
Vaisman, Radislav; Botev, Zdravko; Ridder, Ad

Working Paper

Sequential Monte Carlo for Counting Vertex Covers in
General Graphs

Tinbergen Institute Discussion Paper, No. 13-122/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Vaisman, Radislav; Botev, Zdravko; Ridder, Ad (2013) : Sequential Monte Carlo
for Counting Vertex Covers in General Graphs, Tinbergen Institute Discussion Paper, No. 13-122/III,
Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/87255

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87255
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

TI 2013-122/III
Tinbergen Institute Discussion Paper

Sequential Monte Carlo for counting Vertex
Covers in General Graphs

Radislav Vaisman1

Zdravko I. Botev2

Ad Ridder3

1 Israel Institute of Technology, Haifa, Israel;
2 The University of New South Wales, Sydney, Australia;
3 Faculty of Economics and Business Administration, VU University Amsterdam, and Tinbergen
Institute, The Netherlands.

Tinbergen Institute is the graduate school and research institute in economics of Erasmus University
Rotterdam, the University of Amsterdam and VU University Amsterdam.

More TI discussion papers can be downloaded at http://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 1600

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the
ambition to support innovative research and offer top quality academic education in core areas of
finance.

DSF research papers can be downloaded at: http://www.dsf.nl/

Duisenberg school of finance
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 8579

Sequential Monte Carlo
for Counting Vertex Covers in General Graphs

Radislav Vaismana, Zdravko I. Botevb, Ad Ridderc

a Faculty of Industrial Engineering and Management,
Technion, Israel Institute of Technology, Haifa, Israel

slava@tx.technion.ac.il

b The University of New South Wales,
Sydney, NSW 2052, Australia

botev@unsw.edu.au

c Faculty of Economics and Business Administration,
Vrije University, Amsterdam, The Netherlands

ad.ridder@vu.nl

August 16, 2013

Abstract

In this paper we describe a Sequential Importance Sampling (SIS) pro-
cedure for counting the number of vertex covers in general graphs. The
performance of SIS depends heavily on how close the SIS proposal distri-
bution is to a uniform one over a suitably restricted set. The proposed
algorithm introduces a probabilistic relaxation technique that uses Dy-
namic Programming in order to efficiently estimate this uniform distribu-
tion. The numerical experiments show that the scheme compares favorably
with other existing methods. In particular the method is compared with
cachet - an exact model counter, and the state of the art SampleSearch,
which is based on Belief Networks and importance sampling.

Keywords. Vertex Cover, Counting problem, Sequential importance sampling,
Dynamic Programming, Relaxation, Random Graphs.

1

1 Introduction

In graph theory, a vertex cover of a graph is a set of vertices such that each
edge of the graph is incident to at least one vertex of the set. The problem of
finding a minimum vertex cover is NP-hard. In this article we are interested in
approximately counting all vertex covers in a graph using Monte Carlo meth-
ods. The area of counting, and the corresponding definition of ♯P complete class
introduced by Valiant [15], has received much attention in the computer sci-
ence community. Efficient algorithms have only been found for some problems.
For example, Karp and Lubby [11] introduced a fully polynomial randomized
approximation scheme (FPRAS) for counting the solutions of disjunctive nor-
mal form (DNF) satisfiability formula. Similar results were obtained for the
knapsack and permanent counting problems, see [4, 9].

Unfortunately, there are negative results [5, 14], showing that counting the
number of vertex covers remains hard even when restricted to planar bipartite
graphs of bounded degree or regular graphs of constant degree.

There are two Monte Carlo approaches to tackling such difficult counting
problems. The first is Markov Chain Monte Carlo (MCMC) and the second is
sequential importance sampling. Both approaches exploit the finding of Jerrum
et. al. [10] that counting is equivalent to uniform sampling over a suitably
restricted set.

MCMC methods sample from such restricted regions by constructing an
ergodic Markov Chain with stationary and limiting distribution equal to the
desired uniform distribution. A number of MCMC approaches with good em-
pirical performance have been proposed, see [8].

In this article we focus on the SIS approach in much the same sprit as
Chen et al. [2]. In addition to [2], there are many examples of successful SIS
implementations on various counting problems, see, for example, [1, 11]. The
motivation of this article is to find a successful application of SIS to yet another
important counting problem — counting the number of vertex covers of a graph.

The rest of the paper is organized as follows: In Section 2 we introduce
the probabilistic relaxation to the vertex cover problem and prove that for the
relaxed problem the expected number of covers can be calculated analytically
in polynomial time. In Section 3 we formulate the proposed SIS algorithm
and show that the relaxation introduced earlier leads to the construction of a
good proposal distribution. In section 4 we provide numerical support for the
accuracy of our method by comparing its performance with existing procedures.
Finally, in Section 5 we summarize our findings and discuss possible directions
for future research.

2 Vertex Cover Relaxation

In this section we introduce the vertex cover relaxation method. Given an
undirected graph G = G(V,E), with vertex set |V | = n, and edge set |E| = m,
define a vertex ordering v1, v2, · · · , vn ∈ V and denote by di = {j|(vi, vj) ∈
E, j > i} the set of neighbors of node vi such that each neighbor vj satisfies

2

j > i. Let

p = (p1, · · · , pn) =
(
|d1|
n− 1

,
|d2|
n− 2

, · · · |dn−1|
1

, 0

)
be a vector of probabilities induced by G. Note that |dn| = 0 so we define
pn = 0.

Consider now a probability space ΩG of all graphs G′ = G′(V ′, E′) where
the set of vertices remains the same as in G, that is, V ′ = V , but each edge
(vi, vj), j > i is present in E′ with probability pi =

|di|
n−i . Note that

pi = 0 ⇒ (vi, vj) ̸∈ E′ ∀j > i,

pi = 1 ⇒ (vi, vj) ∈ E′ ∀j > i.

Example 2.1 Two simple examples are the bridge graph and the star graph.
They are depicted in the following figure.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 1: Left panel: bridge graph. Right panel: star graph.

Concerning the bridge graph, one can easily observe that v1 is connected to
v2 and v3, v2 is connected to v3 and v4 and, finally, v3 is connected only to v4,
so that we have |d1| = 2, |d2| = 2, |d3| = 1 respectively. The last vertex v4 has
zero connections under our relaxation, so |d4| = 0 and p = (23 ,

2
2 ,

1
1 , 0). For the

star graph we get p = (1, 0, 0, 0, 0, 0, 0). 2

In what follows it will be more convenient to talk about the complementary
probability, in other words, the probability that an edge is not present in G′.
Formally, this vector of complementary probabilities can be written as

q = (q1, · · · , qn) = 1− p =

(
1− |d1|

n− 1
, 1− |d2|

n− 2
, · · · 1− |dn−1|

1
, 1

)
. (1)

Given a graph G = G(V,E), the calculation of vector q is straightforward.

3

2.1 Expected Number of Relaxed Vertex Covers

Let XG be the set of all vertex covers of the given graph G = G(V,E) and
|XG| be the its cardinality. Similarly, for any graph G′ ∈ ΩG the set of vertex
covers is XG′ . Denote by G a random graph in ΩG, with probability law P and
associated expectation E. Clearly, for any realization G′ ∈ ΩG

P(G = G′) =
n−1∏
i=1

p
|d′i|
i q

n−i−|d′i|
i ,

where 00 = 1 and d′i is defined in the same way as di; that is, the set of neigbors
of node vi among the nodes vj , j > i, in the graph G′. In this section we are
interested in the expected number of vertex covers of the random graph G .
Note that this number is a random variable. If we denote it by |XG |, then its
expectation is given by

E|XG | =
∑

G′∈ΩG

P(G = G′)|XG′ | .

Example 2.2 Consider the bridge graph given in Example 2.1 with the vector
of probabilities p = (23 ,

2
2 ,

1
1 , 0). The set of 8 possible graphs in the probability

space ΩG is summarized below. Note that p2 = 1, hence each graph must contain
both edges (v2, v3) and (v2, v4). Similarly, because p3 = 1, edge (v3, v4) is always
present.

�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

���

�
�

�
� �

�

�
�

� � �

�
�

�
� �

�

�
�

�� �

�
�

�
� �

�

�
�

�	�

Figure 2: Example graph.

4

Graph (a) is generated with probability (13)
3; graphs (b), (c), (d) with probabil-

ity 2
3(

1
3)

2; graphs (e), (f), (g) with probability 1
3(

2
3)

2, and graph (h) with probabil-
ity (23)

3. The corresponding number of vertex covers for graphs (a), (b), · · · , (h)
is 8, 7, 7, 7, 6, 6, 6, 5. For instance, consider graph (a), and its subgraph of nodes
v2, v3, v4 (with their incident edges). The vertex covers of this subgraph are
{v2, v3}, {v2, v4}, {v3, v4}, {v2, v3, v4}. Because node v1 has no incident edge,
these four sets are also covers for the whole graph. Of course, with node v1
added, these sets remain vertex covers giving a total of eight covers. Hence, we
can compute the expected number of vertex covers

E|XG | =
(
1

3

)3

8 + 3
2

3

(
1

3

)2

7 + 3
1

3

(
2

3

)2

6 +

(
2

3

)3

5 = 6 .

2

A crucial property of the proposed relaxation is summarized next.

Proposition 2.1 There exists a deterministic polynomial time algorithm that
calculates E|XG | analytically.

To prove this proposition we first establish some auxiliary results.

Suppose that a subset of vertices S ⊂ V has size k. Then we denote the ordered
vertices of S by vi1 , vi2 , . . . , vik ; that is, ij < ij+1 for all j = 1, 2, . . . , k − 1.

Lemma 2.1 Given the vector of complementary probabilities q defined in (1),
we have

E|XG | =
n∑

k=0

∑
S⊂V
|S|=k

k−1∏
j=1

q
k−ij
ij

.

Proof. Define, for k = 0, . . . , n, A(n, k) to be the expected number of vertex
covers of size n − k in the random graph G . Now observe that, when C ⊂ V
forms a vertex cover of a graph, its complement S = V \C forms an independent
set. Thus,

A(n, k) =
∑
C⊂V

|C|=n−k

P(C forms a vertex cover)

=
∑
S⊂V
|S|=k

P(S forms an independent set)

Let S = {vi1 , . . . , vik}. Then S is an independent set iff none of the edges
(vij , viℓ) is chosen for all j = 1, . . . , k− 1 and all ℓ = j+1, . . . , k. This happens

exactly with probability
∏k−1

j=1 q
k−ij
ij

. The proof is complete by noting that

E|XG | =
n∑

k=0

A(n, k). (2)

5

2

If, for example, the vector of probabilities q satisfies qi ≡ q ∈ (0, 1) for all i, we
obtain

A(n, k) =

(
n

k

)
q(

k
2) .

Since the last simplification is not valid for general graphs, we next explain
how to calculate A(n, k) analytically using a dynamic programming type of
recursion.

Consider, for m = 1, 2, . . . , n, the subgraph Gm = Gm(Vm, Em) of G con-
sisting of the vertices Vm = {vn−m+1, . . . , vn} and their incident edges Em ⊂ E.
Similarly, we define the random graph Gm having Vm as vertex set, and edges
chosen randomly according to the vector of probabilities p (of the original graph
G). Finally, we define A(m, k) to be the expected number of vertex covers of
size m − k, k ≤ m, in the random graph Gm for m = 1, . . . , n. The idea is to
compute the A(m, k) numbers via a recursion by considering iteratively vertex
covers in V1, V2, Furthermore, the vertex covers of size m + 1 − k in Vm+1

can be decomposed into vertex covers of size m + 1 − k in Vm, and in vertex
covers of size m−k in Vm. The precise recursion is formulated in the following.

Lemma 2.2 For m = 1, 2, . . . , n−1 and k = 1, . . . ,m+1, we have the recursion

A(m+ 1, k) = qk−1
n−mA(m, k − 1) +A(m, k) , (3)

where A(m, 0) = 1 for m = 1, . . . , n, and A(1, 1) = 1.

Proof. Again we will use the property that, when C ⊂ Vm forms a vertex
cover of a graph, its complement S = Vm \ C forms an independent set. Let S
be an ‘independent set’, and #{U} stand for ‘the size of set U ’.

A(m+ 1, k) = E[#{S of size k in {vn−m, vn−m+1, . . . , vn}}]
= E[#{S of size k in {vn−m, . . . , vn}} and vn−m ∈ S]+

+ E[#{S of size k in {vn−m, . . . , vn}} and vn−m ̸∈ S]

The two terms of the decomposition are computed as follows.

• First term: the remaining nodes S \ {vn−m} form an independent set of
size k−1 in {vn−m+1, . . . , vn}, and none of these k−1 nodes is connected
with vn−m. Since A(m, k−1) is the expected number of such independent
sets, and since choosing edges between nodes is independent of anything
else, the first term yields qk−1

n−mA(m, k − 1).

• Second term: the remaining nodes S \{vn−m} form an independent set of
size k in {vn−m+1, . . . , vn}, thus it does not matter whether any of these
nodes is connected with vn−m, or not. Hence, the second term yields
A(m, k).

2

Hence, the algorithm for calculating E|XG | for a given graph G = G(V,E), |V | =
n, |E| = m, can be summarized as follows.

6

Algorithm 2.1 Calculating Number of Relaxed Covers
Input: G = G(V,E)
Output: E|XG |
1: q ← calculate the vector of probabilities as in (1);
2: ∀k ∈ {0, · · · , n} calculate A(n, k) using recursion (3);
3: return E|XG | as in (2).

Proof of Proposition 2.1. Step (1) of the algorithm takes O(m) time; step
(2) can be completed in O(n2), and step (3) takes only linear time O(n). Since
|E| = m < n2 we conclude that the overall complexity of Algorithm 2.1 is O(n2)
and Proposition 2.1 follows. 2

Algorithm 2.1 lays the groundwork for building a good proposal distribution for
SIS. The algorithm can also count vertex covers exactly in some cases. As an
example consider the star graph on the right panel of Figure 1, with n nodes. It
is not difficult to determine the exact number of vertex covers in this case. If the
central vertex participates in the cover, then there are 2n−1 covers, because any
combination of the remaining n− 1 vertices yields a valid cover. If the central
vertex it is not in the cover, then all the remaining vertices must be part of one
cover and we conclude that the exact number of vertex covers in the star graph
is 2n−1 + 1. If we take the ordering of nodes such that v1 is the central vertex,
then the induced vector of probabilities will be p = (1, 0, . . . , 0). Now, running
Algorithm 2.1 with a star graph as an input will result in 2n−1 +1. In general,
we have the following result.

Proposition 2.2 Given that an instance G = G(V,E) induces a vector of
probabilities p = (p1, . . . , pn) where each pi ∈ {0, 1}, Algorithm 2.1 provides the
exact number of vertex covers, that is, E|XG | = |XG|.

Proof. One way to proceed is by induction on the number of vertex covers
combined with equation (3). However, it is much simpler to notice that given a
vector of probabilities p = (p1, . . . , pn) where each pi ∈ {0, 1}, there is only one
graph G with p as its induced vector of probabilities. This observation follows
easily from the construction process of the ‘random’ graph using this particular
p. For |ΩG| = 1 we obtain E|XG | = |XG|. 2

It follows from Proposition 2.2 and from Algorithm 2.1 that if there is an
ordering in G = G(V,E) such that the induced vector of probabilities q satisfies
qi ∈ {0, 1}, then the number of vertex covers is available analytically and can
be calculated in O(|V |2) time.

3 Sequential Importance Sampling

Consider the probability space {0, 1}n of all binary n-tuples x = (x1, . . . , xn), xi ∈
{0, 1}. We denote a random n-tuple byX and a probability mass function (pmf)
of X on {0, 1}n by f(x). Probabilities and expectations are denoted by Pf and

7

Ef . With any n-tuple x ∈ {0, 1}n we associate a subset V (x) ⊂ V of vertices
by letting vi ∈ V (x) iff xi = 1. Clearly, this subset may or may not be a vertex
cover of the given graph G = G(V,E).

In this section we consider estimating the number of vertex covers |XG| by
importance sampling simulations using a proposal pmf f(x) of the random n-
tuple. For that purpose, we restrict the class of proposal pmfs by requiring
positive probability of all n-tuples for which the associated vertex subset is a
vertex cover:

F =
{
f : {0, 1}n → [0, 1];

∑
x∈{0,1}n

f(x) = 1; V (x) ∈ XG ⇒ f(x) > 0
}
. (4)

Using a proposal pmf f ∈ F , the corresponding single-run importance sampling
estimator is

Zf =
I{V (X) ∈ XG}

f(X)
. (5)

Clearly, this estimator is unbiased:

Ef [Zf] = Ef

[
I{V (X) ∈ XG}

f(X)

]
=

∑
x∈{0,1}n:V (x)∈XG

1

f(x)
× f(x) = |XG| .

This identity suggests the Monte Carlo estimator

̂|XG| =
1

N

N∑
i=1

I{V (Xi) ∈ XG}
f(Xi)

, (6)

whereX1, . . . ,XN are iid random n-tuples generated by pmf f(x), and V (X1), . . . , V (XN)
are their associated (random) vertex subsets. A measure of efficiency of an esti-
mator is its coefficient of variation (CV) defined as the ratio of the variance to
the square of the first moment [2]. Hence, the CV of the single-run estimator is

cv2 =
Var[Zf]

|XG|2
,

which is estimated simply by

ĉv2 =

1
N−1

∑N
i=1

(
I{V (Xi)∈XG}

f(Xi)
− ̂|XG|

)2

̂|XG|
2 .

The CV of the Monte Carlo estimator ̂|XG| equals cv2/N . The square root of
the CV is commonly known as the relative error (RE). In our numerical tests
we will estimate RE by

R̂E = ĉv/
√
N. (7)

The importance sampling simulation is implemented more efficiently by a se-
quential procedure. We now proceed with the details of the sequential im-
portance sampling simulation (SIS) procedure. First, recall that f(x) can be
decomposed as

f(x) = f1(x1)f2(x2|x1) . . . fn(xn|x1, . . . , xn−1) . (8)

8

This decomposition allows us to sample vertex subsets in a sequential manner,
ensuring that only valid vertex covers are sampled. In particular, suppose we
start adding vertices vi for i ∈ {1, 2, · · · } to the vertex cover one by one with
probability fi(xi|x1, · · · , xi−1) and consider step i. We start this step with
vertices vj , j < i for which xj = 1 form a vertex cover in the subgraph induced
by all vertices v1, . . . , vi−1.

We either add vi to the vertex cover, or we do not. While adding vi to the
cover is always feasible, not adding vi is only feasible if there is no vertex vj ,
j < i, that is not chosen (xj = 0) and that is a neigbor of vi ((vj , vi) ∈ E).
This leads to the following SIS algorithm.

Algorithm 3.1 Sequential Sampling of Valid Covers
Input: G = G(V,E)
Output: Importance weight of the generated vertex cover.

1: Z ← 1, x← (0, . . . , 0), so that V (x) = ∅.
2: for i = 1→ n do ◃ Note that at stage i, V (x) ⊆ {v1, . . . , vi−1}
3: if vi must be added to the cover then
4: xi ← 1
5: else
6: U ∼ U(0, 1)
7: if U ≤ fi(1|x1, . . . , xi−1) then
8: xi ← 1, Z ← Z × 1

fi(1|x1,...,xi−1)
9: else

10: Z ← Z × 1
fi(0|x1,...,xi−1)

11: end if
12: end if
13: end for
14: Z ← Z × I{V (x) ∈ XG}
15: return Repeat the above procedure N times to generate Z1, . . . , ZN , and

deliver the average 1
N

∑N
i=1 Zi.

We now explain how we construct a good proposal pmf f ∈ F by approximating
the zero-variance pmf.

Definition 3.1 A pmf f ∈ F is a zero-variance pmf if the associated impor-
tance sampling estimator Zf has Var[Zf] = 0.

We claim that the uniform distribution on the space of vertex covers is a zero-
variance pmf.

Lemma 3.1 The pmf

f∗(x) =
1

|XG|
I{V (x) ∈ XG} (9)

is a zero-variance pmf.

9

Proof. Clearly f∗ ∈ F , thus f∗ is a feasible pmf. The associated importance
sampling estimator Zf∗ is by (5)

Zf∗ = |XG| I{V (x) ∈ XG}

Hence, the second moment equals |XG|2. 2

Because we execute the importance sampling simulation through the implemen-
tation of a sequential procedure, we will analyse also the conditional pmfs of the
zero-variance distribution. For that purpose, let be given binary x1, . . . , xi−1

indicating whether nodes vj , j < i, are part of a vertex subset V (x). Note that
under the zero-variance pmf f∗ only vertex covers receive positive probability.
Therefore, define subgraphs G[i] and G[−i] for i = 1, . . . , n− 1 as follows.

1. i = 1.

• G[1] = G1(V1, E1) where V1 = {v2, . . . , vn}, and E1 = {(vj , vk)|vj , vk ∈
V1} ∩ E;

• G[−1] = G2(V2, E2) where V2 = V1 \ {vk|k ≥ 2, (v1, vk) ∈ E}, and
E2 = {(vj , vk)|vj , vk ∈ V2} ∩ E.

2. i = 2, . . . , n− 1.

• G[i] = G1(V1, E1) where

V1 = {vi+1, . . . , vn}\{vk|k ≥ i+1, and ∃j ≤ i−1with xj = 0, (vj , vk) ∈ E},
(10)

and E1 = {(vj , vk)|vj , vk ∈ V1} ∩ E;

• G[−i] = G2(V2, E2) where

V2 = V1 \ {vk|k ≥ i+ 1, (vi, vk) ∈ E}, (11)

and E2 = {(vj , vk)|vj , vk ∈ V2} ∩ E.

Note that these subgraphs depend on the given variables x1, . . . , xi−1. For
convenience we do not denote this explicitly. Note also that a subgraph can be
the empty set.

Example 3.1 Consider the bridge graph in Example 2.1. The G[1] and G[−1]

graphs are depicted in the figure below.

10

�
�

�
�

�
�

�
�

Figure 3: Left panel: G[1] graph. Right panel: G[−1] graph.

Consider x1 = 1 and i = 2. Then,

• G[2] has vertex set V1 = {v3, v4} and edge set E2 = {(v3, v4)}.

• G[−2] has vertex set V2 = V1 \ {v3, v4} = ∅.

Consider x1 = 1, x2 = 1 and i = 3. Then,

• G[3] has vertex set V1 = {v4}.

• G[−3] has vertex set V2 = V1 \ {v4} = ∅.

2

Lemma 3.2 Let be given binary variables x1, . . . , xi−1, and denote the number
of vertex covers in the associated G[i] and G[−i] graphs by |XG[i] | and |XG[−i] |,
where |X∅| = 1. Then the zero-variance conditional pmf is as follows.

(a). Case i = 1.

f∗
1 (1) =

|XG[1] |
|XG[1] |+ |XG[−1] |

f∗
1 (0) = 1− f∗

1 (1)

(b). Case i = 2, . . . , n, and there is a node vj , j < i, such that xj = 0, and
(xj , xi) ∈ E.

f∗
i (1|x1, . . . , xi−1) = 1

f∗
i (0|x1, . . . , xi−1) = 0

(c). Case i = 2, . . . , n− 1, and for all nodes vj , j < i, that have xj = 0, it holds
that (xj , xi) ̸∈ E.

f∗
i (1|x1, . . . , xi−1) =

|XG[i] |
|XG[i] |+ |XG[−i] |

f∗
i (0|x1, . . . , xi−1) = 1− f∗

i (1|x1, . . . , xi−1)

(12)

11

(d). Case i = n, and for all nodes vj , j < n, that have xj = 0, it holds that
(xj , xn) ̸∈ E.

f∗
n(1|x1, . . . , xn−1) = f∗

n(0|x1, . . . , xn−1) =
1

2

Proof. We elaborate case (c). Case (a) follows similarly, while cases (b) and
(d) are straightforward. Because the (unconditial) zero-variance pmf f∗ is the
uniform distribution on the space XG of vertex covers, we get for the conditional
pmf

f∗
i (1|x1, . . . , xi−1) =

|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 1}|
|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1}|

. (13)

The variables x1, . . . , xi−1 have assigned values 0 or 1 in such a manner that
all edges (vj , vk) ∩E, j, k ≤ i− 1 are covered. Consider any node vk, k ≥ i+ 1,
and suppose that there is a node vj , j ≤ i − 1 such that xj = 0 and that edge
(vj , vk) ∈ E. This means that vj is not part of the vertex cover. Hence, to
cover the edge (vj , vk), node vk gets surely assigned xk = 1.

• If we would include vi in the cover by setting xi = 1, we obtain the
subgraph G[i] with vertex set V1 ⊂ {vi+1, . . . , vn} given in (10). Clearly,
we can map the vertex covers of G[i] one-to-one on those covers of G that
are given by the variables x1, . . . , xi−1 and xi = 1. That means,

|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 1}| = |XG[i] |. (14)

• Suppose that we do not include vi in the cover, by setting xi = 0. To
cover an edge (vi, vk) ∈ E, k ≥ i+1, node vk gets surely assigned xk = 1.
In this way we obtain the subgraph G[−i] with vertex set V2 given in (11).
Now we can map the vertex covers of G[−i] one-to-one on those covers of
G that are given by the variables x1, . . . , xi−1 and xi = 0. That means
that

|{V (y) ∈ XG : y1 = x1, . . . , yi−1 = xi−1, yi = 0}| = |XG[−i] |. (15)

The conclusion that (12) and (13) are equivalent, follows immediately. 2

Example 3.2 Consider the bridge example.

1. i = 1. The subgraphs G[1] and G[−1] are shown in Figure 3. Clearly we get
|XG[1] | = 4 and |XG[−1] | = 2. Thus by (a) in Lemma 3.2,

f∗
1 (1) =

4

6
=

2

3
; f∗

1 (0) =
1

3
.

2. i = 2.

12

• Case x1 = 1. See Example 3.1 for G[2] =
(
{v3, v4}, {(v3, v4)}

)
and

G[−2] = ∅. Thus, |XG[2] | = 3, |XG[−2] | = 1, and by (c) in Lemma 3.2,

f∗
2 (1|1) =

3

4
; f∗

2 (0|1) =
1

4
.

• Case x1 = 0. By (b) in Lemma 3.2

f∗
2 (1|0) = 1; f∗

2 (0|1) = 0.

3. i = 3.

• Case x1 = 1, x2 = 1. See Example 3.1 for G[3] =
(
{v4}, ∅

)
and G[−3] =

∅. Thus, |XG[3] | = 2, |XG[−3] | = 1, and by (c) in Lemma 3.2,

f∗
3 (1|1, 1) =

2

3
; f∗

3 (0|1, 1) =
1

3
.

• Case x1 = 1, x2 = 0. By (b) in Lemma 3.2

f∗
3 (1|1, 0) = 1; f∗

3 (0|1, 0) = 0.

• Case x1 = 0, x2 = 1. By (b) in Lemma 3.2

f∗
3 (1|0, 1) = 1; f∗

3 (0|0, 1) = 0.

4. i = 4.

• Case x1 = 1, x2 = 1, x3 = 1. By (d) in Lemma 3.2,

f∗
4 (1|1, 1, 1) = f∗

4 (0|1, 1, 1) =
1

2
.

• Case x1 = 1, x2 = 1, x3 = 0. By (b) in Lemma 3.2

f∗
4 (1|1, 1, 0) = 1; f∗

4 (0|1, 1, 0) = 0.

• Case x1 = 1, x2 = 0, x3 = 1. By (b) in Lemma 3.2

f∗
4 (1|1, 0, 1) = 1; f∗

4 (0|1, 0, 1) = 0.

• Case x1 = 0, x2 = 1, x3 = 1. By (d) in Lemma 3.2,

f∗
4 (1|0, 1, 1) = f∗

4 (0|0, 1, 1) =
1

2
.

Note that the product (8) of these conditional pmfs indeed gives the uniform
distribution on the space of all vertex covers:

f∗(1, 1, 1, 1) = f∗
1 (1)f

∗
2 (1|1)f∗

3 (1|1, 1)f∗
4 (1|1, 1, 1) =

2

3

3

4

2

3

1

2
=

1

6

f∗(1, 1, 1, 0) = f∗
1 (1)f

∗
2 (1|1)f∗

3 (1|1, 1)f∗
4 (0|1, 1, 1) =

2

3

3

4

2

3

1

2
=

1

6

f∗(1, 1, 0, 1) = f∗
1 (1)f

∗
2 (1|1)f∗

3 (0|1, 1)f∗
4 (1|1, 1, 0) =

2

3

3

4

1

3
1 =

1

6

f∗(1, 0, 1, 1) = f∗
1 (1)f

∗
2 (0|1)f∗

3 (1|1, 0)f∗
4 (1|1, 0, 1) =

2

3

1

4
1 1 =

1

6

f∗(0, 1, 1, 1) = f∗
1 (0)f

∗
2 (1|0)f∗

3 (1|0, 1)f∗
4 (1|0, 1, 1) =

1

3
1 1

1

2
=

1

6

f∗(0, 1, 1, 0) = f∗
1 (0)f

∗
2 (1|0)f∗

3 (1|0, 1)f∗
4 (0|0, 1, 1) =

1

3
1 1

1

2
=

1

6

13

2

Since we can not calculate the zero-variance conditional pmf f∗
i (xi|x1, . . . , xi−1)

exactly for the (a) and (c) cases in Lemma 3.2, we approximate it via the
proposal

fi(1|x1, . . . , xi−1) =
E|XG [i] |

E|XG [−i] |+ E|XG [i] |
, (16)

Thus, in essence, we approximate |XG[i] | via E|XG [i] | and |XG[−i] | via E|XG [−i] |,
with both expectations readily computed using Algorithm 2.1.

In the next section we provide numerical experiments demonstrating the per-
formance of Algorithm 3.1 with (16) used as a proposal density.

4 Numerical Results

In this section we consider the performance of Algorithm 3.1 on four different
graphs. We performed all computation on Core i5 laptop with 4GB RAM.
The reported CPU time is measured in seconds. For smaller problems we are
able to compute the exact count. In that case we report the numerical relative
error of the estimates; in the other cases we report the statistical relative error
estimated according to (7).

We compare our algorithm with the following methods.

• Cachet is exact model counting software introduced by Sang et al. in [13].
This method uses the well known SAT solver zChaff [12] and combines
component caching with traditional clause learning within the setup of
model counting.

• SampleSearch is a probabilistic model counting technique proposed by
Gogate and Dechter in [3, 6]. The method can deliver upper and lower
bounds on counting problems and is based on sampling from the search
space of a Boolean formula. Similarly to Cachet, it also use a DPLL-based
SAT solvers during the execution in order to construct the sampling search
space.

4.1 Model 1

A graph with |V | = 100 and |E| = 2, 432. The graph was generated in the fol-
lowing way. Each possible edge (vi, vj) was present in the graph with probability
p, where p ∼ U(0, 1). The performance of SIS Algorithm 3.1 is summarized in
the following table.

14

Table 1: Performance of 10 runs of the SIS Algorithm 3.1 on Model 1 with
sample size N = 100.

Run ̂|XG| error CPU

1 2.459× 105 1.604× 10−2 1.807

2 2.451× 105 2.001× 10−2 1.610

3 2.512× 105 1.698× 10−2 1.683

4 2.397× 105 1.380× 10−2 1.645

5 2.409× 105 1.341× 10−2 1.723

6 2.414× 105 1.505× 10−2 1.753

7 2.459× 105 1.599× 10−2 1.835

8 2.450× 105 1.713× 10−2 1.708

9 2.398× 105 1.618× 10−2 1.586

10 2.447× 105 1.679× 10−2 1.627

Average 2.440× 105 1.614× 10−2 1.698

For comparison:

• Running cachet delivers an exact solution of 244, 941 in 0.75 seconds.

• Running SampleSearch 10 times provides an average of 196, 277 in 60
seconds with estimated relative error of about 20%.

For this example cachet provides the exact solution in the fastest time. Sample-
Search provides a good lower bound, but at a high CPU time, and Algorithm
3.1 performs as second best.

4.2 Model 2

A graph with |V | = 300 and |E| = 21, 094, generated in the same manner as
Model 1. The SIS performance is given in the following table.

15

Table 2: Performance of 10 runs of the SIS Algorithm 3.1 for Model 2 with
N = 100.

Run N0
̂|XG| error CPU

1 1.325× 1014 4.336× 10−2 55.98

2 1.298× 1014 3.710× 10−2 58.41

3 1.283× 1014 3.932× 10−2 54.71

4 1.321× 1014 3.519× 10−2 58.99

5 1.322× 1014 4.102× 10−2 58.81

6 1.421× 1014 5.635× 10−2 52.69

7 1.361× 1014 4.739× 10−2 55.96

8 1.287× 1014 4.044× 10−2 59.18

9 1.202× 1014 4.435× 10−2 56.64

10 1.387× 1014 4.171× 10−2 56.64

Average 1.321× 1014 4.262× 10−2 56.80

For comparison:

• Running cachet delivers an exact solution of 1.306× 1014 in about 17
minutes.

• Running SampleSearch ten times provides an average of 5.791× 1013 in
1, 200 seconds with estimated relative error of about 55%.

4.3 Model 3

A graph with |V | = 1, 000 and |E| = 64, 251, where each edge (vi, vj) was
present in the graph with probability p and p is generated from a truncated
normal distribution on the interval [0, 1] with µ = 0.1 and σ = 0.1. The results
are summarized bellow.

16

Table 3: Performance of 10 runs of the SIS Algorithm 3.1 on Model 3 with
N = 100.

Run N0
̂|XG| R̂E CPU

1 4.384× 1032 4.450× 10−2 661.5

2 4.058× 1032 4.151× 10−2 703.1

3 4.014× 1032 4.814× 10−2 691.9

4 4.137× 1032 4.215× 10−2 721.3

5 4.220× 1032 4.437× 10−2 691.0

6 4.124× 1032 4.555× 10−2 688.6

7 4.422× 1032 4.788× 10−2 667.0

8 4.184× 1032 4.563× 10−2 682.0

9 4.234× 1032 4.103× 10−2 698.9

10 4.261× 1032 4.813× 10−2 648.6

Average 4.204× 1032 4.489× 10−2 685.4

For comparison:

• cachet was unable to deliver a solution within 2 days of CPU time. The
lower bound of 3.439× 109 was only supplied.

• SampleSearch failed to initialize possibly due to the large size of the prob-
lem.

4.4 Model 4

A graph with |V | = 1, 000 and |E| = 249, 870. This time p is generated from
a truncated Normal distribution with µ = 0.5 and σ = 0.3. The results are
summarized bellow.

Table 4: 10 runs of the SIS Algorithm 3.1 Model 4 with N = 100.

Run N0
̂|XG| R̂E CPU

1 2.749× 1011 1.608× 10−2 1841

2 2.762× 1011 1.531× 10−2 1847

3 2.848× 1011 1.720× 10−2 1658

4 2.737× 1011 1.274× 10−2 1562

5 2.795× 1011 1.521× 10−2 1642

6 2.819× 1011 1.591× 10−2 1853

7 2.764× 1011 1.701× 10−2 1756

8 2.776× 1011 1.768× 10−2 1544

9 2.698× 1011 1.468× 10−2 1767

10 2.778× 1011 1.605× 10−2 1708

Average 2.773× 1011 1.579× 10−2 1718

17

For comparison:

• cachet was timed out after 2 days and was unable to deliver a solution.
The lower bound of 9.601× 1010 was supplied.

• SampleSearch failed to initialize. We speculate that the reason for this is
that the problem is too large.

4.5 Nonrandom models

Finally, consider nonrandom models, where we expect our algorithm’s perfor-
mance to deteriorate, namely the hypercube graphs Hn, n = 4, 5, 6, 7 with 2n

vertices and n2n−1 edges, see [7]. Using cachet we was able to determine the
exact number of vertex covers for H4,H5 and H6, namely, 743, 254475 and
1.976 × 1010 respectively. The following table summarizes the average values
obtained with 10 runs of the SIS algorithm. We set the sample size N to be
50, 250, 1500 and 104 for H4,H5,H6 and H7, respectively, so that the estimated
relative error was below 3%.

Table 5: Performance of 10 runs of the SIS algorithm for the Hypercube graphs.

Instance ̂|XG| R̂E CPU

H4 745.9 2.87× 10−2 0.008

H5 2.550× 105 2.86× 10−2 0.157

H6 1.983× 1010 2.67× 10−2 4.841

H7 7.819× 1019 2.89× 10−2 199.8

5 Concluding Remarks

In this article we used probabilistic relaxation in combination with SIS to es-
timate the number of vertex covers of a graph. The probabilistic relaxation
method ensures the availability of exact vertex cover computations over the ΩG

space, which are then used to design a good proposal for the sequential im-
portance sampling algorithm. The design of the sequential sampling procedure
guarantees that a valid vertex cover is generated.

The proposed algorithm is easy to implement and the numerical results
strongly suggest that the practical performance is comparable with and some-
times better than currently existing methods. With a sample size as little as
100, we observed low relative errors on problems with large dimensionality.

Of interest in the future is to theoretically investigate how closely the pro-
posal distribution described in this article approximates the zero-variance mea-
sure. In addition, of interest will be the development of similar relaxation
techniques to other graph counting problems.

18

References

[1] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling
algorithm for generating random graphs with prescribed degrees. Internet
Mathematics, 6:487–520, 2010.

[2] Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun S. Liu. Sequential
Monte Carlo methods for statistical analysis of tables. Journal of the
American Statistical Association, 100:109–120, March 2005.

[3] Rina Dechter and Vibhav Gogate. A new algorithm for sampling CSP
solutions uniformly at random. In Principles and Practice of Constraint
Programming, May 2006.

[4] Martin Dyer. Approximate counting by dynamic programming. In Proceed-
ings of the 35th ACM Symposium on Theory of Computing, pages 693–699,
2003.

[5] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent
sets in sparse graphs. In In 40th Annual Symposium on Foundations of
Computer Science, pages 210–217, 1999.

[6] Vibhav Gogate and Rina Dechter. Approximate counting by sampling the
backtrack-free search space. In Proceedings of the 22nd national confer-
ence on Artificial Intelligence - Volume 1, AAAI’07, pages 198–203. AAAI
Press, 2007.

[7] Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of
hypercube graphs. Computers & Mathematics with Applications, 15(4):277
– 289, 1988.

[8] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method:
An approch to approximate counting and integration. In D. Hochbaum,
editor, Approximation Algorithms for NP-hard Problems, pages 482 – 520.
PWS Publishing, 1996.

[9] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time ap-
proximation algorithm for the permanent of a matrix with non-negative
entries. Journal of the ACM, pages 671–697, 2004.

[10] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theor. Comput.
Sci., 43:169–188, 1986.

[11] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumera-
tion and reliability problems. In Proceedings of the 24th Annual Symposium
on Foundations of Computer Science, SFCS ’83, pages 56–64, Washington,
DC, USA, 1983. IEEE Computer Society.

[12] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Annual
ACM IEEE Design Automation Conference, pages 530–535. ACM, 2001.

19

[13] Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann
Pitassi. Combining component caching and clause learning for effective
model counting. In Seventh International Conference on Theory and Ap-
plications of Satisfiability Testing, 2004.

[14] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar
graphs. SIAM Journal on Computing, 31:398–427, 1997.

[15] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

20

