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Abstract  
This paper offers a quantitative contribution to energy-environment policy in Japan in the aftermath of the 
Fukushima nuclear power accident. Since then, nuclear power energy supply has almost entirely been 
banned .There is no clear-cut direction for energy policy, as each option involves costs and CO2 consequences. A 
balanced energy-environment policy is difficult to achieve and  there is an urgent need for a comprehensive 
efficiency and performance analysis of the Japanese energy sector. 

This paper presents a newly developed adjusted DEA model, emerging from a blend of the Euclidian 
Distance Minimization EDM method and the Target-Oriented (TO) approach based on a Super-Efficiency model, 
for generating an appropriate efficiency-improving projection model. The TO approach specifies a Target-
Efficiency Score (TES) for inefficient DMUs. This approach can compute an input reduction value and an output 
increase value in order to achieve a higher TES. 

This model will be applied to an efficiency analysis of the energy-environment interface for ten regions in 
Japan. The focus is on two input cost criteria (viz. expenditures and CO2 emission) and two output performance 
criteria (viz. electricity generation and regional CO2 absorption). A comparative performance analysis of the ten 
Japan regions under consideration will be pursued. 

 
Keywords: Data Envelopment Analysis (DEA), Euclidean Distance Minimisation (EDM), Target-Oriented 

(TO), Energy-Environment efficiency 
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1. Introduction 
 
Japan is faced with the “Fukushima’ problem, meaning that one single nuclear accident has led to a drastic 

electrical power shortage. Japan had 54 nuclear plants but almost all have stopped generating owing to the strong 
backlash of public opinion. The ten regional electrical companies in Japan (Hokkaido, Tohoku, Tokyo, Chubu, 
Hokuriku, Kansai, Chugoku, Shikoku, Kyushu and Okinawa, see Figure 1) have permission to increase thermal 
power generation based on coal, oil and LNG (liquefied natural gas) in order to compensate for the shortfall 
following the accident. This creates the problem of an increase in “electricity cost” and “CO2 emission”, which is 
then related to a non-balanced “Energy-Environment” policy. Although it is difficult at this stage, it is necessary to 
make an effort to achieve a more efficient “Energy-Environment” policy in Japan, even though Japan has decided 
to withdraw from the Kyoto protocol. 

 
Figure 1 Ten electrical companies in JAPAN 

 
A standard tool by which to judge efficiency is Data Envelopment Analysis (DEA), proposed by Charnes, 

Cooper and Rhodes (1978) (CCR hereafter, see appendix A1).  This has become an established assessment 
method in industrial organization. Seiford (2005) mentions some 2800 published articles on DEA. This large 
number of studies shows that comparative efficiency analysis has become an important research issue.  

DEA was developed to analyse the relative efficiency of a decision-making unit (DMU), by constructing a 
piecewise linear production frontier and projecting the performance of each DMU onto that frontier. A DMU that 
is located on the frontier is efficient, whereas a DMU that is not on the frontier is inefficient. An inefficient DMU 
can become efficient by reducing its inputs, or by increasing its outputs. In the standard DEA approach, this is 
achieved by a uniform reduction in all inputs (or a uniform increase in all outputs). However, in principle, there are 
an infinite number of possible improvements that could be implemented in order to reach the efficient frontier and 
hence, there are many solutions should a DMU plan to enhance its efficiency.  

In the last few decades, the existence of many possible efficiency improvement solutions has prompted a rich 



- 2 - 
 

literature on the methodological integration of Multiple Objective Linear Programming (MOLP) and the DEA 
models. The first contribution was by Golany (1988) who proposed an interactive MOLP procedure, which 
aimed at generating a set of efficient points for a DMU. This model allows a decision maker to select the preferred 
set of output levels, given the input levels. Next, Thanassoulis and Dyson (1992) developed adjusted models, 
which can be used to estimate alternative input and output levels, in order to render relatively inefficient DMUs 
more efficient. These models are able to incorporate preferences for a potential improvement of individual input 
and output levels. The resulting target levels reflect the user’s relative preference over alternative paths to efficiency. 
Joro et al. (1998) demonstrated the analytical similarity between a DEA model and a Reference Point Model in a 
MOLP formulation from a mathematical viewpoint. In addition, the Reference Point Model provides suggestions, 
which make it possible to search freely on the efficient frontier for good solutions, or for the most-preferred 
solution (MPS) based on the decision-maker’s preference structure. Furthermore, Halme et al. (1999) developed a 
Value Efficiency Analysis (VEA), which included the decision-maker’s preference information in a DEA model. 
The foundation of VEA originates from the Reference Point Model in a MOLP context. Here the decision maker 
identifies the MPS, such that each DMU could be evaluated by means of the assumed value function based on the 
MPS approach. A further development of this approach was made by Korhonen and Siljamäki (2002) who dealt 
with several practical aspects related to the use of a VEA. In addition, Korhonen et al. (2003) developed a multiple 
objective approach, which allows for changes within the time frame. Lins et al. (2004) proposed two multi-
objective approaches that determine the basis for the incorporation of a posteriori preference information. The first 
of these models is called Multiple Objective Ratio Optimisation (MORO), which optimises the ratios between the 
observed and the target inputs (or outputs) of a DMU. The second model is called Multiple Objective Target 
Optimisation (MOTO), which directly optimises the target values. Washio et al. (2012) suggested four types of 
improvements for making inefficient DMUs efficient in the CCR, by introducing a decision-maker’s policy 
model with the minimal change of input and output values. Finally, Yang et al. (2013) utilise DEA and Nash 
bargaining game (NBG) theory to improve inefficient banks, in order to: (i) make an inefficient bank Pareto-
optimal for multiple perspectives, which could avoid being discontent with some particular perspectives; and (ii) 
change its attributes and provide various improvement schemes for decision makers. Finally, Suzuki et al. (2010) 
proposed a Euclidean Distance Minimisation (EDM) model that is based on a generalised distance function and 
serves to improve the performance of a DMU by identifying the most appropriate movement towards the 
efficiency frontier surface. The EDM model is able to calculate either an optimal input reduction value or an 
output increase value in order to reach an efficiency score of 1.000, even though in reality this might be hard to 
achieve for low-efficiency DMUs.  

The aim of this paper is to present and apply a newly developed adjusted DEA model, emerging from a blend 
of EDM and the Target Oriented (TO) approach based on the Super-efficiency model (Andersen and Petersen 
(1993), see Appendix A2), in order to generate a more appropriate efficiency-improving projection model. The 
TO approach specifies a Target Efficiency Score (TES) for each DMU. This approach can compute an input 
reduction value and an output increase value in order to achieve a TES for the efficiency improvement. 

The above-mentioned TS-EDM model is applied to an efficiency analysis of the “Energy-Environment” sector 
for the ten regions related to the management zones of the ten electrical power companies in Japan. 
  The paper is organised as follows. Section 2 introduces our EDM methodology and Section 3 proposes the new 
model, which is a TO model in the framework of an EDM model. Section 4 then presents an application of the 
methodology to an efficiency analysis of the “Energy-Environment” of the ten regions in Japan. Finally, Section 5 
draws some conclusions. 
 
2. The Euclidean Distance Minimisation (EDM) Approach 

 
An efficiency improvement solution in the original DEA model (abbreviated hereafter as the CCR-input model, 

see Appendix A1) requires that the input values are reduced radially by a uniform ratio  (  =OD’/OD in Figure 
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A1).  
The (v*, u*) values obtained as an optimal solution for formula (A.1) result in a set of optimal weights for 

DMUo. Hence, (v*, u*) is the set of most favourable weights for DMUo , in the sense of maximising the ratio scale. 
vm

* is the optimal weight for the input item m and its magnitude expresses how much in relative terms the item is 
contributing to efficiency. Similarly, us

* does the same for the output item s. These values show not only which 
items contribute to the performance of DMUo but also the extent to which they do so. In other words, it is possible 
to express the distance frictions (or alternatively, the potential increases) in improvement projections. 

We use the optimal weights us
* and vm

* from (A.1) and then describe the efficiency improvement projection 
model. A visual presentation of this approach (EDM projection) is given in Figures 2 and 3. 
 

 
Figure 2 Illustration of the EDM approach (Input- vi

*xi space) 

 
Figure 3 Illustration of the EDM approach (Output - ur

*yr space) 
 
In this approach, a generalised distance indicator is employed to assist a DMU to improve its efficiency by a 

movement towards the efficiency frontier surface. Of course, the direction of efficiency improvement depends on 
the input/output data characteristics of the DMU. It is now appropriate to define the projection functions for the 
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minimisation of distance by using a Euclidean distance in weighted space. As mentioned, a suitable form of 
multidimensional projection functions that serves to improve efficiency is given by a Multiple Objective 
Quadratic Programming (MOQP) model, which aims to minimise the aggregated input reductions , as well as the 
aggregated output increases. Thus, the EDM approach can generate a new contribution to efficiency enhancement 
problems in decision analysis by employing a weighted Euclidean projection function and at the same time, it 
might address both input reduction and output increase. Here, we only briefly describe the various steps. 

First, the distance function Frx and Fry is specified by means of (2.1) and (2.2), which are defined by the 

Euclidean distance shown in Figures 2 and 3. Next, the following MOQP is solved by using x
mod (a reduction of 

distance for xio) and y
sod (an increase of distance for yso) as variables: 

 

         min    
m

x
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2

       (2.1) 

 min    
s

y
sossos

y duyuFr
2

     (2.2) 
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0 x
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0x
mod          (2.6) 

0y
sod ,         (2.7) 

 

where mox  is the amount of input item m for any arbitrary inefficient DMUo and soy is the amount of output item 

s for any arbitrary inefficient DMUo. The constraint functions (2.3) and (2.4) refer to the target values of input 
reduction and output augmentation. The fairness in the distribution of contributions from the input and output side 
to achieve efficiency is established as follows. The total efficiency gap to be covered by inputs and outputs is (1-
θ*). The input and the output side contribute according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) 
and 1/(1+θ*) in the improvement contribution. Clearly, the contributions from both sides equal (1-θ*)[θ*/(1+θ*)] 
and (1-θ*)[1/(1+θ*)].  
Hence, we find for the input reduction target and the output augmentation targets:  
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An illustration of the above situation is presented in Figure 4. 

 
Figure 4 EDM model with an illustration of a balanced contribution of inputs and outputs to close the 

efficiency gap 
 

It is now possible to determine each optimal distance x
mod  and y

sod  by using the MOQP model (2.1)-(2.7). 

The distance minimisation solution for an inefficient DMUo can be expressed by means of formulas (2.10) and 
(2.11): 

 
  x

momomo dxx ;         (2.10) 

  y
sososo dyy .        (2.11) 

   
By means of the EDM model, it is possible to present a new efficiency-improvement solution based on the 

standard CCR projection. This means an increase in new options for efficiency-improvement solutions in DEA. 
The main advantage of the EDM model is that it yields an outcome on the efficient frontier that is as close as 
possible to the DMU’s input and output profile (see Figure 5).  

 
Figure 5  Degree of improvement of the EDM and the CCR projection in weighted input space 

 
 
 
3. A Proposed Target Oriented-EDM model 
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The above-mentioned EDM model is able to calculate an optimal input reduction value and an output increase 
value in order to reach an efficiency score of 1.000, even though in reality this might be hard to achieve for low-
efficiency DMUs. Therefore we consider a method that allows reference points that remain below the efficiency 
frontier.  On the other hand, DMUS that are close to (or exactly on) the efficient frontier might search for a 
reference point for a further improvement of their efficiency.  

This paper proposes a new Target Oriented (TO) approach in the framework of the EDM model based on the 
Super-efficiency model (Andersen and Petersen (1993), see Appendix A2), which is based on the CCR-I model. 
The TO approach comprises the following steps:  

 
Step1. Target Efficiency Score (TES) for DMUo (hereafter TES0) is set arbitrarily by the decision or policy 

maker. Improving projections are categorised in 3 types depending on the score of the TES as follows: 
       θ*<TES0 <1.000; Non-Attainment EDM projection (it does not reach the efficiency frontier). This 

makes sense for DMUs that are -far- below the efficiency frontier. 
 TES0 = 1.000; Normal EDM projection (it just reaches the efficiency frontier).  
 TES0 >1.000; Super-Efficient EDM projection (it is beyond the efficiency frontier). This makes sense 
  for DMUs that are already on the efficiency frontier 
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      Then, we get MPo, which is a Magnification Parameter of TES0 . 
 
Step3. Solve the TS-EDM model using formulas (3.1)–(3.8); then an optimal input reduction value and output 

increase value to reach a TES0 can be calculated.  
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0y
sod ,        (3.8) 

 
An illustration of the TS-EDM model is given in Figure 6. 
From Figure 6, we notice that a type of TES0 = 1.000 is just equal to the normal EDM model using formulas 

(2.1)–(2.7). We also notice that the Non-Attainment EDM projection (θ*<TES0 <1) does not reach the efficiency 
frontier; thus, this is one of the improvement goal projections to reach a TES0 lower than 1.000. 

Additionally, a Super-Efficient EDM projection (TES0>1.000) offers an above 1.000 improvement plan, which 
is relevant in particular for DMUs that are already close to the efficiency frontier . 

 

 
Figure 6 Illustration of the Target Oriented-DFM model for DMU F (Input space) 

Figure 6 shows that the direction of the target setting is determined by the Euclidian distance model, whereas the 
degree to which the efficiency score is improved depends on the TES parameter set by the decision maker..The 
usual situation where DMUs try to improve their position incrementally will be that the TES0 parameter will be 
lower than 1. 
 
4.  An application of Target Oriented-EDM Model for Energy-Environment efficiency in Japan  
 
4.1 Database and analytical framework 

  We use the following inputs and outputs data for a set of 10 regions related to each of the management zones 
for the 10 electrical power companies in Japan (as in Figure 1).  The DMUs used in our analysis are listed in Table 
1. 

 
As shown in Table 1, we will compare an efficiency score from before the Fukushima accident (in 2010) with 

the efficiency score after the accident (in 2011).  
Figure 7 presents the inputs and outputs considered in this analysis of regional efficiency. 
 
 
 

Table 1 A listing of DMUs 

No 
DMUs 

(before FUKUSHIMA accident) 
No 

DMUs 
(after FUKUSHIMA accident) 

1 Hokkaido 2010 11 Hokkaido 2011 

Input 1 

Input 2 

O 

A 

F 

D 
C 

B 

E 

F’ 

Normal EDM projection (TES0 = 1.000) 

Super-Efficient EDM projection (TES0 >1.000) 

Non-Attainment EDM projection (θ*<TES0 <1.000) 

CCR-Projection  



- 8 - 
 

2 Tohoku 2010 12 Tohoku 2011 
3 Tokyo 2010 13 Tokyo 2011 
4 Chubu 2010 14 Chubu 2011 
5 Hokuriku 2010 15 Hokuriku 2011 
6 Kansai 2010 16 Kansai 2011 
7 Chugoku 2010 17 Chugoku 2011 
8 Shikoku 2010 18 Shikoku 2011 
9 Kyushu 2010 19 Kyushu 2011 

10 Okinawa 2010 20 Okinawa 2011 
 

Figure 7 
Inputs and Outputs of Energy-Environment efficiency 

 
We consider 2 Inputs (I): 

(I1) Expenditure of electricity company (Including fuel and labour cost) (million Yen / year) 
(I2) CO2 Emission (after reflection of carbon credit) (10000 t / year) 

and 2 Outputs are incorporated: 
(O1) Electricity Generated (million kWh / year) 
(O2) CO2 Absorption in region (Ton / year) (2000)  

 
Datasets (I1), (I2) and (O1) were obtained from the “electrical power industry handbook”, 2010 and 2011. 
The (O2) dataset is based on “Land-Use, Land Use Change, and Forestry” (IPCC, 2000) and carbon 

absorption basic units for needle leaf tree (artificial forest), broad-leaf tree (artificial forest), needle leaf tree (natural 
forest) and broad-leaf tree (natural forest) [Data source: Sugihara et al. “Carbon pool of Japanese islands”, Studies 
in Regional Policy (Development Bank of Japan), vol.11, 2004, pp.1-49]. 

In our application, we first applied the Super-Efficiency CCR-I model (see Appendix A1 and A2), while then 
the results were used to determine the CCR-I, EDM and TS-EDM projections. Additionally, we applied the TS-
EDM model using Hokkaido 2010 as a reference region.  
 
4.2 Efficiency evaluation based on the Super-Efficiency CCR-I model 

  An efficiency evaluation result for the 10 regions in 2010 and 2011(total 20 DMUs) based on the Super-
Efficiency CCR-I model is presented in Figure 8. 

From Figure 8, it can be seen that Hokkaido 2010 and Hokuriku 2010 are super-efficient DMUs. 
On the other hand, we notice that the efficiency score of all 2011 DMUs decreases significantly compared with 

each of the 2010 DMUs. A reason for the decrease is definitely the adverse influence of the Fukushima problem, 
which meant that all regional electricity companies compensated for the electrical shortage by increased thermal 
power generation based on coal, oil and LNG (liquefied natural gas), which caused an increased fuel cost and a 
rapid rise in CO2 emissions from 2010 to 2011. 

It is also noteworthy that Hokkaido deteriorated rapidly from a score of 1.403 to 0.782. The reason for this is its 
heavy dependency on nuclear power generation, which was 44% in 2010, the highest level of dependency in 
Japan. Given the above findings, it is necessary to make an effort in efficiency improvement of the “Energy-
Environment” balance in each region. 

10 regions in Japan 

(I2) CO2 Emission (I1) Expenditure (Including fuel and labor cost) 

(O2) CO2 Absorption (O1) Electricity Generated 
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Figure 8 Efficiency scores based on the Super-Efficiency CCR-I model 

 
 
4.3 Efficiency improvement projection based on the CCR, EDM and TS-EDM models 

  The results of efficiency improvement projection based on the CCR, EDM and TS-EDM models for 2011 
DMUs are presented in Table 2. 
It appears that, as expected, the empirical ratios of change in the EDM projection are smaller than in the CCR 
projection. In Table 2, this particularly applies to Hokuriku, which is apparently a non-slack type (i.e., s-** and s+** 
are zero) region. Apart from the practicality of such a solution, the models clearly show that a different – and 
perhaps more efficient – solution than the standard CCR projection is available for reaching the efficiency frontier. 
For instance, the CCR projection shows that Tohoku should reduce its CO2 emission by 52.2% and its 
Expenditures by 29.5%, in order to become efficient. On the other hand, the EDM results show that a reduction in 
CO2 emission of 45.9% and Expenditures by 17.3%, together with an increase in the Electricity Generated of 
17.7% is required to become efficient.  

   In the case of the TS-EDM model, we set a TES target for each 2011 DMU in comparison to the –super- 
efficiency score in 2010 before the Fukushima disaster as represented in Fig. 8. For example for Tohuku this score 
was 0.822 in 2010.   To achieve this score using the Euclidian distance approach, a reduction in Expenditures of 
7.7% and an increase in Electricity Generated of 7.9% are required. It thus appears that the TS-EDM result is able 
to present a realistic efficiency-improvement plan, compared with the CCR and EDM approach for the DMUs 
with an efficiency score below 1 in the initial situation. 

Table 2 Efficiency-improvement projection results of the CCR, EDM and PB-EDM models 
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DMU Score
 I/O Data Difference % Difference % Difference %

Hokkaido 2011 0.782 1.403 (2010 level)

(I)CO2 Emmision 1560.0 -444.3 -28.5% -361.7 -23.2% -252.4 -16.2%
(I)Expenditure 693347.0 -151107.2 -21.8% -84793.5 -12.2% -197003.8 -28.4%
(O)Electricity Generated 36473.0 0.0 0.0% 4668.2 12.8% 10845.7 29.7%
(O)CO2 Absorption 7570713.9 0.0 0.0% 0.0 0.0% 0.0 0.0%
Tohoku 2011 0.705 0.822 (2010 level)

(I)CO2 Emmision 4113.0 -2145.2 -52.2% -1886.7 -45.9% 0.0 0.0%
(I)Expenditure 1700908.0 -501872.8 -29.5% -294363.8 -17.3% -130843.0 -7.7%
(O)Electricity Generated 82577.0 0.0 0.0% 14607.6 17.7% 6493.0 7.9%
(O)CO2 Absorption 8155474.7 0.0 0.0% 129.5 0.0% 0.0 0.0%
Tokyo 2011 0.493 0.702 (2010 level)

(I)CO2 Emmision 12420.0 -6532.3 -52.6% -4531.9 -36.5% 0.0 0.0%
(I)Expenditure 8460237.0 -4291032.7 -50.7% -2874486.1 -34.0% -1484172.3 -17.5%
(O)Electricity Generated 290814.0 0.0 0.0% 98808.2 34.0% 51017.3 17.5%
(O)CO2 Absorption 2964120.5 8973218.6 302.7% 13029099.7 439.6% 0.0 0.0%
Chubu 2011 0.824 0.963 (2010 level)

(I)CO2 Emmision 5992.0 -3178.6 -53.1% -2906.6 -48.5% 0.0 0.0%
(I)Expenditure 2418629.0 -426381.5 -17.6% -233798.8 -9.7% -188819.0 -7.8%
(O)Electricity Generated 138965.0 0.0 0.0% 13433.2 9.7% 10848.8 7.8%
(O)CO2 Absorption 3578336.6 2125901.6 59.4% 2677390.4 74.8% 0.0 0.0%
Hokuriku 2011 0.915 1.302 (2010 level)

(I)CO2 Emmision 1577.0 -929.3 -58.9% 0.0 0.0% -818.0 -51.9%
(I)Expenditure 499630.0 -42417.6 -8.5% -22149.0 -4.4% -86985.7 -17.4%
(O)Electricity Generated 31884.0 0.0 0.0% 1426.8 4.5% 5603.5 17.6%
(O)CO2 Absorption 1344240.6 0.0 0.0% 0.0 0.0% 194547.3 14.5%
Kansai 2011 0.815 0.982 (2010 level)

(I)CO2 Emmision 6044.0 -2833.8 -46.9% -2506.2 -41.5% 0.0 0.0%
(I)Expenditure 2789925.0 -516728.5 -18.5% -284732.2 -10.2% -260005.4 -9.3%
(O)Electricity Generated 158562.0 0.0 0.0% 16182.4 10.2% 14777.1 9.3%
(O)CO2 Absorption 3462163.1 3046493.2 88.0% 3710749.1 107.2% 0.0 0.0%
Chugoku 2011 0.835 0.941 (2010 level)

(I)CO2 Emmision 3014.0 -1632.5 -54.2% -1526.6 -50.7% 0.0 0.0%
(I)Expenditure 1129978.0 -186978.1 -16.6% -101921.6 -9.0% -67738.8 -6.0%
(O)Electricity Generated 65585.0 0.0 0.0% 5987.6 9.1% 3979.4 6.1%
(O)CO2 Absorption 3555866.6 0.0 0.0% 0.0 0.0% 0.0 0.0%
Shikoku 2011 0.816 0.909 (2010 level)

(I)CO2 Emmision 1380.0 -687.9 -49.9% -630.4 -45.7% 0.0 0.0%
(I)Expenditure 557732.0 -102739.0 -18.4% -56580.8 -10.1% -30057.0 -5.4%
(O)Electricity Generated 31546.0 0.0 0.0% 3249.3 10.3% 1726.1 5.5%
(O)CO2 Absorption 2154668.0 0.0 0.0% 0.0 0.0% 0.0 0.0%
Kyushu 2011 0.835 0.995 (2010 level)

(I)CO2 Emmision 4300.0 -2399.8 -55.8% -2251.2 -52.4% 0.0 0.0%
(I)Expenditure 1589428.0 -261998.4 -16.5% -142765.8 -9.0% -138556.2 -8.7%
(O)Electricity Generated 92493.0 0.0 0.0% 8393.4 9.1% 8145.9 8.8%
(O)CO2 Absorption 4242290.3 0.0 0.0% 0.0 0.0% 0.0 0.0%
Okinawa 2011 0.789 0.843 (2010 level)

(I)CO2 Emmision 515.0 -344.1 -66.8% -324.0 -62.9% 0.0 0.0%
(I)Expenditure 153266.0 -32267.4 -21.1% -18031.8 -11.8% -5010.4 -3.3%
(O)Electricity Generated 8440.0 0.0 0.0% 993.0 11.8% 275.9 3.3%
(O)CO2 Absorption 144722.4 201722.9 139.4% 242484.1 167.6% 0.0 0.0%

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000

1.000 1.000
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Score(θ**)

CCR model EDM model
Score(θ**) Score(θ**)

1.000 1.000

 

4.4 Efficiency improvement projection of the Target Oriented-EDM model 
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  In this subsection, we will use the prefecture of Hokkaido 2011 as the point of departure and present an 
efficiency improvement projection result based on the TS-EDM model. The 2011 efficiency value is 0.782 (see 
figure 8). We consider steps to improve efficiency towards 0.8, 0.9 and 1.0, and furthermore towards the 2010 
super efficiency level of 1. 403. The resulting input reduction values and the output increase values based on the 
TS-EDM model are presented  in Figure 9. 

These results show that if Hokkaido implements an efficiency improvement plan with a TES amounting to 0.9, 
a reduction in Expenditures of 7.0% and an increase in Electricity Generated of 7.3% are required.  Furthermore, 
for a plan to achieve again the super efficiency level of 2010 with a TES of 1.403, a reduction in CO2 Emission of 
16.2% and in Expenditure of 28.4% and an increase in the Electricity Generated of 29.7% would be  required. 
This underlines that the TS-EDM can be used both for the formulation of efficiency improvement policies in the 
short run and for more ambitious policies in the longer run. 

 

CCR‐I
(Score=1.000)

TES=0.800 TES=0.900
TES=1.000

(Normal EDM)

TES=1.403
(2010Hokkaido

Level)

(I)CO2 Emmision ‐28.5% 0.0% 0.0% ‐23.2% ‐16.2%

(I)Expenditure ‐21.8% ‐1.1% ‐7.0% ‐12.2% ‐28.4%

(O)Electricity Generated 0.0% 1.2% 7.3% 12.8% 29.7%

(O)CO2 Absorption 0.0% 0.0% 0.0% 0.0% 0.0%

‐30.0%

‐20.0%

‐10.0%

0.0%

10.0%

20.0%

30.0%

 
Figure 9 Efficiency improvement projection results based on the TS-EDM (Hokkaido 2011) 

 
5. Conclusion 

  
In this paper, we have presented a new methodology, the TS-EDM model. Its feasibility was tested for the 

Japanese energy sector. The new model was adopted in realistic circumstances, based on regional efficiency 
improvement projections in the post-Fukushima situation in Japan.  

The results appear to offer a meaningful contribution to decision making and planning for an efficiency 
improvement in the Energy-Environment sector for each region in Japan. These findings are mapped out in a 
detailed way in the present study. This new model has the potential to become a policy instrument that could offer 
great benefits for combined environmental-energy decision making and planning. For example, for an agreement 
on Energy-Environment sustainability policy, all inefficient regions have to pursue improvements in efficiency (to 
reach a higher target score). This framework might prompt a new concept like a regional “Kyoto Protocol” for each 
relevant area in Japan. 
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Appendix 
 
A1. Outline of DEA and Efficiency Improvement Projection 

     
   The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj 

),,1( Jj   to be evaluated in any trial o (where o ranges over 1, 2 …, J) may be represented as the following 

fractional programming (FPo) problem: 

 (FPo)     
uv,
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 ),,1( Jj      (A.1) 

  0mv , 0su , 

where:   represents an objective variable function (efficiency score); xmj is the volume of input m (m = 1,…, M) 
for DMUj(j = 1,…,J); ysj is the output s (s = 1,…,S) of DMU j; and vm and us are the weights given to input m and 
output s, respectively. Model (A.1) is often called an input-oriented CCR model, while its reciprocal (i.e., an 
interchange of the numerator and denominator in the objective function (A.1) with a specification as a 
minimisation problem under an appropriate adjustment of the constraints) is usually known as an output-oriented 
CCR model. Model (A.1) is obviously a fractional programming model, which may be solved stepwise by first 
assigning an arbitrary value to the denominator in (A.1) and then maximising the numerator. 

The improvement projection  ˆ ˆ,o ox y  can now be defined in (A.2) and (A.3) as: 

         ˆo ox x s    ;         (A.2) 

                ˆo oy y s  .         (A.3) 

These equations indicate that the efficiency of (xo, yo) for DMUo can be improved if the input values are 
reduced radially by the ratio   and the input excesses s  are eliminated (see Figure A1).  

The original DEA models presented in the literature have focused on a uniform input reduction or on a uniform 
output increase in the efficiency-improvement projections, as shown in Figure A1 (  =OC’/OC).  

 

 
Figure A1 Illustration of original DEA projection in input space 
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 A2. Super-efficiency model 
 
   In a standard DEA model,  all efficient DMUs get the score 1, so that there is no way to differentiate between 

them. This has led to focused research to discriminate between efficient DMUs, in order to arrive at a ranking, or 
even a numerical rating of these efficient DMUs, without affecting the results for the non-efficiency. In particular, 
Andersen and Petersen (1993) developed a radial Super-Efficiency model, while later on Tone (2002, 2003) 
designed a slacks-based measure (SBM) of super-efficiency in DEA. In general, a Super-Efficiency model aims 
to identify the relative importance of each individual efficient DMU, by designing and measuring a score for its 
‘degree of influence’, if this efficient DMU is omitted from the efficiency frontier (or production possibility set). If 
this elimination really matters (i.e., if the distance from this DMU to the remaining efficiency frontier is large) and 
thus, the firm concerned has a high degree of influence and outperforms the other DMUs, it gets a high score (and 
is thus super-efficient). Therefore, for each individual DMU a new distance result is obtained, which leads to a 
new ranking, or even a rating of all the original efficient DMUs. 

Anderson and Petersen (1993) have developed the Super-Efficiency model based on a radial projection 
(including a CCR model) to arrive at a ranking of all efficient DMUs. The efficiency scores from a super-
efficiency model are thus obtained by eliminating the data on the DMUo to be evaluated from the solution set. For 
the input model, this can then result in values, which may be regarded, according to the DMUo, as a state of super-
efficiency. These values are then used to rank the DMUs and consequently, efficient DMUs may then obtain an 
efficiency score above 1.000.  

The super-efficiency model based on a CCR-I model can now be written as follows: 
 

           
 SS ,,,
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where e is a unit vector (1,...,1), representing a utility factor for all elements.  
 


