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1 Introduction

Rising environmental concerns, in particular on climate change, have triggered

numerous policy initiatives aimed at limiting further damage. To achieve this

objective the invention and implementation of cleaner production technologies is

vital (Goulder and Schneider 1999, Goulder and Mathai 2000, Gerlagh 2008). En-

vironmental innovation, however, creates externalities that may require policy ac-

tion to provide sufficient incentives for research and development (R&D) directed

at exploring new technologies as well as for the adoption of greener production

methods.

Although environmental policies may be crucial to avoid the socio-economic

cost of environmental disasters, economic policy is also concerned not to threaten

competitiveness of the business sector. Innovation has long been understood to be

an essential driver of such competitiveness (Solow 1957, Griliches 1979, Griliches

and Mairesse 1984). Thus, in principle any environmental policy should be de-

signed such that it avoids a crowding out of other inventive efforts in the affected

firms. In other words, the role of opportunity cost of environmental regulation

ought to be taken into account as "[...] any new environmental R&D that comes

at the expense of other R&D investment will dampen the cost-savings potential of

induced technological change" (Popp and Newell 2012, p. 980).

Environmental regulation, especially command-and-control regulation, has been

particularly suspect to being a source of crowding out effects. Regulated firms

are often obliged to devote substantial financial and human resources to fulfilling

the given requirements. The resources allocated to compliance efforts may then

simply lack for other innovation projects and firms may be forced to scale down

their innovative activities at least in the short-term. The review of the existing

literature shows that only little empirical work has tried to assess the existence

or even the magnitude of a potential crowding out of policy-induced technologi-

cal change. With few exceptions such as Roediger-Schluga (2003) and Popp and

Newell (2012), firm-level analyzes on this issue are basically non-existent.

This study therefore aims to contribute to the understanding of potential side-

effects of environmental regulation at the firm-level. In particular, we study the ef-
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fects of regulation-induced environmental technology adoption on the firms’ other

innovative activities. A crowding out is thus understood as a displacement of

productive inventive efforts by regulation-induced spending for pollution control

technology, regardless whether this is due to own (environmental) R&D or the ac-

quisition of abatement technology. We employ econometric treatment effects mod-

els as well as instrumental variable regressions for estimating the treatment effect

on the treated. A treatment in our case means that regulation had induced these

firms to develop, adopt or implement environmental-friendly technologies. Firm-

level survey data covering the period 2006 to 2008 allows us to assess whether

environmental policy has been effective for the individual firm.

What is more, environmental policy programs often include public R&D sup-

port, for instance, via direct subsidies (Newell 2007, de Coninck, Fischer, Newell

and Ueno 2008). In the following study, we therefore consider subsidies that trig-

gered environmental technology implementation as an (additional) treatment. In

the context of this paper, inducing increased efforts on environmental R&D via

subsidies may come at the cost of other innovative efforts if public as well as pri-

vate R&D funding is diverted away from other areas. On the other hand, it can be

argued that subsidies may be needed to prevent a potential crowding out, espe-

cially in firms with constrained access to financial resources.

This study further adds to previous research as we draw from representative

data covering small and medium-sized firms as well as large firms in Germany

active in a broad range of industries. Germany provides an ideal testing ground for

our analysis as it has been rather active in implementing environmental regulation

and subsidy schemes to stimulate environmental technology.

The article proceeds as follows. The next section provides a brief overview of

related literature and German laws and regulations relevant for our study. Section

3 sets out our empirical strategy. Section 4 describes the data from the German

Community Innovation Survey (CIS) used for the empirical analysis. Results will

be presented in section 5 before section 7 concludes.
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2 Previous Research and Contribution

Given the market failures associated with environmental innovations1, many gov-

ernments in industrialized economies attempt to correct them by using policy

instruments. Besides empirical evidence for price-induced environmental inno-

vation2, the efficacy of policy for inducing green technological change has been

stressed: "In general, policy, rather than prices, appears to be the main driver of

innovation in these technologies" (Johnstone, Haščič and Popp 2010, p.146).

A detailed overview of the existing policy tools and their potential effects on

firm-level activities is beyond the scope of this article3 as our focus is on whether

policy-induced environmental technology invention and adoption come at the cost

of other inventive efforts.

A crowding out may question the premise of cost-free controls and may lead

to competitiveness losses at the firm, industry and national level. Despite the pol-

icy relevance of these considerations, only very limited empirical evidence exists,

especially at the firm-level. Although, for instance, Lanjouw and Mody (1996)

who study patent applications find that environmental regulation stimulates re-

lated innovations, they cannot rule out that there had been a crowding out, i.e.

that regulated firms had been even more innovative in the absence of regulation.

As one of the first empirical contributions, Gray and Shadbegian (1998) study

directly a crowding out effect of pollution control spending on conventional (i.e.

other) investments in the pulp and paper sector. They find that a Dollar spent

for abatement investments reduces any other productive investment spending by

1.88 Dollars. Roediger-Schluga (2003) uses firm-level survey data to descriptively

study how Austrian Volatile Organic Compound (VOC) emission standards affect

competitiveness in a small sample of selected Austrian manufacturers and whether

compliance-stimulated innovation crowded out other, more productive R&D. He

1"Pollution creates a negative externality, and so the invisible hand allows too much of it.
Technology creates positive externalities, and so the invisible hand produces too little of it" (Popp,
Newell and Jaffe 2009, p.3).

2For instance Newell, Jaffe and Stavins (1999) find that increasing energy prices are asso-
ciated with new energy-saving technology for air conditioners and Popp (2002) observes patent
applications for energy-saving technologies to respond to increasing energy prices.

3See Jaffe, Newell and Stavins (2002) for a review of the literature. Rennings and Rexhäuser
(2011) provide an overview of policies in place in Germany since the 1960s.
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finds neither unequivocally negative nor positive effects on competitiveness of

manufacturers of regulated products. He concludes that some "firms devoted al-

most their entire R&D budget to developing compliant products" which suggests

that - at least to some extent - compliance efforts may have displaced or postponed

other R&D projects.

Popp and Newell (2012) is another notable exception studying whether new

energy R&D crowds out other types of R&D spending. First, they study the effect

of economy-wide increases in energy R&D on total R&D spending at the industry

level and find little evidence of a crowding out across sectors. Secondly, at the

firm level, they use patent data to examine changes in the research portfolios of

companies engaged in alternative energy R&D and find that green patenting does

crowd out other types of patenting. Yet, their results also suggest a high social

value of the former as alternative energy patents are cited more frequently. Since

the sample of firms in Popp and Newell (2012) consists of large, publicly traded

and patent-active firms, no conclusions can be drawn for small and medium-sized

firms, which are more likely to be affected by financing constraints for R&D4.

Especially in financially constrained firms the amount of resources allocated to

environmental technology reduces those resources available for other innovation

projects. If firms additionally have to re-allocate financial resources to compliance

efforts due to regulations and standards, research budgets, especially of long-term

research projects in non-environmental-related areas, may be scaled-down. Thus,

although environmental technologies are socially very valuable, a crowding out of

other fundamental R&D may dampen the social benefits to environmental regula-

tion. When implementing environmental regulation that aims at stimulating envi-

ronmental technology at the firm-level, it seems crucial to think about sources of

funding for such activities, for instance, via subsidy schemes. Fischer and Newell

(2004) compare R&D subsidies and other policies aimed at reducing carbon emis-

sions in the U.S. electricity sector. They conclude, however, that R&D subsidies are

the least effective policy tool for reducing emissions. Yet, they do not consider so-

cial returns from knowledge spillovers that justify R&D subsidies and do not take

4See for instance Czarnitzki and Hottenrott (2011) for recent empirical evidence for Germany.
They show that financial constraints for R&D decrease monotonically with firm size, while this is
not the case for investments in physical assets for which financial constraints are less binding.
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into account the use of a policy mix in which subsidies are only part of the policy

spectrum.

Few other studies focus on the industry or national level. Jaffe and Palmer

(1997) find ambiguous evidence for regulation-induced innovation at the industry

level. More precisely, they find pollution abatement costs expenditure (PACE) as a

proxy of regulatory stringency to have no significant impact on patent applications,

indicating a re-direction rather than a crowding out of patents as a measure for

innovation output. On the other hand, they find a positive impact of PACE on firms’

R&D expenditures controlling for industry specific effects. Similarly, Brunnermeier

and Cohen (2003) find PACE to have a significant positive impact on firms’ overall

patent applications.

The main reason for little empirical evidence at the firm-level may be related

to measurement problems due to a lack of sufficiently disaggregated data and

the difficulties in distinguishing regulation-induced and other innovative activi-

ties. The survey-based data set used for the following analysis has several features

that address these issues. The major advantage is that we can identify firms that

- as a reaction to the policy in place - implemented some sort of environmental

technology. Such technologies comprise, for instance, ways to reduce energy and

material consumption as well as waste, improved recycling methods and measures

to limit air, soil and water pollution. In other words, rather than using a proxy for

the stringency of environmental regulation we derive indicators from a survey that

allow us to identify directly whether regulation had indeed induced environment-

friendly technological changes in a particular firm. This does, but not exclusively,

cover cases in which firms developed the new technology themselves in addition

to firms that implemented environmental technology developed by others. Taking

that aspect into account is crucial as the diffusion of environmental technology

strongly depends on the adoption of existing technologies. Although it can be

argued that the former case of technology development is more resource inten-

sive and hence more likely to crowd-out other R&D, it should also be considered

that the implementation of these technologies in other firms may require criti-

cal amounts of human and financial resources. Such technologies not only need

to be acquired, but they also have to be incorporated into production processes,
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potentially requiring adjustment to and alignment with already implemented tech-

nologies. Moreover, new technologies usually require training of employees. Our

approach that takes the costs related to environmental innovation at the firm level

into account accommodates for the fact that compliance costs (which define the

impact of the environmental regulation) are highly firm-specific.

2.1 Regulation and Environmental Innovation

There is a considerable body of theoretical research on the impact of regulation

on environmental innovation that studies the effects of different regulatory instru-

ments like tradable permits, taxes or standards on the R&D incentives for pollu-

tion control technologies5. Much less work exists regarding the impact on both

pollution control and productive innovation investments. Magat (1978) assumes

a profit-maximizing firm subject to pollution control regulation that has to allocate

a fixed R&D budget over productive and abatement technologies which are sub-

stitutes. He concludes that a constant pollution tax provides decreasing incentives

for abatement R&D spending over time and therefore provides more incentives

for investment into productive R&D. Roughly speaking, this is because productive

R&D’s returns increase more rapidly than those of abatement spending if the tax is

constant over time. Conversely, a fixed emission standard has the feature that an

affected firm can grow only if it further invests in abatement R&D at the expense

of investment in productive R&D. Put it otherwise, R&D spent on pollution con-

trol crowds out conventional R&D in case of an emission standard. This effect is

smaller and decreases over time for a fixed pollution tax rate (or a cap and trade

system with a constant cap)6. Thus, the extent to which a crowding out occurs

may depend crucially on the policy design.

The number of regulations in force in Germany has increased substantially

during the past decades (see Figure 1). An overwhelming part of these laws

and directives are command-and-control regulations (see Frondel, Horbach and

Rennings 2007). This is strongly mirrored in the firm survey used for the present

5Popp et al. (2009) and review much of this literature.
6Please note that the results of Magat (1978) crucially depend on the degree of labor substi-

tutability. If substitutability was very easy, an emission standard leads to a relative increase in
conventional R&D over time.
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analysis.7

The majority (95.76 percent) out of 377 usable responses reported command-

and-control regulations as reasons for technology adoption between 2006 until

2008 (see Table A.2). The most frequently mentioned law is the German equiv-

alent to the 1970 US Clean Air Act, the so called Federal Pollution Control Act

(Bundes-Immissionsschutzgesetz) which came into force in 1974 and is the most

important German regulation to restrict air pollution. Together with its adminis-

trative provision, the “TA Luft” (Technical Instructions on Air Quality Control) that

sets emission limits, the German Federal Pollution Control Act accounts for about

23.87 percent of the responses in our survey. In principle, one would not have ex-

pected such rather ancient regulations to provide any incentives for technological

change today after compliance had been achieved in the past. However, most of

these regulations such as the Federal Pollution Control Act have a dynamic charac-

ter that requires firms to operate the current state of the art abatement technology.

Also of high importance were two relatively new regulations that restrict the use of

hazardous chemicals. The RoHS directive (“Restriction of Hazardous Substances”

enforced in 2006) of the European Community restricts the use of lead, cadmium,

mercury, and some other metals in electronic devices and initiated process inno-

vations in 14.85 percent of the firms in our sample. Moreover, 11.41 percent of

the firms report the REACH directive, which stands for “Registration, Evaluation,

Authorization and Restriction of Chemicals”, that came into force in 2007 was the

reason for technological adaption of their production processes.

Another 8.48 percent mentioned the Energy Saving Regulation (EnEV) from

2002 which had been revised in 2007. It sets energy efficiency requirements for

buildings, especially for new ones. In general, more than 40 different command-

and-control regulations were named by firms as drivers of technology adoption.

Almost all of them were revised or augmented in the sample period 2006-2008,

or shortly before.

Only in about 1.86 percent of all responses, firms stated market-based regula-

7Unfortunately, only a fraction of the firms that adopted pollution control technology re-
sponded to the survey question of what specific regulation(s) or law(s) required adoption of
abatement technology. These answers, nevertheless, provide an indication of those regulations
that initiated the green innovations in the firms that we study in detail in the following.
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tions or energy taxes as the reasons for technological change8. The cited market

based regulation is the European Emission Trading Scheme (EU ETS) for green-

house gases that came into force in 2005. To add further evidence, we linked

our firm database to the Community Independent Transaction Log (CITL) that

reports every single firm that is covered in the EU ETS. In our data, only 1.22 per-

cent of the firms were identified to be subject to this cap and trade system. This

confirms that firms in our sample are mainly affected by command-and-control

regulations. Based on theoretical consideration by Magat (1978) and in light of

the predominance of the command-and-control character of these regulations, we

could therefore expect that in our setting a (partial) crowding out of other R&D

may indeed be more likely by compliance spending compared to a setting in which

market-based policy instruments are prevailing.

3 Identification Strategy

In the following, we are interested in the effects of regulation-induced environ-

mental innovation on the firms’ conventional innovative efforts. In this setting, we

therefore consider the introduction of an environmentally-friendly innovation due

to regulation to be the observed "treatment".9 Our main research question can be

illustrated by an equation describing the average treatment effect on the treated

firms

E(αTT ) = E(Y T |R = 1)− E(Y C |R = 1) (1)

where Y T is an outcome variable10 and the status R indicates the group: R = 1 is

the treatment group and R = 0 the non-treated firms whereby the treatment refers

to regulation-induced environmental technology adoption as identified from the

firms’ self-reported information in the survey. Y C is the potential outcome which

would have been realized if the treatment group (R = 1) had not been treated.

While E(Y T |R = 1) is directly observable, this is not the case for E(Y C |R = 1).

However, as the probability to be subject to effective regulation is not random

8The remaining percentages account for the ISO 14001 standard or other voluntary agreements
mentioned as reason for innovation.

9See subsection 4.1 for more details on the definition of the treatment indicators.
10See subsection 4.2 for details on the outcome variables.
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(E(Y C |R = 1) 6= E(Y C |R = 0)) a potential "selection bias" may arise so that the

counterfactual situation cannot simply be approximated by the average outcome

of the non-regulated firms.11 The same applies to the receipt of a subsidy. Thus,

we have to take into account that not all firms are affected by regulation and not

all firms received a subsidy that supported their environmental technology. Inves-

tigating the behavior of firms that responded to regulation therefore requires to

take this selection into account. The conditional independence assumption (CIA)

Y C⊥R|X = x has been introduced by Rubin (1977) to overcome this selection

problem. That is in our case, regulation-induced environmental technology adop-

tion and the outcome variable of interest like non-green R&D spending are statisti-

cally independent for firms with the same set of exogenous characteristics X. The

result of the matching approach is such that the potential “untreated outcome”

of treated firms is constructed from a control group of firms that did not react

to environmental regulation by introducing some form of environmental technol-

ogy. Hence, the matching allows to compare the outcome of treated firms to the

hypothetical outcome of these firms if they had not been treated. Differences in

the outcome variable between these "groups" are then attributed to the treatment.

Consequently, if the CIA holds, it follows that

E(Y C |R = 1, X) = E(Y C |R = 0, X). (2)

Thus, the average treatment effect on the treated can be written as:

E(αTT ) = E(Y T |R = 1, X = x)− E(Y C |R = 0, X = x) (3)

In the following analysis, we employ several matching techniques that have

the advantage not to require assumptions about functional forms and error term

distributions.12 Additionally, and in order to test the robustness of the results to a

possible violation of the conditional independence assumption, we estimate instru-

mental variables models in which we account for endogeneity in the relationship

11For surveys of econometric techniques addressing selection bias see Heckman, Lalonde and
Smith (1999) or Imbens and Wooldridge (2009).

12For discussions and applications of matching estimators see e.g. Angrist (1998), Heckman,
Ichimura and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998), Dehejia and Wahba
(1999), and Smith and Todd (2005).
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between the outcome variable and the treatment.13

First and as a benchmark, we perform a nearest neighbor (NN) propensity

score matching. For that purpose, we pair each firm that had implemented a

regulation-induced environmental technology with the single closest non-regulation-

affected firm. Thus, for each treated firm we search for twins in the “potential

control group” that share the same characteristics X as the treated firms. The

pairs are defined based on the similarity in the estimated probability of having

introduced a compliance technology based on regulatory pressure.

In other words, as matching criterion we use the propensity score stemming

from a binary (probit) estimation using a dummy variable indicating the policy

induction. Matching on the propensity score has the advantage not to run into

the “curse of dimensionality” since we use only one single index as matching ar-

gument (Rosenbaum and Rubin 1983). Thus, the first step of our analysis is the

specification and estimation of a probit model to obtain the propensity score P̂ (X).

Thereby it is essential to have enough overlap between the control and the treated

group (common support) which means that in practice, the sub-samples of treated

firms and firms in the control group are restricted to those with common support.

Thus, in a second step we restrict the sample to common support. Therefore, we

calculate the minimum and the maximum of the propensity scores of the potential

control group and delete observations on treated firms with probabilities larger

than the maximum and smaller than the minimum in the potential control group.

Next, we pick one observation from the sub-sample of treated firms and remove

it from the pool of treated firms. Then we calculate the Mahalanobis Distance

(MD) between this firm and all non-treated firms in order to find the most similar

control observation:

MDi,j = (Zj − Zi)′Ω−1(Zj − Zi) (4)

where Ω is the empirical covariance matrix of the matching arguments (Z) based

on the sample of potential controls. After that, we select the observation with the

minimum distance from the remaining control group. Unlike for the treated firms,

we do not remove the selected control firms from the pool of potential controls.

This routine is applied to all treated firms. Finally, the average effect on the treated

13See section A in the Appendix for the details.
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can be calculated as the mean difference in the outcome variable(s) of the matched

samples using the matched group as comparison.

α̂TT =
1

nT

(∑
i

Y T
i −

∑
i

Ŷ C
i

)
(5)

with Ŷ C
i being the counterfactual for i and nT is the sample size of treated firms.

We conduct t-tests on difference in means in the outcome variable(s) after the

matching. A significant difference in means may then be attributed to the treat-

ment. In our case, a smaller mean of the outcome variable, like non-environmental

R&D in the group of regulated firms, would indicate a crowding out due to the

regulation-induced environmental innovation.14

In order to assess the sensitivity of the results to the choice of the matching

estimator, we perform serval other matching approaches. In particular, in addition

to a two-nearest-neighbor matching, we want to reduce the risk of bad matches

that may occur if the closest neighbor is far away. This can be avoided by imposing

a caliper that limits the maximum propensity score distance. Finally, we perform

Kernel matching (KM) that use weighted averages of all firms in the control group

to construct the counterfactual outcome.15 The major advantage of this approach

is that more information is used and a lower variance can be achieved (Heckman

et al. 1997, Heckman et al. 1998).

4 Data

The main data used for our analysis stem from the 2009 wave of the Mannheim

Innovation Panel (MIP) that provides information for the years 2006-2008. The

MIP is the German part of the European-wide Community Innovation Surveys

(CIS). The survey is conducted annually by the Centre for European Economic

Research (ZEW), the infas (Institut für angewandte Sozialwissenschaft) and the

ISI Fraunhofer Institute on behalf of the German Federal Ministry of Education

14It should be noted that, since we perform sampling with replacement to estimate the coun-
terfactual situation, an ordinary t-statistic on mean differences is biased as it does not take the
possibility of repeated observations into account. We therefore follow Lechner (2001) and calcu-
late an asymptotic approximation of the standard errors that corrects for this bias.

15See Smith and Todd (2005) for technical details.
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and Research. The target population covers all firms with at least 5 employees

in the German business sector.16 Besides information on innovative activities and

general characteristics of the firms, the 2009 wave of the survey collected detailed

information on the adoption and production of environmental technologies. From

this core data set, we are able to identify firms that adopted or implemented some

form of environmental technology. This data has been complemented with a tele-

phone survey that addressed this sub-sample of firms that indicated in the CIS that

they had introduced environmentally-beneficial technologies. This additional tele-

phone survey allowed to collect more detailed information on the respective en-

vironmental technologies. The most important information drawn from this data

relates to the cost of introducing and implementing the environmental technology.

We complement the survey data with information on the firms patent applications

at the European Patent Office (EPO) and market concentration data from the Ger-

man Monopoly Commission. Finally, we obtain a credit rating index for each firm

from CREDITREFORM, Germany’s largest credit rating agency.17 After correction

for outliers and elimination of incomplete records the final sample contains 2,521

firm-level observations.

4.1 The Treatment

Firms were asked if they had introduced some form of technology or production

process with beneficial effects for the environment and if so, to indicate the initia-

tion factors for the development and/or adoption and implementation of the tech-

nology. In particular, firms were asked to indicate if this innovation was driven by

regulation, expectations about future regulation, public subsidies or, alternatively,

by customer demand and/or by voluntary agreements at the sector level. We

consider a firm to be treated if it introduced an environmentally-friendly techno-

logical innovation due to regulation (REG), but not due to customer demand for

greener technologies or voluntary agreements. Moreover, the treatment variable

thus takes the value one only, if regulations had induced the innovation, but the

16A detailed description of the survey data and the sampling method can be found in the back-
ground reports available at ZEW.

17See Czarnitzki, Hottenrott and Thorwarth (2011) for a more detailed description of the con-
struction of this index.
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firm did not receive subsidies for green technology of any type. Finally, we define

a treatment variable SUB that takes the value of one if the receipt of a subsidy

induced the introduction of environment-friendly technology.18 Table 1 presents

descriptive statistics for these treatment variables. It should be noted that the two

treatments exclude each other, i.e. there is no overlap between the groups. For

each of these treatments, we will estimate the treatment effect on the outcome

variables. The control group consists of 2,177 firms that fall in neither of the two

treatment categories. The ratio of treated to non-treated firms is favorable for a

matching approach for both treatment indicators as the potential control group is

sufficiently large.

Table 1: Summary Statistics of treatment indicators (2,521 obs.)

Variable # Treated firms Mean Std. Dev. Min Max
REG 179 0.071 0.257 0 1
SUB 165 0.065 0.247 0 1

4.2 Outcome Variables

Based on information from the CIS and the complementary survey, we derive a

handful of outcome variables on which a crowding out due to policy-induced en-

vironmental innovation might be suspected. The first one is the total number of

innovation projects in the period 2006-2008 (PROJECTS). A firm that has to

devote a substantial effort to fulfilling regulatory requirements may scale down

their overall innovation activity by reducing the number of projects that are ongo-

ing at the same time as the "environmental project". Secondly, we are interested in

a further potential input crowding out reflected in total innovation-related spend-

ing (INNO_TOTAL) which includes internal R&D (INNO_R&D), external R&D

as well as innovation-related investment in physical capital (INNO_INV ). Such

investments are usually considered to provide important assets complementary

to the intangible knowledge created by R&D. A crowding out of internal R&D

spending by regulation-induced innovation may have a substantial direct effect on

18Note that we test the robustness of our results to an alternative definition for which we con-
sider a firm to be treated only if it was both regulation-affected and subsidy-affected in section
6.
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innovation output and a long-term impact on the firms’ overall performance. How-

ever, it can easily be argued that these general numbers of innovation spending do

not account for the fact that regulation-induced innovation may have caused costs

that the firms counted as innovation-related spending. In that case, we would

underestimate a potential crowding out when looking at innovation spending as

an outcome variable. To take account of this fact, we use information obtained

through the additional telephone survey on the sub-sample of firms that indicated

in the CIS that they had introduced an environmental innovation. These firms

were asked to indicate the expenses related to the introduction of the environ-

mental innovation. Thus, we can deduct this amount from the total innovation

spending (INNO_TOTAL) and obtain the net innovation spending for innova-

tion (INNO_NET ) corrected for the regulation-induced investment.19 This sec-

ond survey addressed all firms in our sample that indicated that they had intro-

duced some form of environmental innovation. On average, these firms stated

they spend about 401 thousand euros (per year) on their environmental inno-

vation. The median, however, is much lower with about 50 thousand euros.

Moreover, we derive two measures for innovation outcomes. The first captures

whether the firm had successfully introduced a product innovation to the mar-

ket (PRODUCT_INNO) and the second if market introductions were planned

in the two years 2009 and 2010 following the survey (PRODUCT_LEAD). An-

other measure accounts for the possibility of unsuccessful projects outcomes, i.e.

it takes the value of one if the firm indicated that it had abandoned a innova-

tion project after it had already started (FAIL_INNO). We argued before that

firms may rather scale down investment in areas that are not directly related to

current production, but are rather long-term oriented and less certain in terms of

returns like R&D. For reasons of comparison we therefore also include the firms’

19Since we can not disentangle the expenses for the environmental innovation by its R&D and
fixed investment component, we calculate the net spending for the total innovation expenses only.
However, it should be kept in mind that INNO_NET is only a rough approximation due to two
limitations of the measure for environmental innovation expenses. First, these are total expenses
which may have occurred over more than one year. Deducting them from INNO_TOTAL implic-
itly assumes that the expenses had all been made in one year. Secondly, not all firms may have
included such expenses in the INNO_TOTAL as indicated in the CIS survey. For these firms,
we may "correct" the innovation expenses wrongly and hence underestimate their true innovation
expenditure. Nevertheless, as we can argue that the true total net innovation expenditure is some-
where between INNO_TOTAL and INNO_NET on average, we still want to include both of
these variables in the set of outcome variables.
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investment in non-innovation related assets (INV ) as an outcome variable. Table

2 presents summary statistics for the outcome variables. Firms have more than

seven ongoing innovation projects on average. The median number, however, is

much smaller with only one current project per firm. In-house R&D is about 367

thousand euros on average and innovation-specific physical investment about 358

thousand euros. Total innovation expenditure amounts to about 908 thousand

euros and total innovation expenditure net of all costs due to the environmental

technology development or adoption is 744 thousand euros, on average. Non-

innovation investment amounts to 2.5 million, on average. Forty-five percent of

the firms had some form of product innovation during the survey period and 43.6

percent had product innovations in the pipe-line. Five percent of the firms had

abandoned innovation projects.

Table 2: Summary Statistics of Outcome Variables (2,521 obs.)

Variable unit Mean Std. Dev. Min Max
PROJECTS # 7.893 42.795 0 1,500
INNO_TOTAL Td 908.241 3,478.525 0 30,000
INNO_R&D Td 367.292 1,693.363 0 14,000
INNO_INV Td 357.946 1,395.983 0 12,000
INNO_NET Td 744.433 3,120.815 0 30,000
INV Td 2,520.974 9,908.471 0 100,000
PRODUCT_INNO dummy 0.450 0.498 0 1
PRODUCT_LEAD dummy 0.436 0.496 0 1
FAIL_INNO dummy 0.050 0.216 0 1

4.3 Control Variables

A set of control variables is defined for inclusion in the first-stage probit model

in which we model the selection into the treatment. Thus, these control vari-

ables are likely to impact the fact of whether or not a firm has introduced an

environmental technology due to regulation and whether the firms used a subsidy

to (co-)finance the introduction, respectively. In particular, we include the firms’

logged value of fixed assets as more capital-intensive (as measured by the ratio

of fixed assets to sales) firms may be more likely to be subject to environmental

regulation (logCAP ). Likewise, we control for firm size by including the logged

15



number of employees (logLAB). Furthermore, we include the logged value of the

firms’ expenses on material and energy used in the production process (logMAT )

as more material and energy-intensive firms may have higher incentives to intro-

duce innovations that reduce consumption in these input factors and they may

be more likely to be affected by regulation. The (logged) age of the firms is in-

cluded (logAGE) to account for the fact that older firms may be more likely to

have to renew part of their production capital which may make them more likely

to make their production more environmentally-friendly when replacing their su-

perannuated assets. The firms’ labor productivity (LABPRO) measured as sales

per employee is included to account for the firms’ overall relative productivity.

The firms’ competitive environment is accounted for by including the Hirschman-

Herfindahl measure of sales concentration (HHI). We further include a dummy

to control for whether the firm is continuously R&D-active (d_R&D) and whether

it is a producer or supplier of environmental technology (ECPROD). The lat-

ter control especially addresses the concern that environmental R&D may also be

spent by firms to develop new, e.g. energy-saving, products or pollution control

technologies to be sold to other companies. That is, we want to control for the

fact that producing such environmental technology may be the core business of

some firms. The firms’ patent stock (PATSTOCK) is included to control for the

firms technological capabilities. We calculate the firms’ patent stock as a perpetual

inventory of patent applications with a constant depreciation rate of 15 percent,

as is common in the literature (Griliches and Mairesse 1984). We also account for

the fact whether the firm is part of an enterprize group (GROUP ). Additionally,

we control for structural differences between Eastern and Western Germany that

may affect the likelihood to react to regulatory pressure. Firms located in Eastern

Germany (EAST ) may show differences due to historical developments and due

to extensive general subsidy programs to foster innovation in Eastern Germany

(see for instance Czarnitzki (2006)). Finally, we distinguish 17 different sectors.

Table A.1 in the Appendix shows the distribution of firms over these sectors.
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4.4 Descriptive Statistics

Table 3 presents summary statistics for the outcome and control variables distin-

guishing between the treated and non-treated firms. As can be seen, several means

of the control variables are significantly different between the treated firms and

the control group only slightly varying with the definition of the treatment (REG

or SUB). For instance, regulation-affected firms are on average larger and are ac-

tive in more concentrated industries. Further, they are more often part of a group

and have a slightly lower labor productivity. Interestingly, if the treatment is de-

fined based on a subsidy receipt, then treated firms are more likely to be located

in Eastern Germany and more likely to conduct R&D on a continuous basis. With

respect to the outcome variables, we also do see some significant differences in

means. However, as argued above, it would be invalid to conclude that these dif-

ferences were due to compliance efforts. Likewise, the higher average investment

in innovation-related physical assets and other non-innovation related investment

in the group of subsidized firms does not necessarily mean that this higher invest-

ment was caused by the subsidy. The analysis presented in the following aims at

identifying the treatment effects taking the non-randomness of the treatment into

account.
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5 Econometric Results

5.1 Probit Models on the Selection into Treatment

As described above, in order to apply the matching estimator, we first estimate

a probit model to obtain the predicted probability of having introduced a policy-

induced environmental innovation. We estimate two different specifications, that

is one for each definition of the treatment. Table 4 presents the results from this

exercise. We find larger firms and more material and energy-intensive firms to

be more likely to introduce regulation-induced environmental technology. Firm

age and labor productivity are negatively associated with regulation-induced en-

vironmental innovations, while producers of environmental technologies are more

likely to be selected into the treatment REG. Larger firms in terms of employees

and continuously R&D-active firms are more likely to have introduced a subsidy-

supported environmental technology. Firms in Eastern Germany are more likely to

introduce an environmental innovation initiated by a subsidy. Group membership

is positively significant in model 1, but not in model 2. Finally, it turns out that

the industry dummies are jointly significant for the selection into both treatments.

5.2 The Matching

As mentioned before, a necessary condition for the validity of the matching es-

timator is common support. In our case, this condition is introduced for all our

firm pairs. Table 5 shows the results of the NN matching. All control variables are

well balanced after the matching so that we can conclude that the matching was

successful in the sense that a suitable nearest neighbor was found for each treated

firm. The only variables for which there is a significant difference in means after

the matching are some of the outcome variables. This difference can be attributed

to the respective treatment. However, it turns out that the effects of the treatment

on the outcome variable depend on the definition of the treatment. The results for

the treatment (REG) are presented on the left-hand side of table 5.

As can be gathered from the table, mean values for INNO_R&D and INNO_INV

are significantly lower for treated firms. This also translated into a significant over-
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Table 4: Probit Estimation Results on the Selection into Treatment (2,521 obs.)

TREATMENT

Model 1: REG Model 2: SUB

log_CAP 0.032 0.027
(0.027) (0.034)

log_MAT 0.066** -0.036*
(0.031) (0.021)

log_LAB 0.060*** 0.083***
(0.013) (0.026)

log_AGE -0.042*** 0.004
(0.001) (0.115)

LABPRO -0.229 -0.001
(0.342) (0.008)

ECPROD 0.447*** 0.250***
(0.009) (0.040)

HHI -0.001*** -0.001
(0.001) (0.001)

EAST -0.124*** 0.171**
(0.035) (0.078)

d_R&D -0.064 0.184*
(0.139) (0.100)

PATSTOCK -0.005** -0.002***
(0.003) (0.001)

GROUP 0.085*** -0.109
(0.032) (0.122)

Log pseudolikelihood -600.327 -554.474
Joint sign. of ind. dummies 7.51* 18.52***
LR χ2(27): 91.24*** 109.74***

∗∗∗,∗∗ ,∗ indicate a significance level of 1%, 5%, 10%.
Clustered standard errors (EAST ) presented in parentheses.
The models include a constant and 16 industry dummies.
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all innovation spending and particularly net innovation spending (INNO_NET ).

This may suggest a partial crowding out of non-environment-related innovative

activities. The magnitude of the crowding out, that is the average treatment effect

on the treated (ATT), is the difference between the means. The ATT is higher for

R&D than for physical innovation investments and amounts to about 617 thousand

euros. Regulation-affected firms thus spend significantly less on internal R&D than

their matched control group. For the total innovation expenditure this difference

amounts to 833 thousand euros in the respective year, on average. For the adjusted

INNO_NET which is net of cost due to the environmental innovation the ATT

is slightly larger with about 978 thousand euros. Note that this is considerably

more than the average cost of introducing an environmental technology of 401

thousand euros. These results may thus imply that the average firm in our sample

reduced its overall innovation budget by more than the cost related to the environ-

mental innovation project. For the number of innovation projects we do not find

a significant difference between the groups. This may indicate that firms reduce

the scale rather than the scope of their R&D projects. As expected, investment in

non-innovation related physical assets are not subject to a crowding out. When we

consider subsidies as the treatment we no longer find such a crowding out effect,

as can be seen on the right-hand side of Table 5. Although we see that the mean

values for several of the outcome variables are higher in the treated group, the

difference is not statistically significant once we account for the fact that we had

been drawing from the control group with replacement. Thus, subsidized firms

also do not seem to invest significantly more than other firms due to the receipt of

public money.
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Table 6: Sensitivity Analysis

Average Treatment Effects on the Treated (ATT)
treatment = REG

NN 2NN NN Caliper 2NN Caliper Kernel
INNO_R&D -662.124 -396.415 -534.012 -342.024 -224.405
INNO_INV -308.573
INNO_TOTAL -882.089 -502.021 -779.062 -468.145 -450.468
INNO_NET -1,041.152 -673.427 -939.922 -641.488 -596.552

ATT presented if significant at least at 10% level.

6 Sensitivity Analysis

To test the sensitivity of our results to specific features of our empirical strategy,

we perform a series of alternative matching estimators that share the beneficial

properties of non-parametric treatment effect models. Table 6 compares the aver-

age treatment effects (ATT) obtained from the NN matching with the results of the

two-NN matching, the caliper matching and the kernel matching (Epanechnikov

kernel). The caliper is defined such that the largest percentile of the Mahalanobis

Distance distribution is dropped from the sample. As can be seen in the table, the

estimated ATT varies across these different models. The direction of the effects

and their relative magnitude, however, is quite comparable between the different

matching approaches.

Based on these results, we conclude the 2NN matching with caliper provides

results that are well within the middle of the bandwidth of the range of outcomes.

Therefore, we use the results from the 2NN method for testing whether the av-

erage treatment effects differ between different groups of firms. Financially con-

strained firms, for instance, that have limited access to additional financing may

face a stronger crowding out compared to firms that can obtain additional funds

from external sources. Likewise, the regulatory burden may be comparatively

higher for smaller firms. To test these hypotheses we first calculate the individual

treatment effects as the difference between the overall outcome variables of the

treated firms and the control firms (j = 2) as follows:

ATTi = Yi −
1

N
ΣN
j=1Y

c
j (6)
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Table 7: Average Treatment Effects on the Treated by Groups

treatment = REG

GROUP = 0 GROUP = 1 t-test
GROUP ATT Std. Err. ATT Std. Err.

INNO_R&D
SME < 250 emp. 288.167 3,285.414 -428.290 1,962.223 **
TOPRATING > 75% -459.707 2,336.690 350.564 2,325.267 **
Y OUNG < 19 yrs. -236.312 2,544.757 -286.818 2,095.495

INNO_NET
SME < 250 emp. 425.579 3,039.143 -963.413 4,267.835 **
TOPRATING > 75% -1,033.115 4,408.007 573.132 2,318.255 **
Y OUNG < 19 yrs. -544.616 3,953.533 -749.674 4,186.421

We then divide the sample into groups, calculate the means of ATTi and perform

t-tests on the differences in the ATT between groups. The upper panel in Table 7

shows that the treatment effect on INNO_R&D is significantly larger for small

firms with less than 250 employees. These findings are in line with insights from

the literature on financing constraints for innovation that identified SMEs to be

more likely to face financing constraints compared to larger firms. Likewise, rel-

atively younger firms in our sample (younger than the median) show a higher

treatment effect for net innovation expenditure. However, the difference is not

statistically significant. As a more direct measure for access to financing, we split

the sample based on the firms’ credit rating. Firms with outstanding credit ratings

should be able to raise funds in the financial markets at the best possible interest

rates independent of the type of investment project. Indeed, we find that for firms

with a credit rating in the top 25%, that is in the range between 100 and 193

(RATING ∈ [100, 600]), the ATT is even positive and significantly different from

the negative ATT of firms with worse credit ratings. In other words, we find a

negative treatment effect for all firms but those with the best credit ratings in our

sample.

7 Conclusion

The presented analysis set out to complement the few existing studies on potential

crowding out effects of policy-induced environmental innovation on firms’ conven-

tional innovative activities. Since innovation in general is a crucial driver of eco-
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nomic growth and competitiveness, a potential crowding out of other innovation

could be a barrier to competitiveness and economic growth in the long-run adding

to the cost of fighting environmental damage. Using different treatment effect

models, we estimated the effects of regulation-induced environmental innovation

on the firms’ non-green innovative activities. We find indeed evidence for some

crowding out of the firms’ R&D and total innovation expenditure net of those costs

due to the environmental innovation. On the other hand, we find such effects on

the number of ongoing R&D projects, investments in innovation-related and other

fixed assets nor on the outcome of innovation projects. Thus, firms may rather

scale down investment in areas like R&D that are not directly related to current

production, but are rather long-term oriented and less certain in terms of returns.

While the direction and significance of these findings is robust to the estimation

method, the magnitude of the estimated average treatment effects varied accord-

ing with an average estimate of 432 thousand euros within a bandwidth between

225 and 662 thousand euros. Interestingly, the estimated average reduction in

R&D is quite close to the reported annualized cost for the introduced environmen-

tal technology of about 401 thousand euros. We also observed differences in the

magnitude of the estimated treatment effect between different groups of firms.

Larger firms experience significant smaller treatment effects and firms with very

good credit ratings even show a positive treatment effect, on average. This points

to the conclusion that firms that already face financing constraints may have to

scale down current R&D to a greater extent than less constrained firms.

The observed effects may be due to short-term budget re-allocation from R&D

to compliance efforts. As R&D expenditures are to a large part spent on re-

searchers’ wages and we assume wages to be rather fixed in the short-term, we

can only hypothesize that firms may re-allocate R&D employees’ tasks. However,

affected firms were not more likely to cancel ongoing projects nor did they report

lower expectations regarding the market introduction of new products as com-

pared to the control group. Moreover, for firms with subsidy-induced environmen-

tal innovations, no crowding out of non-green R&D is found. While these results

support the idea that a policy mix of market-based mechanisms, direct financial

support, and command-and-control regulation may yield most efficient environ-
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mentally beneficial technological advances, they also suggest that the observed

effects may be rather short-term and not detrimental for affected firms’ innova-

tion performance.

However, these results should be interpreted with the study’s limitations in

mind. The ideal experiment would require to observe firms and how regulation

induces environmental investments over time. Additionally, the present study ab-

stracted from making welfare assessments as the unit of observation was the firm.

Accounting for the public costs associated with the provision of environmental

subsidies appears notwithstanding crucial for the evaluation environmental poli-

cies, especially in a inter-generational context (Leach and Laurent-Lucchetti 2011)

as well as considering the global opportunity cost of climate change policy (?).

Future research would therefore benefit from panel data observing R&D activ-

ities and regulatory changes over a longer period of time, and ideally, even at the

project level. Such data would allow to assess the impact of regulation-induced en-

vironmental technology on the long-run innovation performance in product mar-

kets and hence on firms’ overall competitiveness. In case of a substantial crowding

out of competitiveness-enhancing R&D, one would expect to observe a reduced

overall innovation performance of affected firms. Moreover, while there might be

a crowding out in the sense that "other R&D" is reduced if firms devoted effort

to introducing environmental innovations, this may also be the result of rational,

profit maximizing firms switching R&D resources from established, for instance,

more energy- intensive technologies, to greener technologies. If the crowding out

affects merely dirty technologies we would expect no long-lasting effect on inno-

vation and firm performance. We therefore strongly encourage further research

that tackles the challenge to study the nature and heterogeneity of environmental

regulation, subsidy programs and new technologies.
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Figure 1: Cumulated number of Regulations in Germany
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Table A.2: Effective laws, ordered by frequency of citation

No. Acronym Description
1 BImschG/(BImschV) Federal Emission Control Act/(Directives)
2 RoHS European Directive on Restriction of hazardous substances
3 REACH European Directive on Registration, Evaluation, Authorisa-

tion and Restriction of Chemicals
4 EnEV Energy Saving Directive (for Buildings)
5 TA Luft Technical Guidance on Clean Air (directive for BimschG)
6 WHG Water Resource Law
7 VOC Directive Directive to Limit Volatile Organic Compounds (VOC)

Emissions
8 WEEE European Directive on Waste of Electrical and Electronic

Equipment
9 EEG Renewable Energy Law
10 VerpackV Packaging Ordinance
11 ElektroG Electrical and Electronic Equipment Act (German imple-

mentation of the WEEE Directive)
12 GefStoffV Hazardous Substances Regulation
13 KrW-/AbfG Recycling and Waste Management Act
14 Euro 5 Euro 5 Air Emission Standard for Cars
15 TA Lärm Technical Guidance on Noise Mitigation
16 EU ETS European Emission Trading Scheme for CO2

17 ISO 14001 ISO 14001 Environmental Management Standard
18 Decopaint Directive European Directive on VOC limitation in colors and paints
19 EUP European Energy-using Products Directive
20 UschadG Environmental Damage Act
21 EnWG Energy Management Act
22 BBodSchG Federal Soil Protection Act
23 KWKG Combined Heat and Power Act
24 EnEG Energy Saving Act
25 BNatSchG Federal Nature Conservation Act
26 DüMV Fertilizer Act
27 Deponie-RiLi European Landfill Directive
28 MarPol International Convention for the Prevention of Pollution

from Ships
29 TA Siedlungsabfall Technical Guidance on Municipal Waste
30 DepV German Landfill Directive
31 EnergieStG Energy Taxation Act
32 StromsteuerG Electricity Taxation Act
33 Euro 4 Euro 4 Air Emission Standard for Cars
34 Wasserrahmenrichtlinie Water Framework Directive
35 Abwasserrahmenrichtlinie European Wastewater Directive
36 GSchV Water Protection Directive
37 ErsatzbaustoffV Directive on Substitute Materials for Buildings
38 EG-AbfVerbrV European Waste Shipment Directive
39 AbfAblV Waste Storage Directive
40 STrSchG Radiation Protection Act
41 VO(EG) Nr. 842/2006 (FKW) European Directive on Certain Fluorinated Greenhouse

Gases
42 EEWärmeG Renewable Energy Heat Act
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Appendix A: Instrumental Variable Regressions

As an alternative to the treatment models presented before, Table A.3 shows the

results from a two-stage least squares estimation taking into account the endo-

geneity of the treatment variables. For the purpose of the IV regressions, we con-

struct instrumental variables (IV) that are correlated to the potentially endogenous

variable, i.e. the treatment indicators, but exogenous to the individual firm’s in-

novation activity. For REG we derive three IV. The first (IV 1_REG) is a regional

measure of woodland area per inhabitant at the four-digit regional code which

divides Germany in 413 districts. We would expect industrial density to be lower

in areas with a higher woodland area per inhabitant. Firms in such regions com-

pared to firms in densely populated areas should be less likely to be affected by

regulation as several environmental laws require stricter environmental specifica-

tion and regulation in latter areas (see for instance the Federal Emission Control

Act). The second (IV 2_REG) is the average frequency of regulation-affected firm

by size class.20 Thereby we differentiate between Eastern and Western Germany

because of the structural differences between the regions. The third (IV 3_REG)

captures the average frequency by industry. Industries are classified as described

in Table A.1. Like in the previous case we also distinguish between Eastern and

Western Germany.

In a similar fashion, the first IV for SUB is constructed from an average fre-

quency of effective environmental subsidies in a four-digit geographical district

IV 1_SUB. The second IV is derived from a proximity measure to high ways

IV 2_SUB. In a region with a dense weak highway infrastructure, we would

expect a higher occurrence of subsidies. Third, we take the unemployment per-

centage in a four-digit district of an indication on the liquidity of the public sector

in that region. If unemployment is high fewer subsides may be granted that are

specific for environmental technology. The same set of control variables as in the

selection equation for the propensity score estimation is included. We limit the

presentation of the model results to the outcome variable (INNO_R&D). The

20We construct five classes based on the firms’ workforce size ranging from 1-50 employees,
from 51-150 employees, from 151-250 employees, from 251-500 employees and larger than 500
employees, respectively.
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left hand side of the table presents the results for the case of regulation-induced

technology adoption while the right hand side shows the results for the subsidy-

backed case. The test statistics show that the IV fulfil the commonly used criteria

for valid instruments. The instruments are relevant at the first stage (see F-Test of

joint significance of the excluded instruments in the first stage at the bottom of Ta-

ble A.3) and the Hansen J test statistic, i.e. the heteroscedasticity-robust version of

the Sargan test rejects overidentification. The coefficient of REG is negative and

significant in the second stage in line with the matching results. The coefficient

of SUB, on the other hand, is positive albeit fails to pass the threshold for being

statistically significant at the 10% level. Thus, both models provide results that

are in line the matching results.

Table A.3: Instrumental Variable Regressions on ln[INNO_R&D+ 1] (2,521 obs.)

treatment = REG treatment = SUB

1st stage 2nd stage 1st stage 2nd stage
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Variables:
REG | SUB -3.340 (1.562)** 1.081 (0.782)
log_CAP 0.004 (0.003)* 0.028 (0.020) 0.002 (0.003) 0.011 (0.017)
log_MAT 0.006 (0.004) -0.035 (0.043) -0.004 (0.006) -0.047 (0.041)
log_LAB 0.001 (0.004) 0.475 (0.035)*** 0.010 (0.004)** 0.441 (0.031)***
log_AGE -0.006 (0.006) -0.017 (0.046) -0.001 (0.006) 0.001 (0.042)
LABPRO -0.002 (0.001)* 0.034 (0.017)** 0.001 (0.001) 0.038 (0.019)**
HHI 0.001 (0.001) 0.001 (0.001) -0.001 (0.001)*** 0.001 (0.001)*
ECPROD 0.069 (0.015)*** 0.548 (0.142)*** 0.035 (0.013)*** 0.285 (0.088)***
d_R&D -0.012 (0.007) 1.913 (0.075)*** 0.018 (0.007)** 1.927 (0.069)***
PATSTOCK -0.001 (0.001) 0.007 (0.004)* -0.001 (0.001) 0.008 (0.004)**
EAST 0.022 (0.014) -0.021 (0.086) 0.026 (0.017) 0.006 (0.073)
GROUP 0.002 (0.014) 0.351 (0.102)*** -0.013 (0.012) 0.336 (0.091)***
IV 1_REG 1.035 (0.285)*** 0.969 (0.152)***
IV 2_REG 0.983 (0.247)*** -0.001 (0.001)**
IV 3_REG -0.001 (0.001)** -0.004 (0.002)**
IV 1_SUB
IV 2_SUB
IV 3_SUB

Cragg-Donald F-test 10.553*** 24.582***
Hansen J 4.011 0.459
R2 0.63 0.71
Joint sign. industries 232.87*** 254.16***

Robust standard errors in parentheses. ***,**,* indicate a significance level of 1%, 5%, 10%.
Intercepts and industry dummies not presented.
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