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Abstract

This paper investigates the asymptotic properties of the ordinary least squares (OLS)
estimator of structural parameters in a stylised macroeconomic model in which agents are
boundedly rational and use an adaptive learning rule to form expectations of the endogenous
variable. In particular, when the learning recursion is subject to so-called decreasing gain
sequences the model does not satisfy, in general, any of the sufficient conditions for consistent
estimability available in the literature. The paper demonstrates that, for appropriate pa-
rameter sets, the OLS estimator nevertheless remains strongly consistent and asymptotically

normally distributed.
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1 Introduction

In economic theory, there has been considerable interest in models of the form
Yt :,Byf|t_1+5$t+€t, t= 1,2,... (11)

where ya .1 denotes agents’ expectations about y; based on the information available at time
t — 1 and the driving variable z; is exogenous. Models of this type have a long tradition in
economics. For instance, the classical cobweb model fits into this form, see e.g. [Bray & Savin
(1986)), as does the Lucas| (1973) aggregate supply model. Of central interest is the way in which
the expectations yte| ;1 are modelled. The traditional approach is via rational expectations, cf.
Muth| (1961) or [Sargent| (2008)), which assumes that agents, when forming expectations yte‘ 1
have complete knowledge of the model and the past Fi—1 = 0 (ys,s < t — 1; 25,5 < t) and make
best use of it, i.e. set yflt_l = E (y|Fi—1). Taking conditional expectations in yields
E (y:|Fi—1) = ax; with
o

a= —E (1.2)

The so-called rational expectations equilibrium (REE) model is thus
Yt = aTy + ¢ (1.3)

Obviously, under the assumption of rational expecations, only « is identified; not, however, ¢
and B separately.

More recently, economic agents are frequently assumed to be boundedly rational and to form
their expectations via adaptive learning, see Sargent| (1993, |1999), |[Evans & Honkapohja (2001)),
Hommes| (2002)) or Gaspar, Smets & Vestin| (2010). The basic idea underlying all adaptive
learning procedures is that agents employ an auxiliary model, or so-called perceived law of
motion, to form their expectations yte‘ +—1- One way to specify this auxiliary model is to assume
that its functional form corresponds to that of the REE in . Generally, the agents will not
know the parameter o and therefore replace it by some estimate a;_1, based on information F;_1.
Typically, the parameter a will be estimated by some recursive prodedure which, in general, has

the form of a stochastic approximation algorithm:

Tt
ar = a1+ Ve (ye — ar—1¢) (1.4a)
t
re o= r1+y (2F — ), (1.4b)
where (7,) is some weighting, or gain, sequence. This updating algorithm can be viewed as

generalising the recursive least squares estimator of «, which has v, = 1/t and whose 7, is the

sample second moment of x;. For more details on stochastic approximation algorithms, see |[Lai



(2003). With the learning scheme in 1' agents’ expectation will be given by yte‘t_l = ay_1Ty,

and the resulting so-called actual law of motion, or data generating process (DGP), is
Yy = Pag_1x¢ + 6xy + &4 (15)

It is thus plain that, in models with adaptive learning, the expectational term ya ;1 creates a
forecast feedback, resulting in a self-referential, and thus highly complex, DGP. Moreover, the
stochastic behaviour of the DGP depends crucially on the specification of the gain sequence (7y;).

Empirical models with learning have recently gained popularity amongst researchers and
policy makers; see for instance the New Keynesian Phillips curve models estimated by [Milani
(2007) and |Chevillon, Massmann & Mavroeidis| (2010), the European Central Bank’s New Multi-
Country Model by Dieppe, Gonzalez Pandiella, Hall & Willman| (2011)), and the inflation model
by Malmedier & Nagel (2012). Yet not much is known about the econometrics of adaptive
learning models. In this paper, we contribute to filling this gap by investigating the asymptotic
behaviour of the OLS estimator of the structural parameters g and ¢ in . We will henceforth
refer to this issue as the external estimation problem (EEP). In particular, the EEP concerns
the question of (strong) consistency of the estimator and of its asymptotic distribution. Note
that the model in is a linear regression model with stochastic regressors. Yet even though
there is a rich literature on the properties of OLS estimation in this setting, the particular model
in does not appear to have been analysed yet. More strikingly, when we apply the best
general result available, namely the sufficient conditions for consistency established by [Lai & Wei
(19824, 19820), they turn out not to be satisfied. With the properties of the OLS estimator of 3
and ¢ in thus being unsettled, it is as yet unclear whether empirical implementations of it
are built on sound econometric principles.

With a view to examining the EEP we will have to address the question of whether a; in
(1.4a) converges to the REE «. This issue is usually called the internal forecasting problem (IFP)
and, in contrast to the EEP in , has been conclusively answered in the literature. A good
account of seminal results can be found in Benveniste, Métivier & Priouret| (1990) and Kottmann
(1990). The literature generally distinguishes between two basic approaches of specifying the gain
sequence: constant gain learning, i.e. with v, = v, and decreasing gain learning, for which v, — 0.
It can be shown that, in the former case, a; does not in general converge to a. Agents are thus
said to learn perpetually. As opposed to that, agents are fully rational asymptotically in the case
of decreasing gain learning since the convergence a; — « does hold with probability one under
suitable summability assumptions on 7, and provided that g < 1. Note, however, that if § > 1,
it can be shown that a; diverges. For details, see Christopeit & Massmann| (2010).

As to the EEP, the few existing results on the asymptotic behaviour of the OLS estimator of



B and ¢ pertain mainly to the case of constant gain learning, see e.g. |Chevillon et al.| (2010). In
this case, the regressor a; is an autoregressive process with constant coefficients and, depending
on the value of 8 and 7, is either stationary ergodic, a random walk with drift, or explosive,
given suitable input sequences z;. As a consequence, we may appeal to results on the strong
consistency and the limiting distribution of the OLS estimator as obtained in [Lai & Wei ((1985)
and |Chan & Weil (1988). On the other hand, when learning is of decreasing gain type such that
a;s — « with probability one, then the regressors in will be asymptotically collinear:

Yi ~ Paxs + 0zt + &4, (1.6)

i.e. the asymptotic moment matrix

T
M = boo plim 1 Zm?

a o ) Toe T —1
will be singular. This violates one of the classical “Grenander conditions”, i.e. the condition that
the regressor sample second moment matrix, suitably scaled, converges to a positive definite
limit; see |Grenander & Rosenblatt| (1957). In the econometrics literature the singularity of
M is generally referred to as absence of strong asymptotic identification, see e.g. [Davidson &
MacKinnon (1993) or Newey & McFadden| (1994). Comparing the repercussions of constant gain
versus decreasing gain learning, it is hence clear that there is some sort of trade-off between the
asymptotic behaviour of a; on the one hand and that of the OLS estimators on the other, in the
sense that convergence of agents’ expectations to the REE is likely to have detrimental effects
on the convergence of the OLS estimator, and vice versa.

Given that the Grenander conditions are only sufficient but not necessary for consistent
estimability, it is not clear a priori whether the OLS estimators 8 and § in possess desirable
asymptotic properties. The focus of this paper will hence be on investigating the EEP with
decreasing gain learning. Specifically, we consider gain sequences of the form ~, = v/t for some
constant v > 0. In view of the discussion of the IFP above, we consider the case of § < 1.
Moreover, for simplicity and in order not to obscure the main ideas, we will restrict ourselves to
the case with constant z;. Simple calculation shows that, without loss of generality, we can then
set z; = 1 since the value of x can be accounted for by a simple change of variance of &; from o2
to 0?/x?. Starting the recursion with the stationary Valueﬂ ro = 1, we have r, = 1 and

ay = ai—1 + % (yt - at_l) . (17)

! Actually, for any starting value 7o it will hold that lim; e r: = 1.



The model in (1.4))-(1.5)) then simplifies to

Yy = 0+ Bar1+e, (1.8a)
c
a = (1 - ¥> a1 + % (6 +e0) (1.8b)
where we have put
c=(1- ), (1.9)

Note that the condition 5 < 1 corresponds to ¢ > 0. The value ¢ will turn out crucial for the
behaviour of the OLS estimator. It is instructive to note at this early stage several characteristics
of the process a; in : First, a; is autoregressive of first order with time-varying coefficient
which is intrinsically local-to-unity. Next, the impact of the intercept § and of the disturbance
€, on a; tends to zero for large t. As a result, the process a; is highly non-stationary. This is
reflected, for instance, in the fact that its variance decreases to zero at a rate which increases
with ¢. Moreover, for fixed ¢ and h — oo, the covariance Cov(at, ai1p) behaves as O (h™¢) and

the correlation
@) (hl/z_c) for ¢ > 1/2,
Corr (ag, apyp) = Lo
@) ((logh)f / ) for c =1/2.
For ¢ < 1/2, the correlation tends to a non-zero constant. This corresponds to what is called
long memory behaviour of stationary processes.

The paper is structured as follows: Our results are presented in Section Theorems
and [2| pertain to the IFP in that they present precise convergence rates for a; to « that are
not available in the literature but which are necessary for the ensuing derivations. Our main

results, viz. Theorems|3|and [4, concern the EEP, showing the strong consistency and asymptotic
normality of the OLS estimator. Proofs are relegated to Appendix [A] and [B] respectively.

2 Main results

The model in ([1.8a]) is a simple linear regression model of the form
Yyt = 0 + Bz + €4, t=1,2,..., (21)

with predetermined stochastic regressors z; = a;—1. Our focus will be on the estimation of the

slope coefficient 3, from which the properties of the estimator of § follow immediately. Since,

with ag = 0,
I 1 T-1_
ZT:TZ%—l:T as = T ar—1,
t=1 s=1
the OLS estimator is given by
Br—p="1. (2:2)



where we have put

ur = Z (Zt - zT) Et = Z <6Lt_1 — T; 1(1T1> Et (23)

and

T 2
Ar =Y (-2 =Y <at1 - T; 1aT_1> . (2.4)

For linear regression models with predetermined stochastic regressors and i.i.d. errors g4, the
best results for the consistent estimation of 8 available so far have been obtained by [Lai & Wei

(19824, 198208)): For general multivariate models, the condition in Lai & Wei (1982a) is that
Amin(MT) — 00 and log /\max(MT) =0 (/\min(MT)) a.s., (25)

where Apin(M7) and Apax(Mp) denote the minimal and maximal eigenvalue of the regres-
sors’ second moment matrix Mp. Lai & Wei (1982a) present an example which shows that
condition may be considered minimal in the sense that even a marginal violation like
log Amax (M) /Amin(M7) — p > 0 may be destructive to consistency. For the slope parameter in
the simple regression model , a slight improvement is given in |Lai & Wei (19820) with the

condition
Ar
log T

In our model, neither (2.5 nor (2.6 is satisfied for ¢ > 1/2. Rather, it is shown in |Christopeit
& Massmann (2013d) that

— 00 a.s.. (2.6)

. log Amax(M7) o2
plim =
T—o00 /\min(MT) 2c—-1

and that
Ar 2c—1

lim = —
79—>oo logT' o? ’

where the moment matrix M7 in our setting is given by

T Z;fzz at—1

T T
thz at—1 thz a%fl

Strikingly, it will turn out that the OLS estimator remains consistent. When ¢ < 1/2, both

My =

conditions are satisfied. For , this is shown in |Christopeit & Massmann| (2013a), while for
it will follow from our analysis of Ar in Appendix .

It is hence plain that in examining the asymptotic properties of the OLS estimator in (2.2))
no recourse can be taken to existing results. We hence resort to analysing our model from first
principles, starting with the behaviour of the predetermined regressor a;, before proceeding to

that of B itself. The following provides a roadmap of the results to be shown below.



Theorem [1: almost sure behaviour of ay,
Theorem [2: asymptotic distribution of ay,
Theorem [3: strong consistency of OLS estimator,

Theorem [§): asymptotic normality of OLS estimator.

It will turn out that the asymptotic behaviour of a; and of the OLS estimator differs markedly
according to the three following cases: ¢ > 1/2, ¢ = 1/2 and ¢ < 1/2. Theorems |l| and [2| cover all
three of cases. Theorems [3[ and 4] will deal with the cases ¢ > 1/2 and ¢ < 1/2 as the boundary
case ¢ = 1/2 seems to require an entirely different approach and is thus left to future research.
Some comments on the difficulties arising in the derivation will be made in Appendix

We will make the following assumptions about the error term ey in (1.8)).

Assumption 1 The ; are i.i.d. with finite fourth moment and Ee; = 0 and Ee? = o2

When dealing with the EEP for ¢ < 1/2, we need to make a further assumption. Define
t
=1
whose limit

=i 2.
o= 27)

exists with probability one by Kolmogorov’s theorem.
Assumption 2 P (v #0) = 1.
Remark 1 For Gaussian €;, vs is itself normal with variance

o0

02 = o? Z 21,

i=1

Hence Assumption |4 is trivially satisfied.

The following two theorems concern the IFP and describe the asymptotic behaviour of a;.
Actually, the mere convergence follows easily from well known results on recursive algorithms,
cf. |Christopeit & Massmann| (2010, section 3.1). However, for our analyses further below, e.g.
the asymptotic normality of the OLS estimator, we will need the exact rates of convergence of

a; which have not yet been derived in the literature. They are also of interest per se.

Theorem 1 Under Assumption[1] the following is true with probability one.



(i) Forc>1/2,

— 2
M Togy 7 0 =) =N 5= (28)

(i) For c=1/2,

- t
li _— —a) = 2. 2.
00 logtlogst (a0~ ) = 07V2 (29)

(i1i) For c < 1/2,
lim ¢ (a; — a) = yv. (2.10)

t—o0

The proof will be given in Appendix Hence, the value 1/2 is a boundary separating
‘good’ asymptotic behaviour of a; from ‘poor’ behaviour, in the sense of speed of convergence.
In view of the aforementioned trade-off between the behaviour of a; and that of BT, one should

expect the converse for the performance of ET. This will indeed be seen in Theorem
Theorem 2 Under Assumption[d], the following is true.

(i) For ¢ >1/2, a; — « is asymptotically normal at rate \/t :

v2c—1

VECT 2 Vi ar — a) S N0, 1), (2.11)
oy

(i) For ¢ =1/2, a; — « is asymptotically normal at rate \/t/logt :

1 t d

(i1i) For ¢ < 1/2, the behaviour is as described in of Theorem [l Note that, for Gaussian

€¢, the limit is also normal.

The proof will be given in Appendix[A-3] The next two theorem are devoted to the EEP and

describe the asymptotic behaviour of the OLS estimator.

Theorem 3 Under Assumption[1] and for Gaussian e, the OLS estimator is strongly consistent

for every ¢ > 1/2. For ¢ < 1/2, this remains true if, in addition, Assumption@ is satisfied.

For ¢ > 1/2, this is proved in a companion paper, see Christopeit & Massmann (20138)). For
¢ < 1/2, the proof will be given in Appendix

Theorem 4 Under Assumption[], the following holds.



(i) Forc>1/2,
VAr (Br - 8) % N(0.0?). (2.13)

In particular, the rate of convergence is \/logT':

\/%\/logT(BT—B> 4 N(0,1). (2.14)

(it) For ¢ < 1/2, under the additional Assumption[3,

VAT (BT - 5) 4N (0,02 (1—20)). (2.15)

In particular, the rate of convergence is Tt/2=c.

vV/T1=2¢ (3T - ﬂ) 4N (0,02 (1-of (- 20)2) . (2.16)

272
The proof will be given in Appendix
Though it seems hard to give a general description of those distributions of the ¢; that make
Assumption [2| hold, the following result may rather easily be obtained from the observation that

the point spectrum of the sum of two independent random variables is the vector sum of the

individual point spectra, cf. Kawata (1972, Theorem 13.1.1).

Corollary 1 For ¢ < 1/2, strong consistency and asymptotic normality are valid whenever the

distribution function F of e¢ is continuous.

A necessary and sufficient condition for the case where F' has discontinuities is given in

Kawatal (1972, Theorem 13.1.2).

3 Discussion and conclusion

In the case of ¢ > 1/2in Theorem the normalizing sequence At is random and can be calculated
from the data. In particular, no knowledge of the constants ¢ and + is required. Hence, if it
comes to testing hypotheses on g, is more useful than , the variance o2 allowing
consistent estimation from the regression residuals, cf. Corollary [2] below.

A similar remark applies when ¢ < 1/2 in Theorem 4| where, however, the constant ¢ must
be estimated. Note that Ap is observable for finite sample sizes, whereas v is not. Also, (2.16))
shows that there is in general no deterministic normalizing sequence ~yp such that the asymptotic
distribution of ’yT(BT — f3) is normal.

The asymptotic properties of the slope estimator being settled, those of the remaining pa-

rameters 6 and o2 are easily derived. In particular, consistency of 5 follows immediately from

~

0—6=(B-Ba+ze (3.1)



where subscripts have been omitted for simplicity. The type of convergence is the same as that

of B As to asymptotic normality, it follows from |b and from

VArg = op (1)

that
VA6 —6) = /Ar(B — B)a+op (1).

As a consequence,

6—90 2 -
\/AT R i)./\/' 0,0'21‘47 “ “ )
68— —a 1

with A =1 when ¢ > 1/2 and with A =1 — 2¢ when ¢ < 1/2.
The usual residual-based estimator of o2 is also consistent. The proof of the following corol-

lary is provided in Appendix [C]

Corollary 2 Define the OLS residual € = y; — 5 — Bat,l. Then
1 X
T Z/E\? — 0'2
t=1

with probability one or in probability according to whether both 3 and B are strongly or weakly

consistent.

Finally, consider «v. When ~ is known, ¢ can be estimated consistently by

~

cf.(1.9)). If, on the other hand, v unknown, it may be consistently estimated from the observed
a; using the recursion (|1.7)):

at = ag—1 + % (Yt —ag-1) .
This estimator will be needed when implementing ([2.15)), i.e.

uf%(/%—ﬁ) 4 N (0,02).

In summary, this paper investigated the asymptotic properties of the OLS estimator in bivari-
ate regression models in which the regressor is generated by a recursive algorithm and, as such,
appears in the form of an autoregressive process with time varying, local-to-unity, coefficients as
well as error terms whose magnitude decreases over time, see . The regressor thus exhibits a
behavior that is completely different from that of processes generated by time-invariant dynam-

ics. The setup was motivated by the problem of estimating structural parameters in a typical

10



macroeconomic model in which agents are boundedly rational and use an adaptive learning rule
to form expectations of the endogenous variable. Our particular interest lay on analysing a
model with a learning recursion that is subject to so-called decreasing gain sequences, implying,
economically speaking, that agents learn to be rational asymptotically. From a statistical point
of view we noticed that this model does not generally satisfy any of the sufficient conditions
for consistent estimability available in the literature. The paper hence demonstrated that, for
appropriate parameter sets, the OLS estimator of the structural parameters nevertheless remains
strongly consistent and asymptotically normally distributed. Moreover, there turned out to be
a trade-off between the speed of convergence of agents’ forecasts to the rational expectations
equilibrium on the one hand and that of the OLS estimator to the true parameter value on the
other.

Several extensions of our setup seem appropriate yet were beyond the scope of the present
paper and and are hence left to future research. Firstly, the question of whether or not the
OLS estimator is srongly consistent and asymptotically normal in the boundary case of ¢ =
1/2 appears to require a line of attack different from the one employed here. Secondly, our
assumptions that the exogenous regressor x; is constant was made for analytical tractability and
should be generalised. Thirdly, the expectational term in the economic model could be
specified as y§+1ﬁ, i.e. as based on information on the past and the present: in this case the
parameters would have to be estimated by means of an instrumental variable technique, which
would require suitable assumptions on the (exogenous or endogenous) instruments. Nonetheless,
by showing that strongly consistent and asymptotically normal estimation of the structural
parameters in our sylised model is possible, we provide a theoretical justification of why the
increasingly popular empirical estimation of such models is, in principle at least, econometrically

sound.

11



A Proof of Theorems 1 and 2

A.1 Representation of a;

We return now to the difference equation (1.8b]) for a;. It is intuitively clear and can, indeed,
be easily shown that the choice of initial value ag has no influence on the asymptotic behaviour.

For simplicity of exposition, we shall therefore suppose that ag = 0. Then

t
ar=3 0y +e), (A1)
i=1

where

by =
by =

(1—ij1)---<1—§), i=1,...t—1, (A.2)

SUTEST

In particular, for ¢ =1,

for all 7. Define ig = [c] for ¢ > 1, and i9 = 1 for ¢ < 1. Taking logarithms and using a second

order Taylor expansion, it is shown in |Christopeit & Massmann (2010) that, for ig < i,

11 04i(1)
¢ti - tcil—cex |: 7 :|
11 04i(1)
= = 1 . A.
rytcilc|: + i :| ( 3)

The Oy;(1) are uniformly bounded in ¢ and 7 < ¢. (A.3) is well defined for all 1 < i < . Henceforth,

call it hy;. For i < 1,

_7 | |i0 _¢ | |t B I
Pri = P 8 PR <1 j) j=io+1 (1 j) = Aitbig
with

_ Tt _c
Az_iHM+1<1 j).

Hence, since max;«;, |Ai| < K, we have that ¢,;, = O (t7¢) for i < ig. The same is true for hy;.

Therefore
i, for 7 > 4o,

Gy =
hti + O (t7¢), for 1 <i <ip.

Remark 2 Note that, for ¢ <1, the O (t~°)-term vanishes.

Since

io—1
Zz‘ozl ¢ti = 0 (t_c) )
Z::l ouci = O (t_c) a.s.,



with the same holding for hy;, we may write

t
- Z hei (6 +¢€;) + O ()
=1
= 6 +0,+0(t7°), (A.5)

with
t
Ct = ZiZl ht’ia
t
Ht = Zizlhn’é‘i.

By the integral comparison theorem, hereafter referred to as ICT, for ¢ # 1,

1 t 1 [1+ Oti'(l)

=TV 2, e ; } = % +O0(tH)+0@1™) (A.6)

and, for c =1,

G =740 (k)tgt) . (A7)

Next, write

v [t e ¢ Ou(1) 1
b = te [21:1 a— Zizl 2—c i =% (v +wy) (A.8)
with
t Ei
e = Zi:l Z’lfc’
t Oti(l)
Wy = Zizl j2—c 22

Then, noting that §v/c = a and introducing the processes

1
§& = tT:Ut
1
= —w
Uy et
we may write
ap—a=0 ")+ 00 )+ (& +n), (A.9)

with the O(¢™¢) vanishing for ¢ < 1.

A.2 Proof of Theorem 1

In the following, we will derive the asymptotic behaviour of a; — . In addition, we shall also

consider that of @p — «a because it is needed in the treatment of the EEP in Appendix [B]

13



A.21 Casec>1/2

Reconsider the representation of a; — « in (A.9)) above and examine first the behaviour of §,. By

the ICT, the predictable quadratic variation of v, is given by

2
o2 (c—1) g 2c—1
e 1). Al
ZH =5t o) (A.10)

Hence (v),, = limy_,o (v), = 00 a.s.. By the law of iteration logarithms, henceforth denoted by

LIL, cf. |Chow & Teicher| (1973)),

vt

lim =1as.
t=001/2 (v), logy (v),
In view of (A.10]), this means that
I 2

t—>oo,/t20 llog, t - QC—IaS

or
— _ lvg| 2
A log t & = A logzttT “ a1 (A.12)
Turning to 1, in (A.9), it follows again by the ICT that
O (t?¢73), for ¢ # 3/2,
Ewt2 = ( ) 73/
O (logt), forc=3/2.
Therefore
00 Wi\ 2
E Z tzp (F) < 0
t=1
for every 0 < p < 1. As a consequence,
[ee]
thpr]? < 00 a.s..
t=1
In particular,
tPn, = o(1) as.. (A.13)
(A.12) and (A.13) taken together then yield
t 2

lim
t—o0 10g2 t

proving assertion (2.8]) in Theorem .
Turning to ar — a, by (2.8)),

T
ar — o = E at—a
t=1 t=1

log ]
( ; ) a.s.. (A.14)

14

(ap — ) = o7y a.s.,

2c—1

=

H\H
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A.2.2 Casec=1/2
Reconsider a; — « in (A.9). Regarding &,, note that the predictable quadratic variation of vy is
_ o\ a1 2
(v), =0 Zi:l i~ =o0"logt+ O(1). (A.15)

Again by the LIL,

4 _sv5as.

t—oo, /logtlogst

— ¢t
li _— = 2 as. Al
o logtlogst &l =ov2 as (A.16)

Ewi =0 (t7?), (A.17)

In particular,

As for ny,

so that
00 w 9
E 2p
E t <t1/2) < 00
t=1

for every p < 1. Therefore

tPn, = o(1) a.s.. (A.18)
It then follows from (A.16)) and (A.18) that
_ t

P2 Togttogy (0~ @) =TV ne

as claimed in (2.9) of Theorem

A.2.3 Casec<1/2

Finally, we examine a;—« in in the case of ¢ < 1/2. First, look again at ;. By Kolomogorov’s
theorem, v; converges with probability one to some finite random variable v, see also ([2.7)).
Actually, it is easily verified that convergence of v; to v also takes place in L?, with the limit v
having variance o2 = 02322, i2(¢=1) Hence

%, =v=v+o0(1) as.. (A.19)

As far as n; is concerned,

Eu? = O (1279,

so that

e e}
EZ“’? < 00
t=1

15



and

tn, = wy = 0o(1) as.. (A.20)
Hence, remembering that the O(¢t~¢)-term in (A.9) vanishes for ¢ < 1/2,

t°(ar —a) =yv+o0(1) as..

This proves (2.10) in Theorem

As to ar — «, we have

1 & 1 &
ar —oa = thl(at—a):thlt (vv + o(1))
_ v b —e
= 1_CTC+0(T ) (A.21)

which follows from ([2.10)).

A.3 Proof of Theorem 2
A.3.1 Casec>1/2

By (A.10) and the central limit theorem for martingales,
o V2c—1

d,
~ 0,1).
W e w0
In terms of &, this is equivalent to
V2c—1
ff Vg, 5 N(0,1). (A.22)

Returning to (A.9)), we obtain that
Vi (@ = @) = i, + i, + 0 (772) 4+ 0@/20).

By virtue of (A.13),
Vi (a; — @) =y, + o(1),

which, due to (A.22)), entails (2.11)) in Theorem

A.3.2 Casec=1/2

In this case, by (A.15),

Vt (% d
~ N(0,1
(v), oylogt —~N(O.1)

1 t d
o / @gt — N(0,1). (A.23)

16
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Taking account of (A.9) and (A.18)),

t t t 1
— = E— — 0] .
\ logt (ar =) =7 logtft +’Y\/ logtm + <\/ tlogt>

By virtue of (A.18),
t t
(g — ) =y —— 1) as.
Vi (=) =y g+ o(1) as.
which, due to (A.23)), entails (2.12)) in Theorem

Remark 3 For ¢ > 1/2, the Liapunov condition for 4 moments is satisfied. In particular, for

¢ > 1/2, this follows from

t
SE[L] =m0 +on),
] =1

=1
< 2 0'4 t2(2071) +0 (tQCfl)
vl = (2c — 1) ’
so that .
1 €; 1
o LB ] =0
Forec=1/2,

> E [if/izr =0(1), (v)j =0"log?t(1+0(1)),
=1

from which the Liapunov condition follows.

A.3.3 Casec<1/2

It follows from ([2.10)) that
t“(ar — ) =yv+o0o(1) as.,

where v is a random variable with variance

(0.0
02 = o? E 2=,
i=1

If the ¢; are normal, then so is v.

17



B Proof of Theorems 3 and 4

B.1 The OLS-estimator

Recall from Section 2 that the OLS estimator is given by
Br—B=—— (B.1)

where

and

Making use of the elementary algebraic identity

T ~ T i1 ~
Z a; —ar) bt - bT) = Z (ar —a—1) (bt - btfl) )
t=1 t=2
we may write
T
t—1 )
Ar = —— (1 — Ty
T Z m (¢ — T-1)
t=2
T 2
t—1 t—2
= —_— 1= Ty . B.2
; r (at 1@ 2) (B.2)

Remark 4 shows that Ar is nondecreasing.

Making use of the fact that limy—,+, a; = «, our proofs will rely on the following decomposition:

T T-1_
ur = at—1 — ar—1 | €t

T

NERRiNG

(a1 — ) e+ (

t=1

3 Lar )z
= 3 (ap—1 — ) g + (o —ar) iat—i-O( )Zét (B.3)

t=1

As to Ap, we simplify it to

T 1 2
Ar = Z (at—l —ar-1+ TCLT1)

1 2
at 1—ar—1 +T2GT 1

|
[M]=

B

—

|

5:\

L

|
’ﬂ\w
IIMH

18



where we have put
T
/T:Z a1 —ar)’. (B.5)

The expression A’ will be further decomposed as

Ar = (a1 — @) — (@r —a))’

B

o
I

1

Il
B

T
(at_l—a)2+T(6T—a) —2( aT—aZat 1—a)
1 t=1

~+~
I

The last term may in turn be written as

T
aT—aZat 1—Oé = aT—a [Z ar — « —aT]
t=1 t=1
= T(ar—a)® —ar(ar — o)
= T(ar —a)®+o(1).
Hence
= A% — Br +0(1), (B.6)

where we have put

T

Ay = ) (a1 —a)
t=1

Br = T(ET —a)2.

The procedure will then be as follows. Using (B.3), write (B.1]) in the form

T

ur Zt L (a1 — ) a—aT 11

AT N AT th ATTZSt
t=1

T
Z?—1 (at—1 — @) Oé - aT 1 1 A%
_ = E E —, B.
A% Et T T v €t AT ( 7)

(B.7) will be the basic decomposition of the OLS estimator on which the ensuing proofs are
based. In particular, to show consistency we will proceed by verifying the following conditions,

all holding with probability one:

lim A} = oo, Condition (i)
T—o0
Br e
Hmy oo —o A0 < 1, Condition (ii)
VTlog, TE2 — (1), Condition (i)
Ap
Since, by virtue of ,
0 0

if =— Ar = 1 (B.8)

A A} — Br +o(1) 1-— ——I—o(l)

19



it will follow from |Condition (i)l and (B.4)) that, with probability one,

— AO - AO
hmT_,ooA—; = hmT_woA—:‘F < 0. (B.9)
T

Hence, in view of [Condition 1]
lim A% = lim Ar = cc.
T— o0 T—o0

By the LIL, under [Condition (iii)[ the middle term in brackets in becomes

_ T _ T
o —ar o —ar 1
_— ee = /1'logy,T €t
A9 ; A% \/Tlog, T tzz;
= \/TlogQTagioaTO(l)

T
= o(1).

As to the first term, it follows from the standard martingale convergence theorem applied to the

martingale
T

Mr = Z (ar—1 — @) &y,

t=1

whose predictable quadratic variation is (M), = 0249, that
Mr

— =
0
AT

with probability one. Hence, if Conditions (i)-(iii) are satisfied, it will follow from that

with probability one. As a consequence, the OLS estimator in ([2.2)) is strongly consistent.

B.2 Proof of Theorem 3
B.2.1 Case ¢c>1/2

The essence of the subsequent discussion is that, for ¢ > 1/2,|Condition (i)| turns out to be valid.

As to |Condition (ii)| and [Condition (iii)| they require the specification of the almost sure rate of

divergence of A% can be shown to be satisfied in probability yet it is not clear whether or not
they also hold almost surely. Therefore, for the proof of strong consistency when ¢ > 1/2 we
refer to a companion paper, see |Christopeit & Massmann| (20135, Proposition 2), which adopts
a decomposition of the OLS estimator that differs from and thus does not require the
specification of the almost sure rate of divergence of A%. In that approach, we do make the

additional assumption, however, that the error term ¢; is Gaussian.

20



The purpose of the following derivations is to examine the asymptotic behaviour of A% which,

in turn, will be used in the proof of the asymptotic normality of the OLS estimator in Appendix

It will be seen in the process that [Condition (i)| holds, as mentioned above. To that end,
reconsider the expression of a; — « given in (A.9)) in Appendix namely

ar—a=0 ") +00t )+ (& +m),

with
1 t Ej
& = 1 =1 jl—¢’
. 1 t Om(l)
T e 2uimy e o

Consider the asymptotic behaviour of AY = Zthl (at—1 — a)2. It hinges on the following two
facts.

Firstly, it holds with probability one that

> ni < 0. (B.10)
t=1
Therefore,
T
A7 =42 & +0(1). (B.11)
t=1

Actually, (B.10]) follows immediately from

1 t 1
2 . . R
En; = 0(1) £2¢ Zid i2(2—¢)

O(1), 1/2 < ¢ < 3/2,
= t% logt+ O(1), c=3/2,
sast? 3+ 0(1), ¢>3/2,
Ot~ (1+9))

for some § > 0 (depending on ¢). In any case, Y ;o En? < oo and hence (B.10).

Secondly, for the sequence

0.2

2

= logT B.12
ap 2% 1 0g ( )

it holds that .

2

02> b1 (B.13)

t=1
This can be shown by performing some tedious but rather straightforward calculations on 4"

moments. The proof is relegated to the Supplement I.

As a consequence of (B.11]) and (B.13)),

Ar Ly (B.14)



and therefore also
. AP
plimyp_, o — =7~ (B.15)
Qr

Since the sequence Zthl §t2 is monotone increasing, l) implies that

Zf? =00 as.. (B.16)
t=1
Hence, by (B.14),
lim AY =0 as., (B.17)
T—o00

so that [Condition (i) is satisfied.
Recall now the order of magnitude of @ — « in ((A.14)), namely

log, T
aTa:O< O%_;) a.s..

It hence follows that, with probability one,
Br =T (ap —a)® = O (logy T) . (B.18)

Consequently, combining (B.12)), (B.15) and (B.18)) yields

Br By log, T o logy T
— = — =0(1)o(1 =op(1). B.19

It is hence in probability that [Condition (ii)|is satisfied, which will indeed be sufficient for weak
consistency and asymptotic normality, see Theorem [ and Appendix Specifically, we will
need it in the form

AO
plimT_mOA—T =1, (B.20)
T

which follows from (B.8) and Ay = A/ + o(1). Similarly, regarding [Condition (ii1), it follows
from (A.14)) in Appendix that

ar — « log, T
such that [Condition (iii)|is also satisfied in probability.

Remark 5 It cannot be inferred from that convergence of A%/oﬂT takes place with prob-
ability one. Otherwise convergence in and , too, would hold with probability one,

thus implying strong consistency.
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B.2.2 Case c=1/2

Remark 6 Note that the procedure outlined in Appendz'a? does not work for ¢ = 1/2. The
reason is that there is no deterministic sequence a% such that oz;Q Zthl 52 converges in probability
to some finite nonzero limit, see . Actually, it is shown in Supplement II that arf Zthl 2
is not a Cauchy sequence in L? and hence does not converge in L* for any deterministic sequence

oz2T. Together with the uniform integrability of the sequence oz;Q Zthl f%, which is also shown in

Supplement I, this implies that it cannot converge in probability to a nonzero limit.

B.2.3 Case c<1/2

Remember that the O(¢¢) vanishes for ¢ < 1, see Remark
Consider A% first. By definition and ({2.10)),

T T
A%:Zatl—a 'yv+o Z
t= t=1
7 v? 1-2 1-2
_ c —2c
= 137 +0 (T (B.22)

Hence |Condition (i) in Appendix is met. Note that Assumption [2| that v is nonzero with

probability one is crucial to obtain divergence with probability one.

The behaviour of By follows from (B.6]):

Br=T (ET—l — a)2 — (17 v )2T1*20 +o (T1—2c) .
— C

Consequently,
Br 1-2c+o(l) 1-2c
Ap (1=’ +o(1) (1-0¢

Since (1 —2¢) /(1 —¢)* < 1, this shows Also,

T 22T =¢1 +0(1 11-2 1
aTAO "= v;v_; 1—2[0 = T v l1— cC Tl-c [1+o ]
T 5T [1+0(1)] 7

o(1).

Hence

ar — « logy T’
\/T]OgQ TT% = O(l) Tl—QC’
so that [Condition (iii)| is also satisfied. Consequently, the OLS estimator is strongly consistent.

Finally, for later reference, we note that

A9, 1 (1—¢)?
Th—?;oAiT PR e a.s. (B.24)

f. (B3).
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B.3 Proof of Theorem 4
B.3.1 Case c>1/2

We return now to the decomposition (B.7)), re-written as

Et1at1—a)€t Oé—ﬁTT 1 1
+ da+01)——2> e (B.25)

\/7 \/7 \/%T% t=1 AY T=

Mp = ZT: (at—1 — ) &y, (B.26)
whose predictable quadratic variation is
(M) = a2 AY..
Therefore, by the central limit theorem (CLT) for martingales,

Wy = M1 4 w0, 02). (B.27)

VA%

The corresponding Lindeberg condition is verified in Appendix [B:3:3] below. Regarding the
second term, ({A.14) and (B.15]) yield

a\T/;a = \/7 az'o < 1og2T> = (y ' +op(1)O < 71105)21;) ,

so that by the CLT for i.i.d. sequences,

a_aTZEt =op(1 (B.28)

The last term converges to zero by the law of large numbers. Synthesizing, we obtain
ur
VA%

In view of (2.2)) and accounting for (B.20)), this means that

= Wi +op (1) %5 N(0,02).

TdNOU)

VAr (Br - 8) = \/AT i

More explicitly, using (B.15)),

\/%vlogT (BT —5> i”\/(O?l),

as claimed in (2.13) and (2.14)) of Theorem
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B.3.2 Case c<1/2

Reconsider again (B.25)). Regarding the first term on the right-hand side, we find that, as in

B27),
M

\/AT

As for the second term, it follows from (A.21) and - ) that
ar—a _ 1—2c 1

4 N(0,02). (B.29)

= 1+o0(1
= ),
T
Hence, by the CLT for i.i.d. sequences,,
“T_O‘Zat—uvc) 212 22>. (B.30)
/AO (1-c¢)

The last term in the brackets of again tends to zero of course.
In view of (B.29) and (B.30)), the first two terms on the right hand side of (B.7) must be
treated together. It could be shown, e.g. using the Cramer-Rao device, that (B.29) and (B.30)

converge jointly to a bivariate normal distribution. Yet since we are only interested in the sum

M a—a
Vp= — + LY e, (B.31)
we proceed in a different way. By partial summation,

T T T
My = Z (a—1 — ) ey = (ap — a)Zet - Z (ar — at,l)ZSi
t=1

t=1 t=1 i=1
T T 1 t
= ar-a)Ya-Y0 <tl+> e (B.32)
t=1 t=1 i=1
The last equality follows from ([2.10)), since
1 1
a —aQg—1 = YV |:tc — M] (]. + 0(1))
1
= e (L4 o(1)).

By the LIL, the second term in (B.32)) becomes

! logy t 1
ZO <t1+c> ZEZ ZO < t1/2+c ) \/@;& = 0(1)

t=1

with probability one. Therefore

Y "> r0 ()
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and (B.31)) simplifies to
T
ar —ar ar 1
VT Z€t+0<1 2—c>'
\VAY = T
By (B22) together with (Z10) and (A2,
ar —apr  cy1—2c 1

7o = o).
so that . -
- \/1—20 1 (1—26)
Vi = — 1 B Z€t+0P —>N< (1_C)2>

Returning to (B.25]), we thus find that

ur d e (1—2c)
=Vr+o(l) >N (0, 027(1 e )

%
qo

or, taking account of (B.24]),

0
uT Td/\/()a(l—2c))

e

Hence, remembering that BT — B =wup/Ap, it follows that
VAT (Br = B) SN (0,02 (1 - 20))

or,

22

oV T1-2¢ (BT - B) LY (0,02 (1= C)j (71 - 26)2) : (B.33)

This shows assertions (2.15)) and (2.16]) in Theorem [4] respectively.

B.3.3 On the Lindeberg condition

Reconsider the martingale in (B.26)), reproduced here for convenience:

T

MT = Z (Clt_l - a) Et.

t=1
Write Mp in the form
M7 = ArNp (B.34)

where Nr is the (square integrable) martingale difference array

T
a—1 — &
Np = ZthSt, Sy = T (B.35)
and Ap is any deterministic sequence such that
A9
T 52 (B.36)
AT
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for some random variable v with P (v = 0) = 0. Put differently, for ¢ > 1/2,

70
2c —

log T

(with v =1, cf. (B.15))) and, for ¢ < 1/2,

2
Y 1-2
\o= 2%
T 9c—1

cf. (B.22)). We will show that

T
P
Ry = ZE {&ei 1y ei)>0) 1 Ft-1} = 0
t=1

for every § > 0. To this end, we make use of the elementary inequality {|p.e¢| > 6} =
{l(at—1 — @) et| > A\pd} C {\at_l —al*> )\Té} U {e? > Ard} to obtain

T
Rr = Y &nE{el e c011Fim1}
t=1
T

1 2 2
=< )\2 Z a1 = ) o aysape} Tz 2 (@1 = ) E{8t1{5§>>\T6}}

Tt 1 Tt:l

Regarding RY., since a;—1—a — 0 a.s., there will be a Tp (depending on w) such that (a;—1 — a)? <

Ard for all t > Tj. Hence

To
o?
szatl_a =0
T:

with probability one.

As to R, it follows from the Cauchy-Schwartz inequality that

B{eH (aorra) ) < 558

Hence
Eet AY p
Rl < t T = 0
T= Ao A2
As a consequence,
Ry B0,

so that the Lindeberg condition is satisfied for the martingale difference array Np. Therefore,

since
T 0_2 P
2 2 2 0 2 2
Vi = E E {§Tt5t |.Ft,1} Z g (ap—1 — ) = Z Ap = v,
t=1 At t=1 T

it follows from standard CLTs for martingale difference arrays, see e.g. [Hall & Heyde (1980,
Corollary 3.2), that

N N
Nr At Ntod g g
VT g AO

T



or, in view of (B.34)),

4 N(0,1).
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C Proof of Corollary 3

Consider the OLS residual € = y; — 5 — Bat_1 = my + &¢, where

-~ ~

my = (6 —0) + (8 — Bat-1.

Then
T T T
)IEED URED SRS
t=1 t=1 t=1 t=1
Since
1 < 9 r
T2 m < o T(6—6>2+<5—6)22a?_1]—o(1>,
t=1 t=1
1|<& 1 A R
_ < - 2 - 2 — o(1

it follows that
1 1 &
~2 2 2
ngtzfzgt—i_o(l)_)(j
t=1 t=1
with probability one or in probability according to whether both 0 and B are strongly or weakly

consistent.
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I Proof of equation (B.13)

I.1 Introduction

Here we give the proof of (B.13), as announced in Appendix B.2, namely that

T 42 2
E Lﬁ; S _ 1| =0
QT
for the sequence
2 o’
or =g -— logT.

The sequence &, was defined by
¢

1 &;
ft - tT: Z gl—c’

i=1

Remember that we are dealing with the case ¢ > 1/2. Denote

T
Xr=) &
t=1
Then, since
t 2 t
1 1 o2 1
2 )
Eé‘t - 75270E 1—cCi $2¢ Z §2(1—c)
=1 =1
o

_ [1t20_1+0(1)}

75279 2¢ — 1
2 1
0(%)’

o 1
t
it follows from the integral comparison test (ICT) that

2c—1

0.2

EXy =
=91

log T+ O(1).
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Hence, if holds,

ar”EXr — 1,

so that the normalization ([.2]) comes up naturally.
In order to show (IL.1), we will have to calculate 4th moments:

T T T
EX? =) E&&=>E{+2 > EG (1.4)
s,t=1 t=1 s,t=1;5<t

1.2 Calculation of 4th moments

Henceforth, we will assumme that s < t. The basic formula will be

1 i=i=j=7,
Beievejey =\ ol i=igj=j ovi=j#i=j ori=j#i=]
0, else
Then
1 T b ’
202 _ A A
ECE = kb [Z z’l—cgll D e
i=1 j=1
1 5 1 t 1
i,i/=1 4,5'=1
= Ast+ Bat (L5)
Here we have put
1 5 1 1
A = s2et2e Z Z'lfcz'/lfcjlfcjllchsiei/gjej’v (I.6a)
i,’i/,j,j/=1
1 i 1 t 1
Bst = epe® 2 il—cji—c =i > GTejic s (1.6b)
b=l Gi'=s+1
Remark 1 Note that the B-term vanishes for s =t.
I1.2.1 Ad Ay
1 5 1 s =
- ot 4
Ast - SQthc m4z 7;4(1—0) + 60 z; ,L-2(1—C) — j2(1—c)
= 1= 1=

s

s 2
1 1 1
T z; 41— + (Z Z‘2(10)> O(1)

1=

=1

= [A,+Al]O(),

with

2
1 & 1 1 [ 1
! no__
Ay = 84C; jA(1—c)’ Ay = g <Z i2(1—c)> :

=1



1.2.1.1 Ad A’ Since
O(1), c¢<3/4,
S|
Z i4(1—c) - o (ln 5) y €= 3/47
i=1
O(s*73), c¢> 3/4,

it follows that
O(s:), c<3/4,

A={ o(lg), c=3/4, (L7)

S

O(%), c¢>3/4

As a consequence,

T t
>N AL =0(1). (1.8)

1.2.1.2 Ad A" Since

i=1
we have that
A// o 1 9] 2(2¢—-1)\ _ O —2 I
=50 (%) =0 (57, (1.9)
Hence
Tt
> > AL =0(logT). (1.10)
t=1 s=1
As a consequence, from ([L.6al),
T T ot T ot
YA4u=Y"Y Au=01) 33 [AL + A7) = O(log T). (1.11)
s<t t=1 s=1 t=1 s=1

1.2.2 Ad By

B will turn out the leading term in (I.5). Therefore we must be more explicit about O(1)-terms.

We will make use of the formula

S r-r e (e ()] i

which is valid for all p > —1.

By (L.6D),




S t

1 1 1
Bu = og® | 2 et 2 TTmeji—et {ejei|Fs}
[4'=1 Gg'=stl

1 5 1 ¢ o2
= @B | 2 et ) 0=

[ 4,/ =1 j=s+1
4 s t
o 1 1
T g2k [Z 12(1—6)] Z 00
=1 j:S+1

04 8207 1t2071 s

N (2 —1)%  sZet¥ [1+o(1)] [1 B (E)Qc_l + 0(1)]

4

" @7 0]

As a consequence,

T T t—1
ZBst = ZZBSt
s<t t=2 s=1
4 T t T t
o 1 1 1 1
- N LRI ]
(20—1)2;[7&;5 tZQt 82132(1 )
4 T T
= g 1 _ 1 i 2c—1
T 21y tZ:; s llogt + O(1)] = 5— Z:;t [P+ 0(1)]
But
T T .
1 logt dt
> —llogt+0(1)] = [/ Ogdt+0(1)} +0(1) [/ +1}
¢ 2 t 2 t
t=2
= B log? T + 0(1)] +0(1)[log T + 1]
L, 2
= log"T+O(logT)
and
1 T at
ZtTC [t~ +0(1)] —/2 — TO(1) =logT'+O(1).
t=2
Hence
T 4
By =—————log?T + O(log T). 1.13
; T oe_12 " (logT) (1.13)



I.3 Synthesis

From together with (I.11])

EX?%

and (I.13) it follows that

T T
= ) EGg=2) ELG+
s<t s<t
T
2 Z B 4+ O(log T')
s<t
4

T
D B
t=1

— _log®>T + O(log T).
e 17 8 (log T)

Or, put differently, with ap as in (L.2)),

E [a;2 X7 — 1]

This proves the assertion.

ar*O(log T)

0 (log*1 T) .

art [EXZ — 205 EXr + af + O(log T)]



IT Derivation of Remark 6

IT1.1 Introduction

Here we are concerned with the problem of plim-convergence of a;QA% in the case ¢ = 1/2. In

view of (B.11), which remains true for ¢ = 1/2, it suffices to consider the behavior of

T
Xr=> & (IL.1)
t=1
Remember that, for ¢ = 1/2,
1 1 1
§=— Z =€ = Ut (1I1.2)

Maintained assumption: The ¢; are i.i.d. with finite 4th moment Esf,’1 = my,Ee; = 0,
var(e;) = o2 and Ee} = 0.
The last assumption (about 3rd moments) is introduced to simplify some of the calculations. It
is not relevant for the results.

We will address the following two questions.

(i) Is there any deterministic sequence (a3.) s.t.
Zp = ap’Xr (IL.3)

converges in L? to some limit Z that is not identical to zero?

(ii) Is there any such sequence (onT) and any such Z s.t. pimp_ooZp = Z ¢

I1.2 Ad question (i)

I1.2.1 Filtering feasible sequences

By the ICT,
t 2 t
1 1 o? 1
2 _ 4+ RPN R -
BG = tE [; il/QEl] t ;z
0_2
= = t+0Q).
Hence
2
EXr = % 2T +O(In T). (IL4)

As a consequence, if the sequence (Zr) should converge in L? to some nonvanishing square

integrable random variable Z, it would follow that

EX
lim EZp = lim —o"
T—o0 T—oo  aip

=EZ=m>0.



Hence any feasible choice of deterministic sequence (a%) should satisfy

2
Qg

27T

=T (IL.5)

for some positive constant r. It therefore suffices to show that (Zp ) cannot be a Cauchy sequence

in L? for any such sequence (aT) Denoting

T+N 2
XrN = [th > ft] ;
=1 t=T+1
we thus have to show that
X X 2
sup E [Zryn — Zr]* = sup E 2T+N - 72T
N>1 N>1 aT+N Qr
= s la7i NEXF v + o7 ' BEXT — 205° 072 y\EXr X7 N ] (I1.6)
DnT

does not tend to zero as T — oo.

11.2.2 Fourth moments

We start as in Supplement 1 with formula for s < t, which we repeat here for convenience:
Cst = BEE} = Agt + By, (IL7)

where now

7E€Z‘6j€k61, (H.Sa)

By = Z \F Z \}Hgkg" (IL.8b)

Remark 1 For s = ¢, the B-term vanishes.

1 JRaiy
Ast = Q my Z 2 + 60 Z i 1 ;
: J:
with
s ot s
my 1 181
T I AL DO
-9 st

st =1 ! i=1 ‘ j=1 ‘7

Ad A’



r_olt
A, =0 <St> . (IL.10)
Ad A"
Since
i1
> = =Ini+0(1),
=17
we have that
4 s 4
AL =" i+ 0(1)] = *2 [in?5 4 0 (ins)]. (IL11)

=1

Putting together (II.10)) and (II.11}), it follows from (II.9) that

30t 1 5
Agt = o [In®s 4+ O (Ins) ] (I1.12)
In particular, by Remark 1,
In? ¢

11.2.2.2 Ad B, By definition,

Lo
—ELE
Z\/Hkl

1o~ 1
By = *EZ —=EiEj
st ij=1 Vij kl=s+1

1 1 1
= —E —=E4Ej —E {erg| Fs

1 .1
= EE Z ﬁgﬁj ; %

- 232 4]

i=1

ot
st
4

= U—t [nslnt —In*s + O(Int)] . (IL.14)
s

lns+O(1)][lnt —Ins+ O(1)]

Putting together (I1.12)) and (II.14]), we obtain

4

1
Cy = Ag+ By = 3% [lm2 s+ O (In s)] + 047 [lnslnt —In?s+ O(In t)]
s s
4

= G—t [2ln2s+lnslnt—|—0(lnt)] (I1.15)
s

As a consequence, since Y., (In™ s) /s = %ﬂ ™t +0(1),

t 4
2 1
ZCst =Z [3ln3t+21n3t+0(ln2t)]
s=1
7.3 2
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and

From (I1.7)) it then follows that

ZEf &= a It T+ O 7).

s<t

11.2.3 Evaluating the Cauchy criterion
In view of (IL.5), we evaluate (I1.6]) for the sequence
2

ad ~o?n®T

(meaning that the quotient tends to 1 or a2 = o2 (1 + 0(1)) In? 7).

11.2.3.1 Pure terms From ([I.17)) and (II.13) it follows immediately that

EXZ = Z Ec2e? _2ZE§2§ +ZE§t _70 It T+ O T).

s,t=1 s<t

Then, as T" — o0,
EXz 7 1 1 7
= — o) -
o T 121tor() (mT) 13 Hor()-

Also, as N — o0,

EXf .y _ 7 1 +< 1 )
af,y 1214 o0rin(1) In (T + N)
7
= — 1
12+0TN()

11.2.3.2 Mixed term To calulate EX7 X7y N, write
EXrXrony =EX2 +EX7 (Xron — X7).

As to the first term,

EX?
ot — = on(1).
QrQpy N
As to the 2nd term on the right hand side of (I1.20)),
T+N T T+N
EX7 (Xrin — X1) = EZ@ Yo=Y > ELE
s=1 t=T+1 s=1t=T+1
By virtue of (II.7)) and (II.15]),
T T+N T T+N
> > BEE = > ) Cu
s=1t=T+1 s=1 t*T—‘rl
T+N

— 42 Z [2In®s + Inslnt + Og(Int)] .

s=1 tT+1
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(I1.17)

(11.18)

(I1.19a)

(IL.19D)

(11.20)

(I1.21)



But

2 1
- [2In®*s+Inslnt + Ogy(lnt)] = §1n3T+§1n2T1nt—|—OTt(lnT1nt)

= STt

Mﬂ
w | =

s=1

and
T+N
2 T+N 1 T+N
STE g1n3T In ; +OTN(1)]+4ID2T[II12 i + Orn(1)
t=T+1
+O7n(1)InT [1112 T;N +1}
1 ,T+N 2, T+N
= = 2T+ Opy (0 T)] + = In— = W T + Oy (0 T)
1 s T+N 2. T
= —(1+or(1)In? N ey 2 TN In® T + or (1)
4 T 3
= AN
Therefore,
EX7 (X7yny — X7) = oAy,
Simpler representation of A
lnT;N = In(T+N)—1InT,
T+ N
BT = (T4 N)IPT - In* T,
T+N
In? ; = In>(T+N)—-2In(T+N)InT +n?T,
m N e o In? (T+ N)In?T — 2In(T+ N)In® T + In* T~
Hence
1 InT In?T
A= —In*(T+N)In?T |12 + ]1+ 1
R ) In [ In (T + N) 1n2(T+N)( or(1))
2 InT In?>T
+12T—|—N12T[ - ]+ 1
g e Yy n2 (T + N) or (1)
1 /1 2 InT
= > (TH+N)?T |- - (-2 ) ———
w (T + Nl [4 (2 3>In(T+N)
+<1 2) In?>T ]+ B
== sV o
4 3)m2r+N)] "
1 1 InT 5 T
= In*(T+N)In®T |-+ = - — 1
(T + NI [4+61n(T+N) 121n2(T+N)}+OT<)
and
o Arn 1 1 InT 5  In?T
= S+ - = 1+ 1
aZaZ., [4 6In (T + N) 121n2(T+N)]( orn (1))
1
- Z‘FON(I).
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Hence

EXr (Xrpn — Xr) 1
il ke r) _ L Hov(). (I1.22)
ATy N

I1.2.3.3 Synthesis Going back to (I1.6) and making use of (I1.19) and (II.21]),

N EX2, v EX7 , EX§ EXp(Xriy - X7)
O‘4T+N 0‘4T O‘?FO‘%“JrN O‘?FO‘?HN

1

-5+ or(1) +on(1) + orn(1)

+or(1) + on(1) + orn(1).

Wl

As a consequence, letting N — oo for fixed T,

2
sup Dyt > = + or(1)
N>1 3

and hence

GV V)

lim sup Dyt >
T—o0 N>1

Therefore with regard to question (i), we arrive at the following

Conclusion 2 Zr does not converge in L? to a nonzero limit for any choice of deterministic

normalizing sequence .

I1.3 Ad question (ii)
11.3.1 Line of argument

We show: (Z%) is uniformly integrable (ui).

To this end, we show that

4
T

sup EZ7. = sup —g <00, (I1.23)
T T Qp

Once this is established, one may argue as follows.

2
Step 1. Assume that plimy_,.,Z7 = Z. Since (Z%) is ui, convergence also holds in L?: Zp L—> Z.

Step 2. Taking account of Conclusion 1, we arrive at

Conclusion 3 Zp does not converge in probability to any nonzero limit.

For Step 1, we refer to the following basic result of dominated convergence type, cf.[Schiirger
(1998, Kapitel 4, Satz 6.5) and |Shiryaev, (1996, Chapter II, §6, Theorem 4).
Proposition Let (x7) be a sequence of random variables in L" s.t. xp B & Then T e if

and only if (Jxp|") is wi.
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Proof. If zp L x, then also z € L", and the assertion follows from |Schiirger| (1998). On the

other hand, z7 - z implies that |zr|” T |z|" . If (Jzr|") is ui, then |zp/|" — |z|" a.s. for some

subsequence (T"). Hence, by [Shiryaev| (1996)), |z|" is integrable, i.e. € L". Again by [Schiirger

(1998), it then follows that zp L nm

In our context, this is applied to xp = Zp and r = 2.

11.3.2 Bounding EX%

By (LL1),
T
EX; = Y ELEEE.
q,r,s,t=1

By the (extended) Holder inequality (cf. Schiirger (1998)), with p(i) = 4,

Ee2¢2¢2¢2 < [ESESBEES]

Hence, by ([1.24]),

Exf< > [Be]V B (BN [meS]
q,r,s,t=1
Note that
! 1 1
8 _ e ) —
11.3.2.1 Calculating 8-th moments
( moment code number
ms 8 t
E(ei - eig) =4 omg 6:2 )1
m? 4:4 (Dt—-1)
otmy 4:2:2 Gt —1)(t—2)
o® 2222 GGG -1 (-2 (t-3)
Codes

8 = all 7’s equal

6:2 = 6 i’s equal, with the remaining 2 equal and different from the other 6

4:4 = 2 groups a 4, equal within each group, different between groups
4:2:2 = 3 groups, equal within each group, different between groups

2:2:2:2 = 4 groups, equal within each group, different between groups

dominant term: code 2:2:2:2 with number ~ ¢4

12
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Hence

4:4
t
+J4m4 E L —i—o’4m4 E L
2k » ikl
4:2:2 1,7,k 1=1
iFjFkAl

The single terms

Code 8
‘1
; 7 =001)
Code 6:2 ,
1 <8> 1 1
T — - 5 = O (hl t)
3 Z 3
62 W 2 im1 G
Code 4:/
t
1 8 1 1
= (1) Zal =m0
4:4 i=1 " j#i
Code 4:2:2
t
1 8\ (4 11 1 )
Soe- (1)) 55 2 m-ow
4:2:2 i=1 " j#i 7 k#£i&j
Code 2:2:2:2
t
1 8\ [/6)\ /4 1 1 1
S - QO0TIZiz x
2:2:2:2 i=1 = j#i Y kA& kti&j&l
= 0 (ln4 t)

and

Hence, by (I1.25)),

d Inglnrinsint
EX} < 1 g —_——
o O( )qrst 1 a s t

Z lnt]

But

T

Int 1 ,
t=1

so that

EX; =0 (In®T).

13

(11.27)



I1.3.3 Finale furioso

Putting together (IT.27) and ([T.5)), the desired result ([I.23)) is obvious.
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