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THE PREDICTION VALUE∗

MAURICE KOSTERA, SASCHA KURZB, INES LINDNERC, AND STEFAN NAPELD

Abstract: We introduce the prediction value (PV) as a measure of players’ informational im-
portance in probabilistic TU games. The latter combine a standard TU game and a probability
distribution over the set of coalitions. Player i’s prediction value equals the difference between
the conditional expectations of v(S) when i cooperates or not. We characterize the prediction
value as a special member of the class of (extended) values which satisfy anonymity, linearity
and a consistency property. Every n-player binomial semivalue coincides with the PV for a
particular family of probability distributions over coalitions. The PV can thus be regarded as a
power index in specific cases. Conversely, some semivalues – including the Banzhaf but not the
Shapley value – can be interpreted in terms of informational importance.

Keywords: influence, voting games, cooperative games, Banzhaf value, Shapley value.

JEL Classification: C71, D71, D72.

1. INTRODUCTION

Concepts of power and importance in models of cooperation are central to numerous
studies in sociology, political science, mathematics, and economics. Much of the lit-
erature applies values or power indices which attribute fixed roles – often perfectly
symmetric – to all players in the underlying coalition formation process and then fo-
cus on their marginal contributions. Most prominent examples are the Shapley value
and Banzhaf value (Shapley 1953; Banzhaf 1965); others can be found in Roth (1988),
Owen (1995), Felsenthal and Machover (1998) or Laruelle and Valenciano (2008).

A player who makes a positive marginal contribution, i.e., who can raise some coali-
tions’ worth by joining in, or lowering it by leaving, is considered as important and
powerful. Others who never affect a coalition’s worth v(S) are referred to as dummy or
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2 THE PREDICTION VALUE

null players. The powerful ones are attributed a positive share of the decision body’s ag-
gregate ability to implement collective decisions or to create surplus; the indicated value
concepts differ just in how marginal contributions to distinct coalitions are weighted.
For instance, the Shapley value weights a player i’s marginal contribution to a coali-
tion S 63 i according to the total number of ordered divisions of the reduced player set
N \ i into members of S and its complement; the Banzhaf value weights i’s marginal
contributions equally for all S ⊆ N \ i.1

With an appropriate rescaling, weights on specific marginal contributions can be in-
terpreted as a probability distribution. So Shapley value, Banzhaf value, and more gen-
erally probabilistic values (Weber 1988) correspond to the expectation of a difference.
This difference is between the worth of a random coalition S that is drawn from 2N\i

according to a value-specific probability distribution Pi and the worth of the same coali-
tion when i joins, i.e., a probabilistic value equals EPi [v(S∪ i)−v(S)] for a fixed family
of distributions {Pi}i∈N.2

The expectation of a difference, however, can behave in strange ways when the family
of distributions {Pi}i∈N implicate correlated voting behavior. This can be the case, for
example, when voting is preceded by a process of information transmission or opinion
formation.3 The following example, which we owe to Moshé Machover, illustrates the
conceptual problem.

Example 1. Consider the canonical simple majority decision rule with an assembly of 5
voters. Let P be the probability distribution that assigns probability 0 to the 20 coalitions
containing exactly two or exactly three voters; and equal probability of 1/12 to each of
the remaining 12 divisions. Here, the probabilistic value EPi [v(S ∪ i) − v(S)] is zero
for all players. That no member of this decision body should have any voting power or
importance is somewhat counterintuitive however.

This paper proposes an alternative approach: namely, to consider the difference of two
expectations. These expectations will be derived from a given probabilistic description
P of coalition formation. The latter plays a similar role as {Pi}i∈N for probabilistic
values or corresponding families {Pvi }i∈N for values that evaluate marginal contributions
in game v-specific ways.4 However, we take P as a primitive of the collective decision
situation under investigation, rather than of the solution concept.

1We adopt the usual notational simplifications like writing S \ i or S∪ ij instead of S \ {i} or S∪ {i, j}.
2More precisely, a probabilistic value draws on a family of families of distributions, parameterized by

the player set N. One may equivalently consider suitable probability distributions Pi on {S ∈ 2N : i ∈ S}
and then evaluate EPi

[v(S) − v(S \ i)].
3See, for example, the seminal opinion formation model of DeGroot (1974): individuals start with

initial opinions (beliefs) on a subject represented by an n-dimensional vector of probabilities, and repeat-
edly update their individual opinion based on the current opinions of their peers. Different structures of
consensus formation can be captured by different network topologies.

4This is, for instance, the case when positive probability is only attached to minimal winning coalitions
(see, e.g. Holler 1982 and Holler and Li 1995).
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We thus depart from the literature in two respects: first, we consider probabilistic
games (N, v, P) where (N, v) is a standard TU game and P is a probability distribution
on N’s power set 2N. Second, we introduce a new value that reflects the difference be-
tween two conditional expected values. Specifically, we define the prediction value (PV)
of any given player i ∈ N as the difference in v’s expected value when the distribution
P|i which conditions P on the event {i ∈ S} and the distribution P|¬i which conditions
on {i /∈ S} are applied. In other words, we suggest to evaluate EP|i[v(S)] − EP|¬i[v(S)]
instead of EPi [v(S∪ i) − v(S)]. The two coincide in interesting special cases, but not in
general.

The difference between the respective conditional expectations can be interpreted as
the importance of a player in the probabilistic game (N, v, P) in several ways. Most
generally, it captures the informational or predictive value of knowing i’s decision in
advance of the process which dividesN into some final coalition S and its complement.
Moreover, in case i’s membership of the coalition which supports a specific bill or
cooperates in a joint venture is statistically independent of others, the PV provides a
measure of i’s influence on the outcome of collective decision making, or of i’s power
in (N, v, P).

A null player who, say, has a voting weight that cannot matter for matching a required
threshold and whose behavior is uncorrelated with the remaining players has a PV of
zero. Endowing the same player with greater voting weight will at some point translate
into a positive value – reflecting the difference that her vote can now make for the
outcome. Leaving initial voting weights unchanged, the PV will also ascribe positive
importance to the null player if interdependencies make its cooperation a predictor of
whether a proposal is passed.

Plausible causes for dependencies abound and, for instance, include the possibility
that the player in question is actually without vote but ‘followed’ by the official voters
(as, say, their paramount or supreme leader). The proposed change of perspective –
from, traditionally, the expected difference that a player would make by an ad-hoc
change of coalition membership towards the difference in expectations for the collective
outcome which is associated with that player’s cooperation – opens the route to study-
ing voting and coalition formation as the result of social interaction. Final votes may
be determined by whether i is initially a supporter or opponent even if i is a null player
of (N, v), and this is arguably a source of power just like official voting weight. We
believe that evaluating changes in conditional expectations can help to quantify this in
future research.

Here, we primarily want to introduce and investigate the prediction value. We for-
mally define it in Section 2. We describe a set of characteristic properties in Section 3
and relate the PV to traditional probabilistic values in Section 4. The considered dis-
tributions P could embody the a prioristic presumptions of traditional power measures,
i.e., be the uniform distribution on 2N or the space of permutations onN. (Interestingly,
the latter does not make PV and Shapley value coincide.) But P could equally well be
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based on empirical data – say, observations of past voting behavior in a decision mak-
ing body like the US Congress, EU Council of Ministers, etc. We briefly conduct such
a posteriori analysis with the PV in an application to the Dutch Parliament in Section 5
and conclude in Section 6.

2. PROBABILISTIC GAMES AND THE PREDICTION VALUE

A TU game is an ordered pair (N, v) where N ⊂ N represents a non-empty, finite set
of players and v : 2N → R is the characteristic function which specifies the worth v(S)
of any subset or coalition S ⊆ N and satisfies v(∅) = 0. The set of all TU games is
denoted by G, and the set of all TU games with player set N by GN. The cardinality of
a finite set S ⊂ N is denoted |S|.

(N, v) ∈ G is a simple game if v is a monotone Boolean function, i.e., v(S) 6 v(S′)
for all S ⊆ S′ ⊆ N, such that v(∅) = 0 and v(N) = 1. Given any non-empty coalition
S ⊆ N, the so-called unanimity game uS is defined by uS(T) = 1 if S ⊆ T and
uS(T) = 0 otherwise. Note that we will drop the player set N from our notation when
it is clear from the context; so uS is shorthand for (N,uS). Moreover, we refer to u{i}

simply as ui.
A probabilistic game is an ordered triple (N, v, P), where (N, v) is a TU game and

P is a probability distribution on the power set of N, 2N. The set of all probabilistic
games is denoted by PG; and PGN is the restriction to the class of probabilistic games
with player set N.

A TU value is a function which assigns a real number to all elements of N for any
given TU game. An extended value is a mapping ϕ that assigns to each probabilistic
game (N, v, P) a vectorϕ(N, v, P) ∈ R|N|. ϕi(N, v, P) will be interpreted as a measure
of the ‘difference’, in an abstract sense, that player i makes for the probabilistic game
(N, v, P). It might, for instance, relate to the average of marginal contributions v(S ∪
i) − v(S) that are made by i to coalitions S ∈ N \ i, to the difference that i makes to
a potential function (i.e., a mapping from PG to R) when i is added to the player set
N′ such that N′ ∪ i = N, or to any other indicator of how important the behavior or
presence of player i might be to the members of N or an outside observer.

TU values and extended values are defined on two distinct domains, G and PG. Ex-
tended values can be regarded as technically the more general concept because any
given TU value can be turned into an extended value simply by ignoring the distribution
P that is specified as part of probabilistic game (N, v, P). For instance, the in this way
‘generalized’ Shapley value is defined by5

ϕi(N, v, P) =
∑
S 63i

|S|!(|N|− |S|− 1)!
|N|!

(v(S ∪ i) − v(S)). (1)

5When the considered set of playersN is clear from the context, we simplify notation by writing
∑
S 63i

instead of
∑
S⊆N: i/∈S, or

∑
S3i instead of

∑
S⊆N: i∈S.
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and similarly the (generalized) Banzhaf value can be defined by

βi(N, v, P) =
1

2n−1

∑
S 63i

(v(S ∪ i) − v(S)). (2)

Both the original Shapley TU value and the Banzhaf TU value (which was at first
restricted to simple games, and later extended to general TU games by Owen 1975) are
special instances of probabilistic values, as introduced by Weber (1988), with either

Ψi(N, v,Q) =
∑
S3i

Qi(S)(v(S) − v(S \ i)) = EQi [v(S) − v(S \ i)] (3)

such that each element Qi of the collection Q = {Qi}i∈N denotes a probability distri-
bution on {S ⊆ 2N : i ∈ S}, or

Ψi(N, v,Q
′) =
∑
S 63i

Q′i(S)(v(S ∪ i) − v(S)) = EQ′i [v(S ∪ i) − v(S)] (4)

such that Q′i denotes a probability distribution on 2N\i. For instance, Laruelle and Va-
lenciano (2005) have proposed two probabilistic values,Φ+ andΦ−, which respectively
takeQi(S) andQ′i(S) to denote the probability of coalition S being realized conditional
on i voting no and conditional on i voting yes.

For a given probabilistic game (N, v, P) this suggests to work with the conditional
probability distributions P|i and P|¬i as follows: for all S ⊆ N

P|i(S) =


P(S)∑

T3i
P(T)

if i ∈ S and
∑
T3i
P(T) 6= 0,

0 otherwise,
(5)

and, similarly,

P|¬i(S) =


P(S)∑

T 63i
P(T)

if i /∈ S and
∑
T 63i
P(T) 6= 0,

0 otherwise.
(6)

One might then consider

Φ+
i (N, v, P) = EP|i[v(S) − v(S \ i)] (7)

and
Φ−
i (N, v, P) = EP|¬i[v(S ∪ i) − v(S)] (8)

as the natural extensions to Laruelle and Valenciano’s conditional decisiveness measures
to domain PG. Note that Φ+(N, v, P) = Φ−(N, v, P) = β(N, v, P) if and only if
P(S) ≡ 2−|N|. One can similarly obtain identity with the (extended) Shapley value:
namely

Φ+(N, v, P) = ϕ(N, v, P)

⇐⇒ P(∅) = 0 and P(S) =
1

s
(
n
s

)∑n
t=1

1
t

if S 6= ∅, (9)
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and

Φ−(N, v, P) = ϕ(N, v, P)

⇐⇒ P(N) = 0 and P(S) =
1

(n− s)
(
n
s

)∑n
t=1

1
t

if S 6= N, (10)

with n = |N| and s = |S| (see Laruelle and Valenciano 2005, Prop. 3).6

We, however, suggest an altogether different approach to assessing the importance of
N’s members in a probabilistic games (N, v, P). It is not based on probabilistic values,
nor marginal contributions in general.

The reason why weighted marginal contributions may misrepresent (N, v, P) is that
they implicitly treat i’s decision, say, to change her no vote into a yes (or vice versa)
as being fully detached from the respective probabilities of observing the considered
two coalitions with and without i. Example 1 already highlighted the effect that non-
zero marginal contributions v(S ∪ i) − v(S) > 0 simply don’t count at all when the
underlying probability distribution P treats both events S∪i and S as null events. Adding
up weighted marginal contributions also leads to strange conclusions if only one of the
coalitions S and S ∪ i has positive probability, as illustrated in the following example.

Example 2. Consider an assembly of 3 voters in which coalitions {1, 3}, {2, 3} and
{1, 2, 3} are winning. Assume voters 2 and 3 are enemies and always vote contrary to
each other. Here, coalition S = {1, 2} might have positive probability under P and P|¬3,
while P(N) = 0. The problem with measures like Φ−(N, v, P) is then that they are
strictly increased by a contribution which 3makes in the null event of joining S = {1, 2}.

One thing that outside observers, members j 6= i of N, or i herself might still care
about is the informational gain that comes with the knowledge: “i will (not) be part
of the eventually formed coalition”. Knowing this might imply that j cannot (or must)
be amongst the members of the coalition. And it may have ramifications for the ex-
pected surplus that is created or the passage probability of the bill being debated. In
other words, it may be useful to base one’s evaluation of collective decision making as
described by (N, v, P) on P|i rather than P when i is known to support the decision.
This suggests looking at the difference EP|i[v(S)] − EP[v(S)] as a way of quantifying
i’s effect on the outcome. And, of course, it is of similar interest – and may yield a
rather different quantification of the difference that i’s decision makes – not to look at
how much i’s support increases the expected worth v(S) but at how much i’s opposi-
tion lowers it, i.e., EP[v(S)] − EP|¬i[v(S)]. Combining these two evaluations of how
knowledge of i’s decision changes the expectation of the game by summing them, we
obtain:

6Note that, as emphasized by Laruelle and Valenciano, the respective distribution P which needs to be
assumed in order to obtain the Shapley value as the expected marginal contribution conditional on i being
a member of the random coalition S and, alternatively, conditional on i not being a member, differ.
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Definition 1. The prediction value (PV) of player i in the probabilistic game (N, v, P)
is defined as

ξi(N, v, P) = EP|i[v(S)] − EP|¬i[v(S)] (11)

=
∑
S3i

v(S) · P|i(S) −
∑
T 63i

v(T) · P|¬i(T).

Example 3 (Example 1 revisited). Consider again the canonical simple majority de-
cision rule with an assembly of 5 voters with P(S) = 0 for |S| = 2 or |S| = 3 and
P(S) = 1/12 otherwise. The conditional probabilities are given by

P|i(S) =

{
1
6

if S = {i} or S = N\j, j 6= i or S = N,
0 otherwise,

(12)

and, similarly,

P|¬i(S) =

{
1
6

if S =∅ or S = {j}, j 6= i or S = N\i,

0 otherwise.
(13)

The prediction value follows as

ξi(N, v, P) = EP|i[v(S)] − EP|¬i[v(S)] (14)

=
∑
S3i

v(S) · P|i(S) −
∑
T 63i

v(T) · P|¬i(T)

=
5

6
−
1

6
=
2

3
. (15)

Remark 1. In case that coalition membership is statistically independent for every i 6=
j, i.e., if P is a product measure on 2N, the equality P | i(S) = P | ¬i(S \ i) holds
whenever i ∈ S. Then equations (7), (8), and (11) all evaluate to the same number – to
the Banzhaf value, for instance, if P(S) ≡ 2−|N|. That the “expectation of a difference”
in (7) or (8) coincides with the “difference between two expectations” in (11), however,
fails to hold in general. In particular, we will show in Corollary 1 that there is no
probability distribution P which would allow the Shapley value to be interpreted as
measuring informational importance.

3. CHARACTERIZING THE PREDICTION VALUE

This section provides an axiomatic characterization of the prediction value. We begin
with two classical conditions that are part of many axiomatic systems in the literature
on TU values. The first is anonymity, which requires that the indicated difference to the
game that is ascribed to any player by an extended value does not depend on the labeling
of the players. The second is linearity, which demands of an extended value that it is
linear in the characteristic function component v of probabilistic games.
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Definition 2. Consider two probabilistic games G = (N, v, P) and G′ = (N′, v′, P′)
related through a bijection π : N → N′ such that for all S ⊆ N, v(S) = v′(πS) and
P(S) = P′(πS) where πS := {π(i)|i ∈ S}. An extended value ϕ is anonymous if for
every such G and G′ ∈ PG

ϕi(N, v, P) = ϕπ(i)(N
′, v′, P′) for all i ∈ N. (16)

Definition 3. An extended valueϕ is linear if for all (N, v, P), (N, v′, P) ∈ PG and real
constants α,β

ϕ (N,αv+ βv′, P) = αϕ (N, v, P) + βϕ (N, v′, P) . (17)

Linearity combines two properties, scale invariance and additivity. Especially the
latter is far from being innocuous.7 But linearity is frequently imposed on solution
concepts for TU games; and the PV, as the difference of two expectations, embraces it
rather naturally.

The third characteristic property of the PV concerns the way how the respective ex-
tended values of two games G and G′ compare when one can be viewed as a reduced
form of the other. We first formalize this reduction relation between two games, and
afterwards define a consistency property which connects the extended values of corre-
spondingly related games.

Definition 4. Call player i ∈ N dependent in (N, v, P) (or simply in v) if v(i) = 0.
Given G = (N, v, P) ∈ PG and a dependent player i ∈ N, the probabilistic game
G−i = (N−i, v−i, P−i) ∈ PG is a reduced game derived from G by removal of i if

N−i = N \ i, (18)

P−i(S) = P(S) + P(S ∪ i) for all S ⊆ N \ i, and (19)

v−i (S) =

{
P(S)

P(S)+P(S∪i) · v(S) +
P(S∪i)

P(S)+P(S∪i)v(S ∪ i) if P−i(S) > 0, 8

0 otherwise.
(20)

So, when one moves from a given probabilistic game G to the reduced game G−i,
first, player i is removed from the set of players; second, the probabilities of all coali-
tions in G which only differ concerning i’s presence are aggregated; and, third, the
corresponding new worth v−i(S) of coalitions S ⊆ N−i is the convex combination of
the associated old worths, v(S) and v(S ∪ i), weighted according to their respective
probabilities under P. The following property requires that the extended value of any
player j ∈ N−i stays unaffected by the removal of i.9

Definition 5. An extended value ϕ is consistent if for all G = (N, v, P) ∈ PG and all
dependent players i ∈ N in v, we have ϕj(G) = ϕj(G−i) for all j ∈ N \ i.

7See, e.g., Felsenthal and Machover (1998, 6.2.26) and Luce and Raiffa (1957, p. 248).
8Note that if i were not a dependent player, i.e., v(i) 6= 0, then v−i would not be a properly defined

TU game because v−i(∅) 6= 0 in this case.
9The condition is vaguely reminiscent of the amalgamation properties considered by Lehrer (1988) or

Casajus (2012).
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One reason for why this consistency property could be desirable is the following.
Suppose that the considered model is misspecified in the sense that a player of interest
in the game is not taken into account by the rest of the players (or an outside observer).
For instance, consider the situation of a voting game G′ = (N′, v′, P′), where the pres-
ence of a lobbyist i has been neglected. The more accurate model would include the
lobbyist and be G = (N′ ∪ i, v, P). The effect of the lobbyist endorsing a proposal or
opposing it would explicitly be captured by the probability distribution P: for example,
voters with strong ties to i may be likely to vote the same way, while others behave
oppositely. Coalitions S and S ∪ i which differ only in i’s presence will consequently
have very different P-probabilities depending on whether S includes i’s fellow travelers
or opponents. But if the probability P′ and value v′ of each coalition T ⊆ N′ in the
‘misspecified’ game without i are defined in a probabilistically correct way, i.e., if the
misspecified game G′ equals G−i, then the assessment of any actor j 6= i should be
unaffected by whether one considers G or G−i.

Consistency can thus be seen as formalizing robustness to probabilistically correct
misspecifications.

Proposition 1. The prediction value is anonymous, linear, and consistent.

Proof. Anonymity and linearity of ξ are obvious from Definition 1. To prove consis-
tency, consider (N, v, P) ∈ PG and let i ∈ N be dependent in v. Let j ∈ N \ i and
S ⊆ N \ ij. In case

∑
T⊆N\i: j∈T

P−i(T) =
∑

T⊆N: j∈T
P(T) 6= 0 we can compute

P−i|j (S ∪ j) =
P−i (S ∪ j)∑

T⊆N\i:T3j P−i (T)
=

P (S ∪ j) + P (S ∪ i ∪ j)∑
T⊆N\i:T3j {P (T) + P (T ∪ i)}

=
P (S ∪ j) + P (S ∪ i ∪ j)∑

T⊆N:T3j P (T)
= P|j (S ∪ j) + P|j (S ∪ i ∪ j) .

In the alternative case, both sides are zero by definition. So in either case

P−i|j (S ∪ j) = P|j (S ∪ j) + P|j (S ∪ i ∪ j) . (21)

Analogously, one can check that

P−i|¬j (S) = P|¬j (S) + P|¬j (S ∪ i) (22)

when S ⊆ N \ ij. By using the definition of v−i and invoking equality (21) one can
verify that

P−i|j (S ∪ j) v−i (S ∪ j) = P|j (S ∪ i ∪ j) v (S ∪ i ∪ j) + P|j (S ∪ j) v (S ∪ j) . (23)

Similarly, by definition of v−i together with (22), we get

P−i|¬j (S) v−i (S) = P|¬j (S ∪ i) v (S ∪ i) + P|¬j (S) v (S) . (24)
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One can then infer

ξj(N−i, v−i, P−i) =
∑

S⊆N\ij

{
P−i|j (S ∪ j) v−i (S ∪ j) − P−i|¬j (S) v−i (S)

}
=
∑

S⊆N\ij

[{
P|j (S ∪ i ∪ j) v (S ∪ i ∪ j) + P|j (S ∪ j) v (S ∪ j)

}
−
{
P|¬j (S ∪ i) v (S ∪ i) + P|¬j (S) v (S)

}]
=
∑
S⊆N\j

{
P|j (S ∪ j) v (S ∪ j) − P|¬j (S) v (S)

}
= ξj(N, v, P),

where the second equality uses (23) and (24), and the third one follows by shifting the
corresponding terms from inside the square brackets to the outer summation. �

Proposition 1 is not enough to fully characterize the PV. For example, Φ+
i (N, v, P)

satisfies anonymity, linearity and consistency, too (see Lemma 1 below). Theorem 1
will provide a unique characterization of the PV. In a nutshell, the underlying argument
will be as follows: if extended values are linear and consistent, they are determined by
their image for the subclass of 2-player probabilistic games. It is then a question of how
the extended values of 2-player probabilistic games should suitably be restricted.

For that purpose it is worth recalling two implications of i being part of the formed
coalition: first, i’s presence means that i contributes to the formed coalition her voting
weight, productivity, etc. This reveals information about the expected worth directly.
But, second, i’s presence also affects the expected worth indirectly because it reveals
information about the presence and contributions of other players, at least if the behavior
of N \ i and of i are not statistically independent. In case of independence, i.e., if the
presence of i ∈ N presence has no informational value according to P, and if moreover i
is a null player in the TU-game (N, v), then a reasonable extended value can be expected
to assign zero to i. If, in contrast, knowledge of the behavior of null player i does change
the odds of a proposal being passed, then i has positive informational value.

For illustration, consider a voting game in which j is a dictator according to the rules
formalized by v (i.e., v(S) = 1 ⇔ j ∈ S). Let the voting behavior of j be perfectly
correlated with that of some other player i (formally a null player). Now note that it
is not part of the model (N, v, P), which mathematically describes the rules of the col-
lective decision body involving i and j and the random outcomes of coalition formation
processes, why the votes of i and j always coincide. ‘Null player’ imight simply follow
‘dictator’ j in all his decisions. Alternatively, player i could be irrelevant merely from a
formal perspective, i.e., have no say de jure; while it is her who imposes all her wishes
on j – that is, she rules de facto. In either case the informational values of i and j are
identical. They are also maximal (and could plausibly be normalized to, say, 1) in the
sense that the outcome can be predicted perfectly when knowing that i or j votes yes or
no.
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We combine the requirement that an independent null player i should be assigned an
extended value of zero with the requirement that i has a value of one in the considered
perfect correlation case as follows:10

Definition 6. An extended value ϕ satisfies the informational dummy-dictator property
(IDDP) if for i ∈ N and |N| = 2

ϕi({i, j}, uj, P) = P|i(ij) − P|¬i(j). (25)

Regarding dictators themselves it makes sense to impose the following for 1-player
probabilistic games:

Definition 7. An extended value ϕ satisfies full control if ϕi({i}, ui, P) = 1 for all i, P
where P({i}) > 0, and ϕi({i}, ui, P) = 0 otherwise.

This formalizes that ifN consists of just a single player i ∈ N with v(i) = ui(i) = 1
then i’s importance or the difference that i makes to this game should plausibly be
evaluated as unity.11 Immediately from the definition of the PV we obtain

Proposition 2. The prediction value satisfies full control and (IDDP).

Remark 2. We remark that (IDDP) implies a positive extended value for a null player i
even if i’s behavior is imperfectly but still positively correlated with that of a dictator j.
This is, e.g., the case when a yes-vote by i is made more likely by most other players
voting yes, i.e., for the implicit probabilistic model behind the Shapley value. For a
probabilistic game with a dictator where P reflects any Shapley value-like probabilistic
assumptions, this means that PV and Shapley value ϕ will not coincide: the Shapley
value satisfies the traditional null player axiom, i.e., it assigns zero to any player i who
does not directly affect the worth of any coalition S.

We have the following characterization result:

Theorem 1. There is a unique extended value ϕ which satisfies linearity, consistency,
full control and (IDDP). It is anonymous and ϕ ≡ ξ.

The full proof is provided in the appendix, together with proof of the following
lemma. It certifies that none of the four axioms in Theorem 1 is redundant.

Lemma 1.
(i) The extended value

Ψ1i (N, v, P) = Φ
+
i (N, v, P)

satisfies linearity, consistency, full control but not (IDDP).

10The case of independence corresponds to P|i(ij) = P|¬i(j), while the correlated dictator case
amounts to P|i(ij) = 1 and P|¬i(j) = 0.

11One might actually debate whether this should also be required in case that P(∅) = 1.
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(ii) The extended value

Ψ2i (N, v, P) = ξi(N, v, P) −Φ
+
i (N, v, P)

satisfies linearity, consistency, (IDDP) but not full control.
(iii) The extended value

Ψ3i (N, v, P) =
∑

S3i:|S|62

v(S) · P|i(S) −
∑

T 63i:|T |62

v(T) · P|¬i(T)

satisfies linearity, full control, (IDDP) but not consistency.
(iv) Let |N| > 3 and v =

∑
S⊆N

αS · uS be the unique decomposition of v into una-

nimity games. The extended value

Ψ4i (N, v, P) =
∑

S⊆N:αS 6=0

ξi(N,uS, P)

satisfies consistency, full control, (IDDP) but not linearity.

4. RELATION BETWEEN PREDICTION VALUE AND PROBABILISTIC VALUES

The example values discussed earlier (like ϕ,β,Φ+, Φ−) all are members of the class
of probabilistic values, i.e., they have in common that they weight marginal contribu-
tions of a player by some probability measure. We already noted in Remark 1 that the
natural extension of the Banzhaf value agrees with the prediction value if P(S) ≡ 2−|N|.
We now study the relationship between such members of the class of extended proba-
bilistic values and the prediction value somewhat more generally.

Recall that Weber (1988) has shown that the class of probabilistic values is charac-
terized by linearity, positivity, and the null player axiom. The PV is linear but satisfies
neither positivity nor the null player axiom.12 Like the prediction value, probabilistic
values generally do not satisfy symmetry. That property formalizes the idea that any
symmetric players i, j ∈ N in a TU game (N, v) should have the same value; it will
only be satisfied by a probabilistic value Ψ or the PV ξ if the respective probability
measures Q from (3) or P from (11) are fully symmetric regarding i and j.

The following result characterizes the connection between probabilistic values and
the prediction value.

Theorem 2. The identity Ψ(·, Q) ≡ ξ(·, P) holds for n > 1 if and only if there exist
probabilities 0 < p̃i < 1 for each player such that

Qi(S ∪ i) = P|i(S ∪ i) =
∏
j∈S

p̃j ·
∏

j∈N\(S∪i)

(1− p̃j) (26)

12See Remark 2 concerning null players. Positivity is violated, e.g., for a probabilistic game (N, v, P)
where v is positive and there is a player i such that P|i ≡ 0.
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holds for all S ⊆ N\i, i ∈ N and

P(S) =
∏
j∈S

p̃j ·
∏
j∈N\S

(1− p̃j) (27)

holds for all S ⊆ N.

The proof can be found in the appendix.
An important subclass of probabilistic values has the symmetry property: semivalues

are defined by (3) and weightsQi(S) that depend on S only via |S| (Dubey et al. 1981).13

They are defined by

fqi (N, v) =
∑
S⊆N\i

q|S| ·
(
v(S ∪ i) − v(S)

)
(28)

for a vector of n non-negative numbers q = (q0, . . . , qn−1) 6= 0 with

n−1∑
k=0

(
n− 1

k

)
qk = 1. (29)

The Shapley value arises by setting qk = 1

n(n−1k )
; the Banzhaf index for qk = 1

2n−1
.

The following result characterizes the connection between semivalues and the predic-
tion value by answering the question: for which q can one find P such that fq(N, v) =
ξ(N, v, P) for all (N, v) ∈ GN? This identifies all semivalues which can be interpreted
as the prediction value for specific P.

Proposition 3. For a given semivalue fq and n > 1 there exists P such that fq(·) ≡
ξ(·, P) on GN if and only if there is an α > 0 with qk = q0α

k > 0 for all 0 6 k 6 n−1,
where q−1

0 =
∑n−1
k=0

(
n−1
k

)
αk.

Proof. Assume fq(·) ≡ ξ(·, P). Then, anticipating Lemma 4 (see the appendix), we
conclude q|S|−1 = P|i(S) for all {i} ⊆ S ⊆ N and all i ∈ N. Applying Theorem 2
it follows that there exist p̃j ∈ (0, 1) for all j ∈ N such that q|S\i| =

∏
j∈S p̃j ·∏

j∈N\(S∪i) (1− p̃j). From P|i(S) = q|S|−1 = P|j(S), where i, j ∈ S, one obtains
p̃i = p̃j for all i, j ∈ N. Setting α = p̃1

1−p̃1
we can write qk = αk · (1− p̃1)n−1 =

p̃k1 (1− p̃1)
n−k−1 for all 0 6 k 6 n − 1. We observe that q satisfies equation (29) if

we choose q−1
0 =

∑n−1
k=0

(
n−1
k

)
αk = (1− p̃1)

−n+1.
Since p̃1 7→ p̃1

1−p̃1
is a bijection from (0, 1) to (0,∞), we directly obtain p̃1 from a

given α > 0 and can then easily check that fq defined by qk = qoα
k is indeed identical

to ξ(·, P) with P defined by p̃j = p̃1 for all j ∈ N and by equation (27). �

13See, e.g., Calvo and Santos (2000) for a discussion of other subclasses like weighted Shapley values,
weak semivalues (Qi(S) depends only on S), or weighted weak semivalues (Qi(S) is decomposable as
wi · pS where wi depends only on i and pS depends only on S).
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It follows that semivalues which allow for the interpretation as a prediction value
form a special subclass of semivalues. They are known as binomial semivalues (see
Dubey et al. 1981; Carreras and Freixas 2008; Carreras and Puente 2012 – an axiomatic
characterization has been given by Amer and Giménez 2007). Specifically, a p-binomial
semivalue is defined by

qk = pk (1− p)
n−k−1 for 0 < p < 1. (30)

Setting α = p
1−p

matches the parametrization in Proposition 3, where q0 can be deter-
mined from equation (29).14 For each given α > 0 we obtain a unique semivalue. The
Banzhaf value corresponds to α = 1 and q0 = 1

2n−1
. For n = 1 each α > 0 yields

the same value given by q = 1. For n = 2 we set α = q1
q0

. For n > 3 it depends on
the specific semivalue whether it can be viewed as a restriction of the PV or not. As
already suggested by our Remark 2 on correlated decisions and null players, a negative
result obtains for the Shapley value ϕ. It illustrates the fundamental difference between
traditional semivalues and the new value concept proposed in this paper:

Corollary 1. For n > 3 there exists no P such that ϕ(·) ≡ ξ(·, P) on GN.

Proof. Recall that ϕ ≡ fq with qk =
[
n
(
n−1
k

)]−1. Let n > 3 and P be such that
ϕ(·) ≡ ξ(·, P). We can deduce q0 = 1

n
and α = q1

q0
= 1
n−1

from Proposition 3. Since
q2 = q1 · 2

n−2
the condition q2 = q0α

2 = q1α implies n = 0, in contradiction to
n > 3. �

5. PREDICTION VALUES IN THE DUTCH PARLIAMENT 2008–2010

As illustration of the prediction value’s practical applicability and of how its informa-
tional importance indications can be very different from power ascriptions by traditional
values, we consider the seat distribution and voting behavior in the Dutch Parliament be-
tween 2008 and 2010. This was the period of the left-centered Balkenende IV govern-
ment, which consisted of Christian democrats from the CDA and Christen Unie parties
and the social democratic PvdA.

CDA CU D66 GL PvdA PvdD PVV SGP SP Verdonk VVD
Seats 41 6 3 7 33 2 9 2 25 1 21
β 0.597 0.073 0.038 0.089 0.398 0.026 0.120 0.026 0.306 0.013 0.200
ϕ 0.317 0.036 0.021 0.044 0.225 0.015 0.061 0.015 0.155 0.007 0.104
Φ+ 0.665 0.040 0.005 0.051 0.283 0.004 0.074 0.004 0.235 0.001 0.210
Φ− 0.660 0.021 0.004 0.050 0.434 0.005 0.061 0.002 0.140 0.000 0.131
ξ 0.782 0.318 0.248 0.468 0.330 0.023 0.369 0.182 0.217 0.217 0.278

TABLE 1. Values in the Dutch Parliament

14In some definitions in the literature the extreme cases p = 0 and p = 1 are allowed, too, with the
convention 00 = 1. For p = 0 we would get the dictatorial index and for p = 1 the marginal index.
See Owen (1978) for details. However, note that neither p = 0 nor p = 1 satisfy the conditions from
Proposition 3.
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The distribution of the 150 seats in parliament between its eleven parties is displayed
in the top part of Table 1. The three government parties held a majority of 80 out of 150
seats. When voting on non-constitutional propositions, the Dutch Parliament applies
simple majority rule. It is straightforward to define a voting game with this information,
and to calculate the corresponding a priori Banzhaf and Shapley values β and ϕ.

We used the parliamentary information system Parlis15 in order to extract information
on members, meetings, votes and decisions on propositions in the 2008–2010 period.
From the records of regular plenary voting rounds, where parties vote as blocks, we
derived the empirical frequencies of the 211 conceivable divisions into yes and no-camps
from 2720 observations.16 Defining P by these empirical frequencies, we calculated the
corresponding prediction values ξi of the parties as well as their positive and negative
conditional decisiveness values Φ+

i and Φ−
i defined in (7) and (8). A summary of the

results is given in the bottom part of Table 1.
The PV-scores ξi of Dutch parties tend to be higher than their respective traditional

Banzhaf or Shapley power measures βi and ϕi, and even the decisiveness measures
Φ+
i and Φ−

i which incorporate the same empirical estimate of P. In particular, the
prediction value ascribes rather substantial numbers also to small parties like D66, SGP,
or Verdonk.

CDA CU D66 GL PvdA PvdD PVV SGP SP Verdonk VVD
CDA 1.000 0.267 0.263 0.483 0.237 -0.044 0.324 0.221 -0.026 -0.026 0.012

CU 0.267 1.000 0.631 0.348 0.601 0.015 0.178 0.459 0.094 0.094 0.158
D66 0.263 0.631 1.000 0.348 0.811 0.044 0.169 0.693 0.034 0.034 -0.008
GL 0.483 0.348 0.348 1.000 0.315 -0.003 0.171 0.259 0.019 0.019 0.068

PvdA 0.237 0.601 0.811 0.315 1.000 0.040 0.161 0.714 0.027 0.027 -0.003
PvdD -0.044 0.015 0.044 -0.003 0.040 1.000 0.198 0.171 0.536 0.536 0.389
PVV 0.324 0.178 0.169 0.171 0.161 0.198 1.000 0.203 0.263 0.263 0.285
SGP 0.221 0.459 0.693 0.259 0.714 0.171 0.203 1.000 0.110 0.110 0.025

SP -0.026 0.094 0.034 0.019 0.027 0.536 0.263 0.110 1.000 1.000 0.554
Verdonk -0.026 0.094 0.034 0.019 0.027 0.536 0.263 0.110 1.000 1.000 0.554

VVD 0.012 0.158 -0.008 0.068 -0.003 0.389 0.285 0.025 0.554 0.554 1.000

TABLE 2. Correlation coefficients for 2008–2010 votes in Dutch Parliament

This reflects specificities of the political situation in the Netherlands and that the PV
picks up corresponding correlations between the voting behavior of different parties.
Varying majorities at calls are quite common in the Dutch Parliament. The member
parties of the government do not necessarily vote the same way; some are frequently

15The data is available through http://data.appsvoordemocratie.nl
16We pooled all regular plenary votes in order to illustrate the simplest way in which data can be used

to infer interdependencies in a voting body – one might want to split the data with respect to topics, or
weight distinct calls by their importance, in actual political analysis. Note that the Dutch Parliament’s
chairperson assumes that parties vote as blocks unless some MP demands voting by call. Only then can
members of the same party vote differently. We excluded such cases of ‘non-coherent voting’ from our
analysis.
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supported by smaller opposition parties. The correlation coefficients reported in Table 2
indicate, for instance, that SGP and D66 quite commonly voted the same way as CU
and PvdA. Their PV numbers hence differ much less than their seat shares.

Verdonk and SP constitute an extreme case in this respect. The former is commonly
considered as right-wing, the latter as a left-wing party; still both voted the same way
at each call in the data set (presumably having different reasons). Perfect correlation
of their votes implies that both have the same prediction value – despite SP having 25
seats and Verdonk but one: knowing either’s vote in advance would have been equally
valuable for predictive purposes. Measures based on marginal contributions, in contrast,
clearly favor SP over Verdonk (though less so if the a posteriori correlation between
SP’s and Verdonk’s votes is ignored). Interestingly, the GL party has the second-highest
prediction value: despite it not being in government and having only the sixth-largest
seat share, support by GL was a better predictor of a bill’s success than support by any
except the biggest party (CDA).

6. CONCLUDING REMARKS

Traditional semivalues like the Shapley or Banzhaf values and the prediction value pro-
vide two qualitatively distinct perspectives on the importance of the members of a col-
lective decision body. One highlights the difference that an ad-hoc change of a given
player i’s membership in the coalition which eventually forms would make from an ex
ante perspective; the other stresses the difference that the change of a player’s presumed
membership makes for one’s ex ante assessment of realized worth. As the figures in
Table 1 illustrate, both can differ widely in case players’ behavior exhibits interdepen-
dencies. But, as captured by Proposition 3, they coincide in case of statistical indepen-
dence. The latter is presumed by the behavioral model underlying, e.g., the Banzhaf
value, but incompatible with that underlying the Shapley value.

For independent individual voting decisions, the conditioning on different votes of
player i adds no behavioral information to the numerical one about i’s weight contri-
bution to either the yes or no camp. Then i’s informational importance and i’s voting
power or influence – reflected by sensitivity of the collective decision to a last-minute
change of i’s behavior – are aligned.17

It might be criticized that in cases of interdependence, the prediction value fails to
distinguish correlation and causation. For illustration, consider decisions by a weighted
voting body in which some player i has zero weight but all other players’ decisions are
perfectly correlated with that of i. Player i’s prediction value is then one irrespective
of whether (i) players j 6= i ‘follow’ i as, say, their guru or supreme leader and cast
their weight as i would if he had any, (ii) i 6= k and all players j 6= k follow a specific
other player k, or (iii) all players debate the merit of a proposal based on different ini-
tial inclinations and collective opinion dynamics converge to, for instance, the majority

17In the case of the Banzhaf value, coincidence between voter i’s influence as picked up by i’s average
marginal contribution and the informational effect of knowing i’s vote has been hinted at by Felsenthal
and Machover (1998, 3.2.12–15).
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inclination.18 But since knowing i’s decision – rather than i’s initial inclination – will
always fully reveal the realized outcome, ξi = 1 can be regarded more as a feature than
a flaw.

This example points to an interesting extension of the proposed “difference of condi-
tional expected values”-approach to measuring importance. Namely, start with a given
description (N, v, P) of a decision body where P corresponds to, say, the Banzhaf uni-
form distribution and augment it by the formal description of a social opinion formation
process which defines a mapping from players’ binary initial voting inclinations to a
distribution over final ones after social interaction. One can then capture a player i’s
combined social and formal influence in the decision body by answering the question:
how much does knowing that i’s initial inclination is in favor (or against) modify the
final outcome which is to be expected? We conjecture that this approach actually has
advantages over extending marginal contribution-based analysis to social interaction,19

and plan to pursue this extension in future research.

18See Grabisch and Rusinowska’s (2010) related work on possibilities to aggregate individual influ-
ence in command structures.

19See, for instance, the power scores derived from swings in societies with opinion leaders by van den
Brink et al. (2013).
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APPENDIX

Proof of Theorem 1. The proof proceeds in three steps. First, in Lemma 2 we prove
for |N| = 2 that linearity and consistency imply that an extended value is determined
by unanimity games. Second, we generalize this to all probabilistic games in Lemma 3.
Finally, we show that the full control property and (IDDP) characterize the PV for 2-
player probabilistic games and hence probabilistic games in general.

Lemma 2. Consider an extended valueϕ that is linear on the space of all 2-player prob-
abilistic games and consistent. For any set N with |N| = 2, the mapping (N, v, P) 7→
ϕ(N, v, P) is fully determined by the numbers

xij := ϕi(N,uj, P) for i, j ∈ N. (31)

Proof. Let P be a fixed probability distribution on 2N with N = {i, j}. The set of
unanimity games {ui, uj, uij} forms a basis for the space of all TU games on N. In
particular, for any (N, v) ∈ GN there are constants αi, αj, αij such that

v ≡ αiui + αjuj + αijuij. (32)

And thus, for arbitrary P and i ∈ N, ϕ’s linearity implies

ϕi(N, v, P) = αiϕi(N,ui, P)︸ ︷︷ ︸
:=xii

+αjϕi(N,uj, P)︸ ︷︷ ︸
:=xij

+αijϕi(N,uij, P)︸ ︷︷ ︸
:=xi,ij

. (33)

We need to show that xi,ij and xj,ij are fully determined by xii and xij.
To see this, notice first that both players are dependent in (N,uij, P). So we may

consider the reduced game obtained by j’s removal, which involves N−j = {i} and

P−j(∅) = P(∅) + P(j), P−j(i) = P(i) + P(ij),

(uij)−j(∅) = 0, (uij)−j(i) =

{
P(ij)

P(i)+P(ij)
if P(i) + P(ij) > 0,

0 otherwise.
(34)

In case P(i) + P(ij) > 0, we have

ϕi(N,uij, P) = ϕi
(
{i},

P(ij)
P(i)+P(ij)

· ui, P−j
)

= P(ij)
P(i)+P(ij)

·ϕi({i}, ui, P−j)

= P(ij)
P(i)+P(ij)

·ϕi(N,ui, P) = P(ij)
P(i)+P(ij)

· xii, (35)

where the first equality invokes consistency, the second linearity, and the third one ex-
ploits that ({i}, ui, P−j) is the reduction of (N,ui, P) by player j and again consis-
tency. When P(i) = P(ij) = 0 we have ϕi(N,uij, P) = 0 because in this case
(uij)−j({i}) = 0 by Definition 4, so that (uij)−j is the all-zero game 0 in that case.
Consistency requires ϕi(N,uij, P) = ϕi({1}, (uij)−j, P−j) = ϕi({i}, 0, P−j) = 0 due
to linearity.
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In summary,

xi,ij =

{
P(ij)

P(i)+P(ij)
· xii if P(i) + P(ij) > 0,

0 otherwise.
(36)

And in a similar fashion one obtains

xj,ij =

{
P(ij)

P(j)+P(ij)
· xjj if P(j) + (Pij) > 0,

0 otherwise.
(37)

�

For any v ≡ αiui + αjuj + αijuij we have

ϕi(N, v, P) =

{
αj · xij +

(
αi +

αij·P(ij)
P(i)+P(ij)

)
· xii if P(i) + P(ij) > 0,

αj · xij + αi · xii otherwise
(38)

and an analogous expression for ϕj(N, v, P). This finding can be generalized from just
two players to arbitrary N:

Lemma 3. Letϕ be a consistent and linear extended value. Then the mapping (N, v, P) 7→
ϕ(N, v, P) is fully specified by the parameters in (31).

Proof. Using the n-player unanimity games as a basis for PGN one can always write

v ≡
∑

∅(T⊆N

αTuT . (39)

Letting i ∈ N be an arbitrary but fixed player, we will use induction on n in order to
prove the following

Claim: There exist βij, depending on the αT and P, such that

ϕi(N, v, P) =

n∑
j=1

βijxij where xij := ϕi(N,uj, P). (40)

The claim is obvious for a single player and was proven for |N| = 2 in Lemma 2.
In view of linearity, it suffices to prove the statement for unanimity games uT , where
nothing needs to be shown when the cardinality of T is one. So we consider |N| > 3,
|T | > 2 and assume that the statement is true for all player sets N of cardinality n − 1.
Let j ∈ N \ i be a player, which must be dependent in uT because |T | > 2. Now we
consider the reduced game (N−j, (uT )−j, P−j). From consistency we conclude

ϕi(N,uT , P) = ϕi(N−j, (uT )−j, P−j).

Applying the induction hypothesis implies the existence of β′ik, which depend on P−j
and hence on P, such that

ϕi(N,uT , P) =

n∑
k=1,k6=j

β′ikϕi(N−j, uk, P−j).
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Since (uk)−j = uk the reduced game of (N,uk, P) is given by (N−j, uk, P−j) for all
1 6 k 6 n with j 6= k. Inserting ϕi(N−j, uk, P−j) = ϕi(N,uk, P) = xik then proves
the claim, and the theorem. �

We remark that the coefficients βij referred to in the above proof get quite compli-
cated for increasing n. In the following we will use only the fact that they are well-
defined given v and P.

Proof of Theorem 1. To complete the proof we now show how the values xii = ϕi(N,ui, P)
and xij = ϕi(N,uj, P) can be computed from the corresponding values for the player
set N′ = {i, j}. Since (ui)−j = ui for all i 6= j we can recursively conclude from
consistency

ϕi(N,ui, P) = ϕi({i, j}, ui, P
?) and (41)

ϕi(N,uj, P) = ϕi({i, j}, uj, P
?), (42)

where

P?(S) =
∑

T⊆N\ij

P(S ∪ T) for any S ⊆ {i, j}. (43)

Using equation (43) and similarly defining

P′(S) =
∑
T⊆N\i

P(S ∪ T) for any S ⊆ {i}, (44)

we conclude ϕi({i}, ui, P′) = ϕi({i, j}, ui, P?) from consistency. Thus, the full control
property, in connection with consistency and linearity, implies xii = 1 for all player
sets N (containing player i). If ϕ satisfies (IDDP) the values of xij are determined,
and hence ϕ is determined on the class of 2-player probabilistic games. Then ϕ ≡ ξ
follows from Lemma 3. Finally note that the full control property and (IDDP) do not
depend on the labeling of the players, which implies anonymity. �

Proof of Lemma 1.
(i) Linearity of Φ+ follows from (7). For notational convenience put P̃ = P|i. For the
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reduced game G−j = (N−j, v−j, P−j) we get

Φ+
i (N−j, v−j, P−j)

= EP̃−j[v−j(S) − v−j(S \ i)] =
∑
S⊆N\j

P̃−j[v−j(S) − v−j(S \ i)]

=
∑
S⊆N\j

(
P̃(S) + P̃(S ∪ j)

)
[v−j(S) − v−j(S \ i)]

=
∑
S⊆N\j

(
P̃(S) + P̃(S ∪ j)

)
v−j(S) −

∑
S⊆N\j

(
P̃(S) + P̃(S ∪ j)

)
v−j(S \ i)

=
∑
S⊆N\j

P̃(S)v(S) + P̃(S ∪ j)v(S ∪ j) −
∑
S⊆N\j

(
P̃(S)v(S \ i) − P̃(S ∪ j)v((S ∪ j)\i)

)
=

∑
S⊆N\j

P̃(S) [v(S) − v(S \ i)] +
∑
S⊆N\j

P̃(S ∪ j) [v(S ∪ j) − v((S ∪ j)\i))]

=
∑
S⊆N

P̃(S) [v(S) − v(S \ i)] =
∑
S⊆N

P|i [v(S) − v(S \ i)]

= Φ+
i (N, v, P).

We conclude thatΦ+
i (N, v, P) is consistent.

The verification of full control provides

Φ+
i ({i}, v, P) = EP|i[v(S) − v(S \ i)]

= P|i ({i}) v({i}) (45)

which is equal to one for v = ui and P ({i}) > 0 and equal to zero if P ({i}) = 0.
To see thatΦ+ does not satisfy (IDDP) note that

Φ+
i ({i, j}, v, P) = EP|i[v(S) − v(S \ i)]

= P|i ({i, j}) [v({i, j}) − v({j})] + P|i ({i}) [v({i}) − v(∅)]. (46)

For the unanimity game uj follows

Φ+
i ({i, j}, uj, P) = 0. (47)

(ii) Ψ2i (N, v, P) inherits linearity and consistency from ξ and Φ+. From (47) follows

Ψ2i ({i, j}, uj, P) = ξi({i, j}, uj, P)

and therefore (IDDP). From Proposition 2 and (45) we know that both ξ andΦ+ satisfy
full control such that

Ψ2i ({i}, ui, P) = 0,

contrary to Definition 7.

(iii) Linearity is obvious. For |N| 6 2 the extended value Ψ3 is identical to the PV and
the latter satisfies full control and (IDDP). For a counterexample to consistency consider
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a game G−j = (N, v, P) with |N| = 3 and perfect correlation P(N) = 1/2 = P(∅).
Here,

Ψ3i (N, v, P) = 0 for all i ∈ N. (48)

However, for the reduced game G−j = (N−j, v−j, P−j) we get

N−j = N \ j,

P−j(S) = P(S) + P(S ∪ j) for all S ⊆ N \ j

= 1/2 for S ∈ {N\j,∅} and 0 otherwise,

v−j (S) =


v(∅) for S = ∅
v(N) for S = N\j

0 otherwise.

For Ψ3 follows

Ψ3i (N−j, v−j, P−j) = v(N) − v(∅) = v(N) for all i ∈ N

which does not coincide with (48).

(iv) Consider the reduced game G−j = (N−j, v−j, P−j). PV is consistent and therefore

ξi(N−j, (uS)−j, P−j) = ξi(N,uS, P) for all i ∈ N \ j.

We conclude

Ψ4i (N−j, v−j, P−j) =
∑

S⊆N:αS 6=0

ξi(N−j, (uS)−j, P−j)

=
∑

S⊆N:αS 6=0

ξi(N,uS, P) = Ψ
4
i (N, v, P) for all i ∈ N \ j

which confirms consistency.
Full control and (IDDP) follows fromΨ4i ({i}, ui, P) = ξi({i}, ui, P) andΨ4i ({i, j}, uj, P) =
ξi({i, j}, uj, P).
To verify that Ψ4i is not linear put w =

∑
S⊆N

βS · uS.

Ψ4i (N, v+w,P) =
∑

S⊆N:αS+βS 6=0

ξi(N,uS, P)

which is in general not equal to∑
S⊆N:αS 6=0

ξi(N,uS, P) +
∑

S⊆N:βS 6=0

ξi(N,uS, P).

�
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Proof of Theorem 2. The proof is based on three insights, stated in Lemmas 4–6.

Lemma 4. From Ψ(·, Q) ≡ ξ(·, P) follows Qi(S) = P|i(S) for all {i} ⊆ S ⊆ N.

Proof. For an arbitrary subset {i} ⊆ S ⊆ N we consider the unanimity game uS and
obtain the formulas

ξi(uS, P) =
∑
T3i

uS(T) · P|i(T) −
∑
T 63i

uS(T) · P|¬i(T) =
∑
T :S⊆T

P|i(T)

and
Ψi(uS, Q) =

∑
{i}⊆T⊆N

Qi(T)
[
uS(T) − uS(T\i)

]
=
∑
T :S⊆T

Qi(T).

Now we prove the proposed statement by induction on the subsets S in decreasing
order of their cardinalities using the assumption ξi(uS, P) = Ψi(uS, Q). For the
induction start S = N we have P|i(N) = Qi(N). Using the induction hypothesis for
all S′ ⊆ N with |S′| > |S| yields P|i(S) = Qi(S). �

Lemma 5. From Ψ(·, Q) ≡ ξ(·, P) follows P|i(U) = P¬i(U\i) for all {i} ⊆ U ⊆ N
with |U| > 2.

Proof. We set U = N\S ∪ i so that we have to prove P|i(N\S ∪ i) = P|¬i(N\S) for
all subsets {i} ⊆ S ( N.
For fixed S we consider the unanimity game uN\S and obtain the formulas

ξi(uN\S, P) =
∑
T3i

uN\S(T) · P|i(T) −
∑
T 63i

uN\S(T) · P|¬i(T)

=
∑

T : N\S⊆T⊆N\{i}

(
P|i(T ∪ i) − P|¬i(T)

)
and

Ψi(uN\S, Q) =
∑
T3i

Qi(T)
[
uN\S(T) − uN\S(T\i)

]
= 0.

Now we prove the proposed statement by induction on the subsets S in increasing order
of their cardinalities using the assumption ξi(uS, P) = Ψ(uS, Q). For the induction
start S = {i} we have P|i(N) − P|¬i(N\i) = 0, which is equivalent to
P|i(N) = P|¬i(N\{i}). Using the induction hypothesis for all S′ ⊆ N with |S′| < |S|
yields P|i(N\S ∪ i) = P|¬i(N\S). �

Put pi :=
∑
T3i P(T) ∈ [0, 1] for all i ∈ N. Whenever pi > 0 we have P|i(S) = P(S)

pi

for all {i} ⊆ S ⊆ N and P|i(S) = 0 in all other cases. The next lemma excludes the
case pi = 1 for at least two players.

Lemma 6. If Ψ(·, Q) ≡ ξ(·, P) and if there exists an index i ∈ N with pi = 1, then
n = 1.
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Proof. From pi =
∑
T3i P(T) = 1 we conclude P(S) = 0 for all S ⊆ N\i. Thus we

have P|i(T) = 0 for all T 3 i with |T | > 2 due to Lemma 5. This yields P({i}) =
Qi({i}) = 1 and Qj(S) = 0 for all S 3 j, where (S, j) 6= ({i}, i), and all j ∈ N due to
Lemma 4. For each j ∈ N\i we then have

∑
S3jQj(S) = 0 6= 1 – a contradiction. �

Proof of Theorem 2. From Lemma 6 we conclude

0 6 pi :=
∑
T3i

P(T) < 1

for all i ∈ N. If pi = 0 for an index i ∈ N, then we have Qi(S) = 0 due to Lemma 4,
which contradicts the definition of the Qi(S). Thus we have 0 < pi < 1. Later on it
will turn out that indeed we can choose p̃i = pi.
We have

P(S) =
pi

1− pi
· P(S\i)

for all S 3 i with |S| > 2 due to Lemma 5 and pi > 0. Thus inductively we obtain

P(S) =
∏
j∈S\i

pj

1− pj
· P({i})

for all i ∈ N and all subsets S 3 i of N.
Inserting the previous equations into pi =

∑
S3i
P(S) yields

pi = P({i}) ·
∑
S 63i

∏
j∈S

pj

1− pj
= P({i}) ·

∏
j∈N\i

(
pj

1− pj
+ 1

)
= P({i}) ·

∏
j∈N\i

1

1− pj
.

Thus we have
P({i}) = pi ·

∏
j∈N\i

(1− pj),

which then yields
P(S) =

∏
j∈S

pj ·
∏
j∈N\S

(1− pj) (49)

for all ∅ 6= S ⊆ N. By using
∑
S⊆N P(S) = 1 we conclude that equation (49) is also

valid for the empty set and thus for all subsets of N.
Lemma 4 and a short calculation gives also the first formula of the proposed statement.

To verify that the converse holds as well let 0 < pi < 1 be given for all i ∈ N and
define

P(S) =
∏
j∈S

pj ·
∏
j∈N\S

(1− pj) ,

i.e., P is a product measure. Next set

Qi(S ∪ i) = P|i(S ∪ i) =
∏
j∈S

pj ·
∏

j∈N\(S∪i)

(1− pj) ,
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for i ∈ N\S, i.e. the Qi(S ∪ i) derive from the same product measure. We can easily
verify P|i(S) = P|¬i(S\i) for all S 3 i and all i ∈ N. Inserting this into the definition
of the prediction value provides ξ(·, P) = Ψ(·, Q).

�
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