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Abstract

This paper investigates the asymptotic properties of the ordinary least squares (OLS)

estimator of structural parameters in a stylised macroeconomic model in which agents are

boundedly rational and use an adaptive learning rule to form expectations of the endogenous

variable. In particular, when the learning recursion is subject to so-called decreasing gain

sequences the model does not satisfy, in general, any of the sufficient conditions for consistent

estimability available in the literature. The paper demonstrates that, for appropriate pa-

rameter sets, the OLS estimator nevertheless remains strongly consistent and asymptotically

normally distributed.
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1 Introduction

In economic theory, there has been considerable interest in models of the form

yt = βyet|t−1 + δxt + εt, t = 1, 2, . . . (1.1)

where yet|t−1 denotes agents’ expectations about yt based on the information available at time

t − 1 and the driving variable xt is exogenous. Models of this type have a long tradition in

economics. For instance, the classical cobweb model fits into this form, see e.g. Bray & Savin

(1986), as does the Lucas (1973) aggregate supply model. Of central interest is the way in which

the expectations yet|t−1 are modelled. The traditional approach is via rational expectations, cf.

Muth (1961) or Sargent (2008), which assumes that agents, when forming expectations yet|t−1,

have complete knowledge of the model and the past Ft−1 = σ (ys, s ≤ t− 1;xs, s ≤ t) and make

best use of it, i.e. set yet|t−1 = E (yt|Ft−1). Taking conditional expectations in (1.1) yields

E (yt|Ft−1) = αxt with

α =
δ

1− β
. (1.2)

The so-called rational expectations equilibrium (REE) model is thus

yt = αxt + εt. (1.3)

Obviously, under the assumption of rational expecations, only α is identified; not, however, δ

and β separately.

More recently, economic agents are frequently assumed to be boundedly rational and to form

their expectations via adaptive learning, see Sargent (1993, 1999), Evans & Honkapohja (2001),

Hommes (2002) or Gaspar, Smets & Vestin (2010). The basic idea underlying all adaptive

learning procedures is that agents employ an auxiliary model, or so-called perceived law of

motion, to form their expectations yet|t−1. One way to specify this auxiliary model is to assume

that its functional form corresponds to that of the REE in (1.3). Generally, the agents will not

know the parameter α and therefore replace it by some estimate at−1, based on information Ft−1.

Typically, the parameter α will be estimated by some recursive prodedure which, in general, has

the form of a stochastic approximation algorithm:

at = at−1 + γt
xt
rt

(yt − at−1xt) (1.4a)

rt = rt−1 + γt
(
x2t − rt−1

)
, (1.4b)

where (γt) is some weighting, or gain, sequence. This updating algorithm can be viewed as

generalising the recursive least squares estimator of α, which has γt = 1/t and whose rt is the

sample second moment of xt. For more details on stochastic approximation algorithms, see Lai
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(2003). With the learning scheme in (1.4), agents’ expectation will be given by yet|t−1 = at−1xt,

and the resulting so-called actual law of motion, or data generating process (DGP), is

yt = βat−1xt + δxt + εt. (1.5)

It is thus plain that, in models with adaptive learning, the expectational term yet|t−1 creates a

forecast feedback, resulting in a self-referential, and thus highly complex, DGP. Moreover, the

stochastic behaviour of the DGP depends crucially on the specification of the gain sequence (γt).

Empirical models with learning have recently gained popularity amongst researchers and

policy makers; see for instance the New Keynesian Phillips curve models estimated by Milani

(2007) and Chevillon, Massmann & Mavroeidis (2010), the European Central Bank’s New Multi-

Country Model by Dieppe, González Pandiella, Hall & Willman (2011), and the inflation model

by Malmedier & Nagel (2012). Yet not much is known about the econometrics of adaptive

learning models. In this paper, we contribute to filling this gap by investigating the asymptotic

behaviour of the OLS estimator of the structural parameters β and δ in (1.5). We will henceforth

refer to this issue as the external estimation problem (EEP). In particular, the EEP concerns

the question of (strong) consistency of the estimator and of its asymptotic distribution. Note

that the model in (1.5) is a linear regression model with stochastic regressors. Yet even though

there is a rich literature on the properties of OLS estimation in this setting, the particular model

in (1.5) does not appear to have been analysed yet. More strikingly, when we apply the best

general result available, namely the sufficient conditions for consistency established by Lai & Wei

(1982a, 1982b), they turn out not to be satisfied. With the properties of the OLS estimator of β

and δ in (1.5) thus being unsettled, it is as yet unclear whether empirical implementations of it

are built on sound econometric principles.

With a view to examining the EEP we will have to address the question of whether at in

(1.4a) converges to the REE α. This issue is usually called the internal forecasting problem (IFP)

and, in contrast to the EEP in (1.5), has been conclusively answered in the literature. A good

account of seminal results can be found in Benveniste, Métivier & Priouret (1990) and Kottmann

(1990). The literature generally distinguishes between two basic approaches of specifying the gain

sequence: constant gain learning, i.e. with γt = γ, and decreasing gain learning, for which γt → 0.

It can be shown that, in the former case, at does not in general converge to α. Agents are thus

said to learn perpetually. As opposed to that, agents are fully rational asymptotically in the case

of decreasing gain learning since the convergence at → α does hold with probability one under

suitable summability assumptions on γt and provided that β < 1. Note, however, that if β ≥ 1,

it can be shown that at diverges. For details, see Christopeit & Massmann (2010).

As to the EEP, the few existing results on the asymptotic behaviour of the OLS estimator of
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β and δ pertain mainly to the case of constant gain learning, see e.g. Chevillon et al. (2010). In

this case, the regressor at is an autoregressive process with constant coefficients and, depending

on the value of β and γ, is either stationary ergodic, a random walk with drift, or explosive,

given suitable input sequences xt. As a consequence, we may appeal to results on the strong

consistency and the limiting distribution of the OLS estimator as obtained in Lai & Wei (1985)

and Chan & Wei (1988). On the other hand, when learning is of decreasing gain type such that

at → α with probability one, then the regressors in (1.5) will be asymptotically collinear:

yt ∼ βαxt + δxt + εt, (1.6)

i.e. the asymptotic moment matrix

M =

 1 α

α α2

 plim
T→∞

1

T

T∑
t=1

x2t

will be singular. This violates one of the classical “Grenander conditions”, i.e. the condition that

the regressor sample second moment matrix, suitably scaled, converges to a positive definite

limit; see Grenander & Rosenblatt (1957). In the econometrics literature the singularity of

M is generally referred to as absence of strong asymptotic identification, see e.g. Davidson &

MacKinnon (1993) or Newey & McFadden (1994). Comparing the repercussions of constant gain

versus decreasing gain learning, it is hence clear that there is some sort of trade-off between the

asymptotic behaviour of at on the one hand and that of the OLS estimators on the other, in the

sense that convergence of agents’ expectations to the REE is likely to have detrimental effects

on the convergence of the OLS estimator, and vice versa.

Given that the Grenander conditions are only sufficient but not necessary for consistent

estimability, it is not clear a priori whether the OLS estimators β and δ in (1.5) possess desirable

asymptotic properties. The focus of this paper will hence be on investigating the EEP with

decreasing gain learning. Specifically, we consider gain sequences of the form γt = γ/t for some

constant γ > 0. In view of the discussion of the IFP above, we consider the case of β < 1.

Moreover, for simplicity and in order not to obscure the main ideas, we will restrict ourselves to

the case with constant xt. Simple calculation shows that, without loss of generality, we can then

set xt = 1 since the value of x can be accounted for by a simple change of variance of εt from σ2

to σ2/x2. Starting the recursion (1.4b) with the stationary value1 r0 = 1, we have rt = 1 and

at = at−1 +
γ

t
(yt − at−1) . (1.7)

1Actually, for any starting value r0 it will hold that limt→∞ rt = 1.
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The model in (1.4)-(1.5) then simplifies to

yt = δ + βat−1 + εt, (1.8a)

at =
(
1− c

t

)
at−1 +

γ

t
(δ + εt) , (1.8b)

where we have put

c = (1− β) γ. (1.9)

Note that the condition β < 1 corresponds to c > 0. The value c will turn out crucial for the

behaviour of the OLS estimator. It is instructive to note at this early stage several characteristics

of the process at in (1.8b): First, at is autoregressive of first order with time-varying coefficient

which is intrinsically local-to-unity. Next, the impact of the intercept δ and of the disturbance

εt on at tends to zero for large t. As a result, the process at is highly non-stationary. This is

reflected, for instance, in the fact that its variance decreases to zero at a rate which increases

with c. Moreover, for fixed t and h → ∞, the covariance Cov(at, at+h) behaves as O (h−c) and

the correlation

Corr (at, at+h) =

 O
(
h1/2−c

)
for c > 1/2,

O
(
(log h)−1/2

)
for c = 1/2.

For c < 1/2, the correlation tends to a non-zero constant. This corresponds to what is called

long memory behaviour of stationary processes.

The paper is structured as follows: Our results are presented in Section 2. Theorems 1

and 2 pertain to the IFP in that they present precise convergence rates for at to α that are

not available in the literature but which are necessary for the ensuing derivations. Our main

results, viz. Theorems 3 and 4, concern the EEP, showing the strong consistency and asymptotic

normality of the OLS estimator. Proofs are relegated to Appendix A and B, respectively.

2 Main results

The model in (1.8a) is a simple linear regression model of the form

yt = δ + βzt + εt, t = 1, 2, . . . , (2.1)

with predetermined stochastic regressors zt = at−1. Our focus will be on the estimation of the

slope coefficient β, from which the properties of the estimator of δ follow immediately. Since,

with a0 = 0,

zT =
1

T

T∑
t=1

at−1 =
1

T

T−1∑
s=1

as =
T − 1

T
aT−1,

the OLS estimator is given by

β̂T − β =
uT
AT

, (2.2)
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where we have put

uT =

T∑
t=1

(zt − zT ) εt =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)
εt (2.3)

and

AT =
T∑
t=1

(zt − zT )2 =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)2

. (2.4)

For linear regression models with predetermined stochastic regressors and i.i.d. errors εt, the

best results for the consistent estimation of β available so far have been obtained by Lai & Wei

(1982a, 1982b): For general multivariate models, the condition in Lai & Wei (1982a) is that

λmin(MT )→∞ and log λmax(MT ) = o (λmin(MT )) a.s., (2.5)

where λmin(MT ) and λmax(MT ) denote the minimal and maximal eigenvalue of the regres-

sors’ second moment matrix MT . Lai & Wei (1982a) present an example which shows that

condition (2.5) may be considered minimal in the sense that even a marginal violation like

log λmax(MT )/λmin(MT )→ ρ > 0 may be destructive to consistency. For the slope parameter in

the simple regression model (2.1), a slight improvement is given in Lai & Wei (1982b) with the

condition
AT
log T

→∞ a.s.. (2.6)

In our model, neither (2.5) nor (2.6) is satisfied for c > 1/2. Rather, it is shown in Christopeit

& Massmann (2013a) that

plim
T→∞

log λmax(MT )

λmin(MT )
=

σ2

2c− 1

and that

plim
T→∞

AT
log T

=
2c− 1

σ2
,

where the moment matrix MT in our setting is given by

MT =

 T
∑T

t=2 at−1∑T
t=2 at−1

∑T
t=2 a

2
t−1

 .

Strikingly, it will turn out that the OLS estimator remains consistent. When c < 1/2, both

conditions are satisfied. For (2.5), this is shown in Christopeit & Massmann (2013a), while for

(2.6) it will follow from our analysis of AT in Appendix B.

It is hence plain that in examining the asymptotic properties of the OLS estimator in (2.2)

no recourse can be taken to existing results. We hence resort to analysing our model from first

principles, starting with the behaviour of the predetermined regressor at, before proceeding to

that of β̂ itself. The following provides a roadmap of the results to be shown below.
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Theorem 1: almost sure behaviour of at,

Theorem 2: asymptotic distribution of at,

Theorem 3: strong consistency of OLS estimator,

Theorem 4: asymptotic normality of OLS estimator.

It will turn out that the asymptotic behaviour of at and of the OLS estimator differs markedly

according to the three following cases: c > 1/2, c = 1/2 and c < 1/2. Theorems 1 and 2 cover all

three of cases. Theorems 3 and 4 will deal with the cases c > 1/2 and c < 1/2 as the boundary

case c = 1/2 seems to require an entirely different approach and is thus left to future research.

Some comments on the difficulties arising in the derivation will be made in Appendix B.

We will make the following assumptions about the error term εt in (1.8).

Assumption 1 The εt are i.i.d. with finite fourth moment and Eεt = 0 and Eε2t = σ2.

When dealing with the EEP for c < 1/2, we need to make a further assumption. Define

vt =

t∑
i=1

εi
i1−c

,

whose limit

v = lim
t→∞

vt (2.7)

exists with probability one by Kolmogorov’s theorem.

Assumption 2 P (v 6= 0) = 1.

Remark 1 For Gaussian εi, vt is itself normal with variance

σ2v = σ2
∞∑
i=1

i2(c−1).

Hence Assumption 2 is trivially satisfied.

The following two theorems concern the IFP and describe the asymptotic behaviour of at.

Actually, the mere convergence follows easily from well known results on recursive algorithms,

cf. Christopeit & Massmann (2010, section 3.1). However, for our analyses further below, e.g.

the asymptotic normality of the OLS estimator, we will need the exact rates of convergence of

at which have not yet been derived in the literature. They are also of interest per se.

Theorem 1 Under Assumption 1, the following is true with probability one.
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(i) For c > 1/2,

lim
t→∞

√
t

log2 t
(at − α) = σγ

√
2

2c− 1
. (2.8)

(ii) For c = 1/2,

lim
t→∞

√
t

log t log3 t
(at − α) = σγ

√
2. (2.9)

(iii) For c < 1/2,

lim
t→∞

tc (at − α) = γv. (2.10)

The proof will be given in Appendix A.2. Hence, the value 1/2 is a boundary separating

‘good’ asymptotic behaviour of at from ‘poor’ behaviour, in the sense of speed of convergence.

In view of the aforementioned trade-off between the behaviour of at and that of β̂T , one should

expect the converse for the performance of β̂T . This will indeed be seen in Theorem 3.

Theorem 2 Under Assumption 1, the following is true.

(i) For c > 1/2, at − α is asymptotically normal at rate
√
t :

√
2c− 1

σγ

√
t (at − α)

d→ N (0, 1). (2.11)

(ii) For c = 1/2, at − α is asymptotically normal at rate
√
t/ log t :

1

σγ

√
t

log t
(at − α)

d→ N (0, 1). (2.12)

(iii) For c < 1/2, the behaviour is as described in (2.10) of Theorem 1. Note that, for Gaussian

εt, the limit is also normal.

The proof will be given in Appendix A.3. The next two theorem are devoted to the EEP and

describe the asymptotic behaviour of the OLS estimator.

Theorem 3 Under Assumption 1 and for Gaussian εt, the OLS estimator is strongly consistent

for every c > 1/2. For c < 1/2, this remains true if, in addition, Assumption 2 is satisfied.

For c > 1/2, this is proved in a companion paper, see Christopeit & Massmann (2013b). For

c < 1/2, the proof will be given in Appendix B.2.

Theorem 4 Under Assumption 1, the following holds.
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(i) For c > 1/2, √
AT

(
β̂T − β

)
d→ N (0, σ2). (2.13)

In particular, the rate of convergence is
√
log T :

γ√
2c− 1

√
log T

(
β̂T − β

)
d→ N (0, 1). (2.14)

(ii) For c < 1/2, under the additional Assumption 2,√
AT

(
β̂T − β

)
d→ N

(
0, σ2 (1− 2c)

)
. (2.15)

In particular, the rate of convergence is T 1/2−c:

v
√
T 1−2c

(
β̂T − β

)
d→ N

(
0, σ2

(1− c)2 (1− 2c)2

c2γ2

)
. (2.16)

The proof will be given in Appendix B.3.

Though it seems hard to give a general description of those distributions of the εt that make

Assumption 2 hold, the following result may rather easily be obtained from the observation that

the point spectrum of the sum of two independent random variables is the vector sum of the

individual point spectra, cf. Kawata (1972, Theorem 13.1.1).

Corollary 1 For c < 1/2, strong consistency and asymptotic normality are valid whenever the

distribution function F of εt is continuous.

A necessary and sufficient condition for the case where F has discontinuities is given in

Kawata (1972, Theorem 13.1.2).

3 Discussion and conclusion

In the case of c > 1/2 in Theorem 4, the normalizing sequence AT is random and can be calculated

from the data. In particular, no knowledge of the constants c and γ is required. Hence, if it

comes to testing hypotheses on β, (2.13) is more useful than (2.14), the variance σ2 allowing

consistent estimation from the regression residuals, cf. Corollary 2 below.

A similar remark applies when c < 1/2 in Theorem 4 where, however, the constant c must

be estimated. Note that AT is observable for finite sample sizes, whereas v is not. Also, (2.16)

shows that there is in general no deterministic normalizing sequence γT such that the asymptotic

distribution of γT (β̂T − β) is normal.

The asymptotic properties of the slope estimator being settled, those of the remaining pa-

rameters δ and σ2 are easily derived. In particular, consistency of δ̂ follows immediately from

δ̂ − δ = (β − β̂)a+ ε (3.1)
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where subscripts have been omitted for simplicity. The type of convergence is the same as that

of β̂. As to asymptotic normality, it follows from (3.1) and from

√
AT ε = oP (1)

that √
AT (δ̂ − δ) =

√
AT (β − β̂)a+ oP (1) .

As a consequence,

√
AT

 δ̂ − δ

β̂ − β

 d−→ N

0, σ2κ

 α2 −α

−α 1

 ,

with λ = 1 when c > 1/2 and with λ = 1− 2c when c < 1/2.

The usual residual-based estimator of σ2 is also consistent. The proof of the following corol-

lary is provided in Appendix C.

Corollary 2 Define the OLS residual ε̂t = yt − δ̂ − β̂at−1. Then

1

T

T∑
t=1

ε̂2t → σ2

with probability one or in probability according to whether both δ̂ and β̂ are strongly or weakly

consistent.

Finally, consider γ. When γ is known, c can be estimated consistently by

ĉ = (1− β̂)γ,

cf.(1.9). If, on the other hand, γ unknown, it may be consistently estimated from the observed

at using the recursion (1.7):

at = at−1 +
γ

t
(yt − at−1) .

This estimator will be needed when implementing (2.15), i.e.√
AT

(1− 2c)

(
β̂T − β

)
d→ N

(
0, σ2

)
.

In summary, this paper investigated the asymptotic properties of the OLS estimator in bivari-

ate regression models in which the regressor is generated by a recursive algorithm and, as such,

appears in the form of an autoregressive process with time varying, local-to-unity, coefficients as

well as error terms whose magnitude decreases over time, see (1.4). The regressor thus exhibits a

behavior that is completely different from that of processes generated by time-invariant dynam-

ics. The setup was motivated by the problem of estimating structural parameters in a typical
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macroeconomic model in which agents are boundedly rational and use an adaptive learning rule

to form expectations of the endogenous variable. Our particular interest lay on analysing a

model with a learning recursion that is subject to so-called decreasing gain sequences, implying,

economically speaking, that agents learn to be rational asymptotically. From a statistical point

of view we noticed that this model does not generally satisfy any of the sufficient conditions

for consistent estimability available in the literature. The paper hence demonstrated that, for

appropriate parameter sets, the OLS estimator of the structural parameters nevertheless remains

strongly consistent and asymptotically normally distributed. Moreover, there turned out to be

a trade-off between the speed of convergence of agents’ forecasts to the rational expectations

equilibrium on the one hand and that of the OLS estimator to the true parameter value on the

other.

Several extensions of our setup seem appropriate yet were beyond the scope of the present

paper and and are hence left to future research. Firstly, the question of whether or not the

OLS estimator is srongly consistent and asymptotically normal in the boundary case of c =

1/2 appears to require a line of attack different from the one employed here. Secondly, our

assumptions that the exogenous regressor xt is constant was made for analytical tractability and

should be generalised. Thirdly, the expectational term in the economic model (1.1) could be

specified as yet+1|t, i.e. as based on information on the past and the present : in this case the

parameters would have to be estimated by means of an instrumental variable technique, which

would require suitable assumptions on the (exogenous or endogenous) instruments. Nonetheless,

by showing that strongly consistent and asymptotically normal estimation of the structural

parameters in our sylised model is possible, we provide a theoretical justification of why the

increasingly popular empirical estimation of such models is, in principle at least, econometrically

sound.
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A Proof of Theorems 1 and 2

A.1 Representation of at

We return now to the difference equation (1.8b) for at. It is intuitively clear and can, indeed,

be easily shown that the choice of initial value a0 has no influence on the asymptotic behaviour.

For simplicity of exposition, we shall therefore suppose that a0 = 0. Then

at =

t∑
i=1

φti (δ + εi) , (A.1)

where

φti =
γ

i

(
1− c

i+ 1

)
· · ·
(
1− c

t

)
, i = 1, . . . , t− 1, (A.2)

φtt =
γ

t
.

In particular, for c = 1,

φti =
γ

t

for all i. Define i0 = [c] for c > 1, and i0 = 1 for c ≤ 1. Taking logarithms and using a second

order Taylor expansion, it is shown in Christopeit & Massmann (2010) that, for i0 ≤ i,

φti = γ
1

tc
1

i1−c
exp

[
Oti(1)

i

]
= γ

1

tc
1

i1−c

[
1 +

Oti(1)

i

]
. (A.3)

The Oti(1) are uniformly bounded in t and i ≤ t. (A.3) is well defined for all 1 ≤ i ≤ t. Henceforth,

call it hti. For i < i0,

φti =
γ

i

∏i0

j=i+1

(
1− c

j

)∏t

j=i0+1

(
1− c

j

)
= λiφti0

with

λi =
i0
i

∏i0

j=i+1

(
1− c

j

)
.

Hence, since maxi<i0 |λi| ≤ K, we have that φti = O (t−c) for i < i0. The same is true for hti.

Therefore

φti =

 hti, for i ≥ i0,

hti +O (t−c) , for 1 ≤ i < i0.

Remark 2 Note that, for c ≤ 1, the O (t−c)-term vanishes.

Since ∑i0−1

i=1
φti = O

(
t−c
)
,∑i0−1

i=1
φtiεi = O

(
t−c
)

a.s.,
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with the same holding for hti, we may write

at =
t∑
i=1

hti (δ + εi) +O
(
t−c
)

= δζt + θt +O
(
t−c
)
, (A.5)

with

ζt =
∑t

i=1
hti,

θt =
∑t

i=1
htiεi.

By the integral comparison theorem, hereafter referred to as ICT, for c 6= 1,

ζt = γ
1

tc

∑t

i=1

1

i1−c

[
1 +

Oti(1)

i

]
=
γ

c
+O

(
t−1
)
+O(t−c) (A.6)

and, for c = 1,

ζt = γ +O

(
log t

t

)
. (A.7)

Next, write

θt =
γ

tc

[∑t

i=1

εi
i1−c

+
∑t

i=1

Oti(1)

i2−c
εi

]
= γ

1

tc
(vt + wt) , (A.8)

with

vt =
∑t

i=1

εi
i1−c

,

wt =
∑t

i=1

Oti(1)

i2−c
εi.

Then, noting that δγ/c = α and introducing the processes

ξt =
1

tc
vt

ηt =
1

tc
wt

we may write

at − α = O
(
t−1
)
+O(t−c) + γ (ξt + ηt) , (A.9)

with the O(t−c) vanishing for c ≤ 1.

A.2 Proof of Theorem 1

In the following, we will derive the asymptotic behaviour of at − α. In addition, we shall also

consider that of aT − α because it is needed in the treatment of the EEP in Appendix B.

13



A.2.1 Case c > 1/2

Reconsider the representation of at−α in (A.9) above and examine first the behaviour of ξt. By

the ICT, the predictable quadratic variation of vt is given by

〈v〉t = σ2
∑t

i=1
i2(c−1) =

σ2

2c− 1
t2c−1 +O(1). (A.10)

Hence 〈v〉∞ = limt→∞ 〈v〉t =∞ a.s.. By the law of iteration logarithms, henceforth denoted by

LIL, cf. Chow & Teicher (1973),

lim
t→∞

|vt|√
2 〈v〉t log2 〈v〉t

= 1 a.s..

In view of (A.10), this means that

lim
t→∞

|vt|√
t2c−1 log2 t

= σ

√
2

2c− 1
a.s.

or

lim
t→∞

√
t

log2 t
|ξt| = lim

t→∞

√
t

log2 t

|vt|
tc

= σ

√
2

2c− 1
a.s.. (A.12)

Turning to ηt in (A.9), it follows again by the ICT that

Ew2
t =

 O
(
t2c−3

)
, for c 6= 3/2,

O (log t) , for c = 3/2.

Therefore

E

∞∑
t=1

t2ρ
(wt
tc

)2
<∞

for every 0 ≤ ρ < 1. As a consequence,
∞∑
t=1

t2ρη2t <∞ a.s..

In particular,

tρηt = o(1) a.s.. (A.13)

(A.12) and (A.13) taken together then yield

lim
t→∞

√
t

log2 t
(at − α) = σγ

√
2

2c− 1
a.s.,

proving assertion (2.8) in Theorem 1.

Turning to aT − α, by (2.8),

aT − α =
1

T

T∑
t=1

(at − α) = O(1)
1

T

T∑
t=1

√
log2 t

t

= O

(√
log2 T

T

)
a.s.. (A.14)
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A.2.2 Case c = 1/2

Reconsider at − α in (A.9). Regarding ξt, note that the predictable quadratic variation of vt is

〈v〉t = σ2
∑t

i=1
i−1 = σ2 log t+O(1). (A.15)

Again by the LIL,

lim
t→∞

|vt|√
log t log3 t

= σ
√
2 a.s..

In particular,

lim
t→∞

√
t

log t log3 t
|ξt| = σ

√
2 a.s.. (A.16)

As for ηt,

Ew2
t = O

(
t−2
)
, (A.17)

so that

E

∞∑
t=1

t2ρ
( wt
t1/2

)2
<∞

for every ρ < 1. Therefore

tρηt = o(1) a.s.. (A.18)

It then follows from (A.16) and (A.18) that

lim
t→∞

√
t

log t log3 t
(at − α) = σγ

√
2 a.s.,

as claimed in (2.9) of Theorem 1.

A.2.3 Case c < 1/2

Finally, we examine at−α in (A.9) in the case of c < 1/2. First, look again at ξt. By Kolomogorov’s

theorem, vt converges with probability one to some finite random variable v, see also (2.7).

Actually, it is easily verified that convergence of vt to v also takes place in L2, with the limit v

having variance σ2v = σ2
∑∞

i=1 i
2(c−1). Hence

tcξt = vt = v + o(1) a.s.. (A.19)

As far as ηt is concerned,

Ew2
t = O

(
t2c−3

)
,

so that

E
∞∑
t=1

w2
t <∞
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and

tcηt = wt = o(1) a.s.. (A.20)

Hence, remembering that the O(t−c)-term in (A.9) vanishes for c < 1/2,

tc (at − α) = γv + o(1) a.s..

This proves (2.10) in Theorem 1.

As to aT − α, we have

aT − α =
1

T

T∑
t=1

(at − α) =
1

T

T∑
t=1

t−c (γv + o(1))

=
γv

1− c
1

T c
+ o

(
T−c

)
(A.21)

which follows from (2.10).

A.3 Proof of Theorem 2

A.3.1 Case c > 1/2

By (A.10) and the central limit theorem for martingales,

vt√
〈v〉t

∼
√
2c− 1

σ

vt

tc−1/2
d→ N (0, 1).

In terms of ξt, this is equivalent to
√
2c− 1

σ

√
tξt

d→ N (0, 1). (A.22)

Returning to (A.9), we obtain that

√
t (at − α) = γ

√
tξt + γ

√
tηt +O

(
t−1/2

)
+O(t1/2−c).

By virtue of (A.13),
√
t (at − α) = γ

√
tξt + o(1),

which, due to (A.22), entails (2.11) in Theorem 2.

A.3.2 Case c = 1/2

In this case, by (A.15),
vt√
〈v〉t

∼ vt

σ
√
log t

d→ N (0, 1)

or, in terms of ξt,
1

σ

√
t

log t
ξt

d→ N (0, 1). (A.23)
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Taking account of (A.9) and (A.18),√
t

log t
(at − α) = γ

√
t

log t
ξt + γ

√
t

log t
ηt +O

(√
1

t log t

)
.

By virtue of (A.18), √
t

log t
(at − α) = γ

√
t

log t
ξt + o(1) a.s.,

which, due to (A.23), entails (2.12) in Theorem 2.

Remark 3 For c ≥ 1/2, the Liapunov condition for 4th moments is satisfied. In particular, for

c > 1/2, this follows from

t∑
i=1

E
[ εi
i1−c

]4
= m4

t∑
i=1

i4(c−1) = O
(
t4c−3

)
+O(1),

〈v〉2t =
σ4

(2c− 1)2
t2(2c−1) +O

(
t2c−1

)
,

so that
1

〈v〉2t

t∑
i=1

E
[ εi
i1−c

]4
= O(t−1).

For c = 1/2,
t∑
i=1

E
[ εi
i1/2

]4
= O(1), 〈v〉2t = σ4 log2 t (1 + o(1)) ,

from which the Liapunov condition follows.

A.3.3 Case c < 1/2

It follows from (2.10) that

tc (at − α) = γv + o(1) a.s.,

where v is a random variable with variance

σ2v = σ2
∞∑
i=1

i2(c−1).

If the εt are normal, then so is v.
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B Proof of Theorems 3 and 4

B.1 The OLS-estimator

Recall from Section 2 that the OLS estimator is given by

β̂T − β =
uT
AT

, (B.1)

where

uT =

T∑
t=1

(xt − xT ) εt =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)
εt

and

AT =
T∑
t=1

(xt − xT )2 =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)2

.

Making use of the elementary algebraic identity

T∑
t=1

(at − aT )
(
bt − bT

)
=

T∑
t=2

t− 1

t
(at − at−1)

(
bt − bt−1

)
,

we may write

AT =
T∑
t=2

t− 1

t
(xt − xt−1)2

=
T∑
t=2

t− 1

t

(
at−1 −

t− 2

t− 1
at−2

)2

. (B.2)

Remark 4 (B.2) shows that AT is nondecreasing.

Making use of the fact that limt→∞ at = α, our proofs will rely on the following decomposition:

uT =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)
εt

=
T∑
t=1

(at−1 − α) εt +
(
α− T − 1

T
aT−1

) T∑
t=1

εt

=
T∑
t=1

(at−1 − α) εt + (α− aT )
T∑
t=1

εt +O

(
1

T

) T∑
t=1

εt. (B.3)

As to AT , we simplify it to

AT =
T∑
t=1

(
at−1 − aT−1 +

1

T
aT−1

)2

=
T∑
t=1

(at−1 − aT−1)2 −
2

T
aT−1

T∑
t=1

(at−1 − aT−1) +
1

T 2
a2T−1

= A′T + o(1), (B.4)
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where we have put

A′T =

T∑
t=1

(at−1 − aT )2 . (B.5)

The expression A′T will be further decomposed as

A′T =
T∑
t=1

[(at−1 − α)− (aT − α)]2

=
T∑
t=1

(at−1 − α)2 + T (aT − α)2 − 2 (aT − α)
T∑
t=1

(at−1 − α) .

The last term may in turn be written as

(aT − α)
T∑
t=1

(at−1 − α) = (aT − α)

[
T∑
t=1

(at − α)− aT

]
= T (aT − α)2 − aT (aT − α)

= T (aT − α)2 + o(1).

Hence

A′T = A0
T −BT + o(1), (B.6)

where we have put

A0
T =

T∑
t=1

(at−1 − α)2

BT = T (aT − α)2 .

The procedure will then be as follows. Using (B.3), write (B.1) in the form

uT
AT

=

∑T
t=1 (at−1 − α) εt

AT
+
α− aT
AT

T∑
t=1

εt +O(1)
1

AT

1

T

T∑
t=1

εt

=

[∑T
t=1 (at−1 − α) εt

A0
T

+
α− aT
A0
T

T∑
t=1

εt +O(1)
1

A0
T

1

T

T∑
t=1

εt

]
A0
T

AT
. (B.7)

(B.7) will be the basic decomposition of the OLS estimator on which the ensuing proofs are

based. In particular, to show consistency we will proceed by verifying the following conditions,

all holding with probability one:

lim
T→∞

A0
T = ∞, Condition (i)

limT→∞
BT
A0
T

< 1, Condition (ii)√
T log2 T

aT − α
A0
T

= o(1). Condition (iii)

Since, by virtue of (B.6),

A0
T

A′T
=

A0
T

A0
T −BT + o(1)

=
1

1− BT

A0
T
+ o(1)

, (B.8)
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it will follow from Condition (ii) and (B.4) that, with probability one,

limT→∞
A0
T

AT
= limT→∞

A0
T

A′T
<∞. (B.9)

Hence, in view of Condition (i),

lim
T→∞

A′T = lim
T→∞

AT =∞.

By the LIL, under Condition (iii) the middle term in brackets in (B.7) becomes

α− aT
A0
T

T∑
t=1

εt =
√
T log2 T

α− aT
A0
T

1√
T log2 T

T∑
t=1

εt

=
√
T log2 T

α− aT
A0
T

O(1)

= o(1).

As to the first term, it follows from the standard martingale convergence theorem applied to the

martingale

MT =
T∑
t=1

(at−1 − α) εt,

whose predictable quadratic variation is 〈M〉T = σ2A0
T , that

MT

A0
T

→ 0

with probability one. Hence, if Conditions (i)-(iii) are satisfied, it will follow from (B.7) that

lim
T→∞

uT
AT

= 0

with probability one. As a consequence, the OLS estimator in (2.2) is strongly consistent.

B.2 Proof of Theorem 3

B.2.1 Case c > 1/2

The essence of the subsequent discussion is that, for c > 1/2, Condition (i) turns out to be valid.

As to Condition (ii) and Condition (iii), they require the specification of the almost sure rate of

divergence of A0
T can be shown to be satisfied in probability yet it is not clear whether or not

they also hold almost surely. Therefore, for the proof of strong consistency when c > 1/2 we

refer to a companion paper, see Christopeit & Massmann (2013b, Proposition 2), which adopts

a decomposition of the OLS estimator that differs from (B.7) and thus does not require the

specification of the almost sure rate of divergence of A0
T . In that approach, we do make the

additional assumption, however, that the error term εt is Gaussian.
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The purpose of the following derivations is to examine the asymptotic behaviour of A0
T which,

in turn, will be used in the proof of the asymptotic normality of the OLS estimator in Appendix

B.3. It will be seen in the process that Condition (i) holds, as mentioned above. To that end,

reconsider the expression of at − α given in (A.9) in Appendix A.1, namely

at − α = O
(
t−1
)
+O(t−c) + γ (ξt + ηt) ,

with

ξt =
1

tc

∑t

i=1

εi
i1−c

,

ηt =
1

tc

∑t

i=1

Oti(1)

i2−c
εi.

Consider the asymptotic behaviour of A0
T =

∑T
t=1 (at−1 − α)

2 . It hinges on the following two

facts.

Firstly, it holds with probability one that
∞∑
t=1

η2t <∞. (B.10)

Therefore,

A0
T = γ2

T∑
t=1

ξ2t +O(1). (B.11)

Actually, (B.10) follows immediately from

Eη2t = O(1)
1

t2c

∑t

i=1

1

i2(2−c)

=
1

t2c


O(1), 1/2 < c < 3/2,

log t+O(1), c = 3/2,

1
2c−3 t

2c−3 +O(1), c > 3/2,

= O(t−(1+δ))

for some δ > 0 (depending on c). In any case,
∑∞

t=1Eη
2
t <∞ and hence (B.10).

Secondly, for the sequence

α2
T =

σ2

2c− 1
log T (B.12)

it holds that

α−2T

T∑
t=1

ξ2t
L2

→ 1. (B.13)

This can be shown by performing some tedious but rather straightforward calculations on 4th

moments. The proof is relegated to the Supplement I.

As a consequence of (B.11) and (B.13),

A0
T

α2
T

L2

→ γ2 (B.14)
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and therefore also

plimT→∞
A0
T

α2
T

= γ2. (B.15)

Since the sequence
∑T

t=1 ξ
2
t is monotone increasing, (B.13) implies that

∞∑
t=1

ξ2t =∞ a.s.. (B.16)

Hence, by (B.14),

lim
T→∞

A0
T =∞ a.s., (B.17)

so that Condition (i) is satisfied.

Recall now the order of magnitude of aT − α in (A.14), namely

aT − α = O

(√
log2 T

T

)
a.s..

It hence follows that, with probability one,

BT = T (aT − α)2 = O (log2 T ) . (B.18)

Consequently, combining (B.12), (B.15) and (B.18) yields

BT
A0
T

=
BT

log2 T

log2 T

α2
T

α2
T

A0
T

= O(1)o (1)
log2 T

A0
T

= oP (1). (B.19)

It is hence in probability that Condition (ii) is satisfied, which will indeed be sufficient for weak

consistency and asymptotic normality, see Theorem 4 and Appendix B.3. Specifically, we will

need it in the form

plimT→∞
A0
T

AT
= 1, (B.20)

which follows from (B.8) and AT = A′T + o(1). Similarly, regarding Condition (iii), it follows

from (A.14) in Appendix A.2 that

√
T log2 T

aT − α
A0
T

= O (1)
log2 T

A0
T

= oP (1) (B.21)

such that Condition (iii) is also satisfied in probability.

Remark 5 It cannot be inferred from (B.15) that convergence of A0
T /α

2
T takes place with prob-

ability one. Otherwise convergence in (B.19) and (B.21), too, would hold with probability one,

thus implying strong consistency.
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B.2.2 Case c = 1/2

Remark 6 Note that the procedure outlined in Appendix B.2.1 does not work for c = 1/2. The

reason is that there is no deterministic sequence α2
T such that α−2T

∑T
t=1 ξ

2
t converges in probability

to some finite nonzero limit, see (B.15). Actually, it is shown in Supplement II that α−2T
∑T

t=1 ξ
2
t

is not a Cauchy sequence in L2 and hence does not converge in L2 for any deterministic sequence

α2
T . Together with the uniform integrability of the sequence α−2T

∑T
t=1 ξ

2
t , which is also shown in

Supplement II, this implies that it cannot converge in probability to a nonzero limit.

B.2.3 Case c < 1/2

Remember that the O(t−c) vanishes for c ≤ 1, see Remark 2

Consider A0
T first. By definition and (2.10),

A0
T =

T∑
t=1

(at−1 − α)2 =
[
γ2v2 + o(1)

] T∑
t=1

1

t2c

=
γ2v2

1− 2c
T 1−2c + o

(
T 1−2c) . (B.22)

Hence Condition (i) in Appendix B.1 is met. Note that Assumption 2 that v is nonzero with

probability one is crucial to obtain divergence with probability one.

The behaviour of BT follows from (B.6):

BT = T (aT−1 − α)2 =
γ2v2

(1− c)2
T 1−2c + o

(
T 1−2c) .

Consequently,
BT
A0
T

=
1− 2c+ o(1)

(1− c)2 + o(1)
=

1− 2c

(1− c)2
+ o(1).

Since (1− 2c) / (1− c)2 < 1, this shows Condition (ii). Also,

aT − α
A0
T

=

γv
1−cT

−c [1 + o (1)]

γ2v2

1−2cT
1−2c [1 + o(1)]

=
1

γv

1− 2c

1− c
1

T 1−c [1 + o (1)] .

Hence √
T log2 T

aT − α
A0
T

= O(1)

√
log2 T

T 1−2c ,

so that Condition (iii) is also satisfied. Consequently, the OLS estimator is strongly consistent.

Finally, for later reference, we note that

lim
T→∞

A0
T

AT
=

1

1− 1−2c
(1−c)2

=
(1− c)2

c2
a.s. (B.24)

cf. (B.8).
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B.3 Proof of Theorem 4

B.3.1 Case c > 1/2

We return now to the decomposition (B.7), re-written as

uT√
A0
T

=

∑T
t=1 (at−1 − α) εt√

A0
T

+
α− aT√

A0
T

T∑
t=1

εt +O(1)
1√
A0
T

1

T

T∑
t=1

εt. (B.25)

The first term on the right-hand side is related to the martingale

MT =

T∑
t=1

(at−1 − α) εt, (B.26)

whose predictable quadratic variation is

〈M〉T = σ2A0
T .

Therefore, by the central limit theorem (CLT) for martingales,

WT =
MT√
A0
T

d→ N (0, σ2). (B.27)

The corresponding Lindeberg condition is verified in Appendix B.3.3 below. Regarding the

second term, (A.14) and (B.15) yield

aT − α√
A0
T

=
αT√
A0
T

α−1T O

(√
log2 T

T

)
=
(
γ−1 + oP (1)

)
O

(√
log2 T

T log T

)
,

so that by the CLT for i.i.d. sequences,

α− aT√
A0
T

T∑
t=1

εt = oP (1). (B.28)

The last term converges to zero by the law of large numbers. Synthesizing, we obtain

uT√
A0
T

=WT + oP (1)
d→ N (0, σ2).

In view of (2.2) and accounting for (B.20), this means that

√
AT

(
β̂T − β

)
=

uT√
A0
T

√
A0
T

AT

d→ N
(
0, σ2

)
.

More explicitly, using (B.15),

γ√
2c− 1

√
log T

(
β̂T − β

)
d→ N (0, 1),

as claimed in (2.13) and (2.14) of Theorem 4.
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B.3.2 Case c < 1/2

Reconsider again (B.25). Regarding the first term on the right-hand side, we find that, as in

(B.27),

WT =
MT√
A0
T

d→ N (0, σ2). (B.29)

As for the second term, ìt follows from (A.21) and (B.22) that

aT − α√
A0
T

=

√
1− 2c

1− c
1√
T
(1 + o(1)) .

Hence, by the CLT for i.i.d. sequences„

aT − α√
A0
T

T∑
t=1

εt
d→ N

(
0, σ2

1− 2c

(1− c)2

)
. (B.30)

The last term in the brackets of (B.7) again tends to zero of course.

In view of (B.29) and (B.30), the first two terms on the right hand side of (B.7) must be

treated together. It could be shown, e.g. using the Cramer-Rao device, that (B.29) and (B.30)

converge jointly to a bivariate normal distribution. Yet since we are only interested in the sum

VT =
MT√
A0
T

+
α− aT√

A0
T

T∑
t=1

εt, (B.31)

we proceed in a different way. By partial summation,

MT =

T∑
t=1

(at−1 − α) εt = (aT − α)
T∑
t=1

εt −
T∑
t=1

(at − at−1)
t∑
i=1

εi

= (aT − α)
T∑
t=1

εt −
T∑
t=1

O

(
1

t1+c

) t∑
i=1

εi. (B.32)

The last equality follows from (2.10), since

at − at−1 = γv

[
1

tc
− 1

(t− 1)c

]
(1 + o(1))

= −γvc 1

t1+c
(1 + o(1)) .

By the LIL, the second term in (B.32) becomes

T∑
t=1

O

(
1

t1+c

) t∑
i=1

εi =

T∑
t=1

O

(√
log2 t

t1/2+c

)
1√
t log2 t

t∑
i=1

εi = O(1)

with probability one. Therefore

MT√
A0
T

=
aT − α√

A0
T

T∑
t=1

εt +O

(
1

T 1/2−c

)
,
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and (B.31) simplifies to

VT =
aT − aT√

A0
T

T∑
t=1

εt +O

(
1

T 1/2−c

)
.

By (B.22) together with (2.10) and (A.21),

aT − aT√
A0
T

= −c
√
1− 2c

1− c
1√
T
(1 + o (1)) .

so that

VT = −c
√
1− 2c

1− c
1√
T

T∑
t=1

εt + oP (1)
d→ N

(
0, σ2

c2 (1− 2c)

(1− c)2

)
.

Returning to (B.25), we thus find that

uT√
A0
T

= VT + o(1)
d→ N

(
0, σ2

c2 (1− 2c)

(1− c)2

)

or, taking account of (B.24),

uT√
AT

=
uT√
A0
T

√
A0
T

AT

d→ N
(
0, σ2 (1− 2c)

)
.

Hence, remembering that β̂T − β = uT /AT , it follows that√
AT

(
β̂T − β

)
d→ N

(
0, σ2 (1− 2c)

)
or,

v
√
T 1−2c

(
β̂T − β

)
d→ N

(
0, σ2

(1− c)2 (1− 2c)2

c2γ2

)
. (B.33)

This shows assertions (2.15) and (2.16) in Theorem 4, respectively.

B.3.3 On the Lindeberg condition

Reconsider the martingale in (B.26), reproduced here for convenience:

MT =

T∑
t=1

(at−1 − α) εt.

Write MT in the form

MT = λTNT (B.34)

where NT is the (square integrable) martingale difference array

NT =

T∑
t=1

ξTtεt, ξTt =
at−1 − α
λT

(B.35)

and λT is any deterministic sequence such that

A0
T

λ2T

P→ v2 (B.36)
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for some random variable v with P (v = 0) = 0. Put differently, for c > 1/2,

λ2T = γ2α2
T =

γ2σ2

2c− 1
log T

(with v = 1, cf. (B.15)) and, for c < 1/2,

λ2T =
γ2

2c− 1
T 1−2c,

cf. (B.22). We will show that

RT =

T∑
t=1

E
{
ξ2Ttε

2
t 1{|ξTtεt|>δ}|Ft−1

} P→ 0

for every δ > 0. To this end, we make use of the elementary inequality {|ξTtεt| > δ} =

{|(at−1 − α) εt| > λT δ} ⊂
{
|at−1 − α|2 > λT δ

}
∪
{
ε2t > λT δ

}
to obtain

RT =

T∑
t=1

ξ2TtE
{
ε2t 1{|ξTtεt|>δ}|Ft−1

}
≤ σ2

λ2T

T∑
t=1

(at−1 − α)2 1{(at−1−α)2>λT δ} +
1

λ2T

T∑
t=1

(at−1 − α)2E
{
ε2t 1{ε2t>λT δ}

}
= R0

T +R1
T .

RegardingR0
T , since at−1−α→ 0 a.s., there will be a T0 (depending on ω) such that (at−1 − α)2 ≤

λT δ for all t > T0. Hence

R0
T ≤

σ2

λ2T

T0∑
t=1

(at−1 − α)2 → 0

with probability one.

As to R1
T , it follows from the Cauchy-Schwartz inequality that

E
{
ε2t 1{ε2t>λT δ}

}
≤ 1

λT δ
Eε4t .

Hence

R1
T ≤

Eε4t
λT δ

A0
T

λ2t

P→ 0.

As a consequence,

RT
P→ 0,

so that the Lindeberg condition is satisfied for the martingale difference array NT . Therefore,

since

V 2
T =

T∑
t=1

E
{
ξ2Ttε

2
t |Ft−1

}
=
σ2

λ2T

T∑
t=1

(at−1 − α)2 =
σ2

λ2T
A0
T

P→ σ2v2,

it follows from standard CLTs for martingale difference arrays, see e.g. Hall & Heyde (1980,

Corollary 3.2), that
NT

VT
=
λT
σ

NT√
A0
T

d→ N (0, 1)
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or, in view of (B.34),
MT

σ
√
A0
T

d→ N (0, 1).
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C Proof of Corollary 3

Consider the OLS residual ε̂t = yt − δ̂ − β̂at−1 = mt + εt, where

mt = (δ − δ̂) + (β − β̂)at−1.

Then
T∑
t=1

ε̂2t =

T∑
t=1

m2
t + 2

T∑
t=1

mtεt +

T∑
t=1

ε2t .

Since

1

T

T∑
t=1

m2
t ≤

2

T

[
T (δ − δ̂)2 + (β − β̂)2

T∑
t=1

a2t−1

]
= o(1),

1

T

∣∣∣∣∣
T∑
t=1

mtεt

∣∣∣∣∣ ≤
[
1

T

T∑
t=1

m2
t

1

T

T∑
t=1

ε2t

]1/2
= o(1),

it follows that
1

T

T∑
t=1

ε̂2t =
1

T

T∑
t=1

ε2t + o(1)→ σ2

with probability one or in probability according to whether both δ̂ and β̂ are strongly or weakly

consistent.
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I Proof of equation (B.13)

I.1 Introduction

Here we give the proof of (B.13), as announced in Appendix B.2, namely that

E

[∑T
t=1 ξ

2
t

α2
T

− 1

]2
→ 0 (I.1)

for the sequence

α2
T =

σ2

2c− 1
log T. (I.2)

The sequence ξt was defined by

ξt =
1

tc

t∑
i=1

εi
i1−c

.

Remember that we are dealing with the case c > 1/2. Denote

XT =
T∑
t=1

ξ2t .

Then, since

Eξ2t =
1

t2c
E

[
t∑

i=1

1

i1−c
εi

]2
=
σ2

t2c

t∑
i=1

1

i2(1−c)

=
σ2

t2c

[
1

2c− 1
t2c−1 +O(1)

]
=

σ2

2c− 1

1

t
+O

(
1

t2c

)
,

it follows from the integral comparison test (ICT) that

EXT =
σ2

2c− 1
log T +O(1). (I.3)
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Hence, if (I.1) holds,

α−2T EXT → 1,

so that the normalization (I.2) comes up naturally.

In order to show (I.1), we will have to calculate 4th moments:

EX2
T =

T∑
s,t=1

Eξ2sξ
2
t =

T∑
t=1

Eξ4t + 2
T∑

s,t=1;s<t

Eξ2sξ
2
t . (I.4)

I.2 Calculation of 4th moments

Henceforth, we will assumme that s ≤ t. The basic formula will be

Eεiεi′εjεj′ =


m4, i = i′ = j = j′,

σ4, i = i′ 6= j = j′ or i = j 6= i′ = j′ or i = j′ 6= i′ = j

0, else

.

Then

Eξ2sξ
2
t =

1

s2ct2c
E

[
s∑

i=1

1

i1−c
εi

]2  t∑
j=1

1

j1−c
εj

2

=
1

s2ct2c
E

s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=1

1

j1−cj′1−c
εjεj′

= Ast +Bst. (I.5)

Here we have put

Ast =
1

s2ct2c

s∑
i,i′,j,j′=1

1

i1−ci′1−c
1

j1−cj′1−c
Eεiεi′εjεj′ , (I.6a)

Bst =
1

s2ct2c
E

s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=s+1

1

j1−cj′1−c
εjεj′ . (I.6b)

Remark 1 Note that the B-term vanishes for s = t.

I.2.1 Ad Ast

Ast =
1

s2ct2c

m4

s∑
i=1

1

i4(1−c)
+ 6σ4

s∑
i=2

1

i2(1−c)

i−1∑
j=1

1

j2(1−c)


=

1

s4c

 s∑
i=1

1

i4(1−c)
+

(
s∑

i=1

1

i2(1−c)

)2
O(1)

=
[
A′s +A′′s

]
O(1),

with

A′st =
1

s4c

s∑
i=1

1

i4(1−c)
, A′′st =

1

s4c

(
s∑

i=1

1

i2(1−c)

)2

.
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I.2.1.1 Ad A′ Since

s∑
i=1

1

i4(1−c)
=


O (1) , c < 3/4,

O (ln s) , c = 3/4,

O(s4c−3), c > 3/4,

it follows that

A′s =



O
(

1
s4c

)
, c < 3/4,

O
(
ln s
s3

)
, c = 3/4,

O
(

1
s3

)
, c > 3/4.

(I.7)

As a consequence,
T∑
t=1

t∑
s=1

A′s = O(1). (I.8)

I.2.1.2 Ad A′′ Since
s∑

i=1

1

i2(1−c)
= O

(
s2c−1

)
,

we have that

A′′s =
1

s4c
O
(
s2(2c−1)

)
= O

(
s−2
)
. (I.9)

Hence
T∑
t=1

t∑
s=1

A′′s = O(log T ). (I.10)

As a consequence, from (I.6a),

T∑
s≤t

Ast =

T∑
t=1

t∑
s=1

Ast = O(1)

T∑
t=1

t∑
s=1

[
A′s +A′′s

]
= O(log T ). (I.11)

I.2.2 Ad Bst

B will turn out the leading term in (I.5). Therefore we must be more explicit about O(1)-terms.

We will make use of the formula

t∑
j=s+1

jp =
tp+1

p+ 1

[
1−

(s
t

)p+1
+Ost

(
1

t

)]
, (I.12)

which is valid for all p > −1.

By (I.6b),
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Bst =
1

s2ct2c
E

 s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j,j′=s+1

1

j1−cj′1−c
E
{
εjεj′ |Fs

}
=

1

s2ct2c
E

 s∑
i,i′=1

1

i1−ci′1−c
εiεi′

t∑
j=s+1

σ2

j2(1−c)


=

σ4

s2ct2c

[
s∑

i=1

1

i2(1−c)

] t∑
j=s+1

1

j2(1−c)


=

σ4

(2c− 1)2
s2c−1t2c−1

s2ct2c
[1 + o(1)]

[
1−

(s
t

)2c−1
+ o(1)

]
=

σ4

(2c− 1)2
1

st

[
1−

(s
t

)2c−1
+ o(1)

]
.

As a consequence,

T∑
s<t

Bst =

T∑
t=2

t−1∑
s=1

Bst

=
σ4

(2c− 1)2

T∑
t=2

[
1

t

t∑
s=1

1

s
[1 + o(1)]−

T∑
t=2

1

t2c

t∑
s=1

1

s2(1−c)

]

=
σ4

(2c− 1)2

[
T∑
t=2

1

t
[log t+O(1)]− 1

2c− 1

T∑
t=2

1

t2c
[
t2c−1 +O(1)

]]
.

But

T∑
t=2

1

t
[log t+O(1)] =

[∫ T

2

log t

t
dt+O(1)

]
+O(1)

[∫ T

2

dt

t
+ 1

]
=

[
1

2
log2 T +O(1)

]
+O(1) [log T + 1]

=
1

2
log2 T +O(log T )

and
T∑
t=2

1

t2c
[
t2c−1 +O(1)

]
=

∫ T

2

dt

t
+O(1) = log T +O(1).

Hence
T∑
s<t

Bst =
σ4

2 (2c− 1)2
log2 T +O(log T ). (I.13)
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I.3 Synthesis

From (I.5) together with (I.11) and (I.13) it follows that

EX2
T =

T∑
s≤t

Eξ2sξ
2
t = 2

T∑
s<t

Eξ2sξ
2
t +

T∑
t=1

Eξ4t

= 2
T∑
s<t

Bst +O(log T )

=
σ4

(2c− 1)2
log2 T +O(log T ).

Or, put differently, with αT as in (I.2),

E
[
α−2T XT − 1

]2
= α−4T

[
EX2

T − 2α2
TEXT + α4

T +O(log T )
]

= α−4T O(log T )

= O
(
log−1 T

)
.

This proves the assertion.
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II Derivation of Remark 6

II.1 Introduction

Here we are concerned with the problem of plim-convergence of α−2T A0
T in the case c = 1/2. In

view of (B.11), which remains true for c = 1/2, it suffices to consider the behavior of

XT =

T∑
t=1

ξ2t . (II.1)

Remember that, for c = 1/2,

ξt =
1√
t

t∑
i=1

1√
i
εi =

1√
t
vt. (II.2)

Maintained assumption: The εt are i.i.d. with finite 4th moment Eε4t = m4,Eεt = 0,

var(εt) = σ2 and Eε3t = 0.

The last assumption (about 3rd moments) is introduced to simplify some of the calculations. It

is not relevant for the results.

We will address the following two questions.

(i) Is there any deterministic sequence
(
α2
T

)
s.t.

ZT = α−2T XT (II.3)

converges in L2 to some limit Z that is not identical to zero?

(ii) Is there any such sequence
(
α2
T

)
and any such Z s.t. plimT→∞ZT = Z?

II.2 Ad question (i)

II.2.1 Filtering feasible sequences

By the ICT,

Eξ2t =
1

t
E

[
t∑

i=1

1

i1/2
εi

]2
=
σ2

t

t∑
i=1

1

i

=
σ2

t
[ln t+O(1)] .

Hence

EXT =
σ2

2
ln2 T +O(lnT ). (II.4)

As a consequence, if the sequence (ZT ) should converge in L2 to some nonvanishing square

integrable random variable Z, it would follow that

lim
T→∞

EZT = lim
T→∞

EXT

α2
T

= EZ = m > 0.

6



Hence any feasible choice of deterministic sequence
(
α2
T

)
should satisfy

α2
T

ln2 T
→ r (II.5)

for some positive constant r. It therefore suffices to show that (ZT ) cannot be a Cauchy sequence

in L2 for any such sequence
(
α2
T

)
. Denoting

XT,N =

[
T∑

s=1

ξ2t

T+N∑
t=T+1

ξ2t

]2
,

we thus have to show that

sup
N≥1

E [ZT+N − ZT ]2 = sup
N≥1

E

[
XT+N

α2
T+N

− XT

α2
T

]2
= sup

N≥1

[
α−4T+NEX2

T+N + α−4T EX2
T − 2α−2T α−2T+NEXTXT+N

]︸ ︷︷ ︸
DNT

(II.6)

does not tend to zero as T →∞.

II.2.2 Fourth moments

We start as in Supplement 1 with formula (I.5) for s ≤ t, which we repeat here for convenience:

Cst = Eξ2sξ
2
t = Ast +Bst, (II.7)

where now

Ast =
1

st

s∑
i,j,k,l=1

1√
ijkl

Eεiεjεkεl, (II.8a)

Bst =
1

st
E

s∑
i,j=1

1√
ij
εiεj

t∑
k,l=s+1

1√
kl
εkεl. (II.8b)

Remark 1 For s = t, the B-term vanishes.

Ast =
1

st

m4

s∑
i=1

1

i2
+ 6σ4

s∑
i=2

1

i

i−1∑
j=1

1

j


= A′st +A′′st, (II.9)

with

A′st =
m4

st

s∑
i=1

1

i2
, A′′st =

6σ4

st

s∑
i=1

1

i

i−1∑
j=1

1

j
.

Ad A′
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A′st = O

(
1

st

)
. (II.10)

Ad A′′

Since
i−1∑
j=1

1

j
= ln i+O(1),

we have that

A′′st =
6σ4

st

s∑
i=1

1

i
[ln i+O(1)] =

3σ4

st

[
ln2 s+O (ln s)

]
. (II.11)

Putting together (II.10) and (II.11), it follows from (II.9) that

Ast =
3σ4

st

[
ln2 s+O (ln s) .

]
(II.12)

In particular, by Remark 1,

Eξ4t = Ctt = O

(
ln2 t

t2

)
. (II.13)

II.2.2.2 Ad Bst By definition,

Bst =
1

st
E

s∑
i,j=1

1√
ij
εiεj

t∑
k,l=s+1

1√
kl
εkεl

=
1

st
E

 s∑
i,j=1

1√
ij
εiεj

t∑
k,l=s+1

1√
kl
E {εkεl|Fs}


=

1

st
E

 s∑
i,j=1

1√
ij
εiεj

t∑
k=s+1

σ2

k


=

σ4

st

[
s∑

i=1

1

i

][
t∑

k=s+1

1

k

]

=
σ4

st
[ln s+O(1)] [ln t− ln s+O(1)]

=
σ4

st

[
ln s ln t− ln2 s+O(ln t)

]
. (II.14)

Putting together (II.12) and (II.14), we obtain

Cst = Ast +Bst =
3σ4

st

[
ln2 s+O (ln s)

]
+ σ4

1

st

[
ln s ln t− ln2 s+O(ln t)

]
=

σ4

st

[
2 ln2 s+ ln s ln t+O(ln t)

]
(II.15)

As a consequence, since
∑t

s=1 (lnm s) /s = 1
m+1 lnm+1 t+O(1),

t∑
s=1

Cst =
σ4

t

[
2

3
ln3 t+

1

2
ln3 t+O(ln2 t)

]
=

σ4

t

[
7

6
ln3 t+O(ln2 t)

]
8



and
T∑
t=2

t∑
s=1

Cst =
7

24
σ4 ln4 T +O

(
ln3 T

)
. (II.16)

From (II.7) it then follows that

T∑
s<t

Eξ2sξ
2
t =

7

24
σ4 ln4 T +O(ln3 T ). (II.17)

II.2.3 Evaluating the Cauchy criterion

In view of (II.5), we evaluate (II.6) for the sequence

α2
T ∼ σ2 ln2 T

(meaning that the quotient tends to 1 or α2
T = σ2 (1 + o(1)) ln2 T ).

II.2.3.1 Pure terms From (II.17) and (II.13) it follows immediately that

EX2
T =

T∑
s,t=1

Eξ2sξ
2
t = 2

T∑
s<t

Eξ2sξ
2
t +

T∑
t=1

Eξ4t =
7

12
σ4 ln4 T +O(ln3 T ). (II.18)

Then, as T →∞,
EX2

T

α4
T

=
7

12

1

1 + oT (1)
+O

(
1

lnT

)
=

7

12
+ oT (1). (II.19a)

Also, as N →∞,

EX2
T+N

α4
T+N

=
7

12

1

1 + oT+N (1)
+O

(
1

ln (T +N)

)
(II.19b)

=
7

12
+ oTN (1).

II.2.3.2 Mixed term To calulate EXTXT+N , write

EXTXT+N = EX2
T + EXT (XT+N −XT ) . (II.20)

As to the first term,
EX2

T

α2
Tα

2
T+N

= oN (1). (II.21)

As to the 2nd term on the right hand side of (II.20),

EXT (XT+N −XT ) = E

T∑
s=1

ξ2s

T+N∑
t=T+1

ξ2t =
T∑

s=1

T+N∑
t=T+1

Eξ2sξ
2
t .

By virtue of (II.7) and (II.15),

T∑
s=1

T+N∑
t=T+1

Eξ2sξ
2
t =

T∑
s=1

T+N∑
t=T+1

Cst

= σ4
T∑

s=1

1

s

T+N∑
t=T+1

1

t

[
2 ln2 s+ ln s ln t+Ost(ln t)

]
.

9



But

T∑
s=1

1

s

[
2 ln2 s+ ln s ln t+Ost(ln t)

]
=

2

3
ln3 T +

1

2
ln2 T ln t+OTt (lnT ln t)

= sTt,

and

T+N∑
t=T+1

sTt

t
=

2

3
ln3 T

[
ln
T +N

T
+OTN (1)

]
+

1

4
ln2 T

[
ln2 T +N

T
+OTN (1)

]
+OTN (1) lnT

[
ln2 T +N

T
+ 1

]
=

1

4
ln2 T +N

T

[
ln2 T +OTN (lnT )

]
+

2

3
ln
T +N

T
ln3 T +OTN (ln3 T )

=
1

4
(1 + oT (1)) ln2 T +N

T
ln2 T +

2

3
ln
T +N

T
ln3 T + oT (1)

= : λTN .

Therefore,

EXT (XT+N −XT ) = σ4λTN .

Simpler representation of λ

ln
T +N

T
= ln (T +N)− lnT,

ln
T +N

T
ln3 T = ln (T +N) ln3 T − ln4 T,

ln2 T +N

T
= ln2 (T +N)− 2 ln(T +N) lnT + ln2 T,

ln2 T +N

T
ln2 T = ln2 (T +N) ln2 T − 2 ln(T +N) ln3 T + ln4 T.

Hence

λ =
1

4
ln2 (T +N) ln2 T

[
1− 2

lnT

ln (T +N)
+

ln2 T

ln2 (T +N)

]
(1 + oT (1))

+
2

3
ln2 (T +N) ln2 T

[
lnT

ln (T +N)
− ln2 T

ln2 (T +N)

]
+ oT (1)

= ln2 (T +N) ln2 T

[
1

4
−
(

1

2
− 2

3

)
lnT

ln (T +N)

+

(
1

4
− 2

3

)
ln2 T

ln2 (T +N)

]
+ oT (1)

= ln2 (T +N) ln2 T

[
1

4
+

1

6

lnT

ln (T +N)
− 5

12

ln2 T

ln2 (T +N)

]
+ oT (1)

and

σ4λTN

α2
Tα

2
T+N

=

[
1

4
+

1

6

lnT

ln (T +N)
− 5

12

ln2 T

ln2 (T +N)

]
(1 + oTN (1))

=
1

4
+ oN (1).

10



Hence
EXT (XT+N −XT )

α2
Tα

2
T+N

=
1

4
+ oN (1). (II.22)

II.2.3.3 Synthesis Going back to (II.6) and making use of (II.19) and (II.21),

DNT =
EX2

T+N

α4
T+N

+
EX2

T

α4
T

− 2
EX2

T

α2
Tα

2
T+N

− 2
EXT (XT+N −XT )

α2
Tα

2
T+N

=
7

6
− 1

2
+ oT (1) + oN (1) + oTN (1)

=
2

3
+ oT (1) + oN (1) + oTN (1).

As a consequence, letting N →∞ for fixed T,

sup
N≥1

DNT ≥
2

3
+ oT (1)

and hence

lim
T→∞

sup
N≥1

DNT ≥
2

3
.

Therefore with regard to question (i), we arrive at the following

Conclusion 2 ZT does not converge in L2 to a nonzero limit for any choice of deterministic

normalizing sequence αT .

II.3 Ad question (ii)

II.3.1 Line of argument

We show:
(
Z2
T

)
is uniformly integrable (ui).

To this end, we show that

sup
T

EZ4
T = sup

T

EX4
T

α8
T

<∞. (II.23)

Once this is established, one may argue as follows.

Step 1. Assume that plimT→∞ZT = Z. Since
(
Z2
T

)
is ui, convergence also holds in L2: ZT

L2

→ Z.

Step 2. Taking account of Conclusion 1, we arrive at

Conclusion 3 ZT does not converge in probability to any nonzero limit.

For Step 1, we refer to the following basic result of dominated convergence type, cf. Schürger

(1998, Kapitel 4, Satz 6.5) and Shiryaev (1996, Chapter II, §6, Theorem 4).

Proposition Let (xT ) be a sequence of random variables in Lr s.t. xT
P→ x. Then xT

Lr

→ x if

and only if (|xT |r) is ui.

11



Proof. If xT
Lr

→ x, then also x ∈ Lr, and the assertion follows from Schürger (1998). On the

other hand, xT
P→ x implies that |xT |r

P→ |x|r . If (|xT |r) is ui, then |xT ′ |r → |x|r a.s. for some

subsequence (T ′) . Hence, by Shiryaev (1996), |x|r is integrable, i.e. x ∈ Lr. Again by Schürger

(1998), it then follows that xT
Lr

→ x. �

In our context, this is applied to xT = ZT and r = 2.

II.3.2 Bounding EX4
T

By (II.1),

EX4
T =

T∑
q,r,s,t=1

Eξ2qξ
2
rξ

2
sξ

2
t . (II.24)

By the (extended) Hölder inequality (cf. Schürger (1998)), with p(i) = 4,

Eξ2qξ
2
rξ

2
sξ

2
t ≤

[
Eξ8qEξ

8
rEξ

8
sEξ

8
t

]1/4
.

Hence, by (II.24),

EX4
T ≤

T∑
q,r,s,t=1

[
Eξ8q

]1/4 [
Eξ8r

]1/4 [
Eξ8r

]1/4 [
Eξ8t

]1/4
. (II.25)

Note that

Eξ8t =
1

t4

t∑
i,j,k,l=1

1√
i1 · · · i8

E (εi1 · · · εi8) =
1

t4
St. (II.26)

II.3.2.1 Calculating 8-th moments

E (εi1 · · · εi8) =



moment code number

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

m8 8 t

σ2m6 6:2
(
8
2

)
t (t− 1)

m2
4 4:4

(
8
4

)
t (t− 1)

σ4m4 4:2:2
(
8
4

)(
4
2

)
t (t− 1) (t− 2)

σ8 2:2:2:2
(
8
2

)(
6
2

)(
4
2

)
t (t− 1) (t− 2) (t− 3)

.

Codes

8 ≡ all i’s equal

6:2 ≡ 6 i’s equal, with the remaining 2 equal and different from the other 6

4:4 ≡ 2 groups à 4, equal within each group, different between groups

4:2:2 ≡ 3 groups, equal within each group, different between groups

2:2:2:2 ≡ 4 groups, equal within each group, different between groups

dominant term: code 2:2:2:2 with number ∼ t4
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Hence

St = m8

t∑
i=1

1

i4
+σ2m6

∑
6:2

1

i3j
+m2

4

∑
4:4

1

i2j2

+ σ4m4

∑
4:2:2

1

i2jk
+ σ4m4

t∑
i,j,k,l=1
i 6=j 6=k 6=l

1

ijkl

The single terms

Code 8
t∑

i=1

1

i4
= O(1)

Code 6:2 ∑
6:2

1

ij3
=

(
8

2

) t∑
i=1

1

i

∑
j 6=i

1

j3
= O (ln t)

Code 4:4 ∑
4:4

1

i2j2
=

(
8

4

) t∑
i=1

1

i2

∑
j 6=i

1

j2
= O

(
ln2 t

)
Code 4:2:2 ∑

4:2:2

1

ijk2
=

(
8

4

)(
4

2

) t∑
i=1

1

i

∑
j 6=i

1

j

∑
k 6=i&j

1

k2
= O

(
ln2 t

)
Code 2:2:2:2 ∑

2:2:2:2

1

ijk2
=

(
8

2

)(
6

2

)(
4

2

) t∑
i=1

1

i

∑
j 6=i

1

j

∑
k 6=i&j

1

k

∑
k 6=i&j&l

1

l

= O
(
ln4 t

)
As a consequence, from (II.26),

Eξ8t = O

(
ln4 t

t4

)
and [

Eξ8t
]1/4

= O

(
ln t

t

)
.

Hence, by (II.25),

EX4
T ≤ O(1)

T∑
q,r,s,t=1

ln q

q

ln r

r

ln s

s

ln t

t

= O(1)

[
T∑
t=1

ln t

t

]4
.

But
T∑
t=1

ln t

t
=

1

2
ln2 T +O(1),

so that

EX4
T = O

(
ln8 T

)
. (II.27)
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II.3.3 Finale furioso

Putting together (II.27) and (II.5), the desired result (II.23) is obvious.
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