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Abstract

A toric arrangement is a finite set of hypersurfaces in a complex torus,
every hypersurface being the kernel of a character. In the present pa-
per we build a CW-complex S homotopy equivalent to the arrangement
complement R x, with a combinatorial description similar to that of the
well-known Salvetti complex. If the toric arrangement is defined by a
Weyl group, we also provide an algebraic description, very handy for co-
homology computations. In the last part we give a description in terms
of tableaux for a toric arrangement of type A, appearing in robotics.
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Introduction

A toric arrangement is a finite set of hypersurfaces in a complex torus T' = (C*)™

in which every hypersurface is the kernel of a character y € X C Hom(T,C*)
of T.

Let Rx be the complement of the arrangement: its geometry and topology
have been studied by many authors, see for instance [8], [9], [4], [12]. In partic-
ular, in [10] and [3] the De Rham cohomology of Rx has been computed, and
recently in [13] a wonderful model has been built.

In the present paper we build a topological model S for Rx. This model is
a regular CW-complex, similar to the one introduced by Salvetti ([14]) for the
complement of hyperplane arrangements.

Moreover for a wide class of arrangements, which we call thick, its cells are
given by couples [C < F|, where C is a chamber of the real toric arrangement
and F is a facet adjacent to it (according to the definitions given in Section 2).

The model § is well suited for homology and homotopy computations, which
we hope to develop in future papers. Furthermore, the jumping loci in the
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local system cohomology of a CW-complex are affine algebraic varieties. In the
theory of hyperplane arrangements such objects, called characteristic varieties,
proved to be of fundamental importance. It is then a remarkable fact that the
characteristic varieties can be defined also in the toric case.

In Section 3 we focus on the toric arrangement associated to an affine Weyl
group W. In this case the chambers are in bijection with the elements of the
corresponding finite Weyl group W, and the cells of S are given by the couples
E(w,T), where w € W and T is a proper subset of the set S of generators of

W. This generalizes a construction introduced in [15] and [6].

In the last Section we give a description of the facets of the real toric ar-
rangement defined by the Weyl group A,, in the torus corresponding to the root
lattice. This description in terms of Young tableaux turns out to be interesting
since it coincides with the complex describing the space of all periodic legged
gaits of a robot body (see [2]).
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gether. In particular we wish to thank Fred Cohen and Mario Salvetti for several
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1 The CW-complex

1.1 Main definitions

Let T = (C*)™ be a complex torus and X C Hom(T,C*) be a finite set of
characters of T'. The kernel of every x € X is a hypersurface of T":

H,:={teT | x(t)=1}.
Then X defines on T the toric arrangement:
Tx ={H,,x € X}.
Let Rx be the complement of the arrangement:
Rx =T\ U H,
x€X

Let m : V. — T be the universal covering of T. Then V is a complex vector
space of rank n, and 7 is the quotient map 7 : V. — V/A, where A is a lattice
in V. Then the preimage 7~'(H,) of a hypersurface H, € Tx is an infinite
family of parallel hyperplanes. Thus

Ax = {r"Y(H,), xe€X}
is a periodic affine hyperplane arrangement in V. Let M x be its complement:

Mx :=V\ U Wﬁl(Hx)-

xeX



By definition, 7 maps M x on Rx. Moreover the equations defining the hyper-
planes in Ax can always be assumed to have integral (hence real) coefficients
since they are given by elements of A. Thus by [14] there is an (infinite) CW-
complex SC My and a map ¢ : Mx — S giving a homotopic equivalence.
Furthermore, we can build S in such a way that it is invariant under the action
of translation in A, for instance by building the cells relative to a fundamental
domain, and then defining the others by translation. Thus 7(S) is a finite CW-
complex, which will be denoted by S, and the image of every cell of S is a cell
of §. Moreover, since ¢ is A—equivariant, it is well defined the map

Pr(t) = (o p)(n (1)

which makes the following diagram commutative:

Mx 5§
T 7wl (1)

Rx 5 S
Lemma 1.1 The map ¢, is a homotopy equivalence between Rx and S.

Proof. The map ¢ is a homotopy equivalence hence, by definition, there is
a continuous map ¢ : § — Mx such that ¢ is homotopic to the identity map
idpy and @ is homotopic to idg. Namely, since S is a deformation retract, the
homotopy inverse 1 is simply the inclusion map, which is clearly A—equivariant.
Hence the map

Un(t) = (o) (n ™ (t))

is well defined and makes the following diagram commutative:

S 4 My
Tl Tl (2)
S Y Ry.

Let I = [0,1] be the unit interval and F': Mx x I — Mx be the continuous
map such that F(z,0) = ¢(p(z)) and F(z,1) = idyp, (z). Again, since F is
A—equivariant, we can define the map:

Fr(t) := (mo F)(r (1))
In this way we get the commutative diagram:

MXxI —F—> MX

™ Tl (3)

RX x I i) Rx.
By construction map F; is a continuous map such that Fy(x,1) = idg, and

Fr(2,0) = (Y@)r(z) = mpor ! (z) = mpm"mor ™! (2) = ¥r 0 or ().

Hence F); gives the required homotopy equivalence. O



1.2 Salvetti complex for affine arrangements

In order to describe the structure of S, we now have to focus on the real coun-
terparts of the complex arrangements above.
Let Vg be the real part of V. In other words, let Vg = R”™ be a real vector
space, and let V' = Vg ®g C be its complexification. Then we identify Vg with
a subspace of V via the map v — v ® 1.
Let Axwr be the corresponding hyperplane arrangement on Vg and Mxgr =
M x NV its complement. Since the image of R under the map C — C/Z — C*
is the circle

St:={zeC||z|=1}

we have that the image of Vg under the map 7 : V — V/A = T is a compact
torus Tg C 1. A real toric arrangement Tx g is naturally defined on Tk with
hypersurfaces H, g := H, NTk and complement Rx g = Rx NTk. Furthermore
7 restricts to universal covering map 7 : Vg — Tg and 1(Mx r) = Rx k.

We recall the following definitions:
1. a chamber of Ax g is a connected component of M x g;
2. a space of Ax g is an intersection of elements in Ax g;

3. a facet of Ax g is the intersection of a space and the closure of a chamber.

Let S := {F*} be the stratification of Vi into facets F* induced by the arrange-
ment Ax r, where superscript k stands for codimension.

Then the k-cells of S bijectively correspond to pairs
[C < F¥|

where C' = F¥ is a chamber of S and F* < FJ & clos(F*) D FJ is the standard
partial ordering in S. B

Let |F| be the affine subspace spanned by F, and let us consider the subar-
rangement

Az = {He Axg : FCH}.
A cell [C < F*] is in the boundary of [D < G7] (k < j) if and only if
i) FF <G

(4)

ii) the chambers C and D are contained in the same chamber of A e

Previous conditions are equivalent to say that C is the chamber of Ax r

which is the ”closest” to ? among those which contain F* in their closure. The
standard notation [C' < F*] € 95[D < G7] will be used.

1.3 Salvetti Complex for toric arrangements

In order to give a similar description for S, we introduce the following definitions:

1. a chamber of Tx r is a connected component of Rx g;



2. a layer of Tx g is a connected component of an intersection of elements of

Tx r;
3. a facet of Tx g is an intersection of a layer and the closure of a chamber.
Lemma 1.2
1. If(?' is a chamber of Ax r, w(é) is a chamber of Tx r;
2. If L is a space of Axr, 7(L) is a layer of Tx R;
3. If F is a facet of Ax R, T(ﬁ) is a facet of Tx r;

Proof. The first statement is clear, as well as the second one since W(Z)
must be connected. The third claim is a direct consequence of the previous two.
O

Now, let us consider the set S of pairs
[C < F¥]

where C' = F° is a chamber of Tx g, F k a k-codimensional facet of Tx r and
F' < FJ & clos(F') D FJ.
By Lemma 1.2 the quotient map 7(F) of a facet is still a facet in the real

torus and, by 7 surjective, we get that any facet F' in Tx g is the image F' = 7 (F)
of an affine one.

In general the cells of the complex S cannot be described using the above
notation, i.e. S # S as a set. Let us consider the very simple example defined
by A ={x € R| 2 € Z}. The chambers C; for i € Z are the open intervals
(1,74 1) and the 1-codimensional facets are the points. The toric arrangement
depends on the chosen lattice. For example we can quotient in two different
way as in the following figure. Namely, the picture on the left corresponds to
the choice A = Z, i.e. 7 :x — 2™ whereas the picture on the right is given
by A =27 and 7 : x > €™,

C

LN




As shown in the pictures the complex in the former example cannot be described
by pairs [C_1 < C_1], [C_1 < €] while the one in the latter can.

In the first example, the vertices F, =i and ﬁiH =7+ 1 in the closure of
the chamber CV'Z have the same image eg = W(ﬁl) = W(ﬁi+1) and the boundary
of the 1-cell [C_; < eg] is the only vertex [C_; < C_1]. Thus, if we define
[C; < Fj] = [7(Ci) < n(F})] == n([C; < Fj]) for j = i,i + 1, we get that
[C_1 < o] = m([C_1 < 0]) and [C_; < eg] = 7([Co < 0]) which is clearly a bed
definition as 7([C_; < 0]) # 7([Co < 0]).

We notice that
(€ < F) = n(ID < G)) = [(C) < x(F)] = [x(D) < w(C)].

Indeed if 7T([C’ < F]) = n([D < G]) there is a translation ¢t € A which sends
[C < F]in [D < G] As a simple consequence D = t.C and F = t.G, i.e.
7(C) = (D) and 7 (F) = n(D).

The converse is not necessarily true as seen before.

We now want to focus on the case S = S in which the description of the
complex § is particularly striking.

As § = 7(8) is a complex homotopic to the complement Rx then S is
described by couple [C' < F] if and only if the definition

[C < F]=[x(C) < n(F)] :=7([C < F)) forall [C < F] € S and C,F € S
(5)

is a good one. Under this condition, we get S = 7r(§) =S as set.

Moreover, if the definition (5) holds then we can define the boundary in S.
We need first to introduce new notations.

Notations. Let Py C V be a fundamental parallelogram for = : V. — T
containing the origin of V. Let 4y x be the subarrangement of Ax made by
all the hyperplanes that intersect Py (see, for istance, figure (8) in the next
Section).

We will say that a maximal dimensional cell [C =< F”] is in Ay, x if its support
| F™ | is the intersection of hyperplanes in Ay x. While a k-cell [C' < F*] is in

Ao x if it is in the boundary of a n-cell in Ay x. Let So be the set of all such
cells.

With previous notations if (5) holds we define the boundary in S as follow:

[C < F*]is in the boundary of [D < GJ] (k < 7) if and only if there are cells
[C’ =< Fk] € ﬂfl([C < F¥)N 8, and [D < GY] € 7= 1([D < G9]) NS, such that
[C < F* € 04[D < GY].

_Obviously this boundary map commutes with the one in S and we get S =
m(S) = S as CW-complexes.

Toric arrangement for which S = S are easily characterized as follows.



Definition 1.3 A toric arrangement Tx is thick if the quotient map
m:V—T

is injective on the closure clos(C ) of every chamber C of the associated affine
arrangement Ax .

We notice that every toric arrangement is covered by a thick one and the fiber
of the covering map is finite; hence our assumption is not very restrictive.
We have the following

Lemma 1.4 A toric arrangement Tx is thick if and only if
[7(C) < 7(F)] = [7(D) < 7(G)] <= n([C < F]) = «([D < G))
for any two cells [C < F],[D <G| € S

Proof. By previous considerations, it is enough to prove that the thick
condition is equivalent to

[7(C) < n(F)] = [x(D) < n(G)] = =([C < F]) = (D < G])

= Let Tx be thick and [« (C) < n(F)] = [x(D) < (G)] for two given k-cells in
S. This implies that 7(C) = w(D) and 7(F) = 7(G), i.e. there are translations
t,t’ € A such thatD—~t.C~' and G =t'.F B
By construction ¢.F' is a facet in the closure clos(D). We get two facets t.F'
and G both in clos(D) and with the same image 7 (t.F) = 7(F) = n(G). By
hypothesis 7 is injective on clos(D) then t.F =G, ie. t=1t which implies that
~((C < F]) = =((D < G). o
< Let F and G two facets in clos(C) such that w(F) = (G) then

([C < F]) = [x(C) < x(F)] = [(C) < n(G)] = =([C < G)).

As a consequence if ¢ € A is the translation such that F =t.G then t.C = C.

It follows that ¢ is the identity and we get F= G i.e. 7 is injective on clos(C’)
O

By previous considerations together with Lemma 1.4 we get the following
theorem

Theorem 1 Let Tx be a thick toric arrangement. Then its complement Rx
has the same homotopy type of the CW-complex S.

Then in this case the complex S has a nice combinatorial description, totally
analogue to that of the classical Salvetti complex [14].

_ Moreover if a toric arrangement is thick then the maximal dimensional cells
[C < F™in Ay x are in one to one correspondence with the n-dimensional facets
of S. Then the boundary in a thick toric arrangement 7x can be completely
described knowing the boundary in the associated finite complex Ag x.

This allows to better understand the fundamental group of the complement
and to perform computations on integer cohomology.
Furthermore, in this case S is a regular CW-complex.



Remark 1.5 The number of chambers of Txr can be computed by formulae
given in [7] and [12]. However the combinatorics of the layers in Tx g is more
complicated than the one of spaces of Ax r; hence an enumeration of the faces
is not easy to provide in the general case. Thus from now on we focus on the ar-
rangements defined by roots systems. In this case the chambers are parametrized
by the elements of the Weyl group, and the poset of layers has been described in

[11].

2 The case of Weyl groups

In this section we give a simpler and nicer description of the above complex for
the particular case of toric arrangements associated to affine Weyl groups when
the lattice A is spanned by coroots. Indeed in this case the toric arrangement is
thick. Using this description, we give an example of computation for the integer
cohomology of these arrangements.

2.1 Notations and Recalls.

Toric arrangement for Weyl group Let ® be a root system, (®V) be the

lattice spanned by the coroots, and A be its dual lattice (which is called the

cocharacters lattice). Then we define a torus T = T having A as group of

characters. In other words, if g is the semisimple complex Lie algebra associated

to @ and b is a Cartan subalgebra, T is defined as the quotient 7" = h/(P").
Each root « takes integer values on (®V), so it induces a character

e*: T —CJ/Z ~C".

Let X be the set of this characters; more precisely, since o and —« define the
same hypersurface, we set

Xi{ea,a€@+}.

In this way to every root system @ is associated a toric arrangement that we
will denote by T3, where W is the affine Weyl group associated to ®.

Remark 2.1 1. Let G be the semisimple, simply connected linear algebraic
group associated to g. Then T is the mazimal torus of G corresponding to
b, and Rx is known as the set of regular points of T

2. One may take as A the lattice spanned by the roots. But then one obtains
as T a maximal torus of the semisimple adjoint group G, which is the
quotient of G by its center.

Let (W, S) be the Coxeter system associated to W and

Ay = {Hgsg-1 | @€ W and s; € S}
the arrangement in C" obtained by complexifying the reflection hyperplanes of
W, where, in a standard way, the hyperplane Hg,, -1 is simply the hyperplane
fixed by the reflection ws;w?.

We can view A as a subgroup of W, acting by translations. Then it is well



known that W /A ~ W, where W is the finite reflection group associated to w.
As a consequence, the toric arrangement can be described as:

TW = {H[w]si[w—l] | weW and s; € S}

where two hypersurfaces H{ys,[w-1) and Hgs, 1] are equal if and only if there

is a translation t € A such that tws;(tw)~! = ws;w
by [11], these hypersurfaces intersect in

, l.e. w = tw. Moreover,

| W |
| Wa\gs:} |

local copies of the finite hyperplane arrangement AWS\ o5} associated to the
group generated by S\ {s;}, s; € S.

For example in the affine Weyl group Zln generated by {so,...,s,} for any
generator s; the finite reflection group associated to S\ {s;} is simply a copy of
the finite Coxeter group A,,.

The above condition is equivalent to say that T} is thick. Then we can
construct the Salvetti complex for these arrangements in a very similar way to
the affine one.

Salvetti Complex for affine Artin groups It is well known (see, for in-
stance, [6], [15] ) that the cells of Salvetti complex Sy for arrangements A
are of the form E(@,T) with T C S and @ € W. Indeed if & € {wsw|s €
S,w € W} is a reflection, the chambers are in one to one correspondence with
the elements of the group W as follows:

fixed a base chamber CY, it will correspond to 1 € W and if C corresponds
to w, then the chamber D separated from C' by the reflection hyperplane Hy
will correspond to the element aw € W. The notation D ~ aw will be used.

If F* is a k-codimensional facet then the k-cell [é < F ¥] corresponds to

the couple E(w,T) where @ ~ C and T = {s;,,...,s;, } is the unique subset of
cardinality k£ in S such that

k
| F* = ﬂ His, w1
j=1

If Wr is the finite subgroup generated by s € T, by [6] the integer boundary
map can be expressed as follows:

O(E(w, 1) =
SN ()OS EGE T\ {s)).  (6)
s; €l ﬁeﬁ/frl“\{sj-}

where Wll:\{o} ={w e Wr l(ws) > l(w)Vs € T'\ {o}} and p(T',s;) = #{s; €
Tli <j}.



Remark 2.2 Instead of the co-boundary operator we prefer to describe its dual,
i.e. we define the boundary of a k-cell E(w,T') as a linear combination of the
(k — 1)-cells which have E(w,T) in their co-boundary, with the same coefficient
of the co-boundary operator. We make this choice since the boundary operator
has a nicer description than co-boundary operator in terms of the elements of

w.

2.2 Description of the complex

Let Sy be the CW-complex associated to T3;;. By the previous considerations,
Sw admits a description similar to that of EW_ Indeed each chamber C' is in one
to one correspondence with an equivalence class [w] € W /A and then with an
clement w € W ~ W /A of the finite reflection group W. We will write C' ~ [w].

In the same way, the couple [C' < F*] € Sy corresponds to the cell E([w],T)

where C' ~ [w] and I' = {s;,,...,8;, } is the unique subset of cardinality &k in S
such that i
k|
| F¥ |= _ﬂlﬂ[w]% - 1]-
j=

We now want to describe the boundary of each cell: this is done in a standard
way by characterizing the cells that are in the boundary of a given cell, and by
assigning an orientation to all cells.

By construction the toric CW complex is locally isomorphic to the affine one
and it can inherit the affine orientation. Then the integer boundary operator
for Coxeter toric arrangements can be written as the affine one:

O (E([w],T)) =
Yo Y (NIHEIE(wE T {o}) (7)

o€l gey Mo

where, instead of elements of the affine group W, we have equivalence classes
with representatives in the finite group W.

Using this operator it is possible to compute the integer cohomology for
Weyl toric arrangements.

Example. Let us consider the affine Weyl group B, (see [1]) with Coxeter
graph:

o — [¢] — 0]
S0 S1 S92
and associated finite group Bs
4

] — o

S1 52

In this case we get translations t; = sps18281 and to = s2515081 and the

10



affine arrangement is represented as:

H«p = H(x1+o¢2 Hal Hag 0= Ha2
| N/ N/ |/ N/ N I I ’
: | - _/T\_ - /_|\_ - 7N T _/l\“ - '7|\_ - _I_ ai1+2az2,3
2N N 2 T N NN
| [ N B A oA |
Ha1+a2,—1\|/ 17 N 7 N|72oN 2N N,
R ORS X YT |___|___/\|_\H‘“+2a272
Ha 5 N 7/ VARLERN 7 |\ VARERN AN
22T v N Loy
Hoivos—2 | 7 N7 LN N W |
.\_/__T/_.QQ _ e ___\___\£Ha+2a1
/N / 7 7IN s0A Ty oI\ 7IN ‘1 25
1{a2,4 | N o/ | - / AN PN [N /7 |
H A > s14 A A
artaz,=3 I/, N1/ N4 S2AN |, NI \I/H I
»- - =
K LN NsoA N sl 7 Hai+2a2,0 o1+2a
H N7 4 s s
azd | N Ty N I
Hoivag—a 0 7 N1 72 N NP /NN
N
1% '/1< - —/‘!(\— . —/ﬁ : - X /-(; Ny Hayv20,,-1
az,2 I\\/ | | \‘< >/ | | \//I
Hoivay—5 1,7 | N LN s L,
) N 7 \-'/ N4 AN /H
I R—-- N \"""l“*';'\*—/*—““/‘\* a1 +2az,—2
7/ AN AN
a1 | N | V2R N 2 RN | 7| _ _
| AR > X0 | Hoavon1 = Hor = Hag
, \_L// Nz \\l/ N I
—_).L\_ _/.\—_7‘—-7.\-_746-—.— a1t+2a2,-3

If Ap is the finite subarrangement defined in Section 2.3, then the real toric
arrangement is obtained quotienting it as shown in the following figure, where
arrows indicate identified edges:

| Hs sy, Hg 5,50 Hs, | Hy,
___________ .>_ [y [N ——— T
| S18081  |S1508150,/ |
| S18250 b b |
$180@
| 505150l
| |
| | Hg, 545,
°
| s182 |
° s1e Jos1
| |
| |
| |
Y e Y (8)
S0
|
| |
| |
S|15281 .1
° |
| |
- — H,,
51555152. l
| s2@ ° |
[ ) 8250
I /sas152 |
—_—— — e —— — ’ _________ |_
HSQS132

Here, for brevity, the vertices E(w, () are labelled simply by the element w € w.

We get, for example, that the cell F([1],0) is the vertex in the chamber
containg 1 € W, while the vertices E([so],0) and E([s1s251],0) correspond

11



to the same chamber in the toric arrangement; indeed sqg = t1$1S251, then
[80] = [818281].

Notice that the number of chambers in the real torus is 8 in one to one
correspondence with the finite Weyl group By with cardinality 8. Then we get
exactly:

8 0-cells of the form E([w], () for w € Ba,
24 1-cells of the form E([w], {s;}) for w € By and i =0,1,2,
24 2-cells of the form E([w], {s;,s;}) for w € By and 0 <i < j < 2.

These cells locally correspond to four finite Coxeter arrangements, two of
type By and two of type A1 X A; appearing in the figure above. In particular
the 2-cells can be written as:

E([w], {si, si+1}) with a representative w chosen in the Coxeter group Bs
generated by {s;, s;+1}), i=0,1;

E([w], {so0, s2}) and E([syw], {so, s2}) with a representative w chosen in the
group {1, sq, 2, Sos2} generated by {sg, s2}.

The representatives can be chosen in the more suitable way for computations.
The boundary map (7) for the 1-cells is:

hE([wl, {s:i}) = E([w],0) — E([wsi], 0)

and it gives rise to a matrix of 24 columns and 8 rows with entries 0, 1 and —1.
On the other hand, the second boundary map is given by

BE([w], {si,si+1}) = E([w], {si}) — E([wsit1], {s:}) + E((wsisit1], {si})—
—E([w], {si+1}) + E([wsi], {si+1}) — E([wsi+15], {si+1})

Oz E([w], {s0, s2}) = E([w], {s0}) — E([wsz], {so}) —E([w], {s2})+ E([wso], {s2})-

In this way we get that the homology, and hence the cohomology, is torsion free
and Hy(Rp,,Z) = Z, Hi(Rp,,Z) = Z® and Hy(Rp,,Z) = Z'°, which agrees
with the Betti numbers computed in [11, Ex. 5.14].

In general we have the following

Conjecture 2.3 Let W be an affine Weyl group and Ty be the corresponding
toric arrangement. Then the integer cohomology of the complement is torsion
free (and hence it coincides with the De Rham cohomology computed in [3]).

3 An interesting example of non-thick toric ar-
rangement.

In this section we give an example of non-thick arrangement: the one coming
from the affine Weyl arrangement A i, When the lattice Az is spanned by the

roots of the Weyl group A, (see the second part of Remark 3.1).

Indeed in this case the underlying real toric arrangement has a very nice
description in terms of Young tableaux. More precisely the facets of 7'& g are
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in one to one correspondence with a family of Young tableaux which turn out
to be the same tableaux describing the space of all periodic legged gaits of a
robot body (see [2]).

It is clear that, in this case, the finite arrangement A, 7 is exactly the braid
arrangement A4 .

3.1 Tableaux description for the complex S A,

We indicate simply by A, the symmetric group on n + 1 elements, acting by
permutations of the coordinates. Then A = Ay, is the braid arrangement and
S 4, 1s the associated CW-complex (even if the arrangement is finite we continue
to use the same notation used above for the affine case to distinguish it from
the toric one).

Given a system of coordinates in R"™1, we describe S 4, through certain
tableaux as follow.

Every k-cell [C' < F] is represented by a tableau with n+1 boxes and n+1—k
rows (aligned on the left), filled with all the integers in {1,...,n + 1}. There is
no monotony condition on the lengths of the rows. One has:

- (21,...,&ps1) Is a point in F if and only if:

1. % and j belong to the same row if and only if z; = =},
2. ¢ belongs to a row less than the one containing j if and only if z; < x;;

- the chamber C belongs to the half-space z; < z; if and only if:

1. either the row which contains ¢ is less than the one containing j or
2. ¢ and j belong to the same row and the column which contains ¢ is less
than the one containing j.

Notice that the facets of the real stratification are represented by standard

Young tableaux, since the order of the entries in each row does not matter, and
hence we can assume it to be strictly increasing.
Notice also that the geometrical action of A, on the stratification induces a
natural action on the complex Sy, which, in terms of tableaux, is given by a
left action of A,: 0. T is the tableau with the same shape as T, and with entries
permuted through o.

3.2 Tableaux description for the facets of 7;

Let A, i C A i, be the braid arrangement passing through the origin and
m: R — R"™ /A ; = Tk the projection map.

If S; is the stratification of R™*! into facets induced by the arrangement
Az , we define the set:

Spi ={FFeS; |dos(F*)> (| H}
HEAO,ZH
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Obviously S0 4, is in one to one correspondence with the stratification Sy4,
induced by the braid arrangement A4, and the restriction TS, is surjective
on T]R

It follows that in order to understand how Az acts on Sy it is enough
to study how it acts on S0 i . Moreover it is enough to cons1der facets in the

closure of the base chamber C’o corresponding to 1 € An7 the action on the
others will be obtained by symmetry.

Let us remark that a facet F* is in S0 i, if and only if it intersects any ball
By around the origin. Let By be a ball of sufﬁmently small radius and

z=(1,...,2n41) € clos(Cy) N By

be a given point in a facet F* e Soﬁn' Then 21 < z9 < ... < 2,41 and the

standard Young tableaux T'bgz, associated to F* will have entries increasing
along both, rows and columns.

Let ty,...,t, € A7 be a base such that ¢; translates the reflection hyper-

plane H; ;41 = Ker(xl x;41) fixing all hyperplanes H; j+1 = Ker(z; — zj41)
for j # i (i.e. each point in H; ;41 is sent in a point still in Hj j41).
Then we can assume that translation t; acts on the entry x; as t;.x; = x; + 1
with ©; +t > 2541 and, as Hj j 41, for j # 4, are invariant under the action of ¢;,
it follows that t;.2;—1 = x;—1 4+t and, by induction, ¢;.x; = z; + ¢ for all j <1,
while ¢;.2; = x; for all j > i.

Recall that, by construction, given a standard Young tableaux, a point
(z1,...,Tpt1) is a point in F if and only if:

1. % and j belong to the same row if and only if z; = =},
2. ¢ belongs to a row less than the one containing j if and only if z; < z;

It follows that if T'b is a tableau such that ¢ € ry and ¢ +1 € ri41 are in
two different rows, then ¢; acts on Th sending it in a tableau TV with rows
T = Thidy oo s Ty = Tho Th_jy1 = 715+, T = Tk While if 4,4 +1 € 74, are in
the same row, then t; acts sending the corresponding facet in a facet which is
not anymore in Ao, i,

Then A+ 4, acts on the h rows of a tableau Thz as a power of the cyclic
permutation (1, ..., h).

Equivalently let Y (n + 1,k + 1) be the set of standard Young tableaux with
k + 1 rows and n + 1 entries and Tb € Y(n + 1,k + 1) be a tableau of rows
(r1,...,7k+1)- Then each facet F* of the toric arrangement TZ, g is in one to
one correspondence with the set

Y(n+1,k+1)/~

where a tableau Tb' ~ T'b if and only if the rows of T0" are (rys (1), - -+, Tos (k+1))
for a power o° of the cyclic permutation o = (1,...,k+1). So far we get exactly
the tableaux described in [2].
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Finally let us recall that a facet F¥ < F*+1if and only if the tableau Tbz; .,
corresponding to F*+1 is obtained by attaching two consecutive rows of Thz,.
As a consequence if F¥ and FFt1 are facets in the toric arrangement TEL,R’
FF < FF+1if and only if the tableau Thgri1 corresponding to F*T1 is obtained
by attaching two consecutive rows of Thpr or attaching the first one to the last
one.
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