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Abstract

Micro data are used for the US over the period 1968 − 1992 to estimate time-varying
specifications for the conditional variance of earnings of individual households. Specifications

estimated are standard and quadratic  and  processes. The cross-sectional

mean of the estimated time-varying uncertainty of individual households is found to have a

significant impact on aggregate consumption growth implying that earnings uncertainty and

precautionary saving motives matter for the aggregate economy. The estimation of a buffer

stock model of consumption with time-varying earnings uncertainty provides an estimated

precautionary component in aggregate consumption growth. The importance of this compo-

nent is found to decrease over the sample period, a result which is in line with the existing

literature.
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1 Introduction

An important research topic in macroeconomics is the impact of precautionary savings on the

aggregate economy. Precautionary savings are additional savings due to increases in the uncertainty

about future uninsurable labour income or earnings.1 If individual consumers or households are

increasingly uncertain about future earnings they consume less today because they want to save to

avoid low future consumption states if future earnings turn out to be low. Consumption tomorrow

versus today increases, i.e. consumption grows faster than under certainty. Stated more formally,

consumption growth depends positively on the conditional variance of shocks to consumption and -

since earnings affect consumption - on the conditional variance of shocks to earnings. To the extent

that this conditional variance is predictable, consumption growth, both at the individual and at

the aggregate level, is no longer unpredictable (see Hall, 1978). The incorporation of precautionary

saving motives into consumption models invalidates the standard permanent income hypothesis

(see Zeldes, 1989). Whether or not uninsured individual earnings risk is important for the aggregate

economy (i.e. for aggregate consumption, aggregate saving, and aggregate wealth accumulation)

has been subject of controversy. According to Krusell and Smith (1998) precautionary savings

have little impact on the aggregate wealth level. Skinner (1988), Zeldes (1989), Deaton (1991),

Caballero (1990, 1991), Carroll (1992, 2000), Gourinchas and Parker (2001, 2002), and Parker and

Preston (2005) argue however that precautionary savings due to uninsurable earnings risk have a

significant impact on the aggregate economy.

This paper investigates the effects of precautionary savings motives on aggregate consump-

tion dynamics by explicitly allowing for time-variation in earnings uncertainty. The empirical

analysis is based on a simple consumption model with a large number of consumers who experi-

ence consumer-specific uninsurable shocks to earnings and consumption which together with the

preference configuration (risk aversion or prudence, impatience) may create buffer stock savings

behaviour (see e.g. Carroll 1992, Banks et al. 2001). In the first step of the empirical analysis

estimates for the time-varying earnings uncertainty of households in the economy are obtained with

earnings data from the Panel Study of Income Dynamics () for individual households in the

US over the period 1968− 1992. The conditional variance of shocks to earnings is modelled as an
autoregressive conditional heteroskedasticity () process (see Engle, 1982), as a generalized

 () process (see Bollerslev, 1986), as a quadratic  () process (see

Sentana, 1995), and as a generalized quadratic  () process. This approach ex-

1 In the remainder of the paper I abstract from interest rate uncertainty.
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ploits and builds on the findings of Meghir and Pistaferri (2004) who show that the earnings shocks

of households (both permanent and transitory) can be well described by  type processes.

In a second step the cross-sectional mean of the estimated conditional variance of earnings over

all households in the sample is used as a regressor in equations of aggregate consumption growth

to find out whether average individual earnings uncertainty in the economy affects aggregate con-

sumption dynamics. In a third step the consumption model is estimated by  methods. This

provides estimates for the structural model parameters and estimates for the precautionary com-

ponent, i.e. the part of aggregate consumption growth that can be attributed to the precautionary

savings motive. The parameter estimates are obtained by minimizing the difference between ac-

tual aggregate consumption growth as obtained from the National Income and Product Accounts

() and the average of consumption growth rates of individual consumers as calculated from

the model (where a correction method is applied to take into account the difference in aggregation

between the  data and the data generated by the model). As such there is no need for con-

sumption data at the level of the individual household to estimate the model. This is an advantage

since  only reports food consumption which is not an adequate consumption measure to

test for precautionary savings while data from the Consumer Expenditure Survey () are only

available from 1980 onward so that the use of these data would inevitably lead to a 50% reduction

of the sample size. Since the aim of this paper is an investigation of the impact of time-varying

earnings uncertainty on consumption a long enough time dimension is essential.

The approach followed to investigate the impact of precautionary savings on aggregate consump-

tion is somewhat similar in spirit to earlier work by Carroll (1992), Acemoglu and Scott (1994),

Hahm and Steigerwald (1999) and, more recently, to the work of Parker and Preston (2005). All

these papers empirically investigate the potential presence of a term that reflects precautionary

savings in equations for the growth rate of aggregate consumption. Carroll (1992), Acemoglu and

Scott (1994), and Hahm and Steigerwald (1999) capture the consumption/earnings risk term in

these equations by respectively survey responses to questions regarding unemployment expecta-

tions, consumer confidence indicators, and surveyed income forecasts. Parker and Preston (2005)

use household data from the  to decompose aggregate consumption growth into different

sources among which is a component that reflects incomplete markets for consumption insurance.

To the best of my knowledge this paper is the first to directly parameterize the individual earnings

risk term in consumption Euler equations with  type processes. The paper is also related

to the work by Gourinchas and Parker (2002) who use a similar estimation methodology to obtain

estimates of the structural model parameters. While they focus on precautionary savings over
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the life cycle the current paper provides distinct evidence of precautionary savings for aggregate

consumption dynamics. And while their structural model is somewhat richer to generate precau-

tionary motives over the life cycle they do not permit time-variation in the conditional variance of

earnings shocks.

The results of the paper suggest, first, that the conditional variance of individual earnings can

be accurately modelled by (1 1) or (1 1) processes. Second, the cross-sectional

mean of the estimated time-varying conditional variances of individual earnings is found to have

a significant impact on aggregate consumption growth suggesting that earnings uncertainty and

precautionary saving motives matter for the aggregate economy. In line with results previously

reported by Storesletten et al. (2004) there is also evidence that individual earnings uncertainty

in the US economy is countercyclical. Third, the full estimation of the consumption model pro-

vides an estimated precautionary component in aggregate consumption growth. This component

is correlated with individual earnings uncertainty, especially during the 1970s, and shows a steady

decline over the sample period. A decrease in the importance of precaution for aggregate con-

sumption growth in the US from the 1980s onward has also been reported by Parker and Preston

(2005).

The structure of the paper is as follows. In section 2 I present the theoretical framework on

which the empirical analysis of the paper is based. In section 3 I use micro data on earnings

to estimate different specifications for the conditional variance of individual earnings. In section

4 I calculate the cross-sectional mean of the estimated conditional variance of earnings over all

households in the sample, I discuss the properties of this time series, and I conduct a preliminary

exploration of the impact of average earnings uncertainty on aggregate consumption growth. In

section 5 I estimate the full consumption model to obtain structural parameter estimates and an

estimated precautionary component. Section 6 concludes.

2 Theory

In this section the theoretical framework is presented on which the empirical analysis conducted

in the paper is based.
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2.1 Assumptions and first-order conditions

Consider an economy with a large number of consumers in every period  who are subject to

consumer-specific uninsurable shocks to consumption. Each individual consumer  determines

individual period  consumption  by maximizing expected lifetime utility. The instantaneous

utility function of the consumers is of the constant relative risk aversion (CRRA) type and is given

by () =

1−


1− where  is the coefficient of relative risk aversion (  0). These preferences

imply convex marginal utility. Hence, consumers have a precautionary savings motive. There is

one riskless bond in the economy which offers a relatively small risk-free economy-wide interest

rate . Consumers’ preferences can differ across consumers and can shift through time as well.

These assumptions imply the following set of first-order conditions for all consumers  and all

periods  and − 1,
−1

£
(1 +) exp(xδ)()

−¤ = (−1)− (1)

where −1 is the expectations operator conditional on time −1 information, where x is a 1
vector of  deterministic, time-varying, and consumer-specific preference shifters, and where δ is a

1 vector of parameters (see e.g. Parker and Preston 2005). Under the assumption that individual

consumption growth ∆ ln  is conditionally normally distributed the first-order conditions take

the form,

∆ ln  =
1


 +

1


xδ+

1

2
−1 +  (2)

where  is the innovation to individual consumption growth, i.e.  ≡ ∆ ln  −−1∆ ln ,

with −1 = 0, and where −1 denotes the variance of innovations to consumption growth

conditional on information available to consumers in period  − 1. The derivation of eq.(2) is
presented in appendix A.1. The term 1


 in eq.(2) reflects intertemporal substitution while the

term 1

xδ captures shifts in preferences. Upon assuming that x is a scalar equal to −1 so

that δ is a scalar as well I obtain the more familiar Euler equation where  ( 0) captures time

preference. Eq.(2) further shows that the conditional variance of consumption growth positively

affects consumption growth, i.e. when in period  − 1 the variance of consumption growth is
expected to increase, then period  − 1 savings rise and period  − 1 consumption falls. Hence,
consumption grows faster between periods  and − 1. The strength of this precautionary savings
effect depends positively on the magnitude of the coefficient of relative risk aversion .2

2The term  1
2
−1 can be decomposed as (1 + ) 1

2
−1 − 1

2
−1 where (1 + ) 1

2
−1 reflects pre-

cautionary savings with the coefficient of relative prudence equal to 1 +  and where − 1
2
−1 reflects Jensen’s

inequality and the concavity of the logarithm (see Gourinchas and Parker 2001) but this offers no additional insight.
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2.2 The earnings process

Eq.(2) incorporates precautionary savings measured through the conditional variance of innovations

to consumption growth. To measure the importance of precautionary savings for consumption

through earnings instead of consumption I assume the following process for log individual labour

income or earnings (see e.g. Ludvigson and Michaelides 2001),

ln  = ln 

 +  (3)

where ln 

 is the permanent component and  is the transitory component. The transitory

individual shock  is a white noise innovation. It is i.i.d across consumers. The permanent

component ln 

 follows a martingale process with a stochastic drift Λ that is common to all

consumers, i.e.

ln 

 = Λ + ln 


−1 +  (4)

where  is the permanent individual shock to earnings which is white noise and i.i.d across

consumers. The shocks  and  are mutually independent. From eq.(4) I obtain ∆ ln 

 =

Λ + . Writing eq.(3) in first differences gives ∆ ln  = ∆ ln 

 +  − −1. Combining both

results then gives,

∆ ln  = Λ +  +  − −1 (5)

I assume that consumers cannot separate the permanent shock  and the transitory shock 

(see e.g. Deaton 1992, p.108-109).3 Eq.(5) can now be written as,

∆ ln  = Λ +  − −1 (6)

where  is the individual innovation to earnings which is white noise with unconditional

variance 2. It is i.i.d across consumers. It is not assumed to be i.i.d in time however as in

section 3.2 I assume that the conditional variance of  is time-varying and depends on time − 1
information.4 The parameter  (0 ≤  ≤ 1) is close to 0 when the unconditional variance of the
permanent shock  is large relative to the unconditional variance of the transitory shock  and

3This assumption is made to facilitate the estimation of a conditional variance series for the earnings process

with a micro panel. While the parameters of the process (both for the mean and the variance) can be identified if

the earnings process consists of a separate transitory and permanent shock (see e.g. the GMM approach of Meghir

and Pistaferri 2004) it is not feasible to estimate separate time series for the time varying conditional variance of

the shocks  and . For the conditional variance of , on the other hand, a time series can be obtained.
4Hence the conditional variances of the innovations  and/or  also depend on time − 1 information.
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close to 1 in the opposite case. Hence the quantity 1 −  measures the degree of persistence of

the individual innovation to earnings . Note that since  is i.i.d across consumers, aggregate

earnings growth ∆ ln will be equal to Λ, i.e. ∆ ln = (∆ ln ) = Λ where  is the cross-

sectional mean operator. I assume that log aggregate earnings follows a martingale with drift  so

that ∆ ln = Λ = +  where  is the aggregate shock to earnings which is white noise with

unconditional variance 2 and which is independent of .
5 Eq.(6) becomes,

∆ ln  = +  +  − −1 (7)

2.3 Individual consumption growth

With an earnings process given by eq.(7) the innovation to consumption growth  can be approx-

imated by,

 = [ + (1− )]
−1
−1

(8)

(see appendix A.2). From this I calculate −1 =
¡
−1 + (1− )2−1

¢ ³−1
−1

´2
. Sub-

stituting both results into eq.(2) gives

∆ ln  =
1


 +

1


xδ+

1

2

£
−1 + (1− )2−1

¤µ−1
−1

¶2
+ [ + (1− )]

µ
−1
−1

¶
(9)

The part of consumption growth that stems from the precautionary saving motive - i.e. the third

term on the RHS of eq.(9) - depends on the parameter of risk aversion, on the conditional variance

of both earnings shocks (individual and aggregate), on the persistence of the shock , and on the

squared ratio of earnings to consumption which captures the fact that, under CRRA preferences,

consumers with less wealth and hence lower levels of consumption are more responsive to changes

in earnings risk (see also Banks et al. 2001). From the equation it is also clear that earnings

shocks only affect consumption and consumption risk to the extent that they are persistent. The

aggregate shock  is fully persistent but the individual earnings shock  is not. The degree of

persistence 1− therefore determines the impact of  and −1 on consumption growth.6 Note
finally that since ∆ ln  (and therefore the innovation to consumption growth ) is assumed to

be conditionally normally distributed, the earnings shocks  and  must also be conditionally

normally distributed.

5 It is therefore also independent of  and .
6To the extent that individual shocks are transitory (i.e. when  = 1) they have no impact on consumption since

they are smoothed away through savings or dissavings/borrowing. As a result, they have no impact on consumption

risk and on precautionary savings.
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2.4 Aggregate consumption growth

Aggregate consumption growth ∆ ln is defined as ∆ ln = (∆ ln ) where  is the cross-

sectional mean operator and where ∆ ln  is given by eq.(9). In section 4.1 I discuss how to

correct for the fact that aggregate consumption growth based on  data, i.e. ∆ ln
 ,

is calculated differently than ∆ ln. The precautionary component of aggregate consumption

growth (i.e. the part of aggregate consumption growth that can be attributed to the precautionary

savings motive) is the third term on the RHS of the cross-sectional mean of eq.(9). It is given by

Ω ≡ 1
2
−1

∙³
−1
−1

´2¸
+ 1

2
(1 − )2

∙
−1

³
−1
−1

´2¸
. Note that the first term of Ω is

expected to be rather irrelevant empirically since the magnitude of the variance of the aggregate

earnings shock −1 is too small to have a discernable impact on aggregate consumption growth

under plausible values for the risk aversion parameter  (see e.g. Gourinchas and Parker, 2001).

Hence, I am mainly interested in the impact of the second term on aggregate consumption growth

which consists of the cross-sectional mean of individual earnings uncertainty (weighted by the

square of the individual earnings to consumption ratio).

3 The conditional variance of earnings

In this section micro data on earnings are used to estimate different specifications for the conditional

variance of individual earnings.

3.1 Data

Data for individual earnings are taken from Meghir and Pistaferri (2004).7 They use data from the

 over the period 1968−1993. The data refer to the period 1967−1992.8 Earnings are defined
as the labour portion of money income from all sources. Male heads aged between 25 and 55 are

selected if they have at least 9 years of successive usable earnings data. There are data for, in total,

2069 individuals ( = 2069). For every cross-section the series for nominal earnings is put in real

prices of 1983 by deflating it by the aggregate price index for expenditures on non-durable and

7For the data used in Meghir and Pistaferri’s paper: see supplemental material section (volume 72, 2004) of the

site http://www.econometricsociety.org. The variable used for nominal individual earnings is "laby" which can be

found in their STATA dataset file "Arch". Further details on the construction of the dataset can be found in the

appendix to their paper.
8As is common practice 1992 (the 1993 survey year) is the last year used since the methodology to conduct the

surveys changed drastically afterwards. Moreover, the survey became bi-annual from 1997 onward.
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services (excluding shoes and clothing) which is obtained from the . For the growth rates in

real earnings there are minimally 8 observations per cross section and maximally 25 and the sample

period is 1968− 1992 ( = 25). Just like the number of consecutive periods differs per individual
( where  = 1  2069 with 8 ≤  ≤ 25), the number of cross sections differs per period (

where  = 1968  1992 with 746 ≤  ≤ 1491). In total there are 31631 observations for log real
earnings while there are 29562 observations for the growth rate in real earnings ( = 29562).

In figure 1 I present the histogram of ln(). The distribution of log earnings is skewed to the

left and is characterized by kurtosis in excess of the kurtosis implied by a normal distribution. The

presence of a permanent component in log earnings, as modelled in section 2, can be inferred from

the autocorrelation function of ln(). It is presented in figure 3. As can be seen in the figure,

the autocorrelation function of log earnings dies out very slowly which is strongly suggestive of

the presence of a permanent (i.e. non-stationary) component. As a result, I shift the focus of

my analysis to the growth rates in earnings. In figure 2 I present the histogram of ∆ ln().

The unconditional distribution of the growth rate in earnings is not particularly skewed but it is

characterized by very high excess kurtosis. In the next section I model the conditional variance of

the growth rate in earnings through  processes (both standard and quadratic) to capture

the excess kurtosis in the unconditional distribution of ∆ ln() while maintaining the assumption

that the conditional distribution of ∆ ln() is normal. In figure 4 I present the correlogram of

∆ ln(). It strongly suggests that ∆ ln  follows an (1) process since the autocorrelation

function cuts off after lag 1 while the partial correlation function damps out more slowly. As such

in the next section I model the growth rate in earnings as an (1) process.

3.2 Estimating the conditional variance of earnings

With the micro data on earnings described in the last section I estimate the following system,

∆ ln e =  − −1 (10)

−1 = 2(1− − ) + 2−1 + −2−1 + −1 (11)

The variable ∆ ln e = ∆ ln  −∆ ln is the growth rate in purely individual earnings, i.e.
it is obtained after removing aggregate earnings growth with the use of time fixed effects (see e.g.

Abowd and Card 1989). Note that a preliminary test rejects the redundancy of time fixed effects.9

9A likelihood ratio test compares the likelihood of estimating ∆ ln  on a set of time dummies with the likelihood
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The (1) process for ∆ ln e presented in eq.(10) is frequently used in the literature to describe
earnings at the micro level (see e.g. MaCurdy 1982, Abowd and Card 1989, and Deaton 1992). No

cross section fixed effects are added since a preliminary test cannot reject their redundancy.10 As

noted in section 2 the shock  is a white noise error with unconditional variance 
2
. It is assumed

to be conditionally normally distributed and i.i.d. across consumers. The (1) parameter 

(0 ≤  ≤ 1) reflects the persistence of the earnings shock. In eq.(11) I specify the conditional

variance of  as a generalized quadratic  process, i.e. a (1 1) process (see

Sentana 1995). This is a very general process that nests the (1) process (Engle 1982), the

(1 1) process (Bollerslev 1986), and the (1) process (Sentana 1995) as special

cases. In particular when  =  = 0 the specification is (1), when  = 0 the specification

is (1 1), and when  = 0 the specification is (1). Note that while the shock 

is assumed to be conditionally normally distributed, its unconditional distribution is only normal

if  =  =  = 0, i.e. when  is i.i.d in time. When the conditional variance −1 is either

(1), (1), (1 1), or (1 1) the unconditional distribution of  is

not normal, i.e. it has excess kurtosis. Hence, modelling the conditional variance of  with such

a process helps to explain the observed excess kurtosis in annual earnings reported in section 3.1.

Also, it can be shown that excess kurtosis is higher in quadratic  specifications compared

to standard  models (see Sentana 1995). Moreover, the quadratic specifications (i.e. when

 6= 0) are interesting because they allow for asymmetric effects on the variance stemming from

positive versus negative earnings shocks. In particular, when   0 negative earnings shocks have

a larger impact on earnings uncertainty than positive shocks which supports economic intuition.

To ensure positivity of −1 the following parameter restrictions are imposed:   0,   0,

 +   1, and 2 ≤ (42(1−  − )) (see Sentana 1995). The condition  +   1 also serves

to ensure covariance stationarity of 2.

I estimate the system in eqs.(10)-(11) by maximum likelihood (). Under the assumption

that  is conditionally normally distributed the maximum likelihood estimator is consistent and

asymptotically normally distributed. As noted by Arellano (2003, p.23-27) to obtain consistent

estimates with maximum likelihood in a panel data context it is important to avoid incidental

parameter problems. This means that the likelihood should not depend on a subset of parameters

of estimating ∆ ln  on a constant only. The estimation method is panel OLS. The null hypothesis of redundant

time fixed effects is convincingly rejected (probability 0000)
10A likelihood ratio test compares the likelihood of estimating ∆ ln  on a set of cross section dummies with the

likelihood of estimating ∆ ln  on a constant only. The estimation method is panel OLS. The null hypothesis of

redundant cross section fixed effects cannot be rejected (probability 09999).
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whose number increases with the sample size. With respect to such incidental parameters, first, as

noted above, I find that cross section fixed effects in eq.(10) can be neglected since their redundancy

cannot be rejected. Second, there is no need to estimate a potentially large number of correlations

between cross sections since aggregate labour income growth has been removed from ∆ ln .

Hence, the variable ∆ ln e will not be correlated across consumers. Note that I calculate the
likelihood under the assumption that the cross sections are independent (see e.g. Cermeno and

Grier, 2006).11

The results from estimating eqs.(10)-(11) are presented in table 1. Results are presented for five

different specifications of −1: a constant (the i.i.d case), an (1) process, a (1)

process, a (1 1) process, and a (1 1) process. The results show that ()

type effects are present in individual earnings which supports and extends previous findings re-

ported by Meghir and Pistaferri (2004) even though the results are not directly comparable.12

From the Akaike information criterion () for model comparison it should be noted that the

(1 1) process is preferred over all other specifications. The parameter  in the 

and  specifications has a negative sign and is significant which suggests that negative

shocks in earnings increase uncertainty more than positive shocks even though the magnitude of

the effect is quite small. More interestingly, the estimations suggest that the conditional variance

of earnings is better captured by a  or  process than by an  or 

process. The sum of the estimates for  and  implies that the conditional variance of earnings

is quite persistent. For all four time-varying specifications an estimated time series b−1 is ob-
tained which will be used in the next sections to estimate the precautionary component and its

impact on aggregate consumption growth.

11The log likelihood is given by − 1
2
( ) ln(2 ∗ ) − 1

2


=1


=1

ln(−1) − 1
2


=1


=1

[∆ ln +−1]2
−1

where

 = 29562 , where  = 2069, where 8 ≤  ≤ 25, and where −1 is given by eq.(11). Note that I set the

initial values 20 and 0 equal to 
2, and I set the initial value 0 equal to 0.

12One difference is that Meghir and Pistaferri estimate  processes separately for the transitory and the

permanent shock to individual earnings.
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4 The conditional variance of earnings and aggregate con-

sumption growth

As seen in section 2.4 the precautionary component in aggregate consumption growth Ω depends

crucially on (the cross sectional mean of) the conditional variance of earnings −1. Before con-

ducting a full estimation of the model in section 5 this section carries out a preliminary exploration

of the impact of the cross-sectional mean of the estimated series b−1 on aggregate consumption
growth with the use of simple ordinary least squares () regressions.

4.1 Aggregate consumption growth

This paper focuses on the impact of precaution - measured through the conditional variance of

earnings - on aggregate consumption growth. Hence, data for consumption are needed. Data used

for  are real per capita expenditures on non-durables and services (excluding shoes and clothing).

This series is put in real prices of 1983 by deflating it by the aggregate price index for expenditures

on non-durable and services (excluding shoes and clothing). These data are obtained from the

. There is both an advantage and a disadvantage related to using aggregate consumption

data from the . The advantage of using  data is that aggregate data are available for a

long enough time span and hence also for the period 1968−1992 for which we have usable earnings
data from the . Alternatively, an aggregate series for consumption could be constructed

from micro data. The  however only reports food consumption which is not an adequate

consumption measure to test for precautionary savings. Therefore some papers have combined the

use of earnings data from the  with the use of consumption data from the  to study

precautionary savings (see Gourinchas and Parker 2002, Blundell et al. 2008). But data from the

 are only available from 1980 onward so that the use of these data would inevitably lead to

a 50% reduction of the sample size. Since the aim of this paper is an investigation of the impact

of time-varying earnings uncertainty on consumption a long enough time dimension is essential.

The disadvantage of using  data however is that National Accounts aggregate consumption

data are only available as arithmetic means of individual consumption levels. The growth rate in

aggregate consumption is then, by necessity, calculated as the difference in the logs of the arithmetic

means of individual consumption levels, i.e. as ∆ ln() where  is the cross-sectional mean

operator. In the consumption model presented in section 2.4 however, aggregate consumption

growth is obtained as the mean of the individual consumption growth rates. The growth rate in

12



aggregate consumption is then calculated as the difference in the logs of the geometric means of

individual consumption levels. The latter equals the difference in the arithmetic means of the logs

of individual consumption levels, i.e. ∆(ln ) which equals (∆ ln ). The difference between

both approaches is known as Theil’s entropy measure (see Attanasio and Weber 1993) which I

denote by ∆. It can be defined as

∆ ≡ ∆ ln()−∆(ln ) (12)

≡ ∆ ln()−(∆ ln )

Attanasio and Weber (1993) approximate ∆ by ∆ ≈ 1
2
∆2

 +
1
6
∆3

 +
1
24
∆4

 where 



is the period  centralized -th moment of the cross-sectional distribution of ln . Under the

assumption that the third and fourth moments of the cross-sectional distribution of ln  change

little from one period to the next then∆ ≈ 1
2
∆ where  is the cross-sectional variance of ln .

13

With these results I can partially correct the  based growth rate in aggregate consumption

by calculating aggregate consumption growth as ∆ ln = ∆ ln

 − 1

2
∆b where ∆ ln



is the growth rate in aggregate consumption as calculated from  aggregate consumption data

and b is the estimated variance of the cross-sectional distribution of ln . The latter has been
calculated with the use of  data over the period 1980− 1992 by Blundell et al. (2008). They
find that this variance increases with about 001 units over the period 1981 − 1985 and remains
fairly stable afterwards. Hence I set ∆b = 001 for the period 1981 − 1985 and ∆b = 0 for the
period 1986 − 1992. For the period before 1980 there are no available data so I assume ∆b = 0
also over the period 1968− 1980. Figure 5 shows ∆ ln

 - aggregate consumption growth as

calculated from  data - as well as ∆ ln - aggregate consumption growth partially corrected

for Theil’s entropy.

4.2 The cross-sectional mean of −1

The cross-sectional means of the time series estimated for the four different specifications of the

conditional variance −1 (, , , ) in section 3.2 are presented

in figure 6. As can be seen from this figure the evolution is very similar across the four cases.

In particular the difference between () on the one hand and its quadratic counterpart

() on the other hand is negligible. Three features, common to all series, are worth

13While, as Attanasio and Weber (1993) show, this assumption does not hold in quarterly data, the evolution of

the cross-sectional moments in annual data is expected to be much smoother (as evidenced by a comparison between

the evolution of the cross-sectional variance in annual data versus quarterly data).
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mentioning. First, the series are quite persistent (i.e. mean reversion is rather slow). This makes

sense given the high persistence found in b−1 as reported in section 3.2. Second, the series
fall during the eighties so that the reduction in the cross-sectional mean of individual earnings

uncertainty may provide an explanation for the decrease in the US personal saving rate observed

during that period (see also Parker and Preston 2005). Third, the humps and bumps in the

series follow a pattern similar to the one observed in the aggregate unemployment rate. When

regressing the cross-sectional mean of the conditional variances on the 1-period lagged aggregate

unemployment rate and a constant I find a significant positive effect, i.e. the null hypothesis of

insignificance is rejected with a p-value lower than 25% for all specifications used for −1.14

This provides support for studies that argue that individual earnings risk in the US economy is

countercyclical (see e.g. Storesletten et al. 2004).

4.3 Regressing aggregate consumption growth on the cross-sectional

mean of −1

With the estimated time series b−1 in hand it is possible to conduct regressions of the form,
∆ ln = 0 + 1

"
1



X
=1

b−1#+  (13)

where 0 denotes a constant, where  is an error term, and where the regressor
1


P

=1
b−1

is the sample counterpart of the population moment 
hb−1i where  is the number of cross

sections in the sample in period  (where  = 1968  1992). I estimate eq.(13) with  over the

period 1968− 1992. Consistent estimates for 0 and 1 are obtained if there is no autocorrelation

in  so that there is orthogonality between the regressor
1


P

=1
b−1 and the error term

. In tables 2 and 3 I report the results of estimating eq.(13) with four specifications of the

conditional variance −1 (i.e. , , , and ) used to calculate

the cross-sectional means.15 In table 2 no correction for Theil’s entropy is imposed on aggregate

consumption growth data (see section 4.1). In table 3 I do impose a correction for Theil’s entropy

14This result is obtained using simple  regressions with a Newey-West correction on the standard errors.

Data for the annual unemployment rate are taken from the US Bureau of Labor Statistics. The results are not

reported but are available from the author upon request.
15When  is i.i.d in time then −1 = 2 and the cross-sectional mean of −1 becomes a part of the

constant so that identifying the impact of earnings uncertainty on aggregate consumption growth in this case is not

feasible.
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on aggregate consumption growth data. I further report the 2 of the regression, the Akaike

information criterion () for model comparison, and the Durbin Watson ( ) test statistic.

From both tables I conclude, first, that the estimates for 1 are highly significant.
16 The signif-

icant impact of the estimated cross-sectional mean of individual earnings uncertainty on aggregate

consumption growth over the sample period suggests that precaution is a relevant determinant of

aggregate consumption growth (see also Parker and Preston 2005). Second, the 2 of the regres-

sions suggests that individual earnings uncertainty explains between 20% and 30% of the variance

of aggregate consumption growth over the sample period. Third, the regressions conducted with

Theil’s entropy correction suggest that individual earnings uncertainty is somewhat less important

for aggregate consumption growth when a theoretically more adequate measure for aggregate con-

sumption growth is used. The differences between the results reported in tables 2 and 3 are rather

modest however. In figures 7 and 8 I compare actual aggregate consumption growth (without

Theil’s entropy correction in figure 7, with Theil’s entropy correction in figure 8) with aggregate

consumption growth as fitted from the estimation of eq.(13) (for the preferred  case).

The figure supports the findings reported in tables 2 and 3, i.e. that the cross-sectional mean of

the estimated individual earnings uncertainty explains an important fraction of the variance of

aggregate consumption growth.

5 Estimation of the model

While the estimation of eq.(13) provides preliminary evidence that individual earnings uncertainty

has a significant impact on aggregate consumption growth it does not constitute a complete estima-

tion of the model. The reason is that important additional determinants of aggregate consumption

growth (i.e. the ratio of earnings to consumption which interacts with the conditional variance of

earnings, the interest rate, and aggregate uncertainty) are not included in eq.(13). In this section

I fully estimate the model which can be summarized by

∆ ln = (∆ ln ) (14)

16Note that the reported standard errors are not corrected for the fact that the regressor 1



=1

−1 in
eq.(13) is generated from the first stage estimation reported in section 3.2. From table 1 it is clear that the first

stage estimation of the individual earnings process is rather precise so that little impact is expected on the second

stage estimated standard errors. In the next section (section 5 below) a full-blown estimation of the model is

conducted and the second stage standard errors are corrected for first stage estimation.
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where  is the cross-sectional mean operator and where ∆ ln  is given by eq.(9) which is repeated

here for convenience,

∆ ln  =
1


+

1


xδ+

1

2

£
−1 + (1− )2−1

¤µ−1
−1

¶2
+[ + (1− )]

µ
−1
−1

¶
(15)

Estimates need to be obtained for the structural preference parameters  and δ as well as

for the precautionary component in aggregate consumption growth which I denoted previously by

Ω ≡ 1
2
−1

∙³
−1
−1

´2¸
+ 1

2
(1− )2

∙
−1

³
−1
−1

´2¸
.

5.1 Estimation method

I rewrite eq.(14) as,

 [(Υ)] = 0 (16)

where (Υ) =
h
1(Υ)  (Υ)   (Υ)

i0
with (Υ) = ∆ ln (Υ) − ∆ ln for

 = 1   - or, interchangeably, for  = 1968  1992. Eq.(14) thus constitutes a set of  = 25

population moment conditions which are assumed to hold at the true parameter vector Υ. The

Generalized Method of Moments () approach by Hansen (1982) suggests to replace the pop-

ulation moment conditions in eq.(16) by the sample moment conditions (Υ) =
1


P

=1 (Υ).

In the general case where the number of moment conditions exceeds the number of parameters a

 estimator bΥ is obtained from
bΥ = argmin

Υ
(Υ)0(Υ) (17)

where (Υ) = [1(Υ) (Υ)]
0
and where  is a  weighting matrix. Under some regu-

larity conditions the  estimator is consistent and asymptotically normally distributed. It

is asymptotically efficient if  = −1 where  is the variance-covariance matrix of the moment

conditions, i.e.  = [(Υ)(Υ)0]. This matrix can only be estimated with an initial consistent

estimate of the parameter vector. Such a first step consistent  estimate bΥ(1) is obtained
by setting  =  (i.e. the identity matrix) in eq.(17). When estimating eq.(17) with  = b−1
the second step  estimate bΥ(2) is obtained. When presenting the results I report both the
first step and second step  estimates. I also report the test for overidentifying restrictions

which tests the validity of the moment conditions for both the first step and second step 

estimators. The calculation of this test statistic is presented in appendix C.1. The calculation of

the first step and second step asymptotic standard errors of the  estimator is presented in

appendix C.2.
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Two complications must be addressed.

The first complication arises from the fact that individual consumption growth∆ ln  in eq.(15)

depends on lagged individual consumption −1 which is unobserved.17 While in general −1 can

be calculated from the growth rate∆ ln −1 an initial value 0−1 is still needed where −1 pertains
to different years for different consumers since the panel is unbalanced and the sample starts in

different years for different individuals. The best guess is 0−1 = (−1). Hence, I assume that

the initial value of consumption for individual  for whom the sample starts in period  equals the

mean of the cross-sectional distribution of consumption in period − 1. Of course, the period − 1
mean of the cross-sectional distribution of consumption equals aggregate per capita consumption

in period − 1, i.e. (−1) = −1.18 19 With repeated backward substitution it is then possible

to get rid of past values of  in eq.(15) so that, in the end, ∆ ln  does not depend on past values

of  but only on one past value of  which is observed. As a result the moment conditions 

are known deterministic functions of observed data and parameters only and  can still be

applied.

The second complication is that, mainly due to computational complexity, not all the para-

meters in the parameter vector Υ can be estimated simultaneously. In particular, the parameters

of the earnings process are estimated in a first stage. I consider the following three subvectors

of parameters. The first subvector Φ contains the parameters of the individual earnings process

∆ ln e = ∆ ln −∆ ln = − −1, i.e. the parameters of the system given by eqs.(10)-(11).

This vector is Φ = (  2    )
0. Estimation of these parameters has been detailed in

section 3.2. From the estimated parameters I obtain the estimated time series b and b−1. The
second subvector Γ contains the parameters of the aggregate earnings process∆ ln = Λ = +.

This vector is (  2 )
0. Estimation of this vector is discussed in appendix B. It should be noted

that no time-variation was detected in the (conditional) variance of the aggregate earnings shock 

so that only the unconditional variance 2 is estimated. From the estimated parameters I obtain

the estimated time series b. The third subvector Ψ contains the structural preference parameters
from the consumer optimization problem. This vector is Ψ = (  δ )

0. These parameters still

17The limitations of using micro data for  in our set-up have been discussed in the introduction and in section

4.1.
18The error that this initialization introduces in individual consumption growth rates over the periods after

initialization is purely idiosyncratic and can be expected to disappear upon aggregation across consumers.
19As discussed in section 4.1 the use of  data for ∆ ln to test the condition ∆ ln = (∆ ln ) can be

problematic. This is not so when using  data for  in the case  = () however as both the  data

and the moment condition in this case are based on arithmetic means of .
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need to be estimated. Since the parameters Φ and Γ are estimated in a first stage, the parameter

vector Υ in the above  set-up can be written as Υ = (Ψ|bΦ bΓ). The implication is that
∆ ln  used in the construction of the moment conditions  depends on a number of previously

estimated parameters and time series, i.e.

∆ ln  =
1


 +

1


xδ+

1

2

hb2 + (1− b)2 b−1iµ−1−1

¶2
+
hb + (1− b)biµ−1

−1

¶
(15’)

where b indicates that variables or time series are obtained from prior estimation. Since Φ and

Γ are consistently estimated in the first stage this does not affect the consistency and asymptotic

normality characteristics of the  estimator used to estimate Ψ. However, the asymptotic

standard errors calculated for bΨ need to be corrected for the fact that bΦ and bΓ are not known
with certainty but are estimated. The calculation of these corrected standard errors is presented

in appendix C.3.

5.2 Results

This section discusses the results of estimating eqs.(14)-(15’) by  as explained in the previous

section. This estimation leads to estimates for  and δ. From this the precautionary component

in aggregate consumption growth can be estimated, i.e. bΩ ≡ b12b2 ∙ 1


P

=1

³
−1
−1

´2¸
+ b1

2
(1−

b)2 ∙ 1


P

=1

µb−1 ³−1−1

´2¶¸
.

In section 5.2.1 I estimate the model without preference shifters so that no data for x are

needed. In section 5.2.2 I do estimate the model with preference shifters and hence with data for

x which are taken from the . In both sections the estimates b−1, b, and b as well as
values for the parameters b2 and b are obtained from the first stage estimation detailed in section

3.2.

For ∆ ln I use real per capita aggregate consumption growth partially corrected for Theil’s

entropy as discussed in section 4.1. For  I use individual earnings as described in section 3.1.

For  I use the real 3 month Treasury Bill rate for the US as provided by International Financial

Statistics ( ).20

20 It is put in real terms with use of the inflation rate as calculated from the deflator for expenditures on non-

durables and services (excluding shoes and clothing) with base year 1983.
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5.2.1 Specification without preference shifters

Assuming in eq.(15’) that x is a scalar equal to −1 implies that δ is a scalar as well. This gives,

∆ ln  =
1


 − 1


+

1

2

hb2 + (1− b)2 b−1iµ−1−1

¶2
+
hb + (1− b)biµ−1

−1

¶
(15”)

This is the more familiar expression for consumption growth where  ( 0) captures time

preference. Two parameters need to be estimated, i.e.  and . The results of estimating eqs.(14)-

(15”) with four different specifications for −1 - an (1) process, a (1) process,

a (1 1) process, and a (1 1) process - are presented in table 4.21 I present

both the first step and second step  estimates. The reported standard errors are corrected

for the first stage estimation of the individual and aggregate earnings processes. The degrees of

freedom of the reported test for overidentifying restrictions always equal 23 since the number of

moment conditions equals  = 25 and the number of estimated parameters equals 2. The estimated

precautionary component bΩ corresponding to each case presented in table 4 is presented in figure
9.

The estimates for the coefficient of relative risk aversion  have theoretically plausible values, are

significant, and have magnitudes that are in accordance with values reported in the literature (see

e.g. Banks et al. 2001). The same is true for the estimates of the degree of time preference . The

second step estimation which is based on an optimal weighting matrix gives somewhat higher

estimates for  and lower estimates for  compared to the first step  estimation which equally

weighs moment conditions (i.e. time periods). The estimates are quite similar across the different

specifications used for −1 however. This is also reflected by the precautionary components

estimated for each specification used for −1 and presented in figure 9. All show a very similar

evolution. This evolution is characterized by a steady decline over the period 1969−1992 (the year
1968 is clearly affected by initialization and should be ignored).22 A decrease in the importance

of precaution for aggregate consumption growth over the period 1982 − 1997 is also reported by
Parker and Preston (2005) using a decomposition of US aggregate consumption growth based on

 data. During the 1970s the precautionary component bΩ shows a cyclical evolution that can
21The reason that the precautionary component is not calculated when  is i.i.d in time (i.e. when −1 = 2)

is that in this case time-variation in the precautionary component depends solely on time-variation in the cross-

sectional mean of

−1
−1

2
. There may be reasons unrelated to precaution why this variable affects aggregate

consumption growth.
22This decrease is caused by the following mechanism: the estimated values for the parameters  and  are such

that consumption tends to grow somewhat faster than income leading to a reduction over time of the ratio
−1
−1

which results in a decline of Ω.
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be linked to the evolution of the cross-sectional mean of b−1, i.e. the correlation between both
is significantly positive (with values between 055 and 060 depending on the case).23 During the

1980s this cyclical behaviour is much less pronounced.

The test statistic for overidentifying restrictions is lower for the  and 

specifications used for −1 compared to the  and  specifications which suggests

that the generalized specifications lead to a better fit of the model. In all cases, however, the

overidentifying restrictions are rejected. From a statistical viewpoint this is not surprising since

25 moment conditions are expected to hold with only 2 parameters. Similar rejections have been

reported by Gourichas and Parker (2002).

5.2.2 Specification with preference shifters

The estimation of a more elaborate specification with preference shifters allows to control for

aggregation biases that may result from an incomplete specification.24 I estimate eqs.(14)-(15’)

with two preference shifters included in x. First, as household characteristics can be assumed

to shift the preference for a given level of consumption, following Parkler and Preston (2005), I

use household size as the first preference shifter (1). Second, to allow for non-separabilities in

the utility function between consumption and hours worked, I add the log of hours worked of

the household head as a second preference shifter (2). Other preference shifters were included

(e.g. number of children) but were found to be insignificant. Since x is a 12 vector, i.e. x =h
1 2

i
, then δ is a 21 estimable parameter vector, i.e. δ =

h
1 2

i0
. The estimation

results of this extended model are presented in table 5 where again both the first step and second

step  estimates are reported. The reported standard errors are again corrected for the first

stage estimation of the individual and aggregate earnings processes. The degrees of freedom of the

reported test for overidentifying restrictions always equal 22 since the number of moment conditions

23When compared to the business cycle the precautionary component is somewhat lagging, i.e. it remains high

some time after the recession. This can be explained as follows: by the end of the recession in period  − 1 the
variable −1 has fallen leading to slower consumption growth and a relatively low consumption level −1.

Hence, a relatively high ratio
−1
−1

in period  − 1 leads to a relatively high precautionary component Ω in the
period after the recession.
24There are other potential sources of aggregation bias. First, there may be discrepancies between model based

and  based aggregate consumption growth resulting from Theil’s entropy. This was discussed and dealt with in

section 4.1. Second, there may be measurement error in aggregate consumption data. Applying filtering techniques

on aggregate consumption data as in Sommer (2007) I find that classical measurement error, while important in

quarterly data, is not an issue in annual data.
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equals  = 25 and the number of estimated parameters equals 3. The estimated precautionary

component bΩ corresponding to each case presented in table 5 is presented in figure 10.
The results from table 5 largely confirm the findings reported in table 4. The estimates for the

coefficient of relative risk aversion  have theoretically plausible values, are significant, and have

magnitudes that are in accordance with values reported in the literature. They are somewhat higher

compared to those reported in table 4. The estimated precautionary components bΩ presented in
figure 10 again all show a very similar evolution. Similar to the components presented in figure 9

they show a steady decline. Their cyclical evolution is considerably more outspoken however. To

conclude, the finding of significant and plausible risk aversion estimates as well as an important

precautionary component in aggregate consumption growth seems to be robust across different

specifications of the model.

6 Conclusions

This paper investigates the effects of precautionary savings motives on aggregate consumption

dynamics by explicitly allowing for time-variation in earnings uncertainty. In the first step of

the empirical analysis estimates for the time-varying earnings uncertainty of households in the

economy are obtained with earnings data from the Panel Study of Income Dynamics () for

individual households in the US over the period 1968− 1992. In a second step the cross-sectional
mean of the estimated conditional variance of earnings over all households in the sample is used as

a regressor in equations of aggregate consumption growth to find out whether average individual

earnings uncertainty in the economy affects aggregate consumption dynamics. In a third step the

consumption model is estimated by  methods. This provides estimates for the structural

model parameters and estimates for the precautionary component, i.e. the part of aggregate

consumption growth that can be attributed to the precautionary savings motive.

The results of the paper suggest, first, that the conditional variance of individual earnings

can be accurately modelled by  type processes. Second, the cross-sectional mean of the

estimated time-varying conditional variance of individual earnings is found to have a significant

impact on aggregate consumption growth suggesting that earnings uncertainty and precautionary

saving motives matter for the aggregate economy. Third, the estimation of the consumption

model provides an estimated precautionary component in aggregate consumption growth. This

component is correlated with individual earnings uncertainty, in particular during the 1970s, and

shows a steady decline over the sample period.
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Appendix A.1: Derivation of eq.(2)

I write eq.(1) as,

(1 +) exp(xδ)−1() = 1 (A1)

where  =
³


−1

´−
. Note that ln  = −∆ ln . If, as I assume, ∆ ln  is conditionally

normally distributed, then ln  is also conditionally normally distributed. This implies that  is

conditionally lognormally distributed. As such I can write,

−1() = exp
∙
−1(ln ) +

1

2
−1(ln )

¸
(A2)

Substituting eq.(A2) into eq.(A1) and taking logs of both sides of the resulting equation gives,

 + xδ+−1(ln ) +
1

2
−1(ln ) = 0 (A3)

where I use the approximation ln(1 + ) ≈ . Substituting ln  = −∆ ln  into eq.(A3)
and rearranging leads to eq.(2) in the main text.

Appendix A.2: Derivation of eq.(8)

For small values of the interest rate the results by Deaton (1992, p.110) suggest that with the

earnings process given by eq.(7) - i.e. ∆ ln  =  +  +  − −1 or equivalently ∆ =

( +  +  − −1)−1 - the innovation to the change in consumption can be approximated

by ( + (1 − ))−1. Then the innovation to the growth rate in consumption can be written

as  = ( + (1− ))
³
−1
−1

´
.
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Appendix B: Estimation of the aggregate earnings process

From section 2 the growth rate in aggregate earnings ∆ ln = Λ = ∆ ln  −∆ ln e is asumed
to follow a martingale with drift, i.e.,

∆ ln = +  (B1)

where  is a constant drift term, and where  is the aggregate shock to earnings which is

assumed to be  in time. It has mean zero and variance equal to 2. The asssumption of

-ness of  is based upon preliminary regressions with () type specifications for the

conditional variance −1. These suggest that there is no time-variation in −1. Hence

−1 = 2 and the unconditional distribution of  is Gaussian. I use  to estimate the

parameters  and 2.
25 A time series for ∆ ln is obtained by filtering out the time fixed effects

Λ from individual earnings growth ∆ ln . Data for the latter variable are obtained from the

 and are discussed in section 3.1. There are two advantages of using this series for ∆ ln

instead of using data from the . First, with  data earnings (or labour income) have to

be inferred from total income and this can be an arbitrary process. Second, and more importantly,

 data on aggregate income are only available as arithmetic means of individual income levels.

The growth rates in income are then calculated as the difference in the logs of the arithmetic means

of individual income levels, i.e. as ∆ ln() where  is the cross-sectional mean operator. In the

model however (see section 2.2) the growth rate in aggregate earnings is obtained as the mean of

individual earnings growth rates. The growth rate in aggregate earnings is then calculated as the

difference in the logs of the geometric means of individual earnings levels. The latter equals the

difference in the arithmetic means of the logs of individual earnings levels, i.e. ∆(ln ) which

equals (∆ ln ). As is also discussed in section 4.1 on consumption, the difference between both

- ∆ ln() versus (∆ ln ) - can be substantial and need not be constant.

The obtained estimates for the aggregate earnings process are b = 0017 (with Hessian based
standard error 0006) and b2 = 0001 (with Hessian based standard error 00003). The magnitude
of the variance of the aggregate earnings shock is rather small (e.g. compared to the magnitude of

the variance of shocks to individual earnings as reported in table 1) and, as noted in section 2.4,

too small to have much of an impact on aggregate consumption growth and precautionary savings.

This explains why the paper focuses mostly on the impact of individual earnings uncertainty on

aggregate consumption growth.

25The log likelihood is given by −1
2
( ) ln(2 ∗ )− 1

2


=1

ln(2)− 1
2


=1

[∆ ln−]2
2

where  = 25.

25



Appendix C: Technical details of the GMM estimation

Appendix C.1: Test for overidentifying restrictions (steps 1 and 2)

The general form of the test for overidentifying restrictions - i.e. for any weighting matrix  - is

given by,

 =
h√
N • (bΥ)i0 () h√N • (bΥ)i (C1.1)

where
√
N =

³ √
1 

√


´0
with  denoting the number of cross-sections in the

sample in period  (where  = 1   or, interchangeably,  = 1968  1992), where • denotes
the Hadamard product operator, where (bΥ) = h

1(bΥ) (bΥ)i0 contains the sample moment
conditions evaluated at bΥ, where  denotes pseudo-inversion, and where

 =
h
 − (bΥ) h(bΥ)0(bΥ)i (bΥ)0i b h − (bΥ) h(bΥ)0(bΥ)i (bΥ)0i0

(C1.2)

where b is the estimated variance-covariance matrix of the moment conditions.26 Note that


∼ 2 with degrees of freedom equal to the number of moment conditions minus the number of

estimated parameters. Note that bΥ = (bΨ|bΦ bΓ), i.e. only Ψ is estimated while Φ and Γ are obtained
from prior estimation. As such the number of parameters equals the dimension of Ψ. The first

step GMM estimator bΥ(1) is obtained with  =  and the corresponding test for overidentifying

restrictions is given by substituting  =  and bΥ = bΥ(1) = (bΨ(1)|bΦ bΓ) into eqs.(C1.1)-(C1.2) to
obtain,

(1) =
h√
N • (bΥ(1))i0 () h√N • (bΥ(1))i

with

 =
h
 − (bΥ(1)) h(bΥ(1))0(bΥ(1))i (bΥ(1))0i b h − (bΥ(1)) h(bΥ(1))0(bΥ(1))i (bΥ(1))0i0

It should be noted that b is calculated with the first step estimator bΥ = bΥ(1). The second step
GMM estimator bΥ(2) = (bΨ(2)|bΦ bΓ) is obtained with  = b−1 in which case eq.(C1.1) simplifies
to

(2) =
h√
N • (bΥ(2))i0 h√

N • (bΥ(2))i
where  = b−1.
26The estimated variance-covariance matrix of the moment conditions  is a  matrix where each element (with  = 1   and  = 1   ) is given by  = 1




=1 (∆ ln (

Υ)−∆ ln)(∆ ln (Υ)−∆ ln)

where  equals the number of cross-sections that are in the panel both at time  and at time . When  = 

then  =  = .

26



Appendix C.2: Asymptotic standard errors for GMM estimation (steps

1 and 2)

Since bΥ = (bΨ|bΦ bΓ) - i.e. only Ψ is estimated while Φ and Γ are obtained from prior estimation -

the estimated asymptotic variance-covariance matrix of the GMM estimator bΥ is given by,
bΨ = [(Ψ)0 (Ψ)]

−1
(Ψ)

0 b (Ψ) [(Ψ)
0 (Ψ)]

−1
(C2.1)

where bΨ has a dimension equal to the number of elements in Ψ, where b is the estimated variance-
covariance matrix of the moment conditions, and where Ψ =

³√
NΨ

´
•
³
(Υ)
Ψ0

´
with (bΥ) contain-

ing the sample moment conditions evaluated at bΥ, with • being the Hadamard product operator,
and with

√
NΨ being a matrix with number of columns equal to the number of elements in Ψ

and with each column equal to the vector
√
N. For example, if Ψ contains 2 parameters,  and

, then
(Υ)
Ψ0 =

⎡⎣ 1


 


1


 


⎤⎦0 and √NΨ =
⎡⎣ √1 

√


√
1 

√


⎤⎦0. The first step variance-
covariance matrix bΨ(1) is given by substituting  =  and bΥ = bΥ(1) = (bΨ(1)|bΦ bΓ) into eq.(C2.1)
to obtain, bΨ(1) = [(Ψ)0(Ψ)]−1 (Ψ)0 b(Ψ) [(Ψ)0(Ψ)]−1
where Ψ =

³√
NΨ

´
•
µ
(Υ(1))
Ψ0

¶
. It should be noted that b is calculated with the first step

estimator bΥ = bΥ(1). The second step variance-covariance matrix bΨ(2) is given by substituting
 = b−1 and bΥ = bΥ(2) = ( bΨ(2)|bΦ bΓ) into eq.(C2.1) to obtain,

bΨ(2) = [(Ψ)0 (Ψ)]
−1

where  = b−1 and where Ψ = ³√NΨ´ •µ(Υ(2))
Ψ0

¶
.

Appendix C.3: Corrected asymptotic standard errors for two stage esti-

mation

The asymptotic standard errors for bΨ as calculated from the estimated asymptotic variance-

covariance matrices bΨ(1) or bΨ(2) in Appendix C.2 are not corrected for the fact that the parame-
ters bΦ and bΓ are not known with certainty but are obtained from prior estimation. Following Gour-
inchas and Parker (2002, Appendix B, equation 17) the following "corrected" variance-covariance

matrix of the moment conditions for the GMM estimator bΨ can be used,
b = b∗ + Φ bΦ0Φ + Γ bΓ0Γ (C3.1)
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The matrix b∗ is the estimated "uncorrected" variance-covariance matrix of the moment con-
ditions.

The first correction is given by the term ΦbΦ0Φ and is used to correct for the prior estimation
of the parameters of the individual earnings process Φ = (  2    )

0 as detailed in

section 3.2. The matrix Φ is given by Φ =
³√
NΦ

´
•
³
(Υ)
Φ0

´
where (bΥ) contains the sample

moment conditions evaluated at bΥ, where • is the Hadamard product operator, and where √NΦ
is a matrix with number of columns equal to the number of elements in Φ and with each column

equal to the vector
√
N. The matrix bΦ is the estimated asymptotic variance-covariance matrix

for the maximum likelihood estimate bΦ obtained in the first stage.
The second correction is given by the term Γ bΓ0Γ and is used to correct for the prior estimation

of the parameters of the aggregate earnings process (  2 )
0 as detailed in Appendix B. The

matrix Γ is given by Γ =
³√
NΓ

´
•
³
(Υ)
Γ0

´
where (bΥ) contains the sample moment conditions

evaluated at bΥ, where • is the Hadamard product operator, and where √NΓ is a matrix with
number of columns equal to the number of elements in Γ and with each column equal to the vector
√
N. The matrix bΓ is the estimated asymptotic variance-covariance matrix for the maximum

likelihood estimate bΓ obtained in the first stage.
In Gourinchas and Parker’s correction the first stage and second stage estimators are both

 estimators. It is therefore important to note that the first stage  estimator for Φ

(respectively Γ) is equivalent to an exactly identified  estimator, i.e. maximization of the

log likelihood with respect to Φ (respectively Γ) leads to a number of first-order conditions which are

basically moment conditions. The number of moment conditions equals the number of parameters

in Φ (respectively Γ). Furthermore, it can be shown that the estimated asymptotic variance-

covariance matrix of the  estimator is identical to that of the equivalent exactly identified

 estimator.

Finally it should be noted that b is calculated with the first step estimator bΥ = bΥ(1). As noted
before the "uncorrected" b∗ is calculated with the first step estimator bΥ = bΥ(1) and this also holds
for the matrices Φ and Γ. To obtain the "corrected" tests for overidentifying restrictions and the

"corrected" asymptotic standard errors for the first and second step GMM estimator of Ψ it then

suffices to use b as defined in eq.(C3.1) into the expressions for (1) and (2) derived in Appendix

C.1 and into the expressions for bΨ(1) and bΨ(2) derived in Appendix C.2.
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Tables and figures

Table 1. Panel maximum likelihood estimation of eqs.(10)-(11) for different specifications of the

conditional variance −1 (1968− 1992)
    

 0.391 0.345 0.340 0.341 0.330

(0.006) (0.008) (0.008) (0.009) (0.008)

2 0.099 0.166 0.165 0.137 0.135

(0.001) (0.005) (0.005) (0.003) (0.003)

 - 0.716 0.712 0.400 0.392

(0.009) (0.009) (0.009) (0.009)

 - - - 0.491 0.497

(0.011) (0.011)

 - - -0.076 - -0.066

(0.004) (0.003)

 0.517 0.246 0.236 0.183 0.165

Notes: Hessian based standard errors between brackets.  denotes the Akaike information criterion

of model comparison (lower values of  are preferred).
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Table 2. Ordinary least squares estimation of eq.(13) for different specifications of the

conditional variance −1 (1968− 1992) - Results without Theil’s entropy correction on ∆ ln

   

0 -0.015 -0.015 -0.028 -0.028

(0.010) (0.010) (0.013) (0.013)

1 0.308 0.311 0.459 0.467

(0.074) (0.075) (0.106) (0.111)

2 0.231 0.232 0.285 0.285

 -5.990 -6.017 -6.089 -6.090

 1.529 1.537 1.645 1.658

Notes: Newey-West standard errors between brackets.  denotes the Akaike information criterion

of model comparison (lower values of  are preferred).  denotes the Durbin Watson test statistic.

Table 3. Ordinary least squares estimation of eq.(13) for different specifications of the

conditional variance −1 (1968− 1992) - Results with Theil’s entropy correction on ∆ ln

   

0 -0.011 -0.012 -0.023 -0.024

(0.011) (0.011) (0.014) (0.014)

1 0.269 0.272 0.408 0.419

(0.078) (0.079) (0.114) (0.118)

2 0.174 0.175 0.222 0.226

 -5.930 -5.932 -5.990 -5.995

 1.367 1.374 1.463 1.479

Notes: Newey-West standard errors between brackets.  denotes the Akaike information criterion

of model comparison (lower values of  are preferred).  denotes the Durbin Watson test statistic.
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Table 4. GMM estimation of eqs.(14)-(15”) - model without preference shifters - for different

specifications of the conditional variance −1 (1968− 1992)

   

First step GMM estimates

 1.618 1.611 1.657 1.622

(0.201) (0.195) (0.247) (0.247)

 0.053 0.052 0.050 0.049

(0.008) (0.008) (0.008) (0.008)

 439.2 443.9 414.9 417.6

Second step GMM estimates

 1.746 1.746 1.817 1.792

(0.093) (0.091) (0.098) (0.093)

 0.042 0.041 0.036 0.035

(0.006) (0.006) (0.006) (0.006)

 445.1 450.2 420.1 423.1

Notes: Asymptotic standard errors between brackets. The standard errors are corrected for the first

stage estimation of the individual and aggregate earnings processes as detailed in appendix C.3. Test

denotes the test statistic of the test for overidentifying restrictions. With degrees of freedom equal to 23

(i.e. 25 moment conditions minus 2 estimated parameters) the critical value at 5% is 35.2.
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Table 5. GMM estimation of eqs.(14)-(15’) - model with preference shifters - for different

specifications of the conditional variance −1 (1968− 1992)

   

First step GMM estimates

 1.804 1.807 1.839 1.804

(0.238) (0.235) (0.312) (0.310)

1 -0.019 -0.020 -0.017 -0.018

(0.009) (0.009) (0.011) (0.012)

2 0.002 0.002 0.002 0.002

(0.004) (0.004) (0.005) (0.005)

 417.7 419.7 368.6 361.0

Second step GMM estimates

 1.921 1.937 2.196 2.220

(0.133) (0.134) (0.174) (0.171)

1 -0.024 -0.025 -0.033 -0.036

(0.006) (0.006) (0.007) (0.007)

2 0.005 0.005 0.009 0.010

(0.002) (0.002) (0.003) (0.003)

 426.2 428.9 389.3 386.8

Notes: Asymptotic standard errors between brackets. The standard errors are corrected for the first

stage estimation of the individual and aggregate earnings processes as detailed in appendix C.3. Test

denotes the test statistic of the test for overidentifying restrictions. With degrees of freedom equal to 22

(i.e. 25 moment conditions minus 3 estimated parameters) the critical value at 5% is 33.9.

32



Figure 1: The unconditional distribution of ln()
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Figure 2: The unconditional distribution of ∆ ln()
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Figure 3: Autocorrelations and partial correlations of ln() at lag lengths 1-12

Figure 4: Autocorrelations and partial correlations of ∆ ln() at lag lengths 1-12
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Figure 5: Aggregate consumption growth with and without Theil’s entropy correction (1968−1992)
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Figure 6: The cross-sectional mean of b−1 for different specifications of the conditional variance
−1 (1968− 1992)
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Figure 7: Fitted and actual aggregate consumption growth from estimation of eq.(13) with a

 specification used for −1 (1968−1992) - Results without Theil’s entropy correction
on ∆ ln (see table 2)
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Figure 8: Fitted and actual aggregate consumption growth from estimation of eq.(13) with a

 specification used for −1 (1968 − 1992) - Results with Theil’s entropy correction
on ∆ ln (see table 3)
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Figure 9: The estimated precautionary component bΩ for different specifications of the conditional
variance −1 (1968−1992) - Results from the model without preference shifters (table 4, second
step GMM estimates)
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Figure 10: The estimated precautionary component bΩ for different specifications of the conditional
variance −1 (1968− 1992) - Results from the model with preference shifters (table 5, second

step GMM estimates)
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