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Confirming Information Flows in Networks∗

Pascal Billand, Christophe Bravard†, Jurjen Kamphorst‡, Sudipta Sarangi§

February 29, 2012

Abstract

Social networks, be it on the internet or in real life, facilitate information flows. We model

this by giving agents incentives to link with others and receive information through those links.

In many networks agents will value confirmation of the information they receive from others.

Our paper analyzes the impact such a need for confirmation has on the social networks which

are formed. We first study the existence of Nash equilibria and then characterize the set of

strict Nash networks. Next, we characterize the set of strictly efficient networks and discuss

the relationship between strictly efficient networks and strict Nash networks.

JEL Classification: C72, D85.

Key Words: connections model, confirmation, two-way flow models.

1 Introduction

Social networks are purveyors of information where members of networks use their direct

and indirect connections to gather information from others. A very substantial literature
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covers different aspects of this topic with one of the classics being Granovetter [8] who studies

transmission of information about job opportunities. Learning from one’s neighbors is studied

by Bala and Goyal [1] while Goyal and Galeotti [6] examine how information (modeled as a

public good) is gathered in the network. In situations where the information acquired through

the network is used in making decisions, the reliability of this information matters, creating a

need for the confirmation of information. The focus of our paper is precisely on this issue -

how does the need to confirm information affect network formation? This need already echoed

in the Book of Deuteronomy which states that “On the testimony of two or three witnesses

a man [who has done an evil deed] shall be put to death, but no one shall be put to death

on the testimony of only one witness” (17:6). Such confirmation is a key part of our judicial

system where it is often necessary to have multiple witnesses who can corroborate a piece of

evidence.1 While confirming information is important in legal circles, researchers also have a

need for confirming information. When writing a survey paper, one often reads the original

source as well as other interpretations of the same work in order to write a better scholarly

piece. While attending a conference we often talk to different researchers about the same

paper to enhance our understanding of it. One can also find other examples. For the sake

of credibility journalists typically attempt to confirm information in several different ways.

Government agencies also usually need to confirm information prior to acting on it.2

In this paper we model the desire for confirmation by allowing for the possibility of both

unconfirmed and confirmed information. Agents in the model form a network to acquire

information by creating links with each other. Our objective is to identify stable networks using

the concepts of (strict) Nash network and (strict) bilateral rational network when agents make

decisions based on the benefits and costs of links. We establish when such equilibrium networks

exist and how they differ from efficient networks, i.e., networks that maximize aggregate

payoffs.

Formally, we consider a setting where each agent, modeled as a node in the network, is a

1There is a large body of work in law and psychology that examines the accuracy of witness testimony and
suggests that it depends on a number of factors like memory, age as well as the process of obtaining the testimony.
For an early perspective on this see Morgan [17] and for more recent work see Wells and Olson [19].

2All these cases require corroboration of information, that is using additional information to validate already
obtained information. In other words, agents look for other information to support and reconconfirm (or to challenge
or rebut) information they have found. There is an extensive literature on this subject (see for instance Miranda,
Vercellesi and Bruno [16], and Jick [13]).
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source of benefits that others can tap via the formation of costly links. We assume that a link

with another agent allows access to the benefits available to the latter through her own (direct

and indirect) links. In the model the costs of link formation are incurred only by the agent who

sponsors the link and the links formed by the agents define a social network. Information that

is obtained through one path, or sequence of links is said to be unconfirmed, while information

that is obtained through at least one other distinct path in the network is said to be confirmed.

In our setting information obtained through two distinct paths (or confirmed information) is

worth more to an agent than that obtained through a direct or a single set of links (unconfirmed

information).3 Consequently, the payoff obtained by each agent in a social network depends

on (i) the number of confirmed resources she obtains from other agents, (ii) the number of

unconfirmed resources she obtains from other agents, and (iii) the number of links she sponsors

and so the costs she incurs. It is worth noting that our formulation introduces heterogeneity

endogenously in the model by allowing for the value of information to depend on the network

structure.4

Our analysis of network formation in this model provides a number of interesting insights.

First, we show that Nash networks in pure strategies may not exist under a general payoff

function that incorporates the three elements mentioned above. However, we find that a

Nash network always exists if the function which captures the costs of sponsoring links is

convex. Second, we characterize strict Nash networks. We show that connected5 strict Nash

networks have simple architectures: they are minimally confirmed networks or center sponsored

stars.6 Then, we show that non-connected strict Nash networks contain wheels7 and at most

one subnetwork which is either empty, or connected. Third, we examine situations where

3In computer science there is a also a body of literature that considers distinct paths in routing applications (see
for instance Lee and Gerla [15] and Tsirigos and Haas [18]). Although this phenomenon called multipath routing is
not used to confirm information it increases the payoffs of players at higher costs by lowering delay, providing better
security or improving fault tolerance. Thus our formal model can also be used to study situations where there is an
explicit need for redundancy or alternate paths.

4The typical approach for introducing heterogeneity in the standard model has been through different exogenously
given values and costs of links. See for instance Galeotti, Goyal and Kamphorst [7], and Billand, Bravard and Sarangi
[5].

5A network is connected if there is a path between every pair of agents.
6A minimally confirmed network is a network where each player obtains confirmed resources from every other

player and if a link is removed from this network, then at least one player loses some confirmed resources. A center
sponsored star is a network where a player i sponsors a link with each other player while other players do not sponsor
any links.

7In a wheel each player forms and receives one link.
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pair of players make bilateral deviations in order to make a Pareto improvement in their

payoffs. We show that these bilateral deviations allow to obtain connected networks as non-

empty equilibrium networks. Fourth, we study strict efficient networks. Since it is difficult to

characterize strict efficient networks with a general payoff function we restrict our attention to

the cases where the payoff function is linear. We show that a strict efficient network is either

a minimal unconfirmed network, or a minimal network that is cyclic. Finally, we discuss the

implications of a decay assumption in our framework.

Our paper is inspired by the Nash networks model of Bala and Goyal [2] and here we

focus on the two-way flow version of their connections model (in the following we refer to

this model as the standard model). In Bala and Goyal’s model a set of agents simultaneously

decide who they wish to link with which in turn determines the network structure.8 As in

our model links are established as long as the agent initiating the link pays for it. Moreover,

each agent obtains the information of agents she is directly or indirectly connected to. The

difference between our paper and the work of Bala and Goyal lies in the fact that players do not

obtain additional payoff from the confirmation of resources in the standard model. Thus, our

paper can also be viewed as an extension of the standard model of Bala and Goyal [2]. When

confirming information is prohibitively expensive, then we will obtain unconfirmed equilibrium

networks which will correspond with the results of Bala and Goyal. But we also find that the

introduction of the confirmation assumption creates other interesting possibilities – we find

strict Nash networks which are neither empty, nor connected. Moreover, we show that the

confirmation assumption may lead to equilibrium networks where players are asymmetric with

regard to the resources they obtain, a kind of asymmetry that never arises in the standard

model.

A number of variations of the standard model have also been developed in which there

are some benefits from having different paths. However, all of these rely on link imperfections

of some type or the other. One of these considers the possibility that links can fail with

an exogenously given probability. See for instance Bala and Goyal [3] who introduce the

basic model and Haller and Sarangi [9] who allow for exogenously given heterogeneity in

this model. Since links can fail, the incentive for alternate paths in this model is a type of

insurance against link failure that provides an access to the same information. In another

8Unlike the model of Jackson and Wolinsky [11], there are no consent issues here.

4



class of models introduced by Bala and Goyal [2] and generalized by Hojman and Szeidl [10]

the value of information acquired from agents that are farther away in the network decreases

in value.9 Under certain situations this creates an incentive to establish an alternative path

to an agent with whom a player is already linked. Note that in decay models the loss of

information through the network is “continuous” with distance, while in our model the loss of

information may be considered “discontinuous”. The major difference between our model and

decay models is that in these models the shortest path acts as the purveyor of information,

while in our model distinct paths are crucial. This has consequences for the set of strict Nash

networks: decay models have core-periphery or star type architectures, while the confirmation

requirement allows for a much bigger set of architectures to be strict Nash.

The paper is organized as follows. In section 2 we present the model setup. In section 3 we

characterize strict Nash networks and we provide a condition which ensures the existence of

Nash networks in pure strategies. In section 4 we discuss the role played by decay in a model

with a confirmation assumption.

2 Model setup

This model is based on the two-way flow connection model initiated by Bala and Goyal [2].

Networks definitions. We begin by giving the formal definition of a directed network.

A network g is an ordered pair of disjoint sets (N,A) such that A is a subset of the set N ×N

of ordered pairs of N . The set N , with |N | ≥ 3, is the set of vertices which will be identified

with the players and A = A(g) is the set of arcs which will be identified with the relations

or links between the players. We assume that there is no arc from a player i to herself. An

ordered pair (i, j) ∈ A(g) is said to be an arc directed from i to j and is denoted ij. In such a

case i is said to be the sponsor of ij and j the recipient of ij. Let Ai(g) = {kj ∈ A(g) : k = i}

be the set of arcs sponsored by player i in g and let A−i(g) = A(g) \ Ai(g) be the set of arcs

sponsored by players j 6= i in g. The set of arcs of g can be written as A(g) = Ai(g)∪A−i(g).

9Bala and Goyal [2] give a characterization of the equilibrium networks of diameters 2 and 3. This characterization
is extended to equilibrium networks of all diameters by De Jaegher and Kamphorst [12]. Billand, Bravard and Sarangi
[4] deal with the implications of exogenous heterogeneity in the presence of decay. Note that in models that allow
for link imperfections and exogenously given heterogeneity, in equilibrium the set of Nash networks is quite large.
This is not the case when heterogeneity occurs endogeneously as in our case.

5



To simplify the notation, we write Ai(g) ∪ {i j} = Ai(g) + ij and Ai(g) \ {i j} = Ai(g)− i j.

For consistency, we write A(g)∪{ij} = A(g) + ij and A(g) \ {ij} = A(g)− i j. We denote by

gij the network (N,A(g) + ij), and g−ij the network (N,A(g)− ij). We say that ij ∈ A(g)

if and only if ij ∈ A(g), or j i ∈ A(g). Let G be the set of directed networks with N as the set

of vertices.

Let Vi(A(g)) = {j ∈ N \ {i} : ij ∈ Ai(g) or j i ∈ Aj(g)} be the set of players with whom i is

directly linked in g. If |Vi(A(g))| ≥ 3, then player i is called a key player in g.

For a directed network, g, a chain Ci0,i`(g) in g between player i0 and player i` is an alter-

nating sequence of players and arcs: i0, x1, i1, x2, . . . , x`, i` in which all players are distinct

and each arc xm is either im−1 im or im im−1.
10 We denote by N(Ci0,i`(g)) the set of play-

ers contained in the chain Ci0,i`(g). Let Ci0,i`(g) and C ′i0,i`(g) be two different chains be-

tween i0 and i` in g. These chains are independent if N(Ci0,i`(g)) ∩ N(C ′i0,i`(g)) = {i0, i`}.

Let Xi0,i`(g) = {C1
i0,i`

(g), . . . , Cm
i0,i`

(g)} be a set of independent chains between i0 and i`

in g. The set of sets of independent chains between i0 and i` in g is denoted by Xi0,i`(g).

Let CIi0,i`(g) ∈ Xi0,i`(g) be a set of independent chains between i0 and i` in g such that

|CIi0,i`(g)| ≥ |Xi0,i`(g)| for all Xi0,i` ∈ Xi0,i` . Let Ni(A(g)) be the set of players j ∈ N \ {i}

such that there is a chain between i and j in g. If there exists a chain between i and j in g,

then i and j are said to be connected in g. A cycle consists of a chain together with an arc

between the terminal player and the initial one of the chain. A wheel is a cycle where each

player sponsors one arc and receives one arc.

A network g is connected if each player i ∈ N is connected with each other player j ∈ N \ {i}.

A network g is minimally unconfirmed if for any arc ij ∈ A(g) there exists a pair of players

k, ` who are connected in g, while they are not connected in g−ij . In other words, players k

and ` are connected in g with the arc ij, while they are not connected without this arc. A

network g is confirmed, if for all players i ∈ N and j ∈ N \ {i}, we have |CIi,j(g)| ≥ 2. A

network g is minimally confirmed, if for any arc ij ∈ A(g) there exists a pair of players k, `

such that |CIk,`(g)| = 2 while |CIk,`(g−ij)| = 1. In other words, players k and ` obtains resources

from each other from two independent chains in g while they obtain resources from each other

from one chain when the arc ij is removed. A sub-network of g = (N,A), say g|X , is a network

where the set of vertices, X, is a subset of N and an arc ij belongs to A(g|X ) if and only if ij

10Chain is called path in some papers.
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belongs to A(g). A maximal connected sub-network of g is a component. Let W(g) be the set

of players who belong to components which are wheels in g and let g|N\W
be the sub-network

induced by the players in N \ W(g) in g. It is obvious that if g|W is a wheel of g, then we

have W (g) ⊂ W(g). A star is a network where a player, say i, is involved in an arc with all

other players while other players are involved only in the arc with i. A center sponsored star

is a network where there is a player who sponsors an arc with all other players while other

players do not form any arc. A periphery sponsored star is a network where a player receives

an arc from each other player and where there are no other arcs. A network g is a minimal

cycle network if it is minimally confirmed and contains n arcs. A network g is a base network

if there does not exit a network g′ such that

1. NC
i (g′) = NC

i (g), NU
i (g′) = NU

i (g), for all players i ∈ N ;

2. There exists a player i such that |Ai(g
′)| < |Ai(g)| and for all players j ∈ N \ {i},

Aj(g
′) = Aj(g).

It is clear that a base network is minimally connected.

A network g is a minimal base network if there does not exist any base network g′ such that

1. NC
i (g′) = NC

i (g), NU
i (g′) = NU

i (g), for all players i ∈ N ;

2. |A(g′)| < |A(g)|.

A bipartite network is a network whose vertices can be divided into two disjoint sets X1 and

X2 such that every arc connects a vertex in X1 to one in X2. Finally, a player who sponsors

and receives no arcs is called an isolated player.

We now illustrate some network architectures.

Minimal cycle network Center sponsored star Periphery sponsored star

Figure 1: Networks architectures

In Figure 2, network g1 is not a base network since the arc 5 4 is not needed. Network g2

is a base network and g3 is a minimal base network.

7



7

1 2 3

4 5 6

7

1 2 3
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1 2 3

4 5 6

g1 g2 g3

Figure 2: Base and minimal base networks

Strategies of players. Let Gi = {ij : j ∈ N \ {i}} be the set of arcs that player i can

form with other players. In our context, each player i ∈ N chooses a strategy which consists in

forming arcs: Ai(g) ∈ 2Gi . In this paper, we only use pure strategies. It is worth noting that

the set of arcs between distinct players of network g is A(g) =
⋃

i∈N Ai(g). Given a network

g ∈ G, A−i(g) =
⋃

j∈N\{i}Aj(g) denotes the strategies profile played by all players except i.

Payoffs. To complete the definition of the normal-form game of network formation, we specify

the payoffs. When two players are connected, they gain access to each other’s information.

More precisely, if two players are connected via several independent chains, they access each

other’s information and they can be certain that the information is correct. This is called

confirmed access or confirmed connection. However, if they are not connected via several inde-

pendent chains, they cannot be certain of the information received. This reduces the value of

the information. We call this unconfirmed access or unconfirmed connection. We assume that

each player i prefers to obtain confirmed information instead of unconfirmed information. We

define the confirmed players set as

NC
i (A(g)) = {j ∈ N \ {i} : |CIi,j(g)| ≥ 2}, 11

and the unconfirmed players set as

NU
i (A(g)) = {j ∈ N \ {i} : |CIi,j(g)| = 1}.

Obviously, we have j ∈ NC
i (A(g)) implies i ∈ NC

j (A(g)) and j ∈ NU
i (A(g)) implies i ∈

NU
j (A(g)). An equivalent confirmation set (ECS) is a set of players where each player of this

11It is worth noting that in a component which contains only two players, say i and j, these players cannot receive
confirmed resources from each other since there is only one chain between them.
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set obtains confirmed information from each other player of this set. A maximal equivalent

confirmation set (MECS) is a ECS which is not a subset of another ECS. Formally, we define

the set of equivalent confirmation sets as follows: E(g) = {X ⊂ N : i ∈ X, j ∈ X ⇒ j ∈

NC
i (g)}. Likewise, the set of maximal equivalent confirmation sets is: EM (g) = {X ∈ E(g) :

there is no X ′ ∈ E(g), X ⊂ X ′}. Let M(g) = {j ∈ N : j ∈ X ∩X ′ with X,X ′ ∈ EM (g)} be

the set of players who belong simultaneously to several MECS. We illustrate the construction

of these sets through the following example.

Example 1 In network g drawn in Figure 1, we have EM (g) = {A,B,C,D,E}, M(g) =

{1, 3, 5, 6}.

12

1

2

3

4

6
8

5

79

10

11
A

B

C

D

E

Now we come to the (dis)incentives for players to sponsor arcs: each arc is costly to form

for its initiator.

We now formally define the payoff function of each player i. Let f1, f2, f3 be increasing

functions. We assume that for all x, x′ > 0 and y ≤ x′, f1(x+ y) + f2(x
′− y) > f1(x) + f2(x

′).

The payoff function of each player i, given a network g, is:

πi(A(g)) = f1(|NC
i (A(g))|) + f2(|NU

i (A(g))|)− f3(|Ai(g)|). (1)

The assumption, called (A1) in the following, on f1(x+y)+f2(x
′−y) > f1(x)+f2(x

′) implies

that the payoff of agent i increases when simultaneously the number of confirmed resources

obtained by i increases by y, and the number of unconfirmed resources obtained by i decreases

by y. Moreover, since f3 is increasing, the payoff function of player i decreases with the number

of arcs she forms, given |NC
i (A(g))| and |NU

i (A(g))|.
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In the following, some results are established for the linear payoff function:

πLi (A(g)) = V C |NC
i (A(g))|+ V U |NU

i (A(g))| − c|Ai(g)|, (2)

with V C > V U > 0, and c > 0.

Strict Nash networks, strict bilateral rational networks and efficient networks.

The strategy Ai(g) is said to be a best response of player i against the strategy A−i(g) if:

πi(Ai(g), A−i(g)) ≥ πi(A′, A−i(g)), for all A′ ∈ 2Gi . (3)

The set of all of player i’s best responses to A−i(g) is denoted by BRi(A−i(g)). A network g is

said to be a Nash network if Ai(g) ∈ BRi(A−i(g)) for each player i ∈ N . We define a strict best

response and a strict Nash network by replacing ‘≥’ by ‘>’ and by setting A′ ∈ 2Gi \ {Ai(g)}.

To capture the possibility of strict bilateral deviation in our setting, we use strict bilateral

rational networks which are a slight variation of stable equilibrium networks introduced by

Kim and Wong [14]. A strict bilateral rational network is a strict Nash network where given

all other players strategies, no pair of players can propose a joint change in their own strate-

gies that strictly improves both players’ payoff. This assumption is intuitively reasonable and

can be regard as a minimal assumption that captures the cooperative or lobbying behavior

of players. Moreover, each player should not have any incentive to modify unilaterally her

strategy, that is each player plays a strict best response.

We now define this solution formally. Let A−ij(g) =
⋃

`∈N\{i,j}A`(g) denotes the strategies

profile played by all players except i and j. The pair of strategies Aij(g) = (Ai(g), Aj(g))12

is said to be a strictly bilateral best response of players i and j against the strategy A−ij(g)

if there is no pair of strategies A′ij ∈ 2Gi × 2Gj \Aij(g), such that

(πi(Aij(g), A−ij(g)), πj(Aij(g), A−ij(g))) ≤ (πi(A
′
ij , A−ij(g)), πj(A

′
ij , A−ij(g))). (4)

12Aij(g) can be interpreted as Ai(g) ∪Aj(g).
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Equation 4 captures the idea that no pair of agents can make a joint deviation to make a

weakly Pareto improvement for themselves. The set of all bilateral best responses of players

i and j to A−i(g) is denoted by BBRij(A−ij). A network g is said to be a strict bilateral

rational network if (Ai(g), Aj(g)) ∈ BBRij(A−ij) for each pair of players (i, j) ∈ N ×N and

if Ai(g) ∈ BRi(A−i(g)). Clearly, strict bilateral rational networks are a simple refinement

concept for the strict Nash networks based on bilateral rationality.

We now define the total payoff function as W (g) =
∑

i∈N πi(A(g)). An efficient network

g is a network such that W (g) ≥W (g′), for all g′ ∈ G. We define a strict efficient network by

replacing ‘≥’ by ‘>’, and ‘G’ by ‘G \ {g}’.

3 Confirmation Model Analysis

3.1 Nash networks

We show that there does not always exist a Nash network in pure strategies. Then we provide

a condition on the function which captures the role played by the cost of setting arcs in the

payoff of the players. This condition ensures the existence of Nash networks in pure strategies.

The function f3 is convex if f3(x+ 1)− f3(x) ≥ f3(x)− f3(x− 1), for all x ∈ {1, . . . , n− 2}.

Proposition 1 Suppose that payoff function is given by equation 1. Then, there does not

always exist a Nash network. Suppose that payoff function is given by equation 1 and f3 is

convex. Then a Nash network will always exist.

Proof First, we show through an example that if the payoff function is given by equation

1, then there does not always exist a Nash network. Suppose N = {1, 2, 3} and f1(0) =

f2(0) = f3(0) = 0, f1(2) = 7, f2(1) = 5, f2(2) = 5.5, f3(1) = 4 and f3(2) = 5.13 We

show that no network can be Nash. Clearly a Nash network has at most 3 arcs. The empty

network is not Nash since f1(0) + f2(2) − f3(2) = 0.5 > 0 = f1(0) + f2(0) − f3(0). A net-

work with one arc is not Nash since for the player who is not involved in the arc, we have:

f1(0) + f2(2) − f3(1) = 1.5 > 0 = f1(0) + f2(0) − f3(0), that is she has an incentive to

13It is worth noting that f1(1) cannot appear in this model. Moreover, f2(3) and f3(3) cannot appear in our
example.
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form an arc with one of the players. No network with two arcs can be Nash. More pre-

cisely, in such a network either a player receives two arcs, or such a player does not exist.

In the former case, we have: f1(2) + f2(0) − f3(2) = 2 > 1.5 = f1(0) + f2(2) − f3(1), and

each player who sponsors an arc has an incentive to add an arc. In the latter case, we have:

f1(0)+f2(1)−f3(0) = 5 > 1.5 = f1(0)+f2(2)−f3(1), and one of the players who has sponsored

an arc has an incentive to remove it. No network with three arcs can be Nash. More precisely,

in such a network there is at least one player who sponsors exactly one arc. This player is

better off deleting this arc as f1(2) + f2(0)− f3(1) = 7− 4 = 3 < 5.5 = f1(0) + f2(2)− f3(0).

We now show that there always exists a Nash network when f3 is convex. We will show

that if the empty network and the periphery sponsored stars are not Nash networks, then a

wheel is a Nash network.

Let us begin with the empty network ge. In ge each player obtains a payoff equal to f1(0) +

f2(0) − f3(0). There are two cases: either ge is Nash and the proof is complete, or it is

not. In the latter case, players have an incentive to form arcs. It follows that there exists

x, 1 ≤ x ≤ n − 1, such that f1(0) + f2(x) − f3(x) > f1(0) + f2(0) − f3(0). Since f2 and f3

are strictly increasing, we have f1(0) + f2(n − 1) − f3(1) > f1(0) + f2(x) − f3(x) for some

x, 1 ≤ x ≤ n − 1. In such a situation, players in a periphery sponsored star, gps, have no

incentive to remove arcs. There are two cases: either gps is Nash and the proof is complete,

or it is not. In the latter case, players have an incentive to form arcs in gps. Consequently,

we have: f1(x + 1) + f2(n − x − 2) − f3(1 + x) > f1(0) + f2(n − 1) − f3(1), for some x,

1 ≤ x ≤ n− 2, that is f1(x+ 1) + f2(n− x− 2)− (f1(0) + f2(n− 1)) > f3(1 + x)− f3(1), for

some x, 1 ≤ x ≤ n− 2. We show that if ge and gps are not Nash networks, then a wheel is a

Nash network. Indeed, we have f1(n − 1) + f2(0) − (f1(0) + f2(n − 1)) ≥ f1(x + 1) + f2(n −

x− 2)− (f1(0) + f2(n− 1)) > f3(1 + x)− f3(1) ≥ f3(1)− f3(0), for 1 ≤ x ≤ n− 2. The first

inequality comes from assumption A1, and the last inequality comes from the convexity of f3.

It follows that f1(n−1) +f2(0)−f3(1) > f1(0) +f2(n−1)−f3(0), that is no player in a wheel

has an incentive to remove her arc. It follows that a wheel is a Nash network. �

The intuition of the proof of the proposition is as follows. If the empty network is not

Nash, then each player has an incentive to form at least one arc. There are two cases (a) If

each player accept to maintain one arc when she obtains confirmed resources from all other
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players, then the wheel is Nash. (b) If in the wheel players prefer to remove her link and obtain

unconfirmed resources, then the periphery sponsored star is Nash.

Our second result highlights a general property of Nash networks: in equilibrium there do

not exist superfluous arcs.

Proposition 2 Suppose that payoff function is given by equation 1 and g is a Nash network.

Then, g is a base network.

Proof Let g be a Nash network. To introduce a contradiction, suppose g is not a base

network. Then, there is a costly arc, say ij which can be deleted by player i such that the

resulting network allows player i to obtain the same total resources. This implies that player

i has a strict incentive to remove the link ij. Consequently, g is not a Nash network, a

contradiction. �

The proof of the next proposition is given in the appendix.

Proposition 3 Suppose that payoff function is given by equation 1. Then, there exist f1, f2

f3 such that any minimally unconfirmed network is a Nash network.

Proposition 3 illustrates that the set of Nash networks is very large.14 However, a Nash

network in which a player, say i, has multiple best responses is likely to be unstable since i

may decide to switch to another payoff equivalent strategy. This motivates the examination

of strict Nash networks. Consequently, we pursue the analysis by the characterization of strict

Nash networks.

3.2 Strict Nash networks

First, we need to present five lemmas. The first one is a technical lemma. It shows that there

is no player in a strict Nash network g who belongs simultaneously to several MECS. To prove

this lemma, we need to construct from g a bipartite network called gM . The set of vertices of

gM is M(g) ∪ EM (g). There is a link between i ∈ M(g) and X(g) ∈ EM (g) if i belongs to

X(g) in gM .15 In the next example, we illustrate the construction of the network gM from g.

14Bala and Goyal [2] shows that the number of Nash networks increases rapidly with the number of players in the
standard framework. In our framework, the number of Nash networks is larger than in the standard framework.

15In gM the direction of the links plays no role. Consequently, we use “link” instead of “arc” for network gM .
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Example 2 We construct from network g in Figure 2.a, the network gM associated with g

in Figure 2.b.
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(a) Network g (b) Network gM

Figure 3: Construction of gM

Notice that by construction the network gM contains no cycle, otherwise the set EM (g) is not

well defined.

Lemma 1 Suppose that payoff function is given by equation 1 and g is a strict Nash network.

Then, M(g) = ∅.

Proof We prove the lemma in two steps. First, we establish that each MECS has at most

one link in gM . Second, we use this result to show that M(g) = ∅.

1. We establish that each MECS has at most one link in gM . To introduce a contradiction

suppose that there is a MECS, say X(g), who has two links in gM . In the following, we

focus on the component, say Z(g), which contains X(g) in gM . We know that gM is

acyclic, so Z(g) is acyclic. Consequently, there are two vertices in Z(g) which have only

one link. Moreover, by construction, each vertex in M(g) which belongs to Z(g) has

links with at least two vertices in Z(g). It follows that there are two vertices in EM (g)

which have only one link in Z(g). We conclude that there exist two MECS which belong

to Z(g), say Xm(g) ∈ EM (g) and X ′m(g) ∈ EM (g), which contains only one player who

belongs to M(g). We denote by im the unique player in M(g) who belongs to Xm(g)

and by i′m the unique player in M(g) who belongs to X ′m(g). Since a MECS contains at
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least 3 players, Xm(g) contains at least two players, say j /∈ M(g) and k /∈ M(g), such

that jk ∈ A(g). By using the same arguments X ′m(g) contains two players j′ /∈ M(g)

and k′ /∈M(g) such that j′k′ ∈ A(g).

We now show that players j and j′ cannot play simultaneously a strict best response in

g. We define g′ as the network such that A(g′) = A(g) + jk′ − jk. Likewise, we define

g′′ as the network such that A(g′′) = A(g) + j′k − j′k′.

Let x < |Xm(g)|−1 be the number of confirmed resources that player j obtains when she

removes her arc with player k in g and let x′ < |X ′m(g)| − 1 be the number of confirmed

resources that player j′ obtains when she removes her arc with player k′ in g. Likewise,

let y be the number of confirmed resources that player j obtains in g′ from players who

belong neither to Xm(g), nor to X ′m(g) (it is also the number of confirmed resources that

player j′ obtains in g′′ from players who belong neither to Xm(g), nor to X ′m(g)).

Let K be the number of players from whom player j obtains unconfirmed resources and

who do not belong to X ′m(g) (it is also the number of players from whom player j′ obtains

unconfirmed resources and who do not belong to Xm(g)).

Suppose that player j replaces the arc jk by the arc jk′. We have:

∆j = πj(A(g′))− πj(A(g)) = f1(x+ y + |X ′m|) + f2(K + (|Xm| − 1− x− y))

−f1(|Xm| − 1)− f2(K + |X ′m|).

We obtain:

0 > ∆j ≥ f1(|X ′m|) + f2(K + |Xm| − 1)− f1(|Xm| − 1)− f2(K + |X ′m|). (5)

The first inequality comes from the strict Nash property of g and the second inequality

comes from the assumption (A1) made on the payoff function.

Suppose that player j′ replaces the arc j′k′ by the arc j′k. We have:
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∆j′ = πj′(A(g′))− πj′(A(g)) = f2(K + (|X ′m(g)| − 1− x′ − y))

+f1(x
′ + y + |Xm(g)|)

−f1(|X ′m(g)| − 1)− f2(K + |Xm(g)|).

We obtain:

0 > ∆j′ ≥ f1(|Xm(g)|) + f2(K + |X ′m(g)| − 1)− f1(|X ′m(g)| − 1)− f2(K + |Xm(g)|). (6)

The first inequality comes from the strict Nash property of g and the second inequality

comes from the assumption (A1) made on the payoff function. By Assumption (A1), we

have f1(|X ′m(g)|) + f2(K + (|Xm(g)| − 1)) > f1(|X ′m(g)| − 1) + f2(K + (|Xm(g)|)) and

f1(|Xm(g)|) + f2(K + (|X ′m(g)| − 1)) > f1(|Xm(g)| − 1) + f2(K + (|X ′m(g)|)). It follows

that equations 5 and 6 are not compatible. A contradiction.

2. We show that M(g) = ∅. Suppose g is a strict Nash network and i ∈ M(g). We call X

and X ′ two MECS which contain i. Since a MECS has at most one link in gM , players

i ∈ M(g) are not connected in gM . Hence, there is no player j ∈ M(g) who belongs to

X or X ′. Since each MECS contains at least 3 players, there are two players j 6∈ M(g)

and k 6∈M(g) in X and two players j′ 6∈M(g) and k′ 6∈M(g) in X ′ such that jk ∈ A(g)

and j′k′ ∈ A(g). Hence, we can use the arguments given in the proof of the previous

point to show that it is not possible that player j does not have any incentive to replace

the arc jk by the arc jk′ and that simultaneously player j′ does not have any incentive

to replace the arc j′k′ by the arc j′k. Consequently, g is not a strict Nash network, a

contradiction.

�

In the second lemma, we provide some properties of players who belong to MECS in strict

Nash networks. The proof of this lemma is given in Appendix.

Lemma 2 Let g be a strict Nash network and let X be a MECS in g. Suppose i ∈ X, j 6∈ X

and ij ∈ A(g). Then, (a) no player k ∈ X sponsors an arc with i in g, (b) ij ∈ A(g), and (c)

Vj(g) = {i}.
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In the third lemma, we establish that in strict Nash networks players who belongs to MECS

cannot both form several arcs and receive ones. The proof of this lemma is given in Appendix.

Lemma 3 Suppose that payoff function is given by equation 1 and g is a strict Nash network.

Let X be a MECS of g. If i ∈ X and i is a key player, then i is the sponsor of all the arcs she

is involved in.

In Lemma 4, we establish that there are no arcs between players who belong to a MECS

and players who does not belong to this MECS. The proof of this lemma is given in Appendix.

Lemma 4 Suppose that payoff function is given by equation 1 and g is a non-empty strict

Nash network. No player i in a MECS X forms an arc with a player j 6∈ X.

Lemma 5 provides architectural properties of strict Nash networks. In particular, it high-

lights that non-empty strict Nash networks may be non-connected. The proof of this lemma

is given in Appendix.

Lemma 5 Suppose that payoff function is given by equation 1 and g is a non-empty strict

Nash network. Then, g is either connected, or it contains wheels and a sub-network g|N\W

where g|N\W
is either empty, or connected.

We now provide some intuition of this result. First, we provide arguments which imply

that a non-empty strict Nash network which contains no wheel is connected. Lemma 3 plays

an important role to establish this result. Indeed, in a MECS which is not a wheel there is a

player, say i, who has formed at least two arcs. This player cannot receive any arcs by Lemma

3. It follows that a player which is not connected with player i, say j, can imitate her strategy,

and obtain the same payoff as i. Likewise, if a player, say i′, is not connected in g with a player

who belongs to a minimally unconfirmed sub-network and who have formed a link in g, say j′,

then player i′ obtains a payoff higher than the payoff obtained by j′ in g when she forms no arc

except the arc i′j′. Consequently, in a non-empty and non-connected network which contains

no wheels g, there always exist two players, say ` an `′, who can obtain a payoff greater or equal

to the payoff of the other by modifying her strategy. It follows that if π`(A(g)) ≥ π`′(A(g)),

then player `′ has an incentive to change her strategy, and if π`(A(g)) ≤ π`′(A(g)), then player

` has an incentive to change her strategy. Therefore, a non-empty and non-connected network
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g which contains no wheel cannot be a strict Nash network.

Let us provide arguments about the fact that a network g which contains several wheels may

be strict Nash. Indeed, in such a network each player who belongs to a wheel receives one arc.

It follows that a player, say i, who is not connected with players in the wheel cannot obtain the

same payoff as players in a wheel. Indeed, player i must form two arcs with players in a wheel

to obtain confirmed resources from them while players in a wheel has formed only one arc in g.

We now introduce the two main propositions about the characterization of strict Nash net-

works. Proposition 4 provides the architectures of connected strict Nash networks, while

Proposition 5 provides the architectures of non-connected strict Nash networks.

Proposition 4 Suppose that payoff function is given by equation 1 and g is a connected strict

Nash network. Then, g is (a) a minimally confirmed network where all key players are the

sponsors of all arcs they are involved in, or (b) a center sponsored star.

Proof Let g be a connected strict Nash network. By Lemma 2 and 4 either (1) g contains

a MECS, say X, and all players belong to X, or (2) g does not contain any MECS. We deal

successively with these two cases.

1. Suppose g contains a MECS, say X and all players belong to X. We show that g, which

is a confirmed network, is a minimal confirmed network where all key players are the

sponsors of all arcs they are involved in. Suppose g is a confirmed network which is not a

minimal confirmed network. Then, there is a, costly, arc which can be deleted such that

the resulting network is still confirmed connected. This implies that the sponsor of the

arc is better off deleting the arc, hence g is not a strict Nash network, a contradiction.

Finally, by Lemma 3, we know that in a minimally confirmed strict Nash network, all

key players are the sponsors of all arcs they are involved in.

2. The proof given here is inspired by the proof given by Bala and Goyal (Proposition 4.2,

pg 1204, [2]). Suppose g does not contain any MECS. It follows that g contains no cycle.

Since g is connected, it is minimally unconfirmed. Moreover, if ij ∈ A(g), then there is

no player k such that ki ∈ A(g) (or kj ∈ A(g)), since k can replace the arc ki by kj

(kj by ki) and obtains the same payoff as in g. It follows that if j i ∈ A(g), then j has

formed arcs with all players in Vj(A(g)). Moreover, no player, except j can form arcs
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with players in Vj(A(g)). Consequently, player j forms arcs with all players in N \ {j}

in g since this network is minimally unconfirmed. It follows that g is a center sponsored

star.

To sum up, the only connected networks candidates to be strict Nash networks are minimally

confirmed networks and center sponsored stars. �

We now highlight through an example that the payoff of several players may be asymmetric

in a strict Nash network. Recall that in the standard model only one player, the central player

in the center sponsored star, obtained a payoff different from the others in a non-empty strict

Nash network.

Example 3 Suppose that N = {1, . . . , 7} and the payoff function is given by equation 2.

Moreover, suppose that V C = 100, V U = 1 and c = 10. Then, network g in Figure 4 is a strict

Nash network. In this network, all players obtain the same gross profit but players 4 and 6

incur the costs of 3 arcs, players 1 and 2 incur the costs of 1 arc and players 5 and 7 incur no

cost at all.

7

1 2 3

4 5 6

Figure 4: Network g

The presence of key players in our model is an interesting finding. It is similar to the role played

by the central player in a center-sponsored star in the model of unconfirmed information (Bala

and Goyal [2]): she incurs the cost of forming links and allows other players to be connected.

Proposition 5 Suppose that payoff function is given by equation 1 and g is a non-empty and

non-connected strict Nash network. Then, g contains x, x ≥ 1, wheels and a sub-network

g|N\W
. Moreover, g|N\W

is empty, or a minimally confirmed network where all key players are

the sponsors of all arcs they are involved in.

Proof Let g be a non-empty and non-connected strict Nash network. We know by Lemma 5

that there is a unique sub-network, g|N\W
, which is either empty, or connected. By using the
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same arguments as in Proposition 4 we obtain the result: g|N\W
is empty, or a center sponsored

star, or a minimally confirmed network. We now show that g|N\W
is not a center sponsored

star. To introduce a contradiction, suppose a strict Nash network g which contains both a

wheel g|W , with W (g) ⊂ W(g) and a center sponsored star g|N\W
. Let i ∈ N \ W(g) be the

player who forms arcs in g|N\W
, let j ∈ N \ (W(g) ∪ {i}) be a player in the center sponsored

star and let ` ∈ W . By construction, |W (g)| ≥ 3. Finally, we set A(g′) = A(g)− ij + i`. We

have πi(A(g)) = f1(0) + f2(|N \ W(g)| − 1) − f3(|N \ W(g)| − 1) < f1(0) + f2(|N \ W(g)| −

2 + |W (g)|)− f3(|N \W(g)| − 1) = πi(A(g′)). The inequality comes from the strict increasing

property of f2. It follows that player i does not play a strict best response and g is not a strict

Nash network, a contradiction.

�

We provide an intuition about the fact that it is not possible that a strict Nash network

g contains two key players, say i and j, who belong to two distinct MECS, respectively X

and Y . If such key players exist, then each of them is able to imitate the strategy played

by the other. Consequently, if πi(Ai(g), A−i(g)) ≤ πj(Aj(g), A−j(g)), then player i obtains a

higher payoff when she imitates the strategy of player j. Indeed, we have πi(Aj(g), A−i(g)) >

πj(Aj(g), A−j(g)) ≥ πi(Ai(g), A−i(g)).

We now examine an example which highlights a result (due to Lemma 5) concerning the role

played by the assumption on the confirmation of information owned by the players. In contrast

with the standard model designed by Bala and Goyal [2], non-empty strict Nash networks are

not always connected. In other words, the introduction of the confirmation assumption may

lead to strict Nash networks which are neither empty, nor connected.

Example 4 Suppose the payoff function is given by equation 1 and V C = 5, V U = 0.25,

c = 9. Suppose N = {1, . . . , 6} and let g be such that A(g) = {12, 23, 31, 45, 56, 64}. Then,

g is a non-empty strict Nash network which is not connected.

3.3 Strict bilateral rational networks

We begin with a lemma which shows that any acyclic component of a strict bilateral network

is a center sponsored star. The proof is an adaptation of the proof given by Bala and Goyal
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([2], Proposition 4.2, pg 1204).

Lemma 6 Suppose that payoff function is given by equation 1 and g is a non-empty strict

bilateral rational network. Suppose that g|X is an acyclic connected component of g. Then,

g|X is a center sponsored star.

Proof Let g be a non-empty strict bilateral rational network and let g|X be an acyclic

connected component of g. Since g is a strict bilateral rational network, it is a strict Nash

network. Consequently, g|X is minimally unconfirmed. To introduce a contradiction, suppose

that g|X is not a center sponsored star. Suppose that player i has formed an arc with player

j. No player ` forms an arc with player j or player i in g, otherwise player ` can replace her

arc `j (or `i) by the arc `i (respectively `j) and all players obtain the same payoff as in g.

Consequently, g is not a strict bilateral rational network, a contradiction. �

Next lemma establishes that a strict bilateral rational network is connected. The proof of

this lemma is given in Appendix.

Lemma 7 Suppose that payoff function is given by equation 1 and g is a non-empty strict

bilateral rational network. Then, g is connected.

Let us provide an intuition of this result. We showed previously that if a strict Nash network is

non-connected, then there exists a component which is a wheel (see Proposition 5). We focus

on the situation where a strict Nash network, g contains two wheels. Let player i belongs to one

wheel while player j belongs to the other one. In that case, players i and j can simultaneously

improve their payoff if i replaces the arc she has formed in g by an arc to the player who

receives the arc of j in g and if j replaces the arc she has formed in g by an arc to the player

who receives the arc of i in g.

Since a strict bilateral rational network is a strict Nash network, Lemmas 4 and 5 are satisfied

for strict bilateral rational networks. Hence we have the two following lemmas.

Lemma 8 Suppose that payoff function is given by equation 1 and g is a strict bilateral ra-

tional network. Let X be a MECS of g. If i ∈ X and i is a key player, then i is the sponsor

of all arcs she is involved in.
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Lemma 9 Suppose that payoff function is given by equation 1 and g is a non-empty strict

bilateral rational network. No player i in a MECS X forms an arc with a player j 6∈ X.

These lemmas allow us to provide the main proposition concerning strict bilateral rational

networks.

Proposition 6 Suppose that payoff function is given by equation 1 and g is a non-empty

strict bilateral rational network. Then, g is a center sponsored star, or a minimal cycle, or a

minimally confirmed network which contains at least two key players and where all key players

form arcs with the same players.

Proof Let g be a non-empty strict bilateral rational network.

Suppose g is acyclic. Then, by Lemma 7 it is connected and by Lemma 6, it is a center

sponsored star.

Suppose g contains a MECS. By Lemma 7, we know that g is connected and by Lemma 9 we

know that there is no arc between a player who belongs to a MECS, say T1(g), and a player

who does not belong to T1(g). It follows that g is a minimally confirmed network. We show

that if g is not a minimal cycle, then (i) there exist several key players and (ii) these key

players sponsor arcs with the same players.

First, we show that there are several key players in g. Suppose that g is a minimally confirmed

network which is not a minimal cycle. Since g is not a minimal cycle, there exists a player,

say i0, who is involved in at least 3 arcs in g. By Lemma 8, i0 sponsors all these arcs. We

now show that there exists another player, say j0, who is involved in at least 3 arcs in g.

Let {i1, i2, i3} ⊂ Vi0 . Since g is a minimally confirmed network, there exist two independent

chains between i1 and i2: C
1
i1i2

(g) = i1, i0 i1, i0, i0 i2, i2 and C2
i1i2

(g). Likewise there exist two

independent chains between i1 and i3: C
1
i1i3

(g) = i1, i0 i1, i0, i0 i3, i3 and C2
i1i3

(g). There always

exists a player, say j0 ∈ N \ {i1}, who belongs simultaneously to C2
i1i2

(g) and C2
i1i3

(g) other-

wise player i0 obtains confirmed resources from i1 through i2 and i3 and g is not a minimally

confirmed network (the arc i0i1 is not needed). Likewise, it is worth noting that j0 6∈ {i2, i3}

otherwise g is not a minimally confirmed network. It follows that j0 is involved in 3 arcs: an

arc which belongs to a chain Ci1j0(g), an arc which belongs to a chain Ci2j0(g) and an arc

which belongs to a chain Ci3j0(g). By Lemma 8, player j0 sponsors all her arcs in g.

Second, we show that key players sponsor arcs with the same players. To introduce a con-
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tradiction, suppose that player i0 and j0 do not sponsor arcs with the same players. Since

g is a minimally confirmed network, there exists a chain between i0 and j0, say Ci0,j0(g) =

i0, i0j1, j1, j1j2, . . . , jm−1, jmjm−1, jm, j0jm, j0 where j1 6= jm. Suppose players i0 and j0 mod-

ify their strategies: player i0 replaces the arc i0j1 by i0jm and player j0 replaces the arc j0jm

by j0j1. Then, we obtain the network g′ such that A(g′) = A(g) + i0jm − i0j1 + j0j1 − j0jm.

Players i0 and j0 obtain the same payoff in g and in g′: they obtain the same resources and

incur the same costs in g′ and in g. Consequently, g is not a strict bilateral rational network,

a contradiction. �

Strict bilateral rational networks allow to make a refinement among strict Nash networks.

Indeed, the strict Nash network drawn in Figure 4 is not a strict bilateral rational network

since the key players, players 4 and 6, do not sponsor arcs with the same players. We now

illustrate through an example a strict bilateral rational network which is a minimal confirmed

network and contains key players.

Example 5 Suppose that N = {1, . . . , 5} and the payoff function is given by equation 2.

Moreover, suppose that V C = 100, V U = 1 and c = 10. Then, network g in Figure 5 is a strict

bilateral rational network.

2

3

4 5 1

Figure 5: Network g

Efficient networks. We now turn to the issue of efficiency. Bala and Goyal showed that

in the standard model, in general, an efficient network needs not to be either connected or

empty (see example pg. 1205). The authors provide a partial characterization of efficient

networks in this standard model. More precisely, they provide a condition which allows to

obtain minimally connected networks and empty network as the only candidates to be efficient

networks (Proposition 4.3, pg. 1205, [2]). They also show that, in the standard case, minimally

connected networks and the empty network are the only candidates to be efficient networks
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when the payoff function is linear.

In this section, we deal with efficient networks when a confirmation assumption is introduced.

Proposition 7 Suppose that payoff function is given by equation 1, f3 is linear and g is

an efficient network. Then, g is a minimal base network. Moreover, if f2(x + 1) − f2(x) >

f3(y+1)−f3(y), for all x, y ∈ {0, . . . , n−2}, then an efficient network is connected. Suppose in

addition that f1(x+1)+f2(y−1)−(f1(x)+f2(y)) > f3(z+1)−f3(z), for all x, z ∈ {0, . . . , n−2}

and for all y ∈ {1, . . . , n− 2}, then an efficient network is a minimally confirmed network.

Proof We prove successively the three parts of the proposition.

Suppose g is not a minimal base network. Then, there is a costly arc, say ij which can be

deleted such that the resulting network allows to obtain the same total resources. By linearity

of f3, the distribution of links across players does not play any role on the total payoff of the

players. It follows that total payoff increases when ij is deleting. Hence g is not an efficient

network, a contradiction.

Suppose f2(x + 1) − f2(x) > f3(y + 1) − f3(y), for all x, y ∈ {0, . . . , n − 2}. Then we use the

same arguments as Bala and Goyal ([2], Proposition 4.3 pg. 1205): connectedness follows from

the hypothesis that an additional arc to an unobserved agent is preferred by individual agents;

since information flow is two-way, such an arc generates positive externalities in addition and

therefore increases social welfare.

Suppose f2(x + 1) − f2(x) > f3(y + 1) − f3(y), for all x, y ∈ {0, . . . , n − 2} and f1(x + 1) +

f2(y − 1) − (f1(x) + f2(y)) > f3(z + 1) − f3(z), for all x, z ∈ {0, . . . , n − 2} and for all

y ∈ {1, . . . , n − 2}. The first condition implies that an efficient network is connected. The

second condition implies that each player accepts to support a costly additional arc in order

to obtain confirmed resources. Since these confirmed resources generates positive externalities

for other players, the social welfare increases. �

We now characterize efficient networks when the payoff function is linear. At this point,

we introduce a remark. In each minimally unconfirmed network, there are n− 1 arcs and each

player obtains the unconfirmed information of each other. Hence, the total payoff obtained in

such networks is (n−1)(nV U−c) when the payoff function is linear. Likewise, in each minimal

cycle there are n arcs and each player obtains the confirmed information of each other. Hence,

the total payoff obtained in such networks is n((n − 1)V C − c) when the payoff function is
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linear.

Proposition 8 Suppose that payoff function is given by equation 2 and the empty network is

not efficient. Let g be an efficient network. Then, g is either a minimal unconfirmed network,

or a minimal cycle network. Moreover, if n(n − 1)(V C − V U ) < c, then g is a minimal

unconfirmed network; and if n(n− 1)(V C − V U ) > c, then g is a minimal cycle network.

Proof Let g be an efficient network. Firstly, we show that g is either connected or empty.

We know by Proposition 7 that an efficient network is minimal. To introduce a contradiction,

suppose that g is non-empty and non connected. There are two cases: either g contains a

cycle, or g does not contain any cycle.

1. Suppose that g contains a cycle, and so a MECS. We show that there is no player who does

not belong to the MECS and who is directly connected with a player in the MECS in g. To

introduce a contradiction, suppose a MECS T1(g) in g which contains players i and j, with

ij ∈ A(g) and let player ` 6∈ T1(g) such that i` ∈ A(g). We define the network g′ as follows

A(g′) = A(g)− ij + `j. We have

W (g′)−W (g) = 2|T1(g)|(V C − V U ) > 0.

Consequently, g is not efficient, a contradiction. We now show that there does not exist a

player ` who is not connected to the MECS in g. Again, let players i and j belong to the

MECS T1(g) with ij ∈ A(g). Since g is efficient, we have:

|T1(g)|(|T1(g)| − 1)V C − |T1(g)|c ≥ 0⇒ (|T1(g)| − 1)V C − c ≥ 0.

Since g is not connected, there exists a player ` who is not connected with player i. Let g′ be

a network such that A(g′) = A(g)− ij + i`+ `j. We have

0 ≤ (|T1(g)|−1)V C−c < (2|T1(g)|−1)V C−c = (|T1(g)|2−(|T1(g)|−1)2)V C−c ≤W (g′)−W (g).

It follows that g is not efficient, a contradiction.

2. Suppose that g contains no cycle. Since g is non-empty, there is a component g|X , |X| ≥ 2,

in g. We suppose that players i and j belong to X with ij ∈ A(g). Since g is efficient, we
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have

|X|(|X| − 1)V U − (|X| − 1)c ≥ 0⇒ |X|V U − c ≥ 0

Since g is not connected, there is a player ` 6∈ X who is not connected with i. Let g′′ be a

network such that A(g′′) = A(g) + i`. We have

0 ≤ |X|V U − c < 2|X|V U − c ≤W (g′′)−W (g).

It follows that g is not efficient, a contradiction.

Let g be a non-empty network. Clearly, g cannot contain more than n arcs since with n arcs

it is possible to construct a minimal cycle network which allows to confirmed all the resources.

Moreover, g cannot contain less than n− 1 arcs since it is connected.

In a minimal cycle network, the total payoff is n(n − 1)V C − nc. Moreover, with n − 1 arcs

it is possible to construct a minimal unconfirmed network which allows to obtain unconfirmed

information from all the players. In the latter network, the total payoff is n(n−1)V U−(n−1)c.

It follows that if n(n − 1)(V C − V U ) < c, then g is a minimal unconfirmed network, and if

n(n− 1)(V C − V U ) > c, then g is a minimal cycle network.

�

We now examine the relationship between strict Nash networks and efficient networks when

the payoff function is linear. Firstly, we establish through an example that strict Nash networks

and efficient networks do not always coincide.

Example 6 Suppose that the payoff function is given by equation 2 and V C < c, nV U > c

and V C − V U < c/[n(n− 1)]. Center sponsored stars are efficient networks. Indeed, the total

payoff obtained in center sponsored stars is greater than (i) the total payoff obtained in the

empty network: (n − 1)(nV U − c) > 0 since nV U > c; and (ii) the total payoff obtained in

minimal cycles: (n− 1)(nV U − c) > n((n− 1)V C − c) since V C −V U < c/[n(n− 1)]. However,

a center sponsored star is not a strict Nash network since the player who sponsors the arcs has

no incentive to maintain them due to V U < c. Finally, since center sponsored stars are not

strict Nash networks, they cannot be strict bilateral rational networks.

Secondly, we provide conditions which ensure the coincidence of strict Nash networks and

efficient networks when the payoff function is linear.
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Proposition 9 Suppose that payoff function is given by equation 2.

1. If a minimal cycle network, gmc, is a strict Nash network, then gmc is an efficient

network.

2. If the empty network, ge, is a strict efficient network, then ge is a strict Nash network.

3. Suppose V U > c and V C − V U < c/[n(n − 1)]. Then a center sponsored star is both a

strict Nash network and an efficient network.

Proof We begin with an initial observation. Consider a network g. First, note that each arc

in g creates positive externalities. More precisely, for a given arc ij ∈ A(g), no player, except

i, can be harmed by this arc: it costs them nothing while it may add to their unconfirmed

resources or upgrade their unconfirmed resources to confirmed resources. Part 1 and Part 2 of

the proposition follows this observation. We now prove part 3 of the proposition.

Suppose that V U > c and V C − V U < c/[n(n− 1)]. Let gs be a center sponsored star where

player j is the sponsor of the arcs. First, we show that player j has no incentive to remove

any of her arcs in gs. If player j removes x arcs in gs, she obtains a marginal payoff equal to

A1 = x(c − V U ). A1 is negative since V U > c. Second, we show that it is inefficient to add

arcs in gs. To introduce a contradiction, suppose that some arcs are added in gs. Then the

incremental payoff associated to each of them is bounded above by n(n − 1)(V C − V U ) − c.

By assumption n(n − 1)(V C − V U ) − c < 0, and we obtain a contradiction. We conclude by

using the initial observation. �

4 Decay and Confirmation Networks

In the payoff functions used till now, we exploit the assumption that unconfirmed resources

obtained through indirect arcs have the same value as that obtained through direct arcs. This

assumption is strong; in general, there will be lowering of reliability, as resources is transmitted

through a series of players. More precisely, if player i obtains unconfirmed resources from player

j through a long sequence of intermediate players, then she should have a greater incentive

to confirm information than if she obtains unconfirmed resources from player j through fewer

intermediaries. Formally this is akin to requiring confirmation in Jackson and Wolinky’s [11]

“connections” model. To formalize this idea, define the distance dg(i, j) between players i and
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j to be the number of arcs along the shortest chain between i and j in g. We denote the

number of non-confirmed players at distance m from i in the network g by nmi (A(g)). The

payoff of player i in g is given by:16

πi(A(g)) = |NC
i (A(g))|+

n−1∑
w=1

αwn
w
i (A(g))− c|Ai(g)|. (7)

The positive weights α1, α2, ..., αn−1 measure the relative importance of neighbors at different

distances. We assume that 1 > α1 ≥ α2 ≥ ... ≥ αn−1, so that more distant players yield less

benefits. Since 1 > α1 each player prefers to obtain confirmed resources instead of unconfirmed

ones given the number of arcs she forms. Note that the payoff function given by Equation 1

assumes that resources obtained through the network become more valuable on confirmation.

However, the architecture of the network does not affect the reliability of the resources trans-

mitted through it. By contrast, the payoff function given by Equation 7 says that unconfirmed

resources obtained through many intermediary players is worth less than resources obtained

through fewer intermediary players. In other words, the architecture of the network plays a

role in the reliability of the resources transmitted through it. We now briefly sum up the

impact of the introduction of a decay assumption in our confirmation model on equilibrium

architectures.17 First, under Equation 7 we can obtain a result similar to Proposition 4. In

other words non-empty acyclic strict Nash networks are minimally unconfirmed networks, i.e.,

they are minimally connected. The intuition is the same in that linking is costly and hence

leads to minimally unconfirmed networks.

Moreover, using continuity we can construct a situation similar to Example 4 where strict

Nash networks are not always connected. This happens when costs of linking are high relative

to confirmed information. Then it is possible to construct scenarios consisting of unconfirmed

networks that are minimal. Of course when the costs of linking are lower than the benefits

of a direct arc, strict Nash networks will always be connected. In fact it is easy to identify

conditions that make stars strict Nash. Moreover, if c < min{α1, 1 − α2}, then strict Nash

networks are minimally confirmed networks. Basically if c < 1 − α2, then it is worthwhile to

16This function is inspired by the payoff function given by Hojman and Szeidl [10]. This payoff function generalizes
the payoff function with decay introduced by Bala and Goyal [2].

17Detailed proofs for this section can be found in the working paper version at http://bus.lsu.edu/McMillin/

Working_Papers/pap12_02.pdf.
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initiate a arc to a player who is two steps away (decay creates strong incentives to avoid long

chains) allowing for confirmation. Similar results hold for bilaterally rational networks.

Appendix

Proof of Proposition 3. We define three properties concerning the functions f1, f2 and f3.

• (P1) for all x ∈ {1, . . . , n− 1} and z ∈ {0, . . . , n− 2} we have:

f1(x) + f2(n− 1− x)− [f1(0) + f2(n− 1)] < f3(z + 1)− f3(z).

• (P2) for all x ∈ {1, . . . , n− 1}, z ∈ {0, . . . , n− 1}, with x < x′, z ≤ z′ and x′−x > z′− z,

we have:

f1(x) + f2(n− 1− x′)− [f1(0) + f2(n− 1)] < f3(z
′)− f3(z).

• (P3) We have for all x ∈ {0, . . . , n− 2}:

f2(x+ 1)− f2(x) > f3(x+ 1)− f3(x).

Suppose that payoff function is given by equation 1 and f1, f2, f3 satisfy P1, P2 and P3. 18

To introduce a contradiction, suppose a minimally unconfirmed network g which is not a Nash

network. Since g is a minimally unconfirmed network, it is obvious that g is a base network

where each player obtains n − 1 unconfirmed resources from others. Since g is not a Nash

network there exists a player, say i, who has a strict incentive to modify her strategy. Let Ei

be the alternative strategy chosen by player i. There exist three kinds of alternative strategies

for player i in g: (a) |Ei| = |Ai(g)|, with Ei 6= Ai(g), (b) |Ei| < |Ai(g)|, (c) |Ei| > |Ai(g)|.

We deal successively with these three cases.

(a) Suppose |Ei| = |Ai(g)|, with Ei 6= Ai(g). There are two situations which can arise

concerning the resources that player i obtains in g′ with A(g′) = Ei ∪A−i(g).

- Player i does not obtain confirmed resources in g′. Since player i obtains n− 1 unconfirmed

resources in g, she obtains a number of unconfirmed resources smaller or equal in g′ than in

g. Moreover, player i incurs the same costs in g and in g′. Consequently, player i obtains a

18Let N = {1, . . . , 9} and f1(x) = 2.1x+ 3, f2(x) = 2x, and f3(x) = x. These functions satisfy P1, P2 and P3.

29



payoff in g′ which is smaller or equal to the payoff she obtains in g.

- Player i obtains x, x > 0, confirmed resources in g′. Since g is a base network, player i

obtains in g′ a number of unconfirmed resources equal to n − 1 − x′ with x′ > x. Moreover,

player i incurs the same costs in network g and in network g′. We conclude by P2 that

πi(g
′)− πi(g) = f1(x) + f2(n− 1− x′)− (f1(0) + f2(n− 1)) < 0.

To sum up, if |Ei| = |Ai(g)|, with Ei 6= Ai(g), then Ei cannot strictly improve the payoff of

player i.

(b) Suppose |Ei| < |Ai(g)|. There are two situations which can arise concerning the resources

that player i obtains in g′ with A(g′) = Ei ∪A−i(g).

- Player i does not obtain confirmed resources in g′. Since g is a base network and player

i forms |Ei| < |Ai(g)| arcs, she obtains in g′ a number of unconfirmed resources n − 1 − x′

with x′ ≥ |Ai(g)| − |Ei|. By P3 and the fact that f2 and f3 are increasing, we have πi(g
′) =

f1(0) + f2(n− 1− x′)− f3(|Ei|) < f1(0) + f2(n− 1)− f3(|Ai(g)|) = πi(g).

- Player i obtains x, x > 0, confirmed resources in g′. Since g is a base network, player

i obtains in g′ a number of unconfirmed resources equal to n − 1 − x′, with x′ > x and

x′−x > |Ai(g)|−|Ei|. Consequently, by P2 we have πi(g
′) = f1(x)+f2(n−1−x′)−f3(|Ei|) <

f1(0) + f2(n− 1)− f3(|Ai(g)|) = πi(g).

To sum up, if |Ei| < |Ai(g)|, then Ei cannot strictly improve the payoff of player i.

(c) Suppose |Ei| > |Ai(g)|. There are two situations which can arise concerning the resources

that player i obtains in g′ with A(g′) = Ei ∪A−i(g).

- Player i does not obtain confirmed resources in g′. Player i does not obtain more unconfirmed

resources in network g′ than in network g. Moreover, player i incurs higher costs in g′ than

in g. Consequently, Ei does not improve the payoff of player i.

- Player i obtains x, x > 0, confirmed resources in g′. Since player i obtains n−1 unconfirmed

resources in g, she obtains at most n−1−x unconfirmed resources in g′. By P1 and the fact that

f3 is increasing, we have πi(g
′) ≤ f1(x)+f2(n−1−x)−f3(|Ei|) < f1(0)+f2(n−1)−f3(|Ai(g)|) =

πi(g).

To sum up, if |Ei| > |Ai(g)|, then Ei cannot strictly improve the payoff of player i. It follows

that there does not exist any alternative strategy which allows to strictly improve the payoff

of player i, a contradiction. �

Proof of Lemma 2. Let g be a strict Nash network and let X be a MECS in g. Suppose
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i ∈ X, j 6∈ X. We prove successively the three parts of the Lemma.

1. To introduce a contradiction suppose there is k ∈ X such that ki ∈ A(g). By con-

struction, player k does not obtain confirmed resources from player j otherwise X is

not a MECS. If player k replaces the arc ki by the arc kj, she increases the number

of confirmed resources by 1, and decreases the number of unconfirmed resources by 1.

Therefore, player k does not play a strict best response in g by Assumption (A1) and g

is not a strict Nash network, a contradiction.

2. To introduce a contradiction suppose that ji ∈ A(g). Since i ∈ X, there is a player k

such that k ∈ X. If player j /∈ X replaces the arc j i by jk, then she obtains the same

payoff as in g. Consequently, j does not play a strict best response in g and g is not a

strict Nash network, a contradiction.

3. To introduce a contradiction, suppose that there is a player j′ ∈ Vj(g) \ {i}. Clearly,

there is no other chain between i and j′ in g than the chain i, ij, j, otherwise i ∈ M(g)

which is impossible by Lemma 1. Consequently, if player i replaces the arc ij by the arc

ij′, then she obtains the same payoff as in g. It follows that i does not play a strict best

response in g and g is not a strict Nash network, a contradiction.

�

Proof of Lemma 3. Let g be a strict Nash network. Let X be a MECS of g and let i be a

key player who belongs to X. Suppose player i sponsors an arc with a player k 6∈ X, then i

has sponsored all the arcs in which she is involved by Lemma 2 (a).

Suppose now that player i is not linked with a player k 6∈ X. To introduce a contradiction,

suppose i does not sponsor all her arcs. Then there are three distinct players, say j, j1 and

j2 in X, such that ij, ij1, ij2 ∈ A(g), where at least one of these arcs is not sponsored by

player i. Without loss of generality we suppose that j i ∈ A(g). We will show that player

j has an incentive to replace the arc j i by the arc j j1. Let g′ be the network such that

A(g′) = A(g) + j j1 − j i.

First, we show that NC
j (A(g)) ⊂ NC

j (A(g′)). To establish this result, (i) we first show that if

k ∈ NC
j (A(g)) \NC

j (A(g′)), then there is a chain between j and k which does not contain any

player j′ ∈ Vi(g) \ {j}. (ii) Then, we establish that in such a case, there are two independent

chains between j and k in g′ which contradicts the assumption concerning the existence of a
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player k who belongs to NC
j (A(g)) \NC

j (A(g′)).

(i) Suppose k ∈ NC
j (A(g)) \NC

j (A(g′)). Then, the resources of k are confirmed in g by player

j thanks to a chain, say C1
j,k(g), which contains player i. This chain also contains a player,

say j1 ∈ Vi(g) \ {j}. We establish that there is a chain between j and k in g independent

from C1
j,k(g), say C2

j,k(g), which does not contain any player j′ ∈ Vi(g) \ {j}. To introduce a

contradiction, suppose that such a chain does not exist, that is C2
j,k(g) contains a player, say

j2 ∈ Vi(g) \ {j, j1}. In such a situation, players i, j1, k, j2, and j belong to a cycle in g. It

follows that player i (or player j2) has no incentive to maintain the arc ij2 (or the arc j2 i) in

g and g is not a strict Nash network, a contradiction.

To sum up, we know that (a) there is a chain C2
j,k(g) which does not contain any player

j′ ∈ Vi(g) \ {j}, (b) the chain C1
j,k(g) contains player i, and (c) C1

j,k(g) and C2
j,k(g) are

independent.

(ii) We now show that there are two independent chains between j and k in g′. There are

two cases: either C1
j,k(g) contains player j1, or C1

j,k(g) does not contain player j1. If C1
j,k(g)

contains player j1: C
1
j,k(g) = j, j i, i, ij1, j1, . . . , k in g, then there is a chain between j and

k in g′: C1
j,k(g′) = j, j j1, j1, . . . , k in g′. Clearly, C1

j,k(g′) and C2
j,k(g) are independent, so

k ∈ NC
j (g′), that is k /∈ NC

j (g) \ NC
j (g′): a contradiction. If C1

j,k(g) does not contain player

j1, then it contains a player, say j2, in Vi(g): C1
j,k(g) = j, j i, i, ij2, j2, . . . , k in g. In such a case,

there is a chain between k and j in g′: C1′
j,k(g′) = j, j j1, j1, j1 i, i, ij2, j2 . . . , k. C1′

j,k(g′) and

C2
j,k(g) are independent since j2 ∈ Vi(g), and so j2 6∈ C2

j,k(g). Consequently, k ∈ NC
j (A(g′)),

that is k /∈ NC
j (g) \NC

j (g′): a contradiction.

Second, since ij1 ∈ A(g) ∩A(g′), we have NU
j (A(g)) ⊂ NU

j (A(g′)).

Third, as the costs of each arc are the same, this implies that j is indifferent between sponsoring

ji and jj1. Since NC
j (A(g)) ⊂ NC

j (A(g′)), it follows that player j does not play a strict best

response in g. This concludes the proof. �

Proof of Lemma 4. Let g be a non empty strict Nash network which contains a MECS X.

To introduce a contradiction suppose that a key player i ∈ X is linked with j 6∈ X. Since i

belongs to a MECS, there exist i1 and i2 such that ii1, i2 i1 ∈ A(g). By Lemma 2, Vj(g) = {i},

ij ∈ A(g) and ii1 ∈ A(g). Let K be the number of resources of unconfirmed players that

each player who belongs to X obtains in g. Since g is a strict Nash network player j has no
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incentive to form an arc with player i1. It follows that

πj(A(g)) = f1(0)+f2(|X|+K−1)−f3(0) > f1(|X|)+f2(K−1)−f3(1) = πj(A(g)+j i1) (8)

There are two cases: either i1i2 ∈ A(g), or i2i1 ∈ A(g). We deal successively with the two

cases.

1. Suppose i1 i2 ∈ A(g). Player i1 cannot sponsor more than one arc otherwise she is a key

player and she cannot receive an arc from player i by Lemma 3.

Since g is a strict Nash network, player i1 has no incentive to remove her arc. We have:

πi1(A(g)) = f1(|X|−1)+f2(K)−f3(1) > f1(0)+f2(|X|+K−1)−f3(0) = πj(A(g)−i1 i2).

(9)

Due to A1, inequalities 8 and 9 are not compatible, a contradiction.

2. Suppose i2i1 ∈ A(g). There are two situations.

• Suppose that |Vi1 | = 2, that is Vi1 = {i, i2}. Then, we have:

πi2(A(g)) = f1(|X| − 1) + f2(K)− f3(|Ai2 |) = πi2(A(g)− i2 i1 + i2j). (10)

Consequently, player i2 does not play a strict best response and g is not a strict Nash

network, a contradiction.

• Suppose that|Vi1 | > 2. Then, player i1 is a key player and she cannot receive any arc

by Lemma 3, a contradiction.

�

Proof of Lemma 5. Let g be a non-empty strict Nash network.

1. First, we consider situations where g contains no wheel. To introduce a contradiction

suppose that g is not connected. There are two situations, (i) either g contains no cycle,

or (ii) g contains a cycle (which is not a wheel).

(i) Suppose g contains no cycle. Since g is non-empty, there are two players i and j

such that ij ∈ A(g). Since g is not connected there are players ` ∈ N \ {i} such that

` /∈ NU
i (A(g)). Either (i.a) |A`(g)| = 0 for all ` /∈ NU

i (A(g)), or (i.b) there exists a player

` /∈ NU
i (A(g)) such that |A`(g)| > 0.
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(i.a) Suppose |A`(g)| = 0 for all ` /∈ NU
i (A(g)), that is, players ` /∈ NU

i (A(g)) are

isolated players in g. Then there are two cases: πi(Ai(g), A−i(g)) ≤ π`(A`(g), A−`(g))

or πi(Ai(g), A−i(g)) ≥ π`(A`(g), A−`(g)). In the first case, player i has an incentive

to remove all her arcs and g is not a strict Nash network. In the second case, let

network g′ be such that A`(g
′) = {`i} and Aj(g

′) = Aj(g) for all j ∈ N \ {`}. We

have π`(A(g′)) = f1(0) + f2(|NU
i (A(g)) + 1|)− f3(1) > f1(0) + f2(|NU

i (A(g))|)− f3(1) ≥

f1(0) + f2(|NU
i (A(g))|)) − f3(|(Ai(g)|) = πi(A(g)) ≥ π`(A(g)). Consequently, player `

does not play a strict best response and g is not a strict Nash network.

(i.b) Suppose there is a player ` /∈ NU
i (A(g)) such that |A`(g)| > 0. Since g contains

no cycle there exist a player i′, with i ∈ NU
i′ (g), and a player `′, with ` ∈ N`′(g), who

receive no arcs in g. In the following we deal with players i′ and `′. Wlog suppose that

πi′(Ai′(g), A−i′(g)) ≥ π`′(A`′(g), A−`′(g)). By the same reasoning as in the second case

of point (i.a) above, we can check that player `′ does not play a strict best response and

g is not a strict Nash network.

(ii) Suppose g contains a cycle (which is not a wheel). Since there is a cycle, there is

a MECS, say X. Moreover, since g contains no wheel, the considered cycle contains a

player, say i, who has formed arcs with at least two players. By Lemma 3, i receives

no arcs. Since g is not connected there is a player ` ∈ N \ {i} such that i and ` are

not connected in g. Either (ii.a) |A`(g)| = 0 for all ` /∈ Ni(A(g)), where Ni(A(g)) =

NU
i (A(g)) ∪NC

i (A(g)), or (ii.b) there exists players ` /∈ Ni(A(g)) such that |A`(g)| > 0.

(ii.a) |A`(g)| = 0 for all ` /∈ Ni(A(g)). By the same type of reasoning as in point (i.a)

above we can check that player i or each player ` /∈ Ni(A(g)) do not play a strict best

response and g is not a strict Nash network.

(ii.b) Suppose there exist players ` /∈ Ni(A(g)) such that |A`(g)| > 0. Either some of

these players belong to a cycle (ii.b.1), or none of them belongs to a cycle (ii.b.2).

(ii.b.1) Suppose there exist players ` /∈ Ni(A(g)) such that |A`(g)| > 0 who belong to

a cycle. In such a case, we choose a player ` who is not connected with i in g, who

belongs to a cycle and who has formed arcs with at least two players. Note that `

receives no arcs by Lemma 3. Suppose wlog that πi(A(g)) ≥ π`(A(g)). Let g′′ be the

network such that A`(g
′′) = Ai(g) and Aj(g

′′) = Aj(g) for all j ∈ N \ {`}. We have

π`(A(g′′)) = f1(|NC
i (A(g))| + 1) + f2(|NU

i (A(g))|) − f3(|Ai(g)|) > f1(|NC
i (A(g))|) +
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f2(|NU
i (A(g))|) − f3(|Ai(g)|) = πi(A(g)) ≥ π`(A(g)), hence player ` does not play a

strict best response, and g is not a strict Nash network.

(ii.b.2) Suppose now that no player `, ` /∈ Ni(A(g)) and |A`(g)| > 0, belongs to a cycle.

We consider such a player `. If πi(A(g)) ≥ π`(A(g)), then by the same reasoning as in

the case (ii.b.1), we can check that player ` does not play a strict best response and g is

not a strict Nash network. If πi(A(g)) ≤ π`(A(g)), then by the same reasoning as in the

second case of point (i.a) above, we can check that player i does not play a strict best

response and g is not a strict Nash network.

2. Secondly, consider situations where g contains wheels. In such a case, we focus on g|N\W
.

More precisely, we use the same arguments as in the previous point to obtain the result.

�

Proof of Lemma 7. Let g be a non-empty strict bilateral rational network. To introduce a

contradiction, suppose that g is not connected.

First, suppose that g is acyclic. By Lemma 6, there exist two players, say i and j such that

ij ∈ A(g) and Vj(g) = {i}. Suppose that player ` is not connected with player i in g. Let g′ be

the network where player i replaces the arc ij by the arc i`, that is A(g′) = A(g)+ i`− ij. We

have: πi(A(g)) ≤ πi(A(g′)) and π`(A(g)) < π`(A(g′)), the former inequality comes from the

fact that player ` can be a non-isolated player. Consequently, g is not strict bilateral rational

network, a contradiction.

Second, suppose that g contains a MECS, say X1(g), such that players i and j are member

of X1(g) and ij ∈ A(g). Since g is not connected, there exists a player ` who does not obtain

any resources from player i. We show that player ` is not an isolated player. Indeed, if ` is an

isolated player, then we have either π`(A(g)) ≥ πi(A(g)), or π`(A(g)) < πi(A(g)). Suppose

π`(A(g)) ≥ πi(A(g)). Then, g is not a strict bilateral rational network since player i should

remove all her arcs to improve her payoff (this strategy will not modify the payoff of player `).

Suppose π`(A(g)) < πi(A(g)). Let g′ be the network such that A(g′) = A(g) + i`+ `j− ij. In

g′ player i obtains a higher payoff than in g since she obtains an additional confirmed resource.

Moreover, we have π`(A(g′)) ≥ πi(A(g′)) > πi(A(g)) > π`(A(g)), and g is not a strict bilateral

rational network.

Since ` is not an isolated player, (i) either player ` belongs to a MECS, (ii) or she belongs

to an acyclic component. (i) Suppose player ` belongs to a MECS, say X2(g). Then there

35



exist two players in X2(g), say i′ and j′ such that i′j′ ∈ A(g). We consider the network

g′ such that A(g′) = A(g) + ij′ + i′j − ij − i′j′. In g′, players i and i′ obtain confirmed

resources from all players who belong to X1(g) ∪ X2(g) and incur the same costs as in g.

Consequently, we have: πi(A(g′)) − πi(A(g)) ≥ f1(|X1(g)| + |X2(g)|) − f1(|X1(g)|) > 0 and

πi′(A(g′))− πi′(A(g)) ≥ f1(|X1(g)|+ |X2(g)|)− f1(|X2(g)|) > 0. The inequalities come from

the fact that f1 is increasing. Consequently, g is not a strict bilateral rational network, a

contradiction. (ii) Suppose player ` belongs to an acyclic component. Then by Lemma 6,

player ` belongs to a center sponsored star. We consider the player who sponsors the arcs in

this center sponsored star, say `0. This player has formed an arc in g with a player, say `1,

such that V`1 = {`0}. Since f2 is an increasing function and the cycle contains at least three

players, we have: π`(A(g) + `0 i − `0`1) > π`(A(g)) and πi(A(g) + `0 i − `0`1) > πi(A(g)).

Consequently, g is not a strict bilateral rational network, a contradiction. �
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