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Sustainable agreements on stochastic river flow∗

Erik Ansink† Harold Houba‡

Abstract

Many water allocation agreements in transboundary river basins are inherently
unstable. Due to stochastic river flow, agreements may be broken in case of drought.
The objective of this paper is to analyze whether water allocation agreements can
be self-enforcing, or sustainable. We do so using an infinitely-repeated sequential
game that we apply to several classes of agreements. To derive our main results
we apply the Folk Theorem to the river sharing problem using the equilibrium
concepts of subgame-perfect equilibrium and renegotiation-proof equilibrium. We
show that, given the upstream-downstream asymmetry, sustainable agreements
allow downstream agents to reap the larger share of the benefits of cooperation.
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1 Introduction

We apply the theory of repeated games to the river sharing problem. Our main con-

tribution is the design of agreements that are sustainable to stochastic river flow in a

dynamic setting. Doing so, we add to the rapidly growing literature on the analysis of

solutions to the river sharing problem (cf. Béal et al., 2013; Van den Brink et al., 2012;

Ambec et al., 2013), which has largely ignored dynamics.

In an international river basin, when water is scarce, countries may exchange water

for side payments (Dinar, 2006; Carraro et al., 2007). This type of exchange is generally

formalized in a water allocation agreement. The aim of water allocation agreements

is to increase the overall efficiency of water use. This increase in efficiency can be ob-

structed by the stochastic nature of river flow, because countries may find it profitable

to break the agreement in case of drought (Ward, 2013). A recent example is Mexico’s

failure to meet its required average water deliveries under the 1944 US-Mexico Water

Treaty in the years 1992–1997 (Gastélum et al., 2009). Additional case study evidence

on agreement breakdowns because of droughts can be found, for instance, in Barrett

(1994) and Beach et al. (2000). Only a minority of current international agreements

take into account the variability of river flow (De Stefano et al., 2012). Most agree-

ments do not; they either allocate fixed or proportional shares, or they are ambiguous

in their schedule for water allocation. Both the efficiency and stability (Bennett and

Howe, 1998; Bennett et al., 2000; Ansink and Ruijs, 2008; Ambec et al., 2013) of such

agreements may be hampered. These effects could be worsened by the impacts of cli-

mate change on river flow.

In order to accommodate for stochastic river flow, Kilgour and Dinar (2001) devel-

oped a flexible water allocation agreement that provides an efficient allocation for ev-

ery possible level of river flow. This agreement maximizes the overall benefits of water

use, after which side payments are made such that each country benefits from coop-

eration. This flexible agreement assures efficiency, but not stability because it ignores

the repeated interaction of countries over time. Countries have an incentive to defect

from the agreement when the benefits of defecting outweigh the benefits of compliance.

Note that there is no supra-national authority that can enforce this type of interna-

tional agreements. This implies that a stable agreement has to be self-enforcing or

sustainable, in the sense that each agent should have an incentive to comply with the

agreement. In such a setting, application of repeated-game theory to the setting of river

sharing seems natural, but to the best of our knowledge, this has not been done yet.1

1This paper is therefore a contribution to the challenge raised by Carraro et al. (2007): “Water re-
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Given the asymmetry imposed by the geography of the river, we adopt an infinitely-

repeated sequential game, in which upstream agents move before downstream agents.2

We argue that the Folk Theorem for infinitely-repeated sequential games is not very

informative, since it is only a limit result on the discount factor δ. For the practical

purpose of this paper, the real issue is firstly, given some δ, how to construct sustainable

agreements, and secondly whether certain classes of agreements have properties that

may be appealing for implementation by policy makers. For instance, we will assess

the effects of non-negativity restrictions on per-period payoffs and we will look at some

disadvantages of fixed-payment agreements, which are common in practice.

To derive our main results we apply the Folk Theorem to the river sharing problem

using the equilibrium concepts of subgame-perfect equilibrium and renegotiation-proof

equilibrium. We will see that, given the upstream-downstream asymmetry, sustain-

able agreements allow downstream agents to reap the larger share of the benefits of

cooperation. This distribution of gains is the opposite of some papers that assess agree-

ments on river sharing in a static setting (e.g. Ambec et al., 2013). Our results provide

economic intuition for an empirical result (downstream states managing to negotiate a

substantial share of upstream river water) that has, up till now, mostly been explained

by political factors (Dinar, 2009; Katz and Moore, 2011).

In the next section we introduce our model and present our first result on min-

max values in the river sharing problem. We derive equilibrium conditions in Sec-

tion 3, which we use in an example in Section 4 and subsequent detailed analyses of

four subsets of agreements in Section 5, including Nash-bargaining agreements and

renegotiation-proof agreements. Finally, in Section 6, we provide some concluding re-

marks. Our main result, Proposition 2 in Section 5.2, presents our Folk Theorem for

river sharing problems, which is further refined in Propositions 3 and 5. Proposition 4

and Corollary 2 provide a practical interpretation of these results. Two appendices con-

tain proofs as well as detailed information on context and generalization of our analysis.

sources are intrinsically unpredictable, and the wide fluctuations in water availability are likely to become
more severe over the years. Formally addressing the stochasticity of the resource, as well as the political,
social, and strategic feasibility of any allocation scheme, would significantly contribute to decreasing con-
flicts over water.”

2This sequence of moves according to the agents’ geographical location seems most natural. One
additional argument to support this sequence is that payments to compensate for water deliveries can
easily be deferred while water deliveries themselves cannot.
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2 Model

Consider two agents i = 1,2 with agent 1 upstream of agent 2 along a river. Denote river

flow in period t = (1,2, . . .) by the vector (e1,t, e2,t), which includes flow contributions on

the territory of agents 1 and 2. River flow is stochastic and is drawn in each period

from a bivariate probability distribution with density function f (e1, e2) on a compact

subset of
[
e1, e1

]× [
e2, e2

] ⊂ R2
+ and marginal distributions f1 (e1) = ∫

f (e1, e2)de2 and

f2 (e2) = ∫
f (e1, e2)de1. Denote water use of agent i in period t by xi,t. Any water that

was not used by agent 1 flows to the territory of agent 2. For simplicity, we suppress

time when confusion cannot occur.

Benefits of water use bi(xi) are increasing3 and strictly concave with b′
i(xi) > 0,

b′′
i (xi) < 0, and bi(0) = 0. We assume that utility is transferable through monetary

payment s from agent 2 to agent 1, which is positive when agent 2 pays |s| to agent 1

and vice versa. The utility of agent i depends on his water use xi and payments s, and

is given by the following quasi-linear utility function:{
u1(x1, s) = b1(x1)+ s;

u2(x2, s) = b2(x2)− s.
(1)

There are several focal allocations of river flow that will be used extensively in the

remainder of the paper: the Nash allocation4, the efficient allocation and the minmax

allocation. Definitions of the Nash allocation and efficient allocation are given below,

while the minmax allocation is the subject of Proposition 1 at the end of this section.

Definition 1 (Nash allocation). For every realization (e1, e2), the Nash allocation xN (e1, e2)=(
xN

1 (e1, e2) , xN
2 (e1, e2)

)
is the unique allocation where each agent uses his own endow-

ment of river flow such that xN
1 (e1, e2)= e1 and xN

2 (e1, e2)= e2.

Because of increasing benefits of water use, the Nash allocation is evident in absence

of water trade or other types of agreements on water use.

Definition 2 (Efficient allocation). For every realization (e1, e2), the efficient alloca-

tion x∗ (e1, e2)= (
x∗1 (e1, e2) , x∗2 (e1, e2)

)
is the unique maximizer of the utilitarian welfare

b1(x1)+b2(x2) subject to the feasibility constraints x1 ≤ e1 and x2 ≤ e1 + e2 − x1.

With a strictly concave quasi-linear utility function as in (1), the efficient allocation

is unique and equal to utilitarian welfare maximization as in e.g. Kilgour and Dinar
3We defer discussing the implications of this assumption to Appendix A.
4We prefer to call the unique subgame-perfect equilibrium of the non-repeated river game the Nash

equilibrium in order to distinguish single-period play from repeated play.
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(2001) and Houba et al. (2013).

The interesting and non-trivial case occurs when water is scarce:

Assumption 1 (Water scarcity). Water is scarce such that there are incentives to coop-

erate for every realization (e1, e2).

This assumption implies x∗1 (e1, e2)< e1 and x∗2 (e1, e2)= e1+e2−x∗1 (e1, e2), and there-

fore x∗2 (e1, e2)> e2. Realizations without incentives to cooperate can be ignored because

any efficient agreement will specify no cooperation for each of these realizations, which

is trivially sustainable.

Remark 1. Our model setup is consistent with much of the river sharing literature.

The case of two agents (Ansink and Ruijs, 2008; Houba, 2008) provides no limitation

for reasons similar to infinitely-repeated games with n players and full dimensional-

ity. Full dimensionality is assured in river sharing problems because with n players

the monetary transfers allow redistribution of transferable utility in all n utility di-

mensions. By focusing on two agents instead of the general case with more agents and

more realistic river geographies (Ansink and Houba, 2012; Van den Brink et al., 2012),

we are able to avoid some complexity and excessive notation. It also provides a better

understanding of the issues involved in repeated interaction of the agents over time in

the presence of a stochastic river flow (Kilgour and Dinar, 2001; Ambec et al., 2013). In

Appendix A, we elaborate on the general case.

We proceed to describe the possibility of agreements on water allocation between the

two agents. Because agent 1 is upstream of agent 2, he can take out any water, subject

to feasibility. Such unilateral action causes an inefficient allocation of water whenever

x1 (e1, e2) 6= x∗1 (e1, e2). Instead, the agents may cooperate by signing an agreement that

specifies the following three elements: (i) an allocation rule for river flow, (ii) a payment

rule for monetary transfers, and (iii) punishment strategies in case one of the agents

deviates from the agreement. An agreement coincides with cooperative play in the

repeated game that we introduce below. In this repeated game, both the allocation

of water and the payment may be contingent on realized river flow as in Kilgour and

Dinar (2001). In reality, however, we also observe lump-sum payments and simpler

allocation rules, including fixed and proportional allocations (Ansink and Ruijs, 2008;

Drieschova et al., 2008). Punishment strategies are essential for the sustainability of

the agreement because, in absence of a supra-national authority, agreements are non-

binding. They determine what happens upon deviation and range from simple trigger

strategies to more advanced strategies that assure ex post credibility of the punishment.
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In actual agreements on river flow allocation, punishment strategies are often lacking,

although many do contain clauses on conflict resolution (Beach et al., 2000; Ward, 2013).

To assess possible agreement specifications, we model each period as an exten-

sive game where nature moves first by drawing a realization of (e1, e2). Subsequently,

agent 1 moves by choosing x1 (e1, e2) and, finally, agent 2 moves by choosing x2 (e1, e2)
and, in case of an agreement, agent 2 also decides whether to make the payment

s (e1, e2). Cooperative play consists of a stochastic sequence of water resources (e1, e2)
that induce the water use vector xc (e1, e2) = (

xc
1 (e1, e2) , xc

2 (e1, e2)
)

and the payment

sc (e1, e2) as specified in the agreement. Non-cooperative play consists of the Nash

allocation and a zero payment so that the choice of xi (e1, e2), i = 1,2, is limited to a

binary strategy set
{
xc

i (e1, e2) , e i
}

and the choice of s is in essence limited to a binary

strategy set {sc (e1, e2) ,0}. Only if the agreement maximizes utilitarian welfare we have

xc (e1, e2) = x∗ (e1, e2) for every realization (e1, e2), but this is not necessarily the case,

as agents may agree otherwise.

The Folk Theorem for infinitely-repeated sequential games states that any utility

vector that yields each agent more than his minmax utility can be supported as an

SPE (subgame-perfect equilibrium) utility vector for sufficiently large discount factors

Wen (2002). Following this reference, we start our analysis by deriving the minmax

utilities in the river sharing problem. We do this in Appendix A, where we also discuss

the general case (i.e. more than two agents) as well as the implications of assuming

increasing benefit functions for the minmax values. We state the following result.

Proposition 1. For every realization (e1, e2), agent i’s minmax value is bi (e i).

The agents’ minmax values coincide with the unique Nash equilibrium utilities.

This result has an important implication in that the Folk Theorem can be derived

within the class of trigger strategies, which simplifies the analysis (details are in Ap-

pendix A). Formally, in expectations, every
(
V c

1 ,V c
2
)> (

E {b1 (e1)} ,E {b2 (e2)}
)

can be sup-

ported for sufficiently high δ.5 All such
(
V c

1 ,V c
2
)

can be sustained by trigger strategies

as the agreement’s punishment strategies and, for explanatory convenience, we make

this assumption. It has to be dropped only when we characterize renegotiation-proof

equilibria in Section 5.4.

Assumption 2 (Trigger strategies). Both agents use trigger strategies in which de-

viation from cooperative play, i.e. the agreement, is punished by non-cooperative play
5Whether boundary solutions such as

(
E {b1 (e1)} ,V c

2
)

and
(
V c

1 ,E {b2 (e2)}
)

can also be supported by
trigger strategies or require more complex punishment strategies depends upon the application. Techni-
cally speaking, in the limit as δ goes to 1, the closure of the limit set of SPE utility vectors that can be
supported by trigger strategies is the set consisting of

(
V c

1 ,V c
2
)≥ (

E {b1 (e1)} ,E {b2 (e2)}
)
.

6



forever.

Trigger strategies are based upon simple discontinuous contracts. Agent 1 only

delivers his part of the agreed water allocation if he has received the agreed payment

in the previous period. That is, e1,t − x1,t = 0 if st−1 < sc
t−1

(
e1,t−1, e2,t−1

)
and e1,t − x1,t =

e1,t−xc
1,t

(
e1,t, e2,t

)
otherwise. Agent 2 only makes the agreed payment if he received the

agreed water allocation in the same period. That is, st = 0 if e1,t−x1,t < e1,t−xc
1,t

(
e1,t, e2,t

)
and st = sc

t
(
e1,t, e2,t

)
otherwise.

3 Equilibrium analysis

In this section, we derive equilibrium conditions for the water allocation and pay-

ment rules, using SPE as our equilibrium concept and assuming trigger strategies.

Given such strategies, agent 1’s optimal deviation is x1 = e1 forever, which implies

x1 > xc
1 (e1, e2) in the current period and failing the agreed upon allocation rule in sub-

sequent periods. Likewise, agent 2’s optimal deviation is s (e1, e2)= 0 forever.

Given these punishment strategies, the ex ante expected value of the cooperative

path to agent i = 1,2 at the beginning of an arbitrary period (i.e. before nature moves)

equals

V c
1 = E

{
b1

(
xc

1 (e1, e2)
)+ sc (e1, e2)

}+δV c
1 = E

{
b1

(
xc

1 (e1, e2)
)}+E {sc (e1, e2)}

1−δ

V c
2 = E

{
b2

(
xc

2 (e1, e2)
)− sc (e1, e2)

}+δV c
2 = E

{
b2

(
xc

2 (e1, e2)
)}−E {sc (e1, e2)}

1−δ

where δ is the discount factor. The ex ante expected value of the non-cooperative path

to agent i = 1,2 at the beginning of an arbitrary period (i.e. before nature moves) equals

V n
i = E {bi (e i)}+δV n

i = E {bi (e i)}
1−δ

.

Combining the ex ante expected values, we have

V c
1 ≥ V n

1 ⇐⇒ E
{
sc (e1, e2)

} ≥ E {b1 (e1)}−E
{
b1

(
xc

1 (e1, e2)
)}

,

V c
2 ≥ V n

2 ⇐⇒ E
{
sc (e1, e2)

} ≤ E
{
b2

(
xc

2 (e1, e2)
)}−E {b2 (e2)} ,

where both right-hand sides are positive. Furthermore, the maximal per-period ex-

pected utilitarian welfare exceeds the per-period E {b1 (e1)}+E {b2 (e2)}, so a non-empty

range of welfare-improving allocation rules
(
E

{
xc

1 (e1, e2)
}
,E

{
xc

2 (e1, e2)
})

and payments

7



E {s (e1, e2)} exists, compared to the non-cooperative path. Note that this range is maxi-

mal in case the allocation rule maximizes utilitarian welfare.

Given the realization of (e1, e2) in period t, the equilibrium conditions state that

both agents prefer to continue cooperation over a single deviation,6 knowing that non-

cooperation follows forever:

V c
1 (e1, e2) = b1

(
xc

1 (e1, e2)
)+ sc (e1, e2)+δV c

1 ≥ b1 (e1)+δV n
1 , (2)

V c
2 (e1, e2) = b2

(
xc

2 (e1, e2)
)− sc (e1, e2)+δV c

2 ≥ b2
(
xc

2 (e1, e2)
)+δV n

2 . (3)

In repeated games it is common to derive a threshold for the discount factor δ above

which cooperation can be sustained. This is not straightforward in our model setup

because the lower bound on δ would become a function of the present state. In Section 5

we will analyze this in detail. Here, we simply show how a given δ imposes bounds on

the payments as a function of the allocation rule for river flow:

sc (e1, e2) + δ

1−δ
E

{
sc (e1, e2)

} ≥ b1 (e1)−b1
(
xc

1 (e1, e2)
)

+ δ

1−δ

[
E {b1 (e1)}−E

{
b1

(
xc

1 (e1, e2)
)}]

, (4)

sc (e1, e2) + δ

1−δ
E

{
sc (e1, e2)

} ≤ δ

1−δ

[
E

{
b2

(
xc

2 (e1, e2)
)}−E {b2 (e2)}

]
. (5)

Any agreement that satisfies both (4) and (5) is able to sustain cooperation. This

requires a choice of allocation and payment rules that is sufficiently flexible such that

the bounds are not violated for any possible realization of river flow. Note the asym-

metry in these bounds with respect to the payments; the lower bound always depends

upon the realization (e1, e2) whereas the upper bound is independent of this realization.

This asymmetry is caused by the extensive form of the game, which requires agent 2

to provide a minimum compensation to agent 1 for passed water in the current period,

which enters the lower bound. In addition, both bounds contain terms that reflect the

expected benefits of cooperation in future periods. In the next section we use these

bounds to illustrate the choice of a payment rule given the unique allocation rule that

maximizes utilitarian welfare.
6For SPE, the one-stage deviation principle states that it is sufficient to check for profitable single

deviations (Fudenberg and Tirole, 1991).
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4 Example

In this section we show how bounds (4) and (5) can be used to construct a payment rule

for monetary transfers given a fixed parameter value for the discount factor, using a

simple example that will recur throughout the paper. In order to do so, we make two

additional assumptions.

Assumption 3 (Two realizations of river flow). The density function of river flow is

simplified to two possible realizations of river flow (e1, e2), high flow
(
eH

1 , eH
2

)
with prob-

ability p and low flow
(
eL

1 , eL
2
)

with probability 1− p.

Assumption 4 (Efficient agreement). The agreement maximizes utilitarian welfare so

that xc
1 (e1, e2)= x∗1 (e1, e2) and xc

2 (e1, e2)= x∗2 (e1, e2).

Given these assumptions, the bounds on the payments in (4) and (5) consist of only

exogenous variables and we can illustrate these bounds graphically by a polygon (or a

polytope of higher dimension if Assumption 3 had allowed a larger range of realizations

of river flow). The line segments that bound the polygon are based on the probability

of each realization of river flow. Substituting these two realizations in (4) and (5) and

rearranging terms, we obtain that the bounds are given by:

low flow: (1−δ)b1

(
eL

1

)
− (1−δ)b1

(
xc

1

(
eL

1 , eL
2

))
+δ

[
A1

]
≤ (1−δp) · sc

(
eL

1 , eL
2

)
+ (δp) · sc

(
eH

1 , eH
2

)
≤ δ

[
A2

]
,

high flow: (1−δ)b1

(
eH

1

)
− (1−δ)b1

(
xc

1

(
eH

1 , eH
2

))
+δ

[
A1

]
≤ (δ−δp) · sc

(
eL

1 , eL
2

)
+ (1−δ+δp) · sc

(
eH

1 , eH
2

)
≤ δ

[
A2

]
,

where A1 and A2 denote the terms between square brackets in the right-hand side of,

respectively, (4) and (5). As discussed in Section 3, while both lower bounds depend on

the realization of river flow in the current period, the upper bounds do not.

Figure 1 shows the polygon for selected parameter values, illustrating the range of

possible combinations of payments that provide sustained cooperation under Assump-

tions 2, 3 and 4. Any point in the graph represents a payment rule, but only those

in the shaded area sustain cooperation. Somewhat counter-intuitively, Figure 1 illus-

trates the possibility of a negative payment under one of the two possible realizations

of river flow. This gives the striking possibility that agent 1 delivers water and a pay-

ment to agent 2. Obviously, a negative payment under one realization is accompanied

by a relatively large positive payment under the alternative realization of river flow.

9



sc (
eL

1 , eL
2
)

sc (
eH

1 , eH
2

)

0−5 5 10 15

−5

5

10

15

Figure 1: Combinations of payments that provide sustained cooperation under Assump-
tions 2, 3 and 4, for parameter values δ = 0.9, p = 0.5,

(
eL

1 , eL
2
) = (3,1),

(
eH

1 , eH
2

) = (5,3),
and bi(xi)=−x2

i +10xi for i = 1,2.

This possibility of negative payments makes clear that, while theoretically sound, some

sustainable payment rules may be inapplicable in real life situations.

Figure 2 shows a comparison of results for various values of the discount parame-

ter δ. The figure illustrates that there is no feasible payment rule for low levels of the

discount factor (for the parameter values in the figure, the threshold is δ= 5
7 ≈ 0.7). At

the threshold, the bounds for the realization of low river flow first converge and below

this threshold, they switch place and diverge such that there are no combinations of

payments that provide sustained cooperation. The intuition for this result is standard

in that a lower δ reduces the expected present value of the benefits of cooperation in all

future periods, which are compared with the benefits of non-cooperation in the current
period.

For reasons of exposition, the results in this section are constrained by two assump-

tions, but they can be easily generalized. Assumption 3 limits the example to two pos-

sible realizations of river flow. Having more possible realizations of river flow, say Low,

Normal and High, would require three payments sc (
eL

1 , eL
2
)
, sc (

eN
1 , eN

2
)
, sc (

eH
1 , eH

2
)
, and

produce a three-dimensional figure while the analysis remains the same. Assumption 4
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(a) δ= 0.9
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(b) δ= 0.8
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(c) δ= 0.7

Figure 2: Panel (a) is identical to Figure 1, panels (b) and (c) differ only in the level of
the discount factor δ.

limits the example to the set of efficient agreements. Its intuition, however, extends

to inefficient agreements, which would yield similar diamond-shaped figures inside the

shaded area but would require higher thresholds on the discount factor.

Summarizing, given a fixed parameter value for the discount factor and given trig-

ger strategies, the illustration in Figure 1 shows how to construct sustainable agree-

ments. Such agreements are not possible for a sufficiently low discount factor and some

sustainable payment rules may be unrealistic if they include negative payments. Be-

cause it is not clear how such agreements could ever be put into practice, we assess

several subsets of agreements that do not allow negative payments in the next section,

while we will also drop Assumptions 3 and 4.

5 Four subsets of sustainable agreements

In this section, we assess four subsets of agreements that can be sustained in equilib-

rium. These subsets are fixed-payment agreements, individually-rational agreements,

Nash-bargaining agreements, and renegotiation-proof agreements. Doing so, we do not

need Assumptions 3 and 4. The reasoning for assessing these particular subsets is as

follows. First, fixed-payment agreements reflect the lack of flexibility with respect to

variability in river flow in most real-world agreements (De Stefano et al., 2012), and

serve as a benchmark. Second, individually-rational agreements offer more flexibil-

ity and they exclude the unrealistic option of payoffs lower than minmax payoffs (in-

cluding negative payments as discussed in Section 4). Third, Nash-bargaining agree-

ments are assessed to illustrate how negotiations may lead to such agreements. Finally,

renegotiation-proof agreements show how this additional stability requirement affects

11



our results.

Restricting the full set of agreements assessed in Section 4 comes at a cost. This

cost is that the threshold discount factor for which agreements can be sustained will

be (weakly) higher, because not all agreements are allowed. For fixed-payment agree-

ments, Figure 3 shows that only the small subset of agreements on the 45◦-line are

allowed. For individually-rational agreements, Figure 3 shows that there are strict

minimum and maximum bounds on the level of payments. This area contains also the

subsets of Nash-bargaining agreements and renegotiation-proof agreements. A detailed

explanation of these restrictions and the corresponding subsets of agreements is given

in Sections 5.1–5.4.

(9)

(9)

(10)

(10)

45◦

sc (
eL

1 , eL
2
)

sc (
eH

1 , eH
2

)

0−5 5 10 15

−5

5

10

15

Figure 3: Identical to Figure 1, but including restrictions imposed by the subsets of
agreements. The dark-shaded segment on the 45◦-line through (0,0) displays the sub-
set of fixed payment agreements. The small shaded polygon displays the subset of
individually rational agreements. The dark-shaded segment on the 45◦-line through
(5,1) displays the subset of Nash-bargaining agreements that coincides with the subset
of renegotiation-proof agreements.
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5.1 Fixed-payment agreements

In this subsection we focus on agreements in which the payment rule is not contin-

gent on the realization of river flow, but constant such that sc (e1, e2) = s̄c. We call the

subset of agreements that satisfies this property fixed-payment agreements. For such

agreements, the equilibrium bounds (4) and (5) simplify to:

s̄c ≥ (1−δ)
[
b1 (e1)−b1

(
xc

1 (e1, e2)
)]

+ δ
[
E {b1 (e1)}−E

{
b1

(
xc

1 (e1, e2)
)}]

, (6)

s̄c ≤ δ
[
E

{
b2

(
xc

2 (e1, e2)
)}−E {b2 (e2)}

]
. (7)

For sustained cooperation, these bounds have to hold for every realization (e1, e2). Con-

sequently, the lower bound (6) becomes

s̄c ≥ (1−δ) max
(e1,e2)

[
b1 (e1)−b1

(
xc

1 (e1, e2)
)]

+ δ
[
E {b1 (e1)}−E

{
b1

(
xc

1 (e1, e2)
)}]

. (8)

The interpretation of this lower bound is that the realization (e1, e2) where upstream

is tempted most to deviate determines the lower bound. This observation corresponds

to the analysis of stability (or robustness) of river sharing agreements used by Ansink

and Ruijs (2008) and Ambec et al. (2013), the latter motivating their choice by refer-

ring to the literature on self-enforcing contracts (e.g. Gauthier et al., 1997). Given

fixed payments, an agreement can be designed by first selecting the water allocation

rule xc (e1, e2) which leaves a range of sustainable fixed payments s̄c to choose from. It

seems natural to select the efficient water allocation, in order to attain the maximal

range of payments, but there are many examples where this is not the case (Giordano

et al., 2013). The most common alternatives are fixed and proportional water alloca-

tions, and they can be assessed by simply substituting either xc
1 (e1, e2) = e1 − ec

1 and

xc
2 (e1, e2) = e2 + ec

1 for fixed water allocation or xc
1 (e1, e2) = γe1 and xc

2 (e1, e2) = e2 +γe1

for proportional water allocation. We will focus on the general case only.

The lack of flexibility of fixed-payment agreements may imply that, for a given dis-

count factor δ and for the selected water allocation rule, there does not exist any sus-

tainable payment rule. Existence requires a non-empty range of s̄c that satisfy (7)

and (8), which requires that the upper bound on s̄c is larger than or equal to the lower

13



bound. We obtain for a given realization (e1, e2):

δ
[
E

{
b1

(
xc

1 (e1, e2)
)+b2

(
xc

2 (e1, e2)
)−b1 (e1)−b2(e2)

}]≥ (1−δ)
[
b1 (e1)−b1

(
xc

1 (e1, e2)
)]

.

By Assumption 1 on water scarcity, the left-hand side is positive for xc (e1, e2) =
x∗ (e1, e2) and these belong to a well-defined compact set of agreements xc (e1, e2) that

admit a non-negative left-hand side. For the subset of agreements xc (e1, e2) that admit

a positive left-hand side, as δ goes to 1, the left-hand side converges to some positive

number while the right-hand side converges to 0, so that the inequality holds. There-

fore, we know that for this particular subset of agreements xc (e1, e2) there exists a

threshold discount factor above which the range of sustainable payment rules is non-

empty. Obviously, agreements xc (e1, e2) for which the left-hand side is either zero or

negative cannot be sustained for any δ ∈ [0,1).

This threshold, which has to hold for all realizations (e1, e2), is given by

δ≥ max
(e1,e2)

b1 (e1)−b1
(
xc

1 (e1, e2)
)

b1 (e1)−b1
(
xc

1 (e1, e2)
)+E

{
b1

(
xc

1 (e1, e2)
)+b2

(
xc

2 (e1, e2)
)−b1 (e1)−b2(e2)

} ,

and it is attained for max(e1,e2)
[
b1 (e1)−b1

(
xc

1 (e1, e2)
)]

, i.e. where the temptation to

deviate is highest to agent 1. For the example in Section 4, this threshold for existence

of a sustainable fixed-payment rule occurs for (e1, e2) = (
eL

1 , eL
2
) = (3,1) and it lies at

δ= 5
7 ≈ 0.7, similar to the threshold for the general case in Section 4. Apparently, for this

particular example, the limitation to fixed-payment agreements would not constrain the

possibility of sustainable agreements, but this is not a general result.

On the one hand, one may regard fixed-payment agreements as an insurance con-

tract where downstream pays a fixed amount for a flexible scheme of water deliveries.

In this interpretation, there is nothing against such agreements. On the other hand,

one problem of fixed-payment rules is that they may cause payoffs lower than minmax

payoffs for some realizations of river flow. This property makes such rules unattractive

for application in practice. We will see in the next subsection that, for the example of

Section 4, any fixed-payment rule violates this condition.

5.2 Individually-rational agreements

In this subsection we focus on agreements that offer more flexibility than the fixed-

payment agreements. Instead, we introduce a condition that excludes the unrealistic

option of payoffs lower than minmax payoffs. This condition thereby also excludes the
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possibility of negative payments that occurred in the example of Section 4. This condi-

tion implies7

b1
(
xc

1(e1, e2)
)+ sc(e1, e2) ≥ b1 (e1) for any (e1, e2); (9)

b2
(
xc

2(e1, e2)
)− sc(e1, e2) > b2 (e2) for any (e1, e2). (10)

Hence, in expectations

E
{
b1

(
xc

1(e1, e2)
)+ sc(e1, e2)

} ≥ E {b1 (e1)} ;

E
{
b2

(
xc

2(e1, e2)
)− sc(e1, e2)

} > E {b2 (e2)} .

We call the subset of agreements that satisfies (9) and (10) individually-rational agree-
ments. Note that the sum of expected utilities under any agreement in this subset

is larger than the sum of the expected utilities under noncooperation, i.e., V c
1 +V c

2 >
E {b1 (e1)}+ E {b2 (e2)}. This covers the entire triangle of individually-rational utility

vectors under the Pareto frontier, neglecting the boundary
(
V c

1 ,b2 (e2)
)
.

For individually-rational agreements, we show in our next result that any agree-

ment that improves upon the utilities under the minmax allocation xN(e1, e2) = (e1, e2)
is an SPE for sufficiently large δ< 1. To do so, we first define the threshold level

δ(xc
1, xc

2, sc)= max
(e1,e2)

sc (e1, e2)
sc (e1, e2)+E

{
b2

(
xc

2 (e1, e2)
)−b2 (e2)

}−E {sc (e1, e2)}
. (11)

In the proof of the following result, we show that δ(xc
1, xc

2, sc) < 1. The following result

can be interpreted as the Folk Theorem for river sharing problems.

Proposition 2. For any δ≥ δ(xc
1, xc

2, sc), the individually-rational agreement with allo-
cation rule

(
xc

1(e1, e2), xc
2(e1, e2)

)
and payment rule sc(e1, e2) satisfying (9) and (10) can

be sustained in equilibrium.

Proof. Conditions (2) and (3) state the equilibrium conditions for trigger strategies,

which both depend upon the realization (e1, e2) and have to hold for every realization.

Rewriting (2) yields

(1−δ)
[
b1

(
xc

1 (e1, e2)
)+ sc (e1, e2)

]+δE
{
b1

(
xc

1 (e1, e2)
)+ sc (e1, e2)−b1(e1)

}≥ (1−δ)b1 (e1) .

By (9) the first term on the left-hand side is weakly larger than the right-hand side,

7In Footnote 5, we mentioned that, in general, boundary payoff vectors in repeated games are hard to
sustain. Here, with trigger strategies, we can sustain

(
b1 (e1) ,V c

2
)

for all realizations, but not
(
V c

1 ,b2 (e2)
)
.
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and the second term on the left-hand side is non-negative. Therefore this inequality

holds for all δ ∈ [0,1] and independent of the realization (e1, e2). So, agent 1 will not

deviate for any δ ∈ [0,1], independent of the realization of river flow. Next, (3) can be

simplified to sc (e1, e2)≤ δ
(
V c

2 −V n
2

)
.8 Rewriting further yields

(1−δ) sc (e1, e2) ≤ δ
(
E

{
b2

(
xc

2 (e1, e2)
)−b2 (e2)

}−E
{
sc (e1, e2)

})
.

By (10), the right-hand side is positive. Therefore, as δ goes to 1, the left-hand side

goes to 0 and the right-hand side increases to some positive number. So, there exists a

nonempty range of δ close to 1 for which this inequality holds. Solving for δ yields that

agent 2 has no incentive to deviate if:

δ ≥ sc (e1, e2)
sc (e1, e2)+E

{
b2

(
xc

2 (e1, e2)
)−b2 (e2)

}−E {sc (e1, e2)}
.

As noted in Section 3, this threshold depends on the realization of river flow. Also,

it depends upon the allocation rule xc (e1, e2) and payment rule sc(e1, e2). Because this

has to hold for every realization (e1, e2), we must have that δ≥ δ(xc
1, xc

2, sc).

Note that (9) implies that sc(e1, e2) ≥ b1 (e1)− b1
(
xc

1(e1, e2)
)≥ 0. This class of agree-

ments excludes the negative sc that we observed in the example of Figure 1. Also inter-

esting, the simplification of (3) to sc (e1, e2) ≤ δ
(
V c

2 −V n
2

)
in the proof of Proposition 2,

imposes, once more, a fixed upper bound on the payment, independent of realization

(e1, e2). In the example of Section 4, however, this upper bound is dominated by the

upper bounds given by (10). Specifically, for individually-rational agreements, the re-

strictions given by (9) and (10) on the (efficient) example in Figure 1 are:

sc
(
eL

1 , eL
2

)
≥ b1(e1 = 3)−b1(xc

1 = 2) = 21−16 = 5;

sc
(
eH

1 , eH
2

)
≥ b1(e1 = 5)−b1(xc

1 = 4) = 25−24 = 1;

sc
(
eL

1 , eL
2

)
≤ b1(xc

2 = 2)−b1(e2 = 1) = 16−9 = 7;

sc
(
eH

1 , eH
2

)
≤ b1(xc

2 = 4)−b1(e2 = 3) = 24−21 = 3.

These restrictions are shown in the dark-shaded polygon in Figure 3.

Proposition 2 and its proof convey two important messages. The first is that, by

construction of individually-rational agreements, agent 1 has no incentive to deviate,

8For V c
2 = V n

2 , only sc (e1, e2) = 0 would be feasible. So, without compensating the upstream agent in
the future, cooperation is impossible.
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irrespective of the discount factor nor the realization of river flow. This is an important

observation for the design of stable agreements. The second message is that the thresh-

old discount factor δ(xc
1, xc

2, sc) increases in the payment that agent 2 makes to agent 1.

Consequentially, the scope for agent 2’s compliance with the agreement increases when

the payments, contingent on the realized river flow and subject to (9) and (10), are min-

imized. Specifically, it is easy to check that the lowest threshold δ(xc
1, xc

2, sc) occurs for

the agreement
(
xc

1, xc
2, sc) that solves

min
xc

1,xc
2,sc

max
(e1,e2)

sc (e1, e2)
sc (e1, e2)+E

{
b2

(
xc

2 (e1, e2)
)−b2 (e2)

}−E {sc (e1, e2)}

among all possible individually-rational agreements. The solution to this problem is

xc (e1, e2)= x∗ (e1, e2) and sc(e1, e2) = b1 (e1)−b1
(
x∗1 (e1, e2)

)
for every realization (e1, e2).

This solution selects the efficient allocation and a payment that assigns all benefits of

cooperation downstream, to agent 2. We will continue discussing this solution in the

context of asymmetric Nash-bargaining solutions in Section 5.3.

Note that the subset of individually-rational agreements contains various types of

agreements. One example is a price-dependent agreement, in which the allocation rule

is the efficient allocation and the payment implements the efficient water price, such

that marginal benefits of water use are equal to both agents. This type of agreement

mimics an international water market (cf. Ansink and Houba, 2012). An alternative

example is the (asymmetric) Nash-bargaining solution, which we analyze in the next

subsection.

As a final remark, recall the interpretation of fixed-payment agreements as insur-

ance contracts. Individually-rational agreements can be also be seen as insurance con-

tracts with a stochastic price sc (e1, e2) that depends upon the realization of river flow.

This means that next to the risk over the allocation of water there is also risk with

respect to this price. Because monetary payments enter the agents’ quasi-linear utility

functions in (1) as the linear term, agents are risk neutral with respect to this category

of risk. Consequently, they are indifferent between individually-rational agreements

and fixed-payment contracts with the same allocation and payment E {sc (e1, e2)}.

5.3 Nash-bargaining agreements

In this subsection we focus on agreements that are the result of a negotiation process.

The obvious solution concept is then to look at asymmetric Nash-bargaining solutions

(ANBS). The ANBS maximizes the product of agents’ gains over a disagreement payoff,
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given asymmetric bargaining strengths. Applied to the problem of river sharing in a

deterministic setting, the allocation rule is the efficient allocation and the payment is

based on the relative bargaining strength of the agents (Houba et al., 2013). In our

stochastic setting, the ANBS will also specify the efficient allocation and the expected
payment based on the relative bargaining strength of the agents. There are many ways

to implement the expected payment over all possible realizations (e1, e2) and we choose

a natural one: Applying the ANBS with bargaining weight α ∈ [0,1) for agent 1,9 we

take

sα (e1, e2)= b1(e1)−b1
(
x∗1 (e1, e2)

)+α[
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−b1 (e1)−b2 (e2)
]
,

(12)

for each realization of river flow (e1, e2), which then allows us to derive E {sα (e1, e2)}.

This implementation of the ANBS chooses the efficient allocation and distributes the

gains of cooperation according to the bargaining strength parameter α.

The following corollary follows from the equivalence of the expression for sα(e1, e2)

in (12) with conditions (9) and (10) on the subset of agreements with efficient water

allocation x∗ (e1, e2).10

Corollary 1. Any Nash-bargaining agreement is an efficient individually rational agree-
ment and vice versa.

This result implies that any efficient individually rational agreements can be imple-

mented by a Nash-bargaining agreement for some α ∈ [0,1), and vice versa.

By Corollary 1, since the example in Section 4 assumed efficient allocations, the

small shaded polygon in Figure 3 includes the set of Nash-bargaining agreements.

Specifically, substituting the parameters from the example in (12), we obtain a set of

Nash-bargaining agreements with sα(eL
1 , eL

2 ) = 5+2α and sα(eH
1 , eH

2 ) = 1+2α. In Fig-

ure 3, this set lies on a segment through (5,1) with slope 45◦ due to the equal probability

of low and high river flow (p = 0.5).

For Nash-bargaining agreements, given weight α, we show in our next result that

any efficient agreement that improves upon the utilities under the minmax allocation

xN(e1, e2) = (e1, e2) is an SPE for sufficiently large δ < 1. The difference with Propo-

sition 2 is subtle. By construction, the ANBS as applied in (12) satisfies conditions

9For similar reasons as in (9) and (10), we allow for α= 0 i.e. agent 2 is a dictator, but not for α= 1.
10To see this, note the following: First, for α= 0, (12) is equivalent to (9) with equality, while trivially

satisfying (10). Second, for the full range of α ∈ (0,1), (12) is equivalent to the combination of (9) and (10)
with strict inequalities.
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(9) and (10) that describe the set of individually-rational agreements and, therefore,

Nash-bargaining agreements are a subset of this set. The Pareto efficiency of Nash-

bargaining agreements implies that the threshold discount factor for which an agree-

ment can be sustained will coincide with the one for the associated Pareto efficient

individually-rational agreement.

We show in our next result that any Nash-bargaining agreement is an SPE for suf-

ficiently large δ< 1. To do so, we first define the threshold level

δα(x∗1 , x∗2 )= max
(e1,e2)

sα (e1, e2)
sα (e1, e2)+E

{
b2

(
x∗2 (e1, e2)

)−b2 (e2)
}−E {sα (e1, e2)}

. (13)

Proposition 3. For any α ∈ [0,1) and δ ≥ δα(x∗1 , x∗2 ), the Nash-bargaining agreement
with allocation rule x∗ (e1, e2) and payment rule sα (e1, e2) satisfying (12) can be sus-
tained in equilibrium.

Proof. The proof is similar to the proof of Proposition 2, with two small differences. One

is that, without implications, (12) is used rather than (9) and (10). The second difference

is that xc (e1, e2) and sc (e1, e2) are replaced by x∗ (e1, e2) and sα (e1, e2), following the

definition of ANBS and (12).

Hence, we know that agent 1 will not deviate for any δ ∈ [0,1], and we know that

there exists a nonempty range of δ for which agent 2 will also not deviate, which is

given by

δ ≥ sα (e1, e2)
sα (e1, e2)+E

{
b2

(
x∗2 (e1, e2)

)−b2 (e2)
}−E {sα (e1, e2)}

.

Finally, because this has to hold for every realization (e1, e2), we must have that δ ≥
δα(x∗1 , x∗2 ).

From (11), we already know that δ(xc
1, xc

2, sc) is increasing in the payment scheme

sc (e1, e2). Because the payment sα (e1, e2) in (12) is increasing in α, we immediately

obtain that δα(x∗1 , x∗2 ) in (13) is also increasing in α. The interpretation of this relation

is that the threshold discount factor for which Nash-bargaining agreements can be sus-

tained is increasing in the bargaining strength of agent 1. In other words, the scope

for sustainable Nash-bargaining agreements decreases when the upstream agent gets

a larger share of the pie. Likewise, this scope increases when the downstream agent

gains most.

As is standard in the literature on repeated games, we have presented Proposition 3

in terms of a threshold discount factor, above which subsets of agreements can be sus-
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tained in equilibrium. For the practical purpose of this paper, the real issue is, given

some δ, how to construct sustainable agreements, which in this case means how to con-

struct the range of sustainable Nash bargaining agreements. To do so, we first define

the upper bound

αδ(x∗1 , x∗2 )≡ min
(e1,e2)

δE {h(e1, e2)}− (1−δ)
[
b1(e1)−b1

(
x∗1 (e1, e2)

)]
δE {h(e1, e2)}+ (1−δ) [h(e1, e2)]

< 1.

We now present this alternative, more practical, interpretation to Proposition 3.

Proposition 4. For any δ ∈ [0,1) and α ≤ αδ(x∗1 , x∗2 ), the Nash-bargaining agreement
with allocation rule

(
x∗1 (e1, e2), x∗2 (e1, e2)

)
and payment rule sα (e1, e2) satisfying (12) can

be sustained in equilibrium.

Proof. The proof consists of rewriting the equilibrium condition from Proposition 3, us-

ing (12) and (13). Denote the cooperative surplus by h (e1, e2)= b1
(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−
b1 (e1)−b2 (e2), then rewriting and substituting for sα (e1, e2) we obtain

α≤ δE {h(e1, e2)}− (1−δ)
[
b1(e1)−b1

(
x∗1 (e1, e2)

)]
δE {h(e1, e2)}+ (1−δ) [h(e1, e2)]

< 1.

Because this inequality has to hold for every realization (e1, e2), we must have that

α≤αδ(x∗1 , x∗2 ).

This result, which is the converse of Proposition 3, shows how a given discount factor

restricts the subset of sustainable Nash bargaining agreements. Note that αδ(x∗1 , x∗2 ) is

increasing in δ. So, as agents become more patient a larger subset of Nash bargaining

agreements can be sustained. Moreover, αδ(x∗1 , x∗2 ) converges to 1.11 Therefore, when

both agents become perfectly patient this allows the complete range of α ∈ [0,1).

We further illustrate Nash-bargaining agreements in Figure 4, using the example

of Section 4 for two values of α. Given transferable utility, the Pareto frontier is linear

and given by the set of efficient agreements where total utility equals

2
[
p ·bi

(
xc

i

(
eH

1 , eH
2

))
+ (1− p) ·bi

(
xc

i

(
eL

1 , eL
2

))]
.

Using the parameter values of Figure 1, but without specifying p and δ, total utility

equals 2[p ·24+ (1− p) ·16] = 32+16p per period. The disagreement point for agent 1

equals 21+4p per period and the disagreement point for agent 2 equals 9+12p per

period.

11Formally, from substituting δ= 1 in αδ(x∗1 , x∗2 ) we obtain limδ→1α
δ(x∗1 , x∗2 )= E{h(e1,e2)}

E{h(e1,e2)} = 1.
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u1(x1, s)

u2(x2, s)

21+4p
1−δ

32+16p
1−δ

9+12p
1−δ

32+16p
1−δ

a

b
b’

Figure 4: The ANBS for α = 0.5 (point a where the red level curve touches the Pareto
frontier) and α = 0.9 (point b where the blue level curve touches the Pareto frontier),
given p = 0.5. For sufficiently low δ part of the individually rational utility vectors un-
der the Pareto frontier cannot be sustained in equilibrium because agent 2 will deviate
(shaded area). This may shift the ANBS for agreements with high α, as indicated by
point b′ for α= 0.9.

For α = 0.5 the (symmetric) ANBS is the unconstrained optimum in point a of Fig-

ure 4, located at the intersection of the Pareto frontier and a 45◦ line through the dis-

agreement point. For α = 0.9 the ANBS may be constrained if δ is sufficiently low as

indicated by the shaded area in the figure. This shaded area relates to the result in

Proposition 3 that agent 2 deviates for δ< δα(x∗1 , x∗2 ), indicating that the expected util-

ity of the cooperative path to agent 2 is not sufficiently high to prevent deviation for

low δ. Hence, when agent 2 is sufficiently impatient, agreements in the shaded area

cannot be sustained and only the largest α′ such that δα
′
(x∗1 , x∗2 )≤ δ can be implemented.

The interpretation of this situation is that the bargaining strength of upstream agent 1

may be limited by the absence of a supra-national authority that can enforce agree-

ments. For α= 0.9, this implies that the ANBS at point b shifts to the corner solution

at point b′, where the agreement can be sustained. Agent 2’s impatience yields him a

higher payoff at the cost of agent 1.

This impact of impatience illustrates the (lack of) robustness of Nash-bargaining

agreements. Because agent 1 has no incentive to deviate, the most robust ANBS oc-

curs for α = 0 in the sense that this solution brings about the lowest threshold level
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δα(xc
1, xc

2) and is always contained in the sustainable range of Nash bargaining agree-

ments. By (12), when α = 0, agent 1 is only compensated for his forgone benefits but

does not share in the surplus generated by the agreement. This extreme solution in

terms of the distribution of the surplus of cooperation coincides with the downstream

incremental distribution, proposed by Ambec and Sprumont (2002) as a compromise be-

tween two legal doctrines for river sharing. This solution is assessed for robustness in

a static setting by Ambec et al. (2013), and assessed for time-consistency in a dynamic

cooperative game by Beard and McDonald (2007).

In the next subsection we will see that the requirement of renegotiation-proofness

adds even more credibility to this extreme solution.

5.4 Renegotiation-proof equilibria

In this subsection we assess the implications of requiring agreements to satisfy renego-

tiation-proofness. Up till here, we assumed trigger strategies, but these strategies have

an important disadvantage: The agent who carries out the punishment by switching to

non-cooperative play is also punishing himself. This gives the punisher an incentive to

abolish his punishment, and re-negotiate with the defector in order to revert to cooper-

ative play, which Pareto-dominates the non-cooperative path. As a result, punishments

by trigger strategies lack credibility.

In response to this lack of credibility, the key idea of renegotiation-proof equilibria

(RPE) is to construct strategy profiles with punishments that include a non-negative

reward to the punisher. Based on the concept of weakly renegotiation-proof equilibrium
proposed by Farrell and Maskin (1989), our following result provides additional sup-

port for solutions in which the downstream agent gains most. Appendix B contains

additional background information on RPE as well as an extensive proof of Proposi-

tion 5.

We will first summarize the results of Appendix B before stating our main results.

Since we are interested in Pareto efficient solutions, we focus, without loss of generality,

on sustaining Nash bargaining agreements in RPE. In order to sustain the Nash bar-

gaining agreement α0 ∈ [0,1), we introduce two punishment paths, one for each agent.

The punishment path for agent 1 corresponds to the Nash bargaining agreement α1 = 0

in every period, a path on which agent 1 has no incentive to deviate. The punishment

path for agent 2 is somewhat more involved. In the first period of this path, agent 1

does not deliver any water and agent 2 pays a penalty that is equal to the present value

of the entire expected net surplus of all future periods from the second period onwards,
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which is independent of the current realization. From the second period onward, we

switch to the Nash bargaining agreement α2 = 0 in every period, which equals agent 1’s

punishment path (we postpone an explanation). For the moment, agent 2’s punishment

path coincides with agent 1’s best RPE path. Therefore, agent 2’s punishment path is

Pareto efficient from the second period onwards with unavoidable efficiency losses only

in the first period.

In our next result, we state the theoretically largest set of Pareto efficient RPE Nash

bargaining agreements that are derived in Appendix B.

Proposition 5. For any α0 ∈ [0,1) and δ ≥ δα
0
(x∗1 , x∗2 ), the Nash bargaining agreement

with allocation rule
(
x∗1 (e1, e2), x∗2 (e1, e2)

)
and payment rule sα

0
(e1, e2) satisfying (12)

can be sustained in weakly renegotiation-proof equilibrium.

Corollary 2. For any δ ∈ [0,1) and α0 ≤αδ(x∗1 , x∗2 ), the Nash bargaining agreement with
allocation rule

(
x∗1 (e1, e2), x∗2 (e1, e2)

)
and payment rule sα

0
(e1, e2) satisfying (12) can be

sustained in weakly renegotiation-proof equilibrium.

The positive news is that weakly renegotiation-proof equilibria exist and that the

underlying strategies can replace trigger strategies. The most striking part of this re-

sult is that imposing a more restrictive equilibrium concept does not result in a higher

threshold level for the discount factor or a reduced upper bound on agents 1’s bargain-

ing weight. In Appendix B we show that agent 2 obtains exactly his minmax payoff in

his punishment path. Since this is the same payoff as under the trigger strategies, both

strategies employed as punishment strategies are payoff-equivalent to agent 2. As be-

fore, only agent 2 has an incentive to deviate. Given the payoff-equivalent punishments

to agent 2, this must result in the same thresholds as derived under trigger strategies.

In Appendix B we also derive that δα(x∗1 , x∗2 ) is increasing in α so that the threshold

discount factor for which RPE can be sustained is increasing in the payment sα (e1, e2).

Analogous to the interpretation of Proposition 3 on Nash-bargaining agreements, the

most robust agreement occurs for α0 = 0 in the sense that this solution brings about

the lowest threshold level δα(x∗1 , x∗2 ) and thereby maximizes the scope for sustainable

agreements. As mentioned in the previous section, for α= 0 agent 1 is only compensated

for his forgone benefits, while agent 2 receives the complete surplus of cooperation.

Remark 2. We close this section with several remarks on the implications of the penalty

in player 2’s punishment path. Note that agent 2’s worst RPE payoff consists of his

expected payoff E {b2 (e2)} minus a penalty in the first period, which is below his min-

max value, followed by his expected maximum RPE payoff in all future periods, which
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is above his minmax value. Although we objected against payoffs below the minmax

value in the last paragraph of Section 5.1, this argument does not apply here because,

by paying the penalty, agent 2 invests in restoring the cooperation, which might be

interpreted as either to repent and show remorse, or to regain agent 1’s trust.

Furthermore, the penalty equals the present value of the entire expected net surplus

of all future periods from the second period onwards, which can be quite substantial.

Even though agent 1 receives his minmax payoff in all future periods from the second

period onwards, this agent receives almost the entire present value of the overall net

surplus as the penalty in the first period (he only misses out on the net surplus of

the first period, in which he only receives E {b1 (e1)}). Theoretically, such a substantial

penalty is fine, but in practice it might not be realistic.

For practical purposes, one might resort to weights α1 < α0 < α2 that are closer

together and construct paths similar as described above with one exception: the pun-

ishment path for agent 2 specifies (e1, e2) and some small penalty in the first period,

followed by the Nash bargaining agreement α2 for several periods before it continues

forever with Nash bargaining agreement α0 (instead of α1).12 Then, as before, agent 1

has no incentive to deviate and agent 2 should be given enough incentives to undergo

any of these three paths. We leave this option for future research.

The main message of this section is that Pareto efficient weakly renegotiation-proof

equilibria can be derived and that we characterized its theoretically largest set, which

happens to coincide with the set of sustainable Nash bargaining agreements in SPE.

6 Conclusion

This paper is the first to systematically assess the implications of repeated interac-

tion for the stability of river sharing agreements between riparian neighbors. Our Folk

Theorem for river sharing problems in Proposition 2, further refined in Propositions 3

and 5, provides clear conditions for sustainable agreements in terms of the distribu-

tion of the gains from cooperation. These conditions are stated in terms of minimal

thresholds on the discount factor. For the practical purpose of this paper, the real is-

sue is, given some δ, how to construct sustainable agreements. The relevance of this

issue is illustrated in the example of Section 4 and further demonstrated in Proposi-

tion 4 and Corollary 2 where ranges of sustainable Nash bargaining agreements were

12This construction mimics the Pareto efficient RPE in Van Damme (1989) for the infinitely repeated
Prisoners’ Dilemma, in which both agents return to cooperate forever after undergoing their punishment
for several periods, in each agent’s punishment.
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derived. Remarkable is that the set of sustainable Nash bargaining agreements un-

der subgame perfect equilibrium can also be sustained by the more restrictive weakly

renegotiation-proof equilibrium.

Repeated interaction tends to favor the downstream agent, which may seem counter-

intuitive at first, but may explain empirical observations on downstream states manag-

ing to negotiate a substantial share of upstream river water. Our results provide non-

cooperative support for solutions that assign larger shares of the pie to downstream

agents. At the lowest possible threshold on the discount factor, only the downstream in-

cremental distribution, proposed by Ambec and Sprumont (2002), that assigns all gains

from cooperation to downstream agents can be sustained and this distribution remains

sustainable for higher discount factors.

Finally, the model developed in this paper offers ample scope for extensions and

applications. One obvious extension is to allow for more general river geographies as

in Khmelnitskaya (2010), Ansink and Houba (2012), or Van den Brink et al. (2012).

One obvious application is to repeat the analysis of the Bishkek Treaty in the Aral

Sea basin by Ambec et al. (2013) in the dynamic setting of this paper. Their static

analysis showed that actual payments under this agreement approximate the payment

rule induced by the downstream incremental distribution. In a static setting, this result

implies instability. When considering repeated interaction, however, the results in our

paper suggest that this payment rule may actually be well-chosen.
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A On minmax values

In this appendix, we derive the minmax values for each agent which proves Proposi-

tion 1, discuss the implications of assuming increasing benefit functions and describe

how to derive minmax values in the general case with more than two agents.

A.1 Proof of Proposition 1

Since the infinitely-repeated river sharing problem is an infinitely-repeated sequential

game, the characterization of minmax values in Wen (2002) is appropriate. The order

of moves is trivial in the river sharing problem: agent 1 moves before agent 2. Each

minmax value is solved recursively and backward.

First, for any realization (e1, e2), agent 2’s best response to any strategy x1(e1, e2)

by agent 1 is x2 = e1+ e2−x1(e1, e2) due to the increasing benefit function. The strategy

of agent 1 that minmaxes agent 2 is therefore given by minx1∈[0,e1] b2(e1 + e2 − x1). This

implies x1(e1, e2)= e1. So, b2 (e2) is agent 2’s minmax value and it is equal to

min
x1∈[0,e1]

max
x2∈[0,e1+e2−x1]

b2(x2). (14)

Second, for any realization (e1, e2) and agent 1’s strategy x1, any strategy x2 ∈ [0, e1 +
e2 − x1] does not affect agent 1’s benefit function b1(x1), which implies that agent 2 can

not punish agent 1. So, in deriving agent 1’s minmax value agent 1 maximizes first over

x1 taking into account the minmax response of agent 2. Formally,

max
x1∈[0,e1]

min
x2∈[0,e1+e2−x1]

b1(x1), (15)

which yields minmax value b1 (e1) because b1 is increasing. This completes the deriva-

tion of minmax values.

The implication for our analysis of the infinitely-repeated river sharing game is that

forever playing the Nash equilibrium is not only the worst punishment for both agents

but it is also a credible punishment in terms of the SPE.

A.2 Remark on increasing benefit functions

In the above derivation of minmax values, we invoked that the benefit functions are in-

creasing. We will assess the importance of this assumption for our main results by de-

termining the minmax values when we allow for satiation. Recall that
[
e1, e1

] ×[
e2, e2

]
is the domain of the probability distribution. Denote xS

i as agent i’s satiation point. By
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strict concavity, benefit function bi increases on the interval
[
0, xS

i

)
and decreases for

xi > xS
i . We will not investigate all possible cases, but rather concentrate on the case

xS
1 < e1 and xS

2 > e2 for explanatory simplicity.13 Assumption 1 on water scarcity further

imposes x∗1 (e1, e2)< xS
1 for all realizations (e1, e2). Then, for any realization (e1, e2), the

unique Nash equilibrium features x̂N
1 (e1, e2)= xS

1 and

x̂N
2 (e1, e2)=min

{
xS

2 , e1 + e2 − xS
1

}
= e1 + e2 − xS

1 > e2.

Obviously, x∗2 (e1, e2)> x̂N
2 (e1, e2).

First, in order to derive agent 1’s minmax value we again apply (15) and obtain that

this agent’s minmax value is b1
(
xS

1
) > b1 (e1). Similar to the case without satiation,

agent 1’s minmax value is supported by the Nash equilibrium and only quantitatively

we have to deal with the difference b1
(
xS

1
)> b1 (e1). The implication for our analysis of

the infinitely-repeated river sharing game is that forever playing the Nash equilibrium

remains available as the worst punishment for agent 1 that is also credible.

Second, agent 2’s minmax value is again derived from (14) and we obtain that

x1 = e1 > xS
1 and x2 =min

{
xS

2 , e2

}
= e2 < x̂N

2 (e1, e2)

support this agent’s minmax value b2 (e2) < b2
(
x̂N

2 (e1, e2)
)
. So, agent 2’s minmax value

remains similar to the case without satiation, but it is no longer supported by the Nash

equilibrium. In punishing agent 2, agent 1 incurs opportunity costs b1 (e1)−b1
(
xS

1
)> 0

due to overconsumption. Care should be taken in designing punishments if agent 1

would choose not to to minmax agent 2. This can be seen as a standard exercise in

repeated games that we forgo.

Summarizing, the restriction to increasing benefit functions is technically conve-

nient because it avoids some technicalities in sustaining credible punishments and it

allows to consider the simple class of trigger strategies in sustaining SPE. Increasing

benefit functions are also notationally convenient, because all minmax values become

bi (e i).

13Note that for xS
1 ∈ [

e1, e1
]
, all realizations e1 ≤ xS

1 are equivalent to non-satiation and, similar, all
e1 > xS

1 correspond to satiation. For xS
2 ∈ [

e2, e2
]
, all realizations e2 such that e1 + e2 − xS

1 ≤ xS
2 are

equivalent to non-satiation and otherwise we have satiation and no incentives for agent 2 to cooperate,
which is trivial. For completeness, xS

1 > e1 corresponds to non-satiation and xS
2 < e2 implies agent 2 also

has no incentives to cooperate, violating Assumption 1 on water scarcity.
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A.3 Remark on the general case

Finally, we discuss the minmax values for the general case with n agents and more

realistic river geographies (Ansink and Houba, 2012; Van den Brink et al., 2012). Then,

applying the characterization of minmax values in Wen (2002) to river sharing prob-

lems implies that only upstream agents can minimize some agent’s payoff while all

downstream agents (and agents on disjoint tributaries) cannot affect this agent. Con-

sider some agent i = 1, . . . ,n, denote the set of all of agent i’s upstream agents as P i,

and denote the vector of these agents’ water uses as
(
x j

)
j∈P i . Then, (14) becomes

min
(x j) j∈Pi :Σ j∈Pi x j≤Σ j∈Pi e j

max
xi∈[0,e i+Σ j∈Pi (e j−x j)]

bi(xi).

Note that for any most-upstream agent i that cannot receive inflow from any other

agent, the set P i =; and, consequently, this agent’s minmax value is his Nash equilib-

rium benefit bi
(
xN

i (e1, . . . , en)
)
, where xN

i (e1, . . . , en)= e i denotes agent i’s Nash equilib-

rium water use. Again, the worst punishment for the most-upstream agents is the Nash

equilibrium, which is also credible. For all other agents, under mild assumptions, their

minmax values are bi (e i) ≤ bi
(
xN

i (e1, . . . , en)
)
. To be specific, in case agent i’s satiation

water use xS
i is larger than the upper bound of his own stochastic resources, denoted ei,

then agent i’s minmax value is bi (e i), for similar reasons as before.

Summarizing, the restriction to two agents is, from a conceptual point of view, qual-

itatively similar to the case of more than two agents while it requires less notation and

is more insightful.
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B On renegotiation-proof equilibria

In this appendix, we derive the subset of weakly renegotiation-proof equilibria (RPE),

as defined in Farrell and Maskin (1989), that are also Pareto efficient. Before doing so,

we first summarize some key ideas from the literature on repeated normal-form games

that we need to modify in order to derive our results.

B.1 Repeated normal-form games and RPE

For standard infinitely-repeated games, Abreu (1988) showed that in n-player games

it suffices to consider n+ 1 infinite paths of actions in the stage game. These paths

are often denoted as π0,π1, . . . ,πn, a notation that we will follow. Path π0 represents

the intended (subgame-perfect) equilibrium path and path πi, i = 1, . . . ,n, represents

player i’s worst (subgame-perfect) equilibrium path. Sustaining these n+1 paths in

equilibrium is based upon the following key ideas: First, the worst equilibrium path

can be used as a credible punishment to sustain any equilibrium path π0. If the worst

equilibrium path cannot sustain π0 as an equilibrium, then there does not exist any

equilibrium punishment strategy that can sustain π0. Second, if player i deviates from

any of these paths, including πi, then all players immediately switch to playing path

πi, an idea called equilibrium switching. So, if player i does not comply to πi, πi will

be started over and over again. Of course, in equilibrium player i is given sufficient

incentives to follow πi and such non-compliance will not occur.

Trigger strategies, which we have used so far in the main text have a very simple

structure, namely π1 = . . . = πn describe to always play the same Nash equilibrium. If

this Nash equilibrium supports each player’s minmax value then it becomes the cred-

ible worst punishment. Trigger strategies are criticized, however, because the player

who carries out the punishment of a deviating player also hurts himself. For two-player

games, this gives the punisher an incentive to forgive the defector and continue play-

ing π0 instead, but then π0 becomes unsustainable because each player knows punish-

ments, which are supposed to make π0 stable, are never carried out.

In response to this criticism, the key idea of RPE is to construct punishments that

include a non-negative reward to the punisher. A weakly renegotiation-proof equilib-

rium is an SPE that additionally requires that for all player j’s, j 6= i, the equilibrium

payoffs associated with πi are larger or equal to player j’s payoffs of following π0. Also,

along each path the equilibrium payoffs should be non-decreasing for reasons that we

forgo. It gives each path a stick and carrot flavor.
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B.2 Proof of Proposition 5

We first focus on characterizing the π1 and π2 (initially imposing π0 = π1) to sustain

RPEs and then extend the analysis to characterize all Pareto efficient π0 that can be

supported by π1 and π2 as RPE. We denote agent i’s minimum expected RPE payoff

(before the realization of river flow) as mi, and his maximum expected RPE payoff as

Mi. We must derive these RPE payoffs in characterizing π1 and π2.

The results for sustainable individually-rational agreements in Section 5.2 suggest

the following very convenient punishment path for agent 1 that gives agent 2 the high-

est expected payoff attainable in the set of individually-rational expected payoff vectors

(V1,V2):

• π1 : In every period, x1 (e1, e2)= x∗ (e1, e2) and s1 (e1, e2)= b1 (e1)−b1
(
x∗1 (e1, e2)

)
.

For similar reasons as before, agent 1 is kept to his minmax value E {b1 (e1)} and has

no incentive to deviate for all δ ∈ [0,1]. Under the hypothesis that δ is sufficiently large

to sustain π1 as agent 1’s worst punishment in the RPE we try to construct, it must be

that

m1 = E {b1 (e1)}
1−δ

,

M2 = E
{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)}−E {b1 (e1)}
1−δ

.

Note that M2 can be rewritten as
( 1

1−δ
)·E {b2 (e2)} plus the maximal net expected surplus

from cooperation.

If agent 2 deviates by not paying s1 (e1, e2), then he will be punished by an imme-

diate switch to the yet unknown path π2 with unknown m2 as his worst RPE payoff.

Agent 2 will comply to every period of π2 if the following equilibrium condition holds for

any realization (e1, e2):

−s1 (e1, e2)+δM2 ≥ 0+δm2. (16)

This condition reveals the minimal difference between M2 and m2, that we will use

below. Under the hypothesis that π1, m1 and M2 are part of the RPE we are after, we

will now characterize π2, m2, M1 and the threshold on δ that sustain π1 and π2 as an

RPE.

As discussed above, the path π2 needs a stick and carrot flavor. The stick is a non-

negative monetary payment, denoted p (e1, e2)≥ 0, that agent 2 has to pay to agent 1 in

the first period of the infinite path π2 in case of realization (e1, e2). Agent i’s expected

30



continuation RPE payoff from the second period of π2 onwards is denoted by vi, where

vi ∈ [mi, Mi]. Given realization (e1, e2) and that π2 will be restarted next period if

agent 2 does not pay, which yields him his worst continuation RPE payoff of m2, we

obtain the following equilibrium condition for agent 2 to comply to the first period of π2:

−p (e1, e2)+δv2 ≥ 0+δm2.

This condition reveals a trade-off between the stick p (e1, e2) and the carrot v2, larger

sticks requiring larger carrots. From rewriting and applying v2 ≤ M2, we obtain

p (e1, e2)≤ δ (v2 −m2)≤ δ (M2 −m2) ,

which resembles (16). The continuation payoff δm2 can be attained by equating the

first inequality, and the maximal RPE payment that implements δm2 is

p (e1, e2)= δ (M2 −m2) , (17)

which makes p (e1, e2) independent of realization (e1, e2). Setting p (e1, e2)= δ (M2 −m2)
implies that, from the second period of π2, we must follow π1, otherwise agent 2 cannot

attain M2 and the equilibrium condition (16) would fail. So, the harshest stick available

is followed by the sweetest carrot available. To avoid any misunderstanding, s1 (e1, e2)=
p (e1, e2) also satisfies agent 2’s equilibrium condition (16) and this agent will comply to

paying p (e1, e2) to agent 1.

In order to complete the characterization of π2, we also have to characterize the

allocation x2 (e1, e2) in the first period of π2. The equilibrium condition for agent 1 to

comply to x2
1 (e1, e2), for every realization (e1, e2), is given by

b1
(
x2

1 (e1, e2)
)+ p (e1, e2)+δm1 ≥ b1 (e1)+δm1, (18)

where p (e1, e2)+δm1 is consistent with π2. Given the non-negativity of p (e1, e2), we

have that x2
1 (e1, e2)= e1 trivially satisfies this equilibrium condition for all realizations

of (e1, e2) for all δ ∈ [0,1). By definition of m2, p (e1, e2) and π2, we have that m2 is the
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minimal RPE payoff that satisfies the equilibrium conditions:

m2 = min
x2(e1,e2)

E
{
b2

(
x2

2 (e1, e2)
)− p (e1, e2)+δM2

}
, s.t. (16), (17) and (18),

= min
x2(e1,e2)

E
{
b2

(
x2

2 (e1, e2)
)}+δm2, s.t. (16) and (18),

= E {b2 (e2)}+δm2, s.t. (16)

= E {b2 (e2)}
1−δ

, s.t. (16).

Agent 2 obtains exactly his minmax payoff in his worst RPE. Note, however, that here

it consists of his expected payoff E {b2 (e2)}− p (e1, e2) in the first period, which is below

his minmax value, followed by his expected maximum RPE payoff in all future periods,

which is above his minmax value. Since this is the same payoff as under the trigger

strategies, both strategies punishments are payoff-equivalent to agent 2.

Agent 1 does not have an incentive to deviate from x2 (e1, e2) = (e1, e2) as his cur-

rent period utility will be lower (less benefit from water use and a foregone payment)

followed by his worst RPE from the next period onward. Moreover, note that the dif-

ference M2 − m2 is equal to the present value of the expected net surplus of efficient

cooperation and, therefore,

p (e1, e2)= δ
E

{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−b1 (e1)−b2(e2)
}

1−δ
. (19)

Note that this transfer is equal to the present value of the entire expected net surplus

of all future periods from the second period onwards. Theoretically, this is fine, but in

practice it might not be applicable because it can be quite a substantial payment.

So, under the hypothesis that π1, m1 and M2 are part of the RPE, we have charac-

terized the following punishment path for agent 2:

• π2 : In the first period of π2, x2 (e1, e2) = (e1, e2) and p (e1, e2) is given by (19). In

the second period of π2 : Switch to π1.

Finally, we have to check whether our hypothesis holds. For realization (e1, e2) and

s1 (e1, e2)= p (e1, e2), (16) can be rewritten as

(1−δ)
[
b1 (e1)−b1

(
x∗1 (e1, e2)

)]≤ δ
[
E

{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−b1 (e1)−b2(e2)
}]

.

Because both terms between square brackets are positive, this conditions holds for suf-

ficiently large δ < 1. Since this condition has to hold for all realizations (e1, e2), we
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obtain the threshold

δ≥ δ∗ ≡max
e1,e2

b1 (e1)−b1
(
x∗1 (e1, e2)

)
b1 (e1)−b1

(
x∗1 (e1, e2)

)+E
{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−b1 (e1)−b2(e2)
} .

This thresholds corresponds to the lowest threshold δ
(
xc

1, xc
2, sc) to sustain individually-

rational agreements in SPE that we derived in Section 5.2. Because the denomina-

tor is larger than the numerator, we have δ∗ < 1. Its maximum level is attained for

maxe1,e2

[
b1 (e1)−b1

(
x∗1 (e1, e2)

)]
. This is the realization (e1, e2) where the payment to

agent 1 is maximal and, therefore, the temptation for agent 1 to defect is highest. This

establishes the threshold for which δ is sufficiently large to sustain the pair of paths π1

and π2 as the agents’ worst possible punishments in any RPE.

For completeness,

M1 = E {b1 (e1)+ p (e1, e2)}+δm1,

= (1−δ)E {b1 (e1)}+δ
[
E

{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)}−E {b2 (e2)}
]

1−δ

< E
{
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)}−E {b2 (e2)}
1−δ

,

where the last expression is agent 1’s utopia payoff in the set of individually-rational

payoff vectors. As δ goes to 1, the entire set can be sustained as RPE payoffs. Note

that, due to the sequential setting, agent 1’s best RPE payoff M1 is always less than his

utopia payoff, but agent 2 has an RPE in which he can attain his utopia payoff.

We now extend the analysis to characterize the largest set of Pareto efficient paths

π0 that can be supported by π1 and π2 as an RPE. For parameter α ∈ [0,1), we con-

sider the following intended equilibrium path in order to support ANBS with payment

rule (12):

• π0(α) : In every period, x0 (e1, e2)= x∗ (e1, e2) and sα
0
(e1, e2)= b1 (e1)−b1

(
x∗1 (e1, e2)

)+
α

[
b1

(
x∗1 (e1, e2)

)+b2
(
x∗2 (e1, e2)

)−b1(e1)−b2(e2)
]
.

This path selects the efficient allocation combined with a payment that depends on

parameter α ∈ [0,1), which distributes the cooperative surplus. Note that the boundary

α = 1 is not included, because then π0 Pareto-dominates π2, which is not allowed in

RPE.

Figure 5 illustrates the range of ex ante expected values associated with π0 (α), π1

and π2 for parameter values as introduced in Figure 1. Note that π2 is Pareto inefficient

because (b1 (e1) ,b2 (e)) determines the first period’s payoff. Because of this inefficiency,
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the range of Pareto efficient RPEs does not satisfy the stronger concept of Strong Perfect

Equilibrium in e.g. Rubinstein (1980), in which all three paths of
(
π0 (α) ,π1,π2) have to

be Pareto efficient.

V1

V2

(m1, M2)

(M1,m2)
r

230 248

150

170

(
E {b1(x1)} ,E {b2(e1 + e2 − x1)}

)

Figure 5: The range of ex ante expected values associated with π0 (α), π1 and π2

is shown for parameter values as used in Figure 1. The set of π0(α) is the thick
blue segment on the Pareto frontier from payoff pair (m1, M2) up to some payoff
pair r in south-east direction, depending on δ; The red curve is the parametric equa-
tion

(
E {b1(x1)} ,E {b2(e1 + e2 − x1)}

)
, assuming without loss of generality x1

(
eH

1 , eH
2

) =
x1

(
eL

1 , eL
2
)+2. This curve determines both the location of the Pareto frontier as well

as the location of payoff pair (m1, M2). We obtain (m1, M2) = (230,170), (M1,m2) =
(248,150), and r = (245,155).

The final step of this appendix is to check for which α and δ do
(
π0 (α) ,π1,π2) form an

RPE. By construction, π0 (α) constitutes a Pareto efficient individually-rational agree-

ment. For similar reasons as before, agent 1 has no incentive to deviate for all δ ∈ [0,1].

Therefore, we focus on deterring deviations by agent 2, which would trigger his worst

RPE path π2. Denote agent i’s ex ante expected values of the cooperative path π0(α) as

V c
i (α), i = 1,2. For realization (e1, e2), agent 2 has no incentive to deviate if

−sα
0
(e1, e2)+δV c

2 (α)≥ 0+δm2 ⇐⇒ sα
0
(e1, e2)≤ δ

(
V c

2 (α)−m2
)
.

By substituting the expressions for δV c
2 (α) and m2, we obtain

sα
0
(e1, e2)+ δ

1−δ
E

{
sα

0
(e1, e2)

}
≤ δ

1−δ

[
E

{
b2

(
x∗2 (e1, e2)

)}−E {b2 (e2)}
]
,
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which resembles (5).

We do not directly substitute for sα
0
(e1, e2) in order to avoid a messy condition.

Instead, we solve for δ to obtain that agent 2 has no incentive to deviate, for all realiza-

tions (e1, e2), if:

δ≥ δα(x∗1 , x∗2 )≡max
e1,e2

sα
0
(e1, e2)

sα0 (e1, e2)+E
{
b2

(
x∗2 (e1, e2)

)−b2 (e2)
}−E

{
sα0 (e1, e2)

} ,

with sα
0
(e1, e2) according to π0. This establishes the threshold δα(x∗1 , x∗2 ) for which δ

is sufficiently large that
(
π0(α),π1,π2) forms an RPE. Because the payment rule is the

ANBS payment rule in (12), this threshold coincides with the ANBS threshold (13).

Because sα
0
(e1, e2) is increasing in α, also its expectation E

{
sα

0
(e1, e2)

}
is increas-

ing in α. As a result, it is straightforward to verify that δα(x∗1 , x∗2 ) is increasing in α.

The interpretation of this relation is that the threshold discount factor for which RPE

can be sustained is increasing in the payment within the bounds set by π0 (α). This

interpretation corresponds to the observation made in Section 5.3 with respect to the

bargaining strength of agent 1.

Finally, in the limit when δ goes to 1, division by 1−δ causes a mathematical problem

in deriving limits of the mi ’s and Mi ’s. To overcome this problem, the literature on

repeated games works with normalized discounted payoffs, i.e. (1−δ)
∑∞

t=0δ
tut, where

ut is the payoff in period t. As δ goes to 1, the limit of these normalized discounted

payoffs is well defined. In addition, optimal strategies are unaffected by this change

in payoffs and normalized discounted payoffs converge to the limiting average of the

stream of undiscounted payoffs, i.e. limT→∞ 1
T

∑T
t=0 ut. By taking the limit δ goes to 1 of

the normalized discounted payoffs of the renegotiation-proof equilibria, we obtain that

(M1,m2) moves straight east to the Pareto frontier in Figure 5, where it coincides with

payoff-pair r in the limit at agent 1’s utopia payoff. The limit point cannot be sustained

for δ ∈ [0,1).
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