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Abstract

In rare event simulation, we look for estimators such that the relative accuracy of the
output is “controlled” when the rarity is getting more and more critical. Different robust-
ness properties have been defined in the literature, that an estimator is expected to satisfy.
Though, those properties are not adapted to estimators for which the estimators come from
a parametric family and the optimal parameter is learned and random. For this reason, we
motivate in this paper the need to define probabilistic robustness properties, because the ac-
curacy of the resulting estimator is therefore random. We especially focus on the so-called
probabilistic bounded relative error property. We additionally provide sufficient conditions,
both in general and Markov settings, to satisfy such a property, illustrate them and simple
but standard examples, and hope that it will foster discussions and new works in the area.

Keywords: Rare-event probability, Cross-entropy method, Markov chains, Probabilistic robust-
ness properties
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1 Introduction

Rare event simulation has been the topic of an extensive research during the past thirty years;
see [5, 6, 13] and the references therein. Rare events are indeed important in many fields, from
failures in transportation systems or nuclear plants, to losses and bankruptcy of financial com-
panies, as well as losses of information in telecommunication systems. Even if the event is rare,
the outcome when it happens may be so catastrophic in terms of money losses or human lives
that it cannot be neglected and has to be carefully studied. Computing rare event probabilities
has been proved to be a difficult task because the rarity makes the event difficult or impossible
to observe, thus to analyze. To circumvent this problem, sophisticated techniques have been de-
signed, are can be organized in two main families: importance sampling (IS), which consists in
changing the probability laws driving the considered model in order to increase the occurrence
of the event but keeps an unbiased estimator by also changing the random variable of interest,
and splitting, which basically favors “successful” trajectories, i.e., those that get closer to the
rare event, by replicating them in the form of a number of offsprings, and proceeds successively
that way until the event is reached.

A key issue when designing a rare event probability estimator is to determine wether or not
its accuracy does not deteriorate as the probability goes to zero (that is, when the event becomes
rarer). By accuracy, we mean relative accuracy, because what counts is the error relative to small
value of the probability. There exist several definitions of such a robustness in the literature, more
or less strict in terms of accuracy and more or less easy to satisfy. The two main definitions are
the so-called bounded relative error property, stating that the relative error given by the standard
deviation of the estimator divided by the probability of interest is kept bounded whatever the
rarity of the event, or the weaker asymptotic optimality (or logarithmic efficiency) which means
that the second moment and the square of the mean go to zero at the same exponential rate.
Remark though, there exist numerous other properties, dealing with moments of order larger
than 2, the normal approximation, or requiring the relative error to decrease to zero with the
rarity (the so-called vanishing relative error property). For a description and an exhaustive list
of references, as well as the relations between all those properties, the reader is advised to go to
[4, 7].

But many rare event estimators come from adaptive techniques where parameters leading to
a valid estimator are learned and as a consequence random, since depending on sample values. A
typical example is the cross-entropy-based (CE) rare event estimation, part of the broader class
of adaptive IS. In adaptive IS, the idea is to determine from empirical values the parameters
minimizing the estimator’s variance. In CE the optimal parameters are more specifically derived
from the minimization of the Kullback-Leibler distance between the considered parametric fam-
ily and the zero-variance IS change of measure [14] obtained from empirical results. When the
optimal parameters are approached, the rare event can be estimated thanks too a long(er) simu-
lation. Since the parameters are random, it is then hardly possible to guarantee that a robustness
property is satisfied. This randomness has to be addressed though when discussing robustness,
and to our knowledge it has never been considered in the literature.

The goals of this paper are therefore threefolds:

• we aim first at illustrating that getting a robustness property may be itself random for adap-
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tive methods, and that an adaptive algorithm can yield estimators with a wide diversity of
results. We limit ourselves in this paper to importance sampling.

• Our main goal is then to define probabilistic robustness properties, describing that a ro-
bustness property is verified with a given probability. We here focus on probabilistic
bounded relative error, but the other existing robustness properties can easily be extended
to the probabilistic case in a similar way and without complication.

• Our third goal is to provide sufficient conditions under which those probabilistic properties
are verified, and to give some illustrations.

The rest of this paper is organized as follows. Section 2 describes the basic ideas and steps of
adaptive IS, and more specifically CE algorithm. It also illustrates why the classical robustness
analysis can hardly be applied in this context. Section 3 introduces the definitions of probabilistic
bounded relative error that we feel relevant for this kind of problem. Section 4 presents a general
sufficient condition in order to verify this property, and the specific contexts of highly reliable
Markovian systems and of the simple and toy M/M/1/b queue are respectively described in
Section 5 and Section 6. Finally, Section 7 concludes the paper and gives some directions for
future research.

2 Rare event simulation, adaptive techniques and related robust-
ness issue

As described in the previous section and to simplify the presentation, we limit ourselves to IS, but
a similar analysis can be performed for other rare event simulation techniques. We therefore start
with a brief description of IS, before an introduction to adaptive and cross-entropy techniques.

Consider the estimation of

µ = E[g(X)] =
∫

g(x)dP(x)

where X is a random variable distributed according to probability measure P. Parametric IS
makes use of a family of measures {Pθ : θ ∈ Θ} on a set Θ of parameters. Note that we do
not assume that the default or original probability measure P is a member of this family. If
dPθ (x)> 0 when g(x)dP(x) ̸= 0, then

E[g(X)] =
∫

g(x)
dP(x)

dPθ (x)
dPθ (x) = Eθ [g(X)L(X)]

with L(X) = dP(x)/dPθ (x) likelihood ratio.
Applying IS is of particular interest when trying to estimate the probability p of a rare event

A, p = P[A]≪ 1. To estimate this probability by a crude Monte Carlo simulation, we just sample
n independent copies (Xi)1≤i≤n of the Bernoulli random variable X = 1(A), whose value is 1 of A
is reached and 0 otherwise, and use as an unbiased estimator the proportion of times A is reached
over the sample, (1/n)∑n

i=1 Xi. But for rare events, it is unlikely that the rare event occurs only
once if n is not large: for example, to estimate a probability of 10−9, we need in average a
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sample of size 109 to get the event once, and much more if we want to get a confidence interval.
Moreover, if applying the central limit theorem (assuming it relevant for n l arge enough), one
can note that the relative half-width of the confidence interval, given by this half-width divided
by the expected value we are computing, i.e., n−1/2cασ/p, is cα

√
1− p/

√
np → ∞ as p → 0,

with cα the 1−α/2 quantile of the standard normal distribution (with mean 0 and variance 1).
In other words, the rarer the event, the larger the sample size required to get a confidence interval
with a fixed relative accuracy. Using IS makes sense here in order to increase the occurrence of
the event [8] and reduce the relative error. The relative error of an estimator X of p and with
variance σ 2 is defined as RE[X ] = σ/p. An estimator X will be said to verify bounded relative
error (BRE) if RE[X ] remains bounded as E[X ] = p → 0. In that case, the sample size needed
to get a specified relative accuracy is bounded whatever the rarity of the event.

But finding out an IS change of measure yielding efficient results (that is an optimal param-
eter θ in the set Θ), and robust to rarity, is not an easy task in general. Adaptive IS tries to learn
an optimal θ , that is a θ minimizing the variance of g(X)L(X) under IS. While this value can be
learnt during the simulation (i.e., updated at each step, but then data are correlated, complicating
the output analysis), we consider here the case where parameters are learned during a presim-
ulation, potentially in a sequential way during k steps where IS parameters determined at step
j−1 are used at step j. More precisely, the algorithm is as follows

1. Define θ0 ∈ Θ

2. Presimulation: For j = 1 to k

(a) use a sample of size nk of independent copies on X generated according to Pθ j−1

(b) determine the value θ j minimizing the variance of g(X)L(X).

3. Simulation:

(a) use a sample n of independent copies on X generated according to Pθk

(b) provide an estimator of Eθk [g(X)L(X)] and an associated confidence interval.

A typical adaptive technique is the so-called Cross-Entropy (CE) method where the min-
imization procedure is realized to determine the θ ∈ Θ minimizing the Kullback-Leibler (or
Cross-Entropy) distance between the zero-variance change of measure P(ZV) and Pθ :

D(P(ZV),Pθ ) = E(ZV)

[
log

dP(ZV)

dPθ

]
.

When estimating E[g(X)], it is known that the optimal change of measure is dP(ZV) = |g(X)|
E[|g(X)|]dP

[1]. This gives after straightforward simplifications

D(P(ZV),Pθ ) = E
[

|g(X)|
E[|g(X)|]

log
(

|g(X)|
E[|g(X)|]

dP
)]

− 1
E[|g(X)|]

E [|g(X)| logdPθ ] .
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The minimization problem is then equivalent to solving at each step j

max
θ

E [|g(X)| logdPθ ] = max
θ

Eθ j−1

[
dP

dPθ j−1

|g(X)| logdPθ

]
≈ max

θ

1
n j

n j

∑
i=1

|g(Xi)|
dP(Xi)

dPθ j−1(Xi)
logdPθ (Xi) (1)

with (Xi)i sequence of independent copies of r.v. X .
The next example illustrates the difficulty to ensure robustness properties when using adap-

tive techniques. More exactly, it shows that the algorithm, if re-run independently, can lead to
learnt values of θ yielding estimators experiencing large variations in their variance.

Example 1. Consider a random variable X exponentially distributed with rate λ , and assume
that we want to compute P[X < ε ] = E[g(X)] = 1−e−λε with g(x) = 1[0,ε]. Suppose that we use
importance sampling and still sample from an exponential density, but with a different rate θ ,
The second moment of that IS estimator is

Eθ [g(X)2L2] =
∫ ε

0

(
λe−λy

θe−θy

)2

θe−θydy =
λ 2

θ(2λ −θ)
(1− e−(2λ−θ)ε). (2)

The estimator satisfies bounded relative error as ε → 0 if Eθ [g(X)2L2]/(E[g(X)])2 remains
bounded as ε → 0. One can easily check that it is the case when θ = α/ε for any α > 0. As a
consequence, the value of θ minimizing the variance, say θ (min), satisfies BRE too.

Let λ = 1, ε = 10−2, leading to P[X < ε]≈ 9.95 10−3 and consider k = 1 in the CE technique
with n1 = 1000 and θ0 = λ , and later n = 106 for the final estimation. An estimator of θ (min)

during the presimulation is given from (1) by

θ̂n1 =
(1/n1)∑n1

i=1 1[Xi≤ε]

(1/n1)∑n1
i=1 Xi1[Xi≤ε]

.

We also get

θ̂n1 −→n1→∞
P[X ≤ ε]
E[X1[X≤ε]]

=
1− e−λε

(1− e−λε)/λ − εe−λε =
2
ε
+o(1), (3)

this limit yielding a parameter θ ∗ with BRE from our verification using right after (2).
Considering n1 = 100 independent experiments like this, we have observed important varia-

tions in the results. The maximal variance of an experiment was 4.52 10−4 obtained when θ (min)

was estimated as θ̂n1 = 492.25 while the minimal variance was 5.34 10−5 obtained when the
estimated parameters was θ̂n1 = 158.00, hence a (large) relative ratio of 12.

The disparity obtained when estimating the optimal parameter θ (min) in the last example il-
lustrates that we may end up with a parameter selection yielding bad robustness properties. This
can happen even if the parameter selection algorithm is performant, just because of (statistical)
bad luck. As a consequence, it seems difficult to ensure a strict robustness property for the final
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estimator in adaptive IS simulation, due to the random nature of the parameters. Our goal is
to define a probabilistic robustness property in the next section and, afterwards, to characterize
sufficient conditions to satisfy it.

Similar difficulties have been observed in the literature:

Example 2. Another example is taken from [2], Section 3: consider the sum of n i.i.d. random
variables Xi (1 ≤ i ≤ n) where each Xi follows an exponential distribution with parameter 1.
The goal is to estimate p = P[X1 + · · ·+ X≥γ] via IS, i the parametric family of exponential
distributions with rate θ > 0. It is shown that the optimal θ (CE) when using the CE technique
is such that (quoting [2]): “when γ is sufficiently large, the estimation error in obtaining θ (CE)

in the multi-level CE procedure might be so substantial that it renders the resulting importance
sampling estimator unreliable”.

Remark 1. The principle of adaptive techniques is then to first estimate the optimal parameter
θ ∗ by θ̂n1 with a sample size n1 and then to use it in the IS change of measure to get an estimator
ĝθ̂n1 ,n

of the searched random variable. The question is (again) to understand the robustness

properties of the estimator with this (then fixed) parameter θ̂n1 . There would be an alternative
way to proceed to in order to look for a deterministic robustness property: it would consist in
repeating the full experience, parameter estimation plus simulation, m times independently, and
to apply the central limit theorem to those m trials. The estimator we consider in this case is
then ĝθ̂n1 ,n

with θ̂n1 as a random variable. The variance of this estimator is

σ2
[
ĝθ̂n1 ,n

]
= E

[
σ 2
[
ĝθ̂n1 ,n

∣∣∣θ̂n1

]]
+σ2

[
E
[
ĝθ̂n1 ,n

∣∣∣θ̂n1

]]
= E

[
σ 2
[
ĝθ̂n1 ,n

∣∣∣θ̂n1

]]
where the second term on the first line is zero from the unbiasedness of the estimator (assuming
the support of the change of measure not affected by the parameter choice), and the remaining
term is the expected variance. But again, this means that the considered estimator is one for
which the IS parameter search (and the resulting simulation) is repeated m times independently,
which does not correspond to what is done in practice.

3 Probabilistic Bounded Relative Error Definitions

We formalize now several notions of Probabilistic Bounded Relative Error (P-BRE). We start by
introducing few useful notations. similarly in a full version of this draft.

We consider a measurable space (Ω,F ) on which is defined a default probability measure
P, and a family of parameterized probability measures {Pθ : θ ∈ Θ}. Let X : Ω → R be a
random variable, and g : R→ R be the output function. We can assume that the output function
depends on a rarity parameter ε , thus we denote gε(·); for instance gε(x) = I{x ∈ A(ε)} for some
sequence of Borel subsets {A(ε) : ε > 0}. The ε-problem is to estimate

µ(ε) = E[gε(X)],
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where µ(ε)→ 0 as the rarity parameter ε → 0. Another framework is when it is the probability
measure that depends on ε , leading to a family (Pε)ε defined on (Ω,F ), and µ(ε) = Eε [g(X)]
with g(x) = I{x ∈ A} for a given set A

A member of the parameterized family can be used as an importance sampling measure if
dPθ (x) > 0 whenever gε(x)dP(x) ̸= 0. The zero-variance probability measure P(ZV)

ε for the
ε-problem is defined by

dP(ZV)
ε =

|gε(X)|
E[|gε(X)|]

dP,

which is not necessarily a member of the parameterized family. However, suppose that there
is some probability space (Ω,F ,P) on which we can do experiments, for instance simulations,
that allow us to learn P(ZV)

ε . More formally, equip Θ with a sigma-algebra FΘ, and let θ̂ : Ω→Θ
be a measurable mapping. Suppose that we can construct such a random variable for each ε-
problem, resulting in a collection of random variables {θ̂(ε) : ε > 0}. The realizations θ(ε) of
θ̂(ε) are used for estimating µ(ε) by the importance sampling measure Pθ(ε).

Suppose that, in this way, we have constructed for each ε > 0 an importance sampling measure
Pθ(ε), and their associated importance sampling estimators Zθ(ε)(ε) being unbiased estimators
of µ(ε).

Suppose that, in this way, we have constructed for each ε > 0 an IS measure Pθ(ε), and its
associated IS estimator Z(θ(ε),ε) being an unbiased estimator of µ(ε). The relative error of
this estimator is

RE(θ(ε),ε) =

√
Varθ(ε)[Z(θ(ε),ε)]

µ(ε)
.

In the line of our observations in the previous section we recall the classical BRE property to a
realization (θ(ε))ε of (θ̂(ε))ε .

Definition 1. We say that the IS estimators Z(θ(ε),ε) show bounded relative errors (BRE) if

∃K < ∞ that does not depend on ε and for which sup
ε>0

RE(θ(ε),ε)≤ K. (4)

Equivalent conditions are supε>0 RE(θ(ε),ε)<∞; supε>0
Eθ(ε)[Z2(θ(ε),ε)]

µ2(ε) <∞.; or RE(θ(ε),ε)=
O(1) as ε → 0.

However, as discussed before, the IS measure Pθ(ε) for the ε-problem is chosen randomly
according to some learning algorithm. Thus we deal with (random) IS estimators Z(θ̂(ε),ε)
with random relative errors RE(θ̂(ε),ε). In other words, these relative errors are rv Ω → R.
Based on this observation, it is a natural step to cast the BRE property (4) in a probabilistic
framework.

Definition 2.
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A. We say that the IS estimators Z(θ̂(ε),ε) show bounded square relative error in expecta-
tion, if their relative errors satisfy

E[(RE(θ̂(ε),ε))2] = O(1) (ε → 0).

B. We say that the IS estimators Z(θ̂(ε),ε) show weak probabilistic bounded relative error,
if

∀α ∈ (0,1) ∃ a constant K < ∞ such that inf
ε>0

P
(

RE(θ̂(ε),ε)≤ K
)
> α.

C. We say that the IS estimators Z(θ̂(ε),ε) show strong probabilistic bounded relative error,
if

∀α ∈ (0,1) ∃ a constant K < ∞ such that P
(

sup
ε>0

RE(θ̂(ε),ε)≤ K
)
> α.

Instead of ensuring BRE almost surely, we give a probabilistic guarantee to have BRE with
any specified probability, after an estimation procedure of the parameter(s). The strong sense
means that the upper-bound on the relative error has to be verified for every ε , while in the weak
sense it is not needed, it has to be verified at least with a given probability.

Remark 2. Our set-up and definition of randomization of the statistical performance of estima-
tors follow the practice of the learning methods which we mentioned in the introduction. That
is, typically one executes a two-stage approach, where the first stage determines parameters by
a (pre)simulation procedure. The second stage is for estimating the wished value after having
chosen and fixed the parameters. Another view on such randomization would be to select a
parameter θ at random and execute the simulation using it. Although this seems to be a more
natural approach, we do not follow it because we wanted to stay close to the practice mentioned
above. Moreover, there are clearly two different probability mechanisms involved: selection of
the parameter; running the simulations. Thus, to define properly a statistical property of the
estimator, one needs to be unambiguous about these probability mechanisms.

Remark 3. As an important remark, one can note that in our definitions of robustness, the
parameter θ̂ depends on ε – we do not mention here the required time/presimulation runs to
obtain it. It might be the case that the required number of runs is n1(ε) and increases with ε .
A truly robust algorithm can be said to be one for which the presimulation effort is also kept
bounded as ε goes to zero. This would lead to definitions of robustness stronger than the one
above, but our goal here is not to define or put in place such algorithms, it is just to highlight that
robustness properties can only be probabilistic for properly chosen presimulation algorithms.
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4 Sufficient conditions for P-BRE

Suppose that there exists a collection of importance sampling probability measures {Pθ ∗(ε) : ε >
0} for which the associated importance sampling estimators Zθ ∗(ε)(ε) of µ(ε) show bounded
relative error; and suppose that we have estimated these probability measures by Pθ̂(ε).

The next propositions show that if the targeted probability distributions are sufficiently ap-
proximated (through the likelihood ratio), then P-BRE properties can be satisfied.

Proposition 1. Assume that for all α ∈ (0,1) there exists a finite constant K such that for all
ε > 0

P

(
sup

x:gε (x) ̸=0

dPθ ∗(ε)(x)
dPθ̂(ε)(x)

≤ K

)
> α. (5)

Then the importance sampling estimators Zθ̂(ε)(ε) show weak probabilistic bounded relative
error.

Proof. According to (4), as the estimators Zθ ∗(ε)(ε) show bounded relative error, there is a
constant K′ such that for all ε > 0,

Eθ ∗(ε)[Z
2
θ ∗(ε)(ε)]≤ K′µ2(ε).

Choose ε > 0 arbitrary, and let ω ∈ Ω such that for θ def
= θ̂(ε)(ω) the inequality in (5) holds;

i.e.,

sup
x:gε (x) ̸=0

dPθ ∗(ε)(x)
dPθ (x)

≤ K.

Then,

Eθ [Z2
θ (ε)] =

∫
g(x)2

(
dP(x)

dPθ (x)

)2

dPθ (x)

=
∫

g(x)2
(

dP(x)
dPθ ∗(ε)(x)

)2(dPθ ∗(ε)(x)
dPθ (x)

)
dPθ ∗(ε)[x]

≤ K
∫

g(x)2
(

dP(x)
dPθ ∗(ε)(x)

)2

dPθ ∗(ε)(x) = KEθ ∗(ε)

[
g(X)2

(
dP(X)

dPθ ∗(ε)(X)

)2
]

= KEθ ∗(ε)[Z
2
θ ∗(ε)(ε)]≤ KK′µ2(ε).

Thus, choose K̃ = KK′, then for all ε > 0{
sup

x:g(x)̸=0

dPθ ∗(ε)(x)
dPθ̂(ε)(x)

≤ K

}
⊂

Eθ̂(ε)[Z
2
θ̂(ε)

(ε)]

µ2(ε)
,≤ K̃

 .

and

∀α ∈ (0,1) ∃K̃ < ∞ such that ∀ε > 0 P

(
σθ̂(ε)(ε)

µ(ε)
≤ K̃

)
> α.
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Proposition 2. Assume that for all α ∈ (0,1) there exists a finite constant K such that

P

(
sup
ε>0

sup
x:gε (x) ̸=0

dPθ ∗(ε)(x)
dPθ̂(ε)(x)

≤ K

)
> α. (6)

Then the importance sampling estimators Zθ̂(ε)(ε) show strong probabilistic bounded relative
error.

Proof. The proof follows the same line of reasoning as the proof of Proposition 1.

Example 3. Coming back to Example 1, we know from the central limit theorem for a ratio of
estimators [1] that, if we note d̂n1 =

1
n1

∑n1
i=1 Xi1[Xi≤ε], the law of

√
n1

(
θ̂n1 −

P[X≤ε]
E[X1[X≤ε]]

)
σ/d̂n1

converges when n1 → ∞ to a Normal law with mean 0 and variance 1, where

σ2 = σ2[1[X≤ε]]−2
P[X ≤ ε]
E[X1[X≤ε]]

Cov[1[X≤ε],X1[X≤ε]]+

(
P[X ≤ ε]
E[X1[X≤ε]]

)2

σ2[X1[X≤ε]]

= P[X ≤ ε](1−P[X ≤ ε])−2
P[X ≤ ε]
E[X1[X≤ε]]

E[X1[X≤ε]](1−P[X ≤ ε])

+

(
P[X ≤ ε]
E[X1[X≤ε]]

)2

(E[X21[X≤ε]]− (E[X1[X≤ε]])
2)

= −e−λε(1− e−λε)

+

(
1− e−λε

(1− e−λε)/λ − εe−λε

)2(
−ε2e−λε −2

εe−λε

λ
+2

1− e−λε

λ 2 − ((1− e−λε)/λ − εe−λε)2

)
.

Then
|θ̂n1 −θ ∗| ≤ cα

σ
d̂n1

√
n1

with probability α where cα is the (1 + α)/2 quantile of the standard normal distribution.
Let n1 = n1(ε) be large enough so the relative error is bounded by δ < 1 independent of
ε , i.e., the right hand-side of the above equation upper bounded by δθ ∗, or more exactly
n1 ≥

(
(cασ)/(E[d̂]δθ ∗)

)2
. Then, with probability α ,

sup
x:g(x)̸=0

dPθ ∗ [x]
dPθ̂n1

[x]
= sup

0≤x≤ε

θ ∗e−θ ∗x

θ̂n1e−θ̂n1 x

= sup
0≤x≤ε

θ ∗

θ̂n1

e(θ̂n1−θ ∗)x

≤ 1
1−δ

eδθ ∗ε .

As, for ε small enough, θ ∗ε ≤ 3 from (3), one can apply Proposition 2 with K = 1
1−δ e3δ .
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5 Highly Reliable Markovian Systems

Our previous sections were dealing with general probability distributions, but many models used
in simulation are Markov chains. We therefore consider rare events in the context of discrete-
time Markov chains {Xn, n = 0,1, . . .} on a constant finite state space S . Let ΩX be the space
of all sample paths of finite lengths x = (x0,x1, . . . ,xT (x)), T (x) ∈ {1,2, . . .}, with sigma-algebra
FX . Denote a matrix of transition probabilities by θ = (θi j)i, j∈S . Associate with each matrix
θ a probability measure Pθ on (ΩX ,FX). Let Θ be the family of all matrices of transition
probabilities; specifically, we consider a given collection of matrices {θ(ε)}⊂Θ, parameterized
by ε > 0.

Furthermore, we assume here that the state space contains a perfect state 0, a set B of failed
states, and the set U of remaining ‘up’ states, i.e., S = {0}∪U ∪B. For any x ∈ ΩX we define

T (x) = inf{n : xn ∈ {0}∪B},

the stopping time of “return” to 0 or reaching failure, and for any state i ∈ S we let

µi(ε) = Pθ(ε)(XT (X) ∈ B|X0 = i) = Eθ(ε)[I{XT (X) ∈ B}|X0 = i]

the probability of reaching a failed state before the perfect state given that we start in i. Note
that µ0(ε) = 0 and µi(ε) = 1 whenever i ∈ B. The purpose is to estimate

µ(ε) = ∑
i∈S

θ(ε)0iµi(ε),

the probability that after leaving the perfect state 0, the chain will hit the failure set B before
returning to 0. We assume that µ(ε) → 0 as ε → 0. We are interested in efficient importance
sampling estimators of these performance measures. More on this type of model and specific IS
schemes can be found in [9, 10, 12, 15].

Example 4. As a toy example, consider birth-death type of Markov chains on S = {0,1, . . . ,b}
for a finite constant b; thus we consider only transition probabilities satisfying θi,i+1+θi,i−1 = 1;
we let the states 0 and b be absorbing. Let T (x)= inf{n : xn ∈{0,b}}. For each θ ∈Θ we assume
that Pθ (T (X)< ∞) = 1, with Pθ (XT (X) = b|X0 = i)> 0 for all i ̸= 0. Suppose that the matrices
θ(ε) ∈ Θ satisfy maxi=1,...,b−1 θ(ε)i,i+1 ≤ ε . Finally, define µi(ε) = Pθ(ε)(XT (X) = b|X0 = i):
the probability of absorbtion in state b when the chain starts in state i. Specifically, consider
µ1(ε); since the birth rates tend to zero with ε , we deal with a rare-event probability.

Suppose that for each ε > 0 there is besides the given matrix θ(ε) some other transition matrix
θ(ε) ∈ Θ, such that θ(ε)i j > 0 whenever θ(ε)i j > 0. This matrix induces an unbiased impor-
tance sampling estimator of µ(ε) by

Zθ(ε)(ε)
def
= L(X;θ(ε),θ(ε))I{XT (X) ∈ B}

with likelihood ratio

L(x;θ(ε),θ(ε)) def
=

dPθ(ε)(x)
dPθ(ε)(x)

=
T (x)−1

∏
n=0

θ(ε)xn,xn+1

θ(ε)xn,xx+1

, x ∈ ΩX .
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Denote its standard deviation by

σθ(ε)(ε)
def
=
√

Varθ(ε)[Zθ(ε)(ε)].

Recall from Section 3 the concepts of bounded relative error and probabilistic bounded rela-
tive error. Furthermore, recall that the zero-variance probability measure is induced by taking
matrices θ (ZV)(ε) ∈ Θ for which

dPθ(ε)(ZV)(x) =
I{xT (x) ∈ B}dPθ(ε)(x)

µ(ε)
, x ∈ ΩX . (7)

It is known [9] that a matrix θ(ε)(ZV) with ∀i, j ∈ S , i ̸= j,

θ(ε)(ZV)
i, j =

θ(ε)i, jµ j(ε)
µi(ε)

. (8)

For instance, in the setting of Example 4, it gives

θ(ε)(ZV)
i,i+1 =

θ(ε)i,i+1µi+1(ε)
µi(ε)

. (9)

We shall consider a sufficient condition for probabilistic bounded relative error. Denote by Pθ̂(ε)

the probability measure on (Θ,FΘ) induced by the random variable θ̂(ε) : Ω → Θ.

Proposition 3. Assume that for all α ∈ (0,1) there exists a finite constants k,K > 0 such that
for all ε > 0 the all the (random) parameters are close enough the to zero-variance ones with
probability at least α:

P

(
sup

i, j∈S ,θ (ZV)(ε)i j ̸=0
k ≤

θ (ZV)(ε)i j

θ̂(ε)i j
≤ K

)
> α. (10)

Then, under the assumption that cycles have Pθ(ε)-probability O(εδ ) for some constant δ > 0,
the importance sampling estimators Zθ̂(ε)(ε) show weak probabilistic bounded relative error as
ε → 0.

Proof. Choose ε > 0 and a transition matrix θ = θ(ε) realization of θ̂(ε) such that supi, j∈S ,θ (ZV)(ε)i j ̸=0 k≤
θ (ZV)(ε)i j

θ ≤ K. We wish to show that there is a constant K̃ which does not depend on ε , such that

Eθ [Z2
θ (ε)]

µ2(ε)
≤ K̃.

Then P-BRE follows from the fact that, by assumption, θ = θ(ε) is a realization of θ̂(ε) such

that supi, j∈S
θ (ZV)(ε)i j

θ ≤ K with probability at least α .

12



Note that we can rewrite this ratio using the expression for the zero-variance probability
measure given in (7) which says that

I{XT (X) ∈ B}L2(X;θ(ε);θ (ZV)(ε))
µ2(ε)

= 1 a.s.,

and then bound it using that θ in the set given in (10):

Eθ [Z2
θ (ε)]

µ2(ε)
=

Eθ [I{XT (X) ∈ B}L2(X;θ(ε);θ)]
µ2(ε)

=
Eθ [I{XT (X) ∈ B}L2(X;θ(ε);θ (ZV)(ε))L2(X;θ (ZV)(ε);θ)]

µ2(ε)

= Eθ [I{XT (X) ∈ B}L2(X;θ (ZV)(ε);θ)] = Eθ

[
I{XT (X) ∈ B}

(dPθ (ZV)(ε)

dPθ
(X)
)2
]
≤ Eθ [K2T (X)].

Define A (i) to be the set of sample paths that, starting in state i ∈ S , reach the failure set
before state 0 without cycles:

A (i) = {x ∈ ΩX : x0 = i;xT (x) ∈ B;no cycles}.

Let A =
∪

i∈S A (i). Because we assumed a finite statespace S , there is a finite constant m
such that for any ε > 0 all sample paths x ∈ A have length T (x)< m. Denote p0(ε) = Pθ (A ).
Note that p0 depends on ε because transiton matrix θ = θ(ε) refers to the estimate θ̂(ε) of the
zero-variance matrix for the ε-problem.

Clearly, Pθ (T (X) ≥ m) ≤ Pθ (A
c) = 1− p0(ε). From this we can reason that Pθ (T (X) ≥

km)≤ (1− p0(ε))k for all k = 0,1, . . . (see also the proof of Theorem 1 in [9]). Hence, T (X)/m
is stochastically smaller than a geometric random variable Y (on 0,1, . . .) with parameter p0(ε).
Using the expression of the generating function Eθ [zY ] of Y , we get

Eθ [K2T (X)] = Eθ [(K2m)T (X)/m]≤ Eθ [(K2m)Y ] =
p0(ε)

1− (1− p0(ε))K2m , (11)

if we are able to prove that (1− p0(ε))K2m < 1 (for ε small enough). Then BRE will be obtained.
But, following exactly the proof of Theorem 2 in [9], thanks to our assumptions, we can show

that p0(ε) → 1 as ε → 0, hence the result. This basically comes from for any path x are such
that Pθ [x] = Θ( P[x]

µ(ε)) by expanding the probability of the path as the product of probabilities of
individual transitions and using the bounds in terms of the zero-variance change of measure. As a
consequence dominant paths (those of probability Θ(µ(ε)) under the original distribution) have
probability Θ(1) while non-dominant paths have probabilityo(1) and therefore p0(ε)→ 1.

6 M/M/1/b model

As a special case of Section 5 we consider a Markov chain on S = {0,1, . . . ,b} for a finite
constant b with transition probabilities

θ(ε)i,i+1 = ε, θ(ε)i,i−1 = 1− ε , (i = 1, . . . ,b−1),
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for ε > 0. This models the discrete-time Markov chain associated with the continuous-time
M/M/1/b Markov chain by embedding at the jump times. States 0 and b are absorbing,

θ(ε)00 = 1, θ(ε)bb = 1.

For instance, when ε = k−δ for some δ > 0 and k → ∞, the decaying is polynomially fast. When
ε = e−δk for some δ > 0, the decaying is exponentially fast as k → ∞. The output function
I{xT (x) = b} is absorption in state b, where T (x) is the first entrance time in the absorption set,
and I{A} denotes the indicator function of event A. Suppose that the chain starts in state i, then
we denote

µi(ε)
def
= Pθ(ε)(XT (X) = b|X0 = i).

Let

ρ(ε) def
=

θ(ε)i,i−1

θ(ε)i,i+1
=

1− ε
ε

.

(Note that this is not the traditional ‘load ρ = λ/µ’.) Then it is well-known that

µi(ε) =
ρ(ε)i −1
ρ(ε)b −1

, i = 0, . . . ,b. (12)

Specifically we are interested in µ1(ε) for ε → 0:

µ1(ε) =
ρ(ε)−1
ρ(ε)b −1

=
(1− ε)/ε −1
(1− ε)b/εb −1

=
(1−2ε)εb−1

(1− ε)b − εb = Θ
(

εb−1
)
, ε → 0.

Thus, the rare event probability µ1(ε) decays to 0 polynomially in ε as ε → 0.

6.1 An estimator with bounded relative error

Define transition matrices {θ ∗(ε), ε > 0} by

θ ∗(ε)i,i+1 = θ(ε)i,i−1 = 1− ε, θ ∗(ε)i,i−1 = θ(ε)i,i+1 = ε , (i = 1, . . . ,b−1),

for ε > 0. States 0 and b are again absorbing. It is known that by interchanging arrival and
service jump probabilities the associated importance sampling estimators show BRE in the con-
text of estimating large population sizes, i.e., in the case of b → ∞ while keeping the transition
probabilities θ(ε)≡ θ not dependent on the rarity parameter, see for instance Section 2.3.3 and
Section 5.3.1 in [13]. The same holds true in our study of reliability probabilities for systems
with constant state space.

Proposition 4. Suppose that we apply importance sampling simulation with these θ ∗(ε) ma-
trices to estimate µ1(ε). Then the associated importance sampling estimators Zθ ∗(ε)(ε) show
bounded relative error.
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Proof. Recall that

Zθ ∗(ε)(ε) =
dPθ(ε)(X)

dPθ ∗(ε)(X)
I{XT (X) = b}.

The likelihood ratio of a path X that reaches b equals

dPθ(ε)(X)

dPθ ∗(ε)(X)
=

b−1

∏
i=1

θ(ε)i,i+1

θ ∗(ε)i,i+1
×

b−1

∏
i=2

(
θ(ε)i,i−1

θ ∗(ε)i,i−1

θ(ε)i−1,i

θ ∗(ε)i−1,i

)Ni(X)

,

where the second ∏-factor takes into account all cycles: (Ni(X) is the number of times the cycle
i → i−1 → i occurs. By definition of the importance sampling transition probabilities θ ∗(ε)i j,
this cycle product equals 1. Thus

Eθ ∗(ε)[Z
2
θ ∗(ε)(ε)] =

(
b−1

∏
i=1

ε
1− ε

)2

Eθ ∗(ε)[I{XT (X) = b}]

=

(
ε

1− ε

)2(b−1)

Pθ ∗(ε)(XT (X) = b).

Note that similar to (12)

Pθ ∗(ε)(XT (X) = b) = Pθ ∗(ε)(XT (X) = b|X0 = 1) =
1−ρ(ε)−1

1−ρ(ε)−b ,

where ρ(ε)−1 = ε/(1− ε)→ 0 as ε → 0. Hence,

Eθ ∗(ε)[Z2
θ ∗(ε)(ε)]

µ1(ε)2 = ρ(ε)−2(b−1) 1−ρ(ε)−1

1−ρ(ε)−b
(ρ(ε)b −1)2

(ρ(ε)−1)2

= · · ·(calculus) · · ·= 1−ρ(ε)−b

1−ρ(ε)−1 ≤ 2(1−ρ(ε)−b)< 2,

for all ε < ε0 for which 1−ρ(ε0)
−1 > 1

2 .

6.2 The zero-variance probability measure

Using (9) and (12) we find

θ(ε)(ZV)
i,i+1 = ε

ρ(ε)i+1 −1
ρ(ε)i −1

, θ(ε)(ZV)
i,i−1 = (1− ε)

ρ(ε)i−1 −1
ρ(ε)i −1

,

for k = 1,2, . . .. States 0 and b are again absorbing. Note that θ(ε)(ZV)
1,0 = 0, thus

Pθ(ε)(ZV)(XT (X) = b) = 1.
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6.3 Cross-entropy estimators

The cross-entropy method is an adaptive simulation technique that estimates the zero-variance
transition probabilities by minimizing the Kullback-Leibler divergence between the zero-variance
probability measure and the importance sampling change of measure [3] Apply the cross-entropy
method with a sample of size R, then it results in estimates

θ̂(ε)i,i+1[R] =
∑R

r=1 I{X(r)
T (X(r))

= b}Ni,i+1(X(r))

∑R
r=1 I{X(r)

T (X(r))
= b}

(
Ni,i+1(X(r))+Ni,i−1(X(r))

) , (13)

where X(r) is the r-th simulated sample path, and Ni,i+1(X) counts the number of transitions
i → i+1 on the sample path X. Note that the simulations have been executed under the original
measure Pθ(ε). Alternatively, we might have executed these simulations under a change of
measure Pθ(ε). In that case the numerator and denominator in (13) include also the likelihood
ratio L(X(r);θ(ε),θ(ε)). In both cases, when we let R → ∞, we obtain

lim
R→∞

θ̂(ε)i,i+1[R] =
Eθ(ε)[I{XT (X) = b}Ni,i+1(X)]

Eθ(ε)[I{XT (X) = b}(Ni,i+1(X)+Ni,i−1(X)]

= θ(ε)(ZV)
i,i+1 a.s..

(14)

The last equality in (14) has been shown in [11].

The estimator (13) satisfies the central limit theorem, see for instance [1, page 107]:

√
R
(

θ̂(ε)i,i+1[R]−θ(ε)(ZV)
i,i+1

)
d→ N(0,σ 2(ε)) (R → ∞)

for some σ2(ε). Apply the delta method for obtaining an expression for the variance σ2(ε).
Hence, denoting z1−α/2 the 1−α/2 quantile of the standard normal distribution, we get for R
large enough

Pθ̂(ε)

(∣∣∣θ̂(ε)i,i+1[R]−θ(ε)(ZV)
i,i+1

∣∣∣< z1−α/2
σ(ε)√

R

)
≈ 1−α.

Proposition 5. The cross-entropy estimators satisfy probabilistic bounded relative error.

Proof. Apply Proposition 3 while using (14) and the constant size of state space for all ε .

6.4 Numerical/simulation results

Data: b = 20, ε = k−δ with δ = 1.0, and k = 5,6, . . . ,100. The rare event probabilities µ1(ε)
run from 2.7285e-12 for k = 5 to 1.1982e-38 for k = 100. We have applied the cross-entropy
method as follows: in the first iteration we generated R= 100000 sample paths using the uniform
transition probabilities; that is

θ(ε)(0)i,i+1 = θ(ε)(0)i,i−1 = 0.5.
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We obtained estimates θ(ε)(1)i j by adopting the rule (13) to cope with this change of measure:

θ(ε)(1)i,i+1 =
∑R

r=1 L(X(r);θ(ε);θ(ε)(0)) I{X(r)
T (X(r))

= b}Ni,i+1(X(r))

∑R
r=1 L(X(r);θ(ε);θ(ε)(0)) I{X(r)

T (X(r))
= b}

(
Ni,i+1(X(r))+Ni,i−1(X(r))

) . (15)

Then, in the second (k = 2) and third iteration (k = 3) we generated again R = 100000 sam-
ple paths using the θ(ε)(k−1) transition probabilities, to get estimates θ(ε)(k) by the (15) rule.
With the θ(ε)(CE) = θ(ε)(3) transition probabilities we generated n = 1000 sample paths for
estimating the rare event probability µ1(ε). This gave us a relative error σθ(ε)(CE)(ε)/µ1(ε) of
the rare event estimator. This whole procedure is repeated M = 100 times. In this way we have
generated M observations of a cross-entropy estimator θ̂(ε) and M observations of the relative
errors of the associated importance sampling estimators. From these M relative error data we
have constructed the empirical distribution function

F(emp)
θ̂(ε)

(x;ε) =
1
M

M

∑
m=1

I{σθ(ε)(CE)
m

(ε)/µ1(ε)≤ x}

as an approximation to the CDF Fθ̂(ε)(x;ε):

Fθ̂(ε)(x;ε) def
= Pθ̂(ε)

({
θ ∈ Θ :

σθ (ε)
µ(ε)

≤ x
})

, x ≥ 0.

The figure on the left shows the graphs of these empirical distribution functions for ε = k−1 with
k = 5,10, . . . ,100; the figure on the right for k = 5 and k = 100 only. The figures illustrate the
probabilistic bounded relative error property of the cross-entropy method.
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As an illustration of Proposition 3, the following figures show the empirical distribution func-
tions of the maximal ratio of transition probabilities

sup
i, j:θ(ε)(CE)

i j ̸=0

θ (ZV)(ε)i j

θ(ε)(CE)
i j

,
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for ε = k−1 with k = 5,10, . . . ,100 (figure left) and for k = 5 and k = 100 (figure right).

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

7 Conclusions

This paper introduced a new complexity concept for rare-event simulation: probabilistic bounded
relative error. The motivation was to formalize a bounded relative error property of a rare-event
estimator when its distribution is obtained by a random procedure, such as the cross-entropy
method. The concept is supported by a simulation study of a simple queue.
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