into r groups (φ(1), . . . , φ(r)), with φ(k) having di-

mension dk; we also let d∗k =
∑k

j=1 dj and define φ[k] = (φ(1), . . . , φ(k)) and φ[∼k] =

(φ(k+1), . . . , φ(r)), for all k = 1, . . . , r. The elements of φ are usually ordered according

to inferential importance; in particular, the parameters of interest should come first. Let

φ(k) ∈ Φk, k = 1, . . . , r, and assume that Φ = Φ1 × . . .× Φr. Let

H(φ) = −EX|φ

{
∂2 ln f(X|φ)

∂φT∂φ

}

denote the Fisher information matrix for model f(x|φ).
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For our purposes it is enough to consider the special case for which

H(φ) = diag{H11(φ), . . . ,Hrr(φ)} with Hkk(φ) a dk×dk matrix, with the further condition

that there exist positive functions ak and bk such that

det{Hkk(φ)} = ak(φ(k))bk(φ[k−1], φ[∼k]), for all k ∈ {1, . . . , r}. (16)

In this case the density with respect to Lebesgue measure of the r-group reference prior on

φ is given by

πR
φ (φ(1), . . . , φ(r)) ∝

r∏
k=1

ak(φ(k))
1/2, φ(k) ∈ Φk; (17)

see Datta & Ghosh (1995). The Jeffreys prior πJ
φ, which is sometimes used as a noninfor-

mative prior, can be recovered as a special case of the reference prior by simply treating

the whole parameter φ as a single group. As a consequence, if there exists a grouped pa-

rameterisation for the model such that the Fisher information matrix is block-diagonal and

the factorisation (16) holds, then the reference prior is explicitly available and is provided

by (17).

Clearly the mixed parameterisation (µ1, θ2) induced through a cut X1, as described in

§ 2.3, leads to a block-diagonal Fisher information matrix. Gutiérrez Peña & Rueda (2003)

show in addition that, if the variance function of the underlying natural exponential family

is homogeneous or simple quadratic, factorisation (16) holds with r = 2. They also identify

explicitly the functions a1(µ1) and a2(θ2) and thus obtain the corresponding reference prior

for (µ1, θ2).

In the following we shall show that the mixed parameterisation for a discrete decom-

posable graphical model identified in (12) also affords a factorisation like (16), thus leading

explicitly to the appropriate reference prior. We first deal with a clique marginal model

and then tackle the general decomposable case.
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3.2 Clique marginal model

Proposition 9. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the Fisher information matrix rela-

tive to the clique marginal model fCi(yCi |θ∗Ci
(ζCi)) is given by

HCi(ζCi) =

 HC1
i
(µC1

i
) 0

0 HC2
i
(θC2

i
, µC1

i
)

 , (18)

where HC1
i
(µC1

i
) = VC1

i
(µC1

i
)−1 is the inverse of the variance function for fC1

i
{yC1

i
|θ∗C1

i
(µ∗C1

i
)},

and

det{HCi(ζCi)} = det{VC1
i
(µC1

i
)}−1aC2

i
(θC2

i
)bC2

i
(µC1

i
), (19)

for some positive functions aC2
i

and bC2
i
.

Proof. Equation (18) as well as HC1
i
(µC1

i
) = VC1

i
(µC1

i
)−1 follows directly from Lemma 3.3

in Barndorff-Nielsen & Blaesild (1983). Expression (19) follows from the theory in § 4 of

Gutiérrez Peña & Rueda (2003) since fCi(yCi |θ∗Ci
) is a natural exponential family with a

simple quadratic variance function and YC1
i

is a cut. �

We are now ready to compute the Jeffreys and reference prior for the mixed parameterisation

of clique marginal models.

Proposition 10. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the Jeffreys prior and reference

prior for the clique marginal model fCi{yCi |θ∗Ci
(ζCi)}, relative to the mixed parameterisation

18



ζCi = (µC1
i
, θC2

i
) ∈ ΩC1

i
×ΘC2

i
, are respectively

πJ
ζCi

(ζCi) ∝
∏

D⊆C1
i

 ∑
F⊆C1

i \D

(−1)|F |µ(D ∪ F )


−1

exp
(

1
2

[
θT
C2

i
s0
C2

i
−
{

t0Ci
KCi(θC2

i
)− s0T

C1
i
GCi(θC2

i
)
}

+ θ∗C1
i
(µC1

i
)Ts0

C1
i
−

−t0Ci
MC1

i
{θ∗C1

i
(µC1

i
)}
])

,

πR
ζCi

(ζCi) ∝
∏

D⊆C1
i

 ∑
F⊆C1

i \D

(−1)|F |µ(D ∪ F )


−1/2

×

× exp
(

1
2

[
θT
C2

i
s0
C2

i
−
{

t0Ci
KCi(θC2

i
)− s0T

C1
i
GCi(θC2

i
)
}])

,

where

KCi(θC2
i
) = log

1 +
∑

D⊆Ci\C1
i ,D 6=∅

exp

 ∑
F⊆D,F 6=∅

θ(F )


 , (20)

t0Ci
= (|Ci|+ 1), (21)

and for each D ∈ C1
i the D-component of the vector valued function GCi is given by

GCi(θC2
i
)(D) =

∑
F⊆D

(−1)|D\F |+1 log

1 +
∑

G⊆Ci\C1
i ,G 6=∅

exp

 ∑
H1⊆G,H1 6=∅

θ(H1)+

+
∑

H2:H2=H3∪H4,H3⊆G,H3 6=∅,H4⊆F,H4 6=∅

θ(H2)


 . (22)

Finally

s0
Ci

= (s0
C1

i
, s0

C2
i
),

with the individual component of s0
Ci

given by

s0
Ci

(D) = 2|Ci\D|. (23)

Proof. As a result of the structure of det{HCi(ζCi)}, the Jeffreys and reference priors are

computed respectively as

πJ
ζCi

(ζCi) ∝
[
det{VC1

i
(µC1

i
)}−1aC2

i
(θC2

i
)bC2

i
(µC1

i
)
]1/2

, (24)

πR
ζCi

(ζCi) ∝
[
det{VC1

i
(µC1

i
)}−1aC2

i
(θC2

i
)
]1/2

, (25)
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for (µC1
i
, θC2

i
) ∈ ΩC1

i
×ΘC2

i
. Consider first det{VC1

i
(µC1

i
)}−1. This is equal to the determinant

of the Fisher information matrix, relative to µC1
i
, for the marginal model fC1

i
. To obtain the

latter, consider first the determinant of the Fisher information matrix relative to the cell

probability parameterisation p∗C1
i
. This is easily available from the standard multinomial

model with index 1 and is
{∏

D⊆C1
i
p∗C1

i
(D)

}−1
, where p∗C1

i
(∅) = 1−

∑
D⊆C,D 6=∅ p∗C1

i
(D). Now

µC1
i

is a linear transformation of p∗C1
i
, see (5). As a consequence one gets

det{VC1
i
(µC1

i
)}−1 =

∏
D⊆C1

i

 ∑
F⊆C1

i \D

(−1)|F |µ(D ∪ F )


−1

, (26)

by mere substitution with the understanding that µ(∅) = 0.

We now turn to the expressions for aC2
i
(θC2

i
) and bC2

i
(µC1

i
). Using a result in Gutiérrez

Peña & Rueda (2003, p. 47) concerning cuts in exponential families having a simple

quadratic variance function, we obtain the expressions

aC2
i
(θC2

i
) = exp

[
θT
C2

i
s0
C2

i
− {t0Ci

KCi(θC2
i
)− s0T

C1
i
GCi(θC2

i
)}
]
, (27)

bC2
i
(µC1

i
) = det{VC1

i
(µC1

i
)}−1 exp

[
θ∗C1

i
(µC1

i
)Ts0

C1
i
− t0Ci

MC1
i
{θ∗C1

i
(µC1

i
)}
]
,

for some s0
Ci
∈ R|Ci| and t0Ci

∈ R, where

GCi(θC2
i
) = [θ∗Ci

]C1
i
(µC1

i
, θC2

i
)− θ∗C1

i
(µC1

i
),

KCi(θC2
i
) = MCi{[θ∗Ci

]C1
i
(µC1

i
, θC2

i
), θC2

i
} −MC1

i
{θ∗C1

i
(µC1

i
)};

see Efstathiou et al. (1998, p. 82).

The derivation of equations (20) and (22) is highly laborious but relatively straightfor-

ward. We omit details. Finally expressions (21) and (23) are derived using Proposition 1

of Consonni et al. (2004). �

It is apparent from equations (24) and (25) that µC1 and θC2 are independent both under

the Jeffreys prior and the reference prior.
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Proposition 11. The Jeffreys and reference prior for the clique marginal model

fCi{yCi |θ∗Ci
(ζCi)}, relative to the mixed parameterisation ζCi = (µC1

i
, θC2

i
), are proper.

Proof. Consider first the Jeffreys prior (24). Note that the clique marginal model, being

complete, is a transformation of a standard multinomial model with index 1. Since the

Jeffreys prior for the cell probability parameter in the latter model is known to be proper

(Bernardo & Smith, 1994, p. 336), and Jeffreys priors are invariant under reparameterisa-

tions, it follows that (24) is proper.

Consider now the reference prior (25). To establish the condition of being proper we

can work separately on µC1
i

and θC2
i
. Take the marginal on µC1

i
. Recall from the Proof of

Proposition 10 that det{VC1
i
(µC1

i
)}−1/2 =

∏
D⊆C1

i

{∑
F⊆C1

i \D
(−1)|F |µ(D ∪ F )

}−1/2
. Con-

sider the one-to-one mapping µC1
i
→ p∗C1

i
. As a result of equation (5) and the fact that

the Jacobian of the transformation is constant, the induced prior on p∗C1
i

is proportional to

{
∏

D⊆C1
i
p∗C1

i
(D)}−1/2, which is a Dirichlet distribution with hyperparameters all equal to

1/2, and so the prior on µC1
i

is also proper. Take now the component in θC2
i

of (25). This

coincides with the corresponding marginal under the Jeffreys prior, which has been shown

to be proper. �

3.3 Decomposable model

Results for the Fisher information matrix of clique marginal models can be used to derive

the structure of the Fisher information matrix for the joint model.

Proposition 12. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the Fisher information matrix rela-

tive to the joint model f{y|θ(ζ)} is given by

H(ζ) = diag{HC1(µC1),HC2
1
(θC2

1
, µC1

1
), . . . ,HC2

k
(θC2

k
, µC1

k
)},
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where HC1(µC1) = VC1(µC1)−1 and

det{H(ζ)} = det{VC1(µC1)}−1
k∏

i=1

{aC2
i
(θC2

i
)bC2

i
(µC1

i
)}, (28)

for some positive functions aC2
i

and bC2
i
, i = 1, . . . , k.

Proof. Expression (13) yields H(ζ) = diag{HC1(µC1),HC2(θC2 , µC1)}, while Lemma 3.3 in

Barndorff- Nielsen & Blaesild (1983) ensures that HC1(µC1) = VC1(µC1)−1, since YC1 is a cut

by Proposition 6. Equation (15) implies a block-diagonal structure for HC2(θC2 , µC1); on the

other hand equation (18), together with (19), provides the expression for the determinant.

�

We are now ready to derive the Jeffreys and reference priors for the mixed parameterisation

of the joint model.

Proposition 13. Let M(G) be a discrete decomposable graphical model for the random

variables X ∈ {0, 1}|V |, with cliques C1, . . . , Ck. Then the Jeffreys prior and reference prior

relative to the mixed parameterisation ζ = (µC1 , θC2) ∈ ΩC1 ×ΘC2 are respectively

πJ
ζ (ζ) ∝

[
det{VC1(µC1)}−1

k∏
i=1

aC2
i
(θC2

i
)bC2

i
(µC1

i
)

]1/2

, (29)

πR
ζ (ζ) ∝

[
det{VC1(µC1)}−1

k∏
i=1

aC2
i
(θC2

i
)

]1/2

, (30)

where aC2
i

and bC2
i

are defined in the Proof of Proposition 10.

Proof. Immediate using equation (28) and Proposition 10. �

Under both the Jeffreys and reference priors µC1 and θC2 are independent. Moreover, the

marginal prior on θC2 is proper, since it is a product of proper distributions, one for each

θC2
i
, see Proposition 11; in addition it belongs to the standard conjugate family, as can be

gathered from (11) and (27).

Example (continued). We compute equation (30) as follows. Since G is collapsible on to
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the complete subset {b, e}, the corresponding marginal distribution is a natural exponential

family with canonical statistic YC1 . Using (26) we therefore obtain

det{VµC1 (µC1)} = {µ(b)− µ(be)}{µ(e)− µ(be)}µ(be){1− µ(b)− µ(e) + µ(be)},

where µC1 ∈ ΩC1 = {µ(b), µ(e), µ(be) : 0 < µ(b) < 1, 0 < µ(e) < 1, µ(be) < min{µ(b), µ(e)}, µ(b)+

µ(e)− µ(be) < 1}. From Proposition 10, we have

s0
C1

= (s0
C1
1
, s0

C2
1
) = (2, (2, 1)),

t0C1
= 4,

KC1(θC2
1
) = log(1 + eθ(c)),

GC1(θC2
1
) = log

(
1 + eθ(c)

1 + eθ(c)+θ(bc)

)
,

and hence

aC2
1
(θC2

1
) =

e2θ(c)+θ(bc)

(1 + eθ(c))2(1 + eθ(c)+θ(bc))2
,

and similarly for the remaining cliques. The overall reference prior for the mixed parame-

terisation is therefore

πR
ζ (ζ) ∝ [{µ(b)− µ(be)}{µ(e)− µ(be)}µ(be){1− µ(b)− µ(e) + µ(be)}]−1/2 ×

× eθ(c)+ 1
2
θ(bc)

(1 + eθ(c))(1 + eθ(c)+θ(bc))
eθ(a)+ 1

2
θ(ae)

(1 + eθ(a))(1 + eθ(a)+θ(ae))
×

× eθ(d)+ 1
2
θ(de)

(1 + eθ(d))(1 + eθ(d)+θ(de))
e

1
2
θ(f)

(1 + eθ(f))
,

where µC1 ∈ ΩC1 and θC2 ∈ ΘC2 = R7. Consider the marginal for µC1 under πR
ζ . Since

µ(b) = p∗C1(b) + p∗C1(be),

µ(e) = p∗C1(e) + p∗C1(be),

µ(be) = p∗C1(be),
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one can see that such a marginal is the prior induced by a Dirichlet distribution on

(p∗C1(b), p∗C1(e), p∗C1(be)), with hyperparameters all equal to 1/2. The marginal for θC2 is

the same under the reference prior and the Jeffreys prior. Under πJ
ζ , the marginal for µC1

is

πJ
µC1

(µC1) ∝ [{µ(b)− µ(be)}{µ(e)− µ(be)}µ(be){1− µ(b)− µ(e) + µ(be)}]−1/2 ×

×µ(b)1/2{1− µ(b)}1/2µ(e){1− µ(e)}, µC1 ∈ ΩC1 ,

which differs from the corresponding marginal under the reference prior because of the

multiplicative factor µ(b)1/2{1− µ(b)}1/2µ(e){1− µ(e)}.

For a random sample X1, . . . , Xn, where Xi = (Xai, . . . , Xfi), the likelihood function is

shown in equation (14). The canonical statistics are na =
∑n

i=1 xai, nb =
∑n

i=1 xbi, nc =∑n
i=1 xci, nd =

∑n
i=1 xdi, ne =

∑n
i=1 xei, nf =

∑n
i=1 xfi, nae =

∑n
i=1 xaixei,

nbc =
∑n

i=1 xbixci, nbe =
∑n

i=1 xbixei, nde =
∑n

i=1 xdixei. The posterior distribution is

π̃R
ζ (ζ|x1, . . . , xn) ∝ {µ(b)− µ(bc)}nb−nbe−1/2{µ(e)− µ(be)}ne−nbe−1/2µ(be)nbe−1/2 ×

×{1− µ(b)− µ(e) + µ(be)}n+nbe−nb−ne−1/2 ×

× e(nc+1)θ(c)+(nbc+1/2)θ(bc)

(1 + eθ(c))n−nb+1(1 + eθ(c)+θ(bc))nb+1
×

× e(na+1)(θ(a)+(nae+1/2)θ(ae)

(1 + eθ(a))n−ne+1(1 + eθ(a)+θ(ae))ne+1
×

× e(nd+1)θ(d)+(nde+1/2)θ(de)

(1 + eθ(d))n−ne+1(1 + eθ(d)+θ(de))ne+1
×

× e(nf+1/2)θ(f)

(1 + eθ(f))n+1
, µC1 ∈ ΩC1 , θC2 ∈ ΘC2 .

In particular, the Jeffreys posterior for µC1 is

π̃J
µC1

(µC1 |x1, . . . , xn) ∝ {µ(b)− µ(be)}nb−nbe−1/2{µ(e)− µ(be)}ne−nbe−1/2 ×

×µ(be)nbe−1/2{1− µ(b)− µ(e) + µ(be)}n+nbe−nb−ne−1/2 ×

×µ(b)1/2{1− µ(b)}1/2µ(e){1− µ(e)}, µC1 ∈ ΩC1 .

Even though the reference posterior will be largely dominated by the likelihood, poste-
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rior estimates of parameters, such as posterior expectations or posterior modes, differ from

maximum likelihood estimates, which can be also regarded as Bayes estimates under a local

uniform prior. For example, the expectation of µC1 under the reference posterior, labelled

µ̂R
C1 , is given by

µ̂R(b) =
nb + 1
n + 2

,

µ̂R(e) =
ne + 1
n + 2

,

µ̂R(be) =
nbe + 1/2

n + 2
,

while the corresponding maximum likelihood estimates are µ̂ML(b) = nb/n, µ̂ML(e) = ne/n

and µ̂ML(be) = nbe/n. Note that maximum likelihood estimates will be zero whenever the

corresponding counts are zero, whereas this will not be the case under the reference poste-

rior, which creates smoother estimates for the mean component of the parameterisation.

Similar considerations apply for the estimates of the parametric component θC2
i
. For

simplicity we only report those corresponding to clique C1

θ̂R(c) = log
nbc − nc − 1/2

nb + nc − n− nbc − 1/2

θ̂R(bc) = log
nbc + 1/2

nb − nbc + 1/2
− log

nbc − nc − 1/2
nb + nc − n− nbc − 1/2

,

while the corresponding maximum likelihood estimates, provided they exist, are θ̂ML(c) =

log{(nbc − nc)/(nb + nc − n − nbc)}, θ̂ML(bc) = log{nbc/(nb − nbc)} − log{(nbc − nc)/(nb +

nc − n− nbc)}.

4 Discussion

In the paper we have restricted our investigation to the binary case. The extension to the

polytomous case is feasible, although tedious. Let Xv take values in the set Xv = {0, . . . , dv},

and set X 0
v = {1, . . . , dv}. The cell probabilities in the clique Ci marginal model are

now defined as p∗Ci
= {p∗Ci

(D), D ⊆ Ci, D 6= ∅}, where p∗Ci
(D) = {p∗Ci

(D,xD), xD ∈ X 0
D},
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p∗Ci
(D,xD) = pr(XD = xD, XCi\D = 0|p∗Ci

), and X 0
D = ×v∈DX 0

v . Similar representations

hold for other quantities like canonical parameters and statistics, as well as mean parame-

ters. The results contained in this paper extends naturally to this setting. We omit details

and refer to V. Leucari’s Ph. D. thesis.

Reference priors depend on the grouping and ordering of the parameters. In our case

the order of the parameters µC1 and θC2 does not matter. On the other hand reference priors

are consistent across reparameterisations only for block-lower triangular transformations;

see Yang (1995) and Datta & Ghosh (1996). It is not difficult to show that the mapping

(µC1 , θC2) → (µC1 , µC2) enjoys this property and therefore the corresponding reference prior

may be obtained through a standard change of variable.

The exponential family representation of § 2.2 is of course strictly related to the tradi-

tional log-linear expansion for hierarchical graphical models, see Whittaker (1990, Ch. 7)

and Lauritzen (1996, p. 81), wherein the generating class is the set of all cliques C. The

advantage of using an exponential family representation is that it makes more transpar-

ent the connection between the marginal clique models and the overall joint decomposable

model through the Markov factorisation (1). In particular, this allows us to relate explicitly

marginal and joint parameterisations. Another advantage of working within the exponen-

tial family setting relates to the possibility of identifying a useful cut, leading to a mixed

parameterisation as detailed in § 2.4 for the clique marginal model and § 2.5 for the joint

decomposable model. This in turn affords the explicit derivation of the information matrix

for the mixed parameterisation together with the associated reference and Jeffreys priors.

A referee suggested that one might investigate connections between the reference prior

for the mixed parameterisation and the hyper-Markov laws of Dawid & Lauritzen (1993).

The latter are supported on the set of relevant Markov distributions for a given graph; more-

over they satisfy certain conditional independence properties also related to the underlying

graphical structure. Dawid & Lauritzen (1993) describe an algorithm for constructing
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hyper-Markov priors starting from pairwise hyper-consistent priors on clique parameters.

Our approach is somewhat different. We start by constructing the reference prior on

each clique marginal model for a suitable mixed parameterisation. This suggests an ap-

propriate cut for the joint exponential family leading to a mixed parameterisation which

is the union of the clique components. Note that the overall reference prior we derive can-

not be recovered from the set of clique marginal reference priors; on the other hand it is

automatically defined on the relevant parameter space.
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Figure 1: The graph underlying the model in the Example.
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Xb = 0 Xb = 1

Xc = 0 p∗C1
(∅) p∗C1

(b)

Xc = 1 p∗C1
(c) p∗C1

(bc)

Table 1: C1-marginal probability table.
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