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Abstract

We present a geometric model of social choice when the latter takes
place among bundles of interdependent elements, that we will call ob-
jects. We show that the outcome of the social choice process is highly
dependent on the way these bundles are formed. By bundling and
unbundling the same set of constituent elements an authority has the
power of determine the social outcome. We provide necessary and
sufficient conditions under which a social outcome may be a local or
global optimum for a set of objects, and we show that, by appropri-
ately redefining the set of objects, intransitive cycles may be broken
and the median voter may be turned into a loser.
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1 Introduction

Social choice theory usually assumes that agents are faced with a set of ex-
ogenously given and mutually exclusive alternatives. These alternatives are
given in the sense that the pre-choice process through which they are con-
structed is not analyzed. Moreover, these alternatives are “simple”, in the
sense that are one-dimensional objects or, even when they are multidimen-
sional, they are simply points in some portion of the homogeneous ℜn space
and they lack an internal structure that limits the set of possible alternatives.

Many choices in real life situations depart substantially from this simple
setting. Choices are often made among bundles of interdependent elements.
Those bundles may be formed in a variety of ways, which in turn affect
the selection process of a social outcome. Take, for instance, the typical
textbook example of social choice: a group of friends deciding democratically
what to do for the evening, for instance by pairwise majority voting. The
textbook would start from such a choice set as X = {A,B,C,D, ldots}
where A,B,C,D, . . . could stand for movie, concert, restaurant, dinner at
home, . . . . At closer scrutiny, these alternatives are neither primitive nor
exogenously given. Going to the movies or to a restaurant are labels for
bundles of elements (e.g. with whom, where, when, movie genre, director,
type of food, etc.) and everyone’s preference is unlikely to be expressed before
the labels get specified in their constituting elements. A skillful member
of the group could easily obtain a social outcome close to the one he or
she prefers by carefully crafting the objects A,B, C, D, . . . and possibly by
designing a new set of objects.

Moving on, to more serious examples, candidates and parties in political
elections stand for complex bundles of interdependent policies and personal-
ity traits. Committees and boards are called upon to decide upon packages
of policies, e.g. a recruitment package that a university governing board has
to approve. In principle, any combination of elements (subject to a budget
or some other constraint) could be considered and compared (e.g. through
majority voting) with any other, but in reality only a relatively small num-
ber of packages undergo examination. Typically, the bundling of elements
into what we will call objects serve the purpose of reducing the number of
alternatives to be examined, by decomposing the whole space of alternatives
into smaller subspaces.

In this paper we present a model of social choice among bundles of el-
ements, which we call objects, and model two non-standard features that
objects are likely to have. First, generally objects are not simply aggrega-
tions of primitive components but have an internal structure that is likely to
determine interdependencies and non-separabilities in individual preferences.
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In the “what shall we do tonight” choice setting, my preferences on the with
whom element is likely to be highly interdependent with the other elements,
as I may well find a given person a perfect companion for an evening at the
movies but relatively dislike her or his company if we finally decide to go to
a restaurant.

Second, objects provide structure to the choice problem. Consider again
the “what shall we do tonight” case. A possible reply to our point on bundles
would be that the choice set X is underspecified and that we should start from
a choice set formed by all possible combinations of the elements. However, for
obvious combinatorial arguments this set, even in this simple example, would
be so large that any exhaustive choice procedure, e.g. pairwise majority
voting, could not be completed in a feasible time span. In our approach,
objects decompose this computationally complex search space into quasi-
separable subspaces (Simon 1982) by simplifying the computational task and
making decisions possible.

There is also another way objects can contribute to making the determi-
nation of a social outcome easier. We will show that, by appropriate object
construction, intransitive cycles that often characterize social decisions can
always be eliminated. In general, coarse objects, i.e. those made of many
elements, tend to produce many cycles, whereas fine objects do not. How-
ever finer objects do so by increasing the number of local optima and thereby
making the social outcome more manipulable through the control of initial
conditions and agendas.

Because of interdependencies that are likely to characterize individual
preferences over objects, the way objects are constructed by bundling (or
unbundling) elements can strongly impact on the outcome of social choice.
We show that, in general, by appropriately constructing objects, the outcome
of a social choice process, e.g. pairwise majority voting, may be heavily
manipulated. An authority who has the power to construct objects may
obtain a desired outcome even when the latter is chosen democratically. We
will prove necessary and sufficient conditions for any social outcome to be
a local or global optimum for a social decision rule under a specific set of
objects. We will also show an algorithmic procedure to determine which set
of objects, agendas and initial conditions can lead society, through a given
social choice procedure, to select a given outcome.

The object construction power that we describe and analyze in this paper
will be proven to be stronger and more general than the well-known agenda
power (cf. theorem 1 below).

We will show that by appropriately designing objects it is possible to
break any intransitive cycle that frequently characterizes social choice. As
already mentioned, we will analyze how different sets of objects strike dif-
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ferent balances in the trade-off between decidability and non-manipulability.
Finally, we will discuss how another classic result, i.e. the so-called median
voter theorem, may be reverted by appropriate modification of the set of
objects, thus transforming the median voter into an outright loser.

A comment has to be made in order to clarify the meaning and limits
of the present paper. Our model simply analyzes the properties of different
bundles of the same finite set of elements (features in our terminology) into
objects. All features are always decided on. We do not deal with another
important (but different) phenomenon; that is, the power or capacity to select
those issues society should decide on and those that society should neglect or
consider secondary. In a world of potentially infinite issues, this focussing of
attention effect might indeed be very important (Lakoff 2004, Riker 1982).

In order to formally analyze the properties of a social choice model with
object construction power we will use some geometric properties of hyper-
plane arrangements and link them to graph theoretic representations. We
believe that our paper also provides novel analytical tools for modeling choice
problems that could be applied to a variety of different settings.

The paper is structured as follows: in section 2 we briefly discuss the
similarities and differences between our approach and those already discussed
in the literature. To our knowledge, the issue of object construction in social
choice has never been addressed with our method. Indeed, our approach has
close links with standard results on multidimensional voting and on agenda
power, but there are fundamental differences that make our model new and
somehow more general.

In section 3 we outline our geometric and algebraic model. A key in-
gredient of our analytic approach is the theory of hyperplane arrangements,
whose basics are very succinctly summarized for the reader in appendix A.
Then, in section 4 we draw the main results concerning how, through object
construction, it is possible to manipulate social outcomes, create or eliminate
agenda power, break or create intransitive cycles, and turn the median voter
into a loser. We will also demonstrate that our object construction power
is stronger and more general than the traditionally considered agenda power
and that objects strike a balance in the trade-off between decidability and
non-manipulability. Finally, in section 5 we draw some conclusions. In a
companion paper (Marengo and Pasquali 2008) many analytical results ob-
tained here are illustrated through examples and computational models. The
interested reader can refer to it for algorithmic implementations of most of
the arguments contained in the present paper.
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2 Relation to Previous Literature

To our knowledge, the issue of object construction has not been dealt with by
economic models. The literature on multidimensional voting models (Kramer
1972, Shepsle 1979, Denzau and Mackay 1981, Enelow and Hinich 1983)is
Relatively close to our perspective .

In particular, Shepsle (1979) presents a model of majority voting in which
institutions play a similar role to the one objects have in our own model, i.e.
that of limiting the set of outcomes that undergo examination. Two institu-
tional mechanisms are analyzed: jurisdictional restrictions – especially those
induced by decentralization and division of labour among decision making
units – and agenda limitations to the possible amendments to the status quo.
Both limit the set of attainable outcomes and equilibria (called structure-
induced equilibria) and can rule out cycles. There are at least two important
differences between this perspective and ours. First, the problem tackled by
all these papers is essentially the one arising from the sequential interdepen-
dency of voting: how we settle an issue today may change how we prefer
to settle a related issue tomorrow. In our approach, we instead focus on
interdependencies generated by how elements interact within the particular
objects we are deliberating upon. Second, in Shepsle (1979), restrictions on
attainable outcomes are placed by legal and organizational rules, that reduce
the set of possible legal amendments to the status quo. Instead, in our ap-
proach restrictions are placed by the object construction process exerted by
some agent or institution: once an object has been defined, all its instances
are always generated and compared.

Enelow and Hinich (1983) consider a multi-issue case in which each issue
is voted sequentially in time and when the agenda induces path-dependency,
which might be mitigated by the agents’ forecasting abilities.

Our work is closely linked to the literature on agenda power (McKelvey
1976, Plott and Levine 1978), and we will show that we generalize some of
its results in the sense that even agenda power is subject to manipulation
through object design. Moreover, our model presents some instances of a
wide family of aggregation paradoxes in voting. Saari and Sieberg (2001)
discuss the links between aggregation paradoxes in voting and similar aggre-
gation paradoxes arising in statistics such as the so-called Simpson’s para-
dox. Logrolling models (Buchanan and Tullock 1962) discuss some of these
paradoxes which are similar to those in the present paper. Bernholz (1974)
showed that logrolling implies cycles, therefore our result proving that cycles
may be broken or created by appropriate object construction also extends to
logrolling.

Our paper is also related to recent literature that has begun to ana-
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lyze decision-making when agents group states of the world into coarse cat-
egories (Mullainathan 2000, Fryer and Jackson 2008). They show, among
other things, that in these circumstances agents may be persuaded, meaning
that uninformative messages may influence their decisions (Mullainathan,
Schwartzstein, and Shleifer 2008). Our perspective is different and com-
plementary: our objects are not categories based on similarities among the
states of the world, but are bundles of different and separate elements with
an internal structure of interdependencies and not sets of states of the world
that agents cannot distinguish from each other.

Context-dependent voting has also been analyzed by some papers (Callander
and Wilson 2006). In these papers context-dependency refers to the violation
of the axiom of Independence of Irrelevant Alternatives (IIA), i.e. the as-
sumption that the preference expressed by an agent between two outcomes xi

and xj does not depend on the presence or absence of other outcomes in the
choice set. Psychologists and marketing scholars have observed systematic
violations of IIA (Kahneman and Tversky 2000). In our model we assume a
different form of context dependency, meaning that preferences between two
instantiations of an element (feature in our terminology) in general depend
on the value taken by other traits. In the next section we argue why this
form of non-separability is very likely to happen in our context of objects
made up of interdependent features.

This paper is also meant to contribute to the development of rigorous
analytical tools in social choice models. We provide here a geometric rep-
resentation based on hyperplanes arrangement theory and algebraic topol-
ogy. Indeed, geometric approaches have already been used in the litera-
ture on social choice. Donald Saari has greatly contributed to establish-
ing general geometric representations of voting models and voting paradoxes
(Saari 1994, Saari 2000a, Saari 2000b), and we will argue later that our rep-
resentation is more general in many respects. Eckmann (1954), Eckmann,
Ganea, and Hilton (1962), Chichilnisky (1980), Chichilnisky (1983) study the
problem of the existence of a social decision function from a topological point
of view and show that the paradoxes of social choice are partly a consequence
of the topological structure of the spaces of ordinal preferences. On the other
hand, Baryshnikov (1997) discusses the possibility of introducing topological
methods in the combinatorial paradigm of social choice theory. Weinberger
(2004) and Terao (2007) extend well-known results on social choice functions
to, respectively, CW complexes and arrangements, thus obtaining new results
for both mathematical objects.

In this respect, our model is a novel contribution to the analysis of the
relation between discrete problems of social choice and their topological struc-
ture and it provides a bridge between a geometric and topological represen-
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tation of a social choice problem to create a more general framework in which
the topological space is manipulable through object construction.

3 Definitions and structure of the model

We assume that choices are made over bundles of elements or features. The
number of features is finite and each feature may take one value out of a finite
set of alternatives. We call F = {f1, . . . , fn} the set of such features, and in
order to simplify the notation and without loss of generality, we assume that
all features may take the same number m + 1 of values: fi ∈ {0, 1, 2, . . . ,m}
∀i = 1, . . . , n.

The space of social outcomes is given by the (m + 1)n n−tuples specify-
ing one value for every feature. We call X = {x1, . . . , x(m+1)n} the set of all
possible social outcomes and xi a generic element thereof.

Example 1 Let us consider an example of 3 features taking a value out of
the binary set {0, 1}. This is equivalent to, e.g., the case presence or absence
of three possible traits. Thus the space X of possible social outcomes is a set
of 8 ordered 3-tuples of the form (f1, f2, f3) for fi ∈ {0, 1}, i = 1, 2, 3.

Let us choose an hyperplane arrangement1 in Rn

An,m = {Hi,j} 1≤i≤n

0≤j≤m−1

,

where Hi,j is the hyperplane of equation yi = j.
Let C be the set of chambers of the arrangement An,m; then each social

outcome xi = (i1, . . . , in) corresponds to the chamber Ci which contains the
open set:

{(f1, . . . , fn) ∈ Rn | ij − 1 < fj < ij, j = 1, . . . , n}.

Example 2 In example 1 the associated arrangement A3,2 is simply the ar-
rangement given by the coordinate hyperplanes of an orthogonal Cartesian
system in R3.

1For the reader who is unfamiliar with hyperplane arrangements, we provide some basic
notions in Appendix A. Moreover the interested reader can find some basic definitions
and notations in order to better understand the model below in (Settepanella 2010)
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Consider a population of ν agents. Each agent i is characterized by a
system of preferences ºi over the set of social outcomes defined in the space
P. A social decision rule R is a function:

R :Pν −→ P

(º1, . . . ,ºν)7−→ ºR(º1,...,ºν)

which determines a system of social preferences ºR(º1,...,ºν) from the pref-
erences of ν individual agents. Any type of social decision rule may fit into
our framework, provided individual preferences are expressed sincerely. For
the time being we rule out the possibility of strategic misrepresentation of a
person’s preferences.

We assume that individual preferences are transitive over social outcomes.
However, because of interdependencies and non-separabilities, transitivity
might not hold for all subsets of features. Indeed, a generic agent may prefer
a certain value for a given feature and for a given n − 1-tuple of values
of the other features, but a different value of the same feature when the
other features are set to different values. It is well known that individual
transitivity does not guarantee transitivity for a social rule (Condorcet de
Caritat marquis de 1785).

In order to completely describe P, let us mention that if ∆ = {(xi, xi) ∈
X × X} is the diagonal of the Cartesian product X × X, then an element
ºR∈ P defines a subset:

Y1,ºR
⊂ X × X \ ∆

as follows: a pair (xi, xj) is in Y1,ºR if and only if xi ºR xj.

Without loss of generality we will indicate by ºR∈ P a general element
in the image of R.

We call Y0,ºR
the set of relevant social outcomes, i.e. the set of all social

outcomes on which a social preference is expressed:

Y0,ºR
= {xi ∈ X | ∃xj : (xi, xj) ∈ Y1,ºR or (xj, xi) ∈ Y1,ºR

}.

The subset Y0,ºR
⊆ X is in one to one correspondence with a subset

CºR
⊂ C of the set of chambers in An,m:

Ci ∈ C ⇔ xi ∈ Y0,ºR
.
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Example 3 Let us consider the space of social outcomes X as in example 1
with the following rule ≻R:

(0, 0, 0) preferred to all, except (1, 1, 0) ≻R (0, 0, 0), (0, 0, 1) ≻R (0, 0, 0);

(0, 1, 0) ≺R (0, 1, 1), (0, 1, 0) ≺R (1, 1, 1), (0, 1, 0) ≺R (1, 0, 0),

(0, 1, 0) ≻R (1, 0, 1), (0, 1, 0) ≻R (1, 1, 0), (0, 1, 0) ≺R (0, 0, 1);

(0, 1, 1) ≻R (1, 1, 1), (0, 1, 1) ≻R (1, 0, 0), (0, 1, 1) ≻R (1, 0, 1),

(0, 1, 1) ≻R (1, 1, 0), (0, 1, 1) ≺R (0, 0, 1);

(1, 1, 1) ≻R (1, 0, 0), (1, 1, 1) ≻R (1, 0, 1), (1, 1, 1) ≻R (1, 1, 0), (1, 1, 1) ≻R (0, 0, 1);

(1, 0, 0) ≻R (1, 0, 1), (1, 0, 0) ≻R (1, 1, 0), (1, 0, 0) ≺R (0, 0, 1);

(1, 0, 1) ≻R (1, 1, 0), (1, 0, 1) ≺R (0, 0, 1);

(1, 1, 0) ≺R (0, 0, 1).

For simplicity we will denote by f1f2f3 the 3-tuple (f1, f2, f3). Thus Y0,ºR
=

{f1f2f3 | fj = 0 or 1} = X.
Y1,ºR

is given by all pairs (f1f2f3, g1g2g3) such that f1f2f3 ≻R g1g2g3; i.e.,
for example, (000, 101), (011, 000) ∈ Y1,ºR

while (000, 011) 6∈ Y1,ºR
.

If social preferences are complete over X, then Y0,ºR
= X. In the sequel

we will consider only complete preferences, although our framework may
easily accommodate the more general case where Y0,ºR

⊆ X.
We can represent the sets Y0,ºR

and Y1,ºR
respectively as the set of ver-

tices and edges of an oriented graph YºR
. Two vertices xi and xj in Y0,ºR

are connected by an edge if and only if (xi, xj) ∈ Y1,ºR
or (xj, xi) ∈ Y1,ºR

,
while the orientation is from xi to xj in the former case and from xj to
xi in the latter. In a natural way this construction applies to all subsets
Y ⊂ X × X \ ∆.

Without loss of generality we will denote by xi the vertices of YºR
and

by (xi, xj) its edges.

Example 4 The social preferences of example 3 are fully described by the
oriented graph represented in figure 1.

Notice that the assumption of complete preferences guarantees that we
will deal only with connected graphs.

A cycle of length h in the oriented graph YºR
is a subgraph γI with

vertices {xi1 , . . . , xih} and edges {(xi1 , xi2), (xi2 , xi3), . . . , (xih , xi1)}. It cor-
responds to a Condorcet-Arrow cycle, i.e. to the sequence xi1 ºR xi2 ºR

. . . ºR xih ºR xi1 . In example 3 and in the corresponding graph of figure 1
we find a three outcomes cycle 000 ≻R 101 ≻R 011 ≻R 000.
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Figure 1: The oriented graph derived from example 3

As shown by Salvetti (1987), we can construct a CW-complex S(A) hav-
ing the homotopy type of the complement M(A) when the arrangement A
is the complexification of a real one.

We briefly recall here the construction of this complex. In the next section
we will give a more detailed account of how it can be applied to our social
choice problem.

Let A = {H} be a finite affine hyperplane arrangement in Rn. Assume
A is essential, so that the minimal dimensional non-empty intersections of
hyperplanes are points (that we call vertices of the arrangement). Equiva-
lently, the maximal elements of the associated intersection lattice L(A) have
rank n (Orlik and Terao 1992).

Let M(A) = Cn \
⋃

H∈A HC be the complement to the complexified
arrangement. The regular CW-complex S(A) can be characterized as follows:
let S := {F k} be the stratification of Rn into facets F k which is induced by the
arrangement (Bourbaki 1968), where the exponent k stands for codimension.
Then S has standard partial ordering

F i ≺ F j iff clos(F i) ⊃ F j

where clos(F i) is the closure of F i.
The k-cells of S(A) bijectively correspond to pairs [C ≺ F k] where C =

F 0 is a chamber of S.
Let |F | be the affine subspace spanned by F , and let us consider the

sub-arrangement AF = {H ∈ A : F ⊂ H}. A cell [C ≺ F k] is in the
boundary of [D ≺ Gj] (k < j) iff:

i) F k ≺ Gj

ii) the chambers C and D are contained in the same chamber of AF k .

10



The previous conditions are equivalent to saying that C is the chamber
of A which is“closest” to D among those containing F k in their closure.

It is possible to realize S(A) inside Cn with explicitly given attaching
maps of the cells (Salvetti 1987). Salvetti complex provides a very useful
model for our construction. Indeed, each element ºR∈ P is equivalent to a
subcomplex of the 1-skeleton of S(An,m).

Thus, let us characterize the 0 and 1-dimensional cells (also called 0 and
1-skeletons) of Salvetti complex and show how they are related to the graph
YºR

for a given social rule ºR.
Let An,m be the arrangement associated to the space of social outcomes

and S(An,m) the correspondent Salvetti complex. The set of generators
S0(An,m) of the 0-skeleton of the complex S(An,m) is in a one-to-one cor-
respondence with the set of chambers in An,m, i.e. with the set of social
outcomes X. Thus:

S0(An,m) = Y0,ºR
= X

for any given social rule ºR.

Example 5 The 0-skeleton S0(A3,2) associated to example 1 is given by 8
points, one in each chamber of the coordinate arrangement A3,2. Thus they
can be represented as the vertices of a cube, as shown in figure 1.

Let us recall that two chambers Ci and Cj are said to be adjacent if and
only if they are separated by only one hyperplane H. If xi and xj are the
0-cells corresponding to Ci and Cj, then we can consider the edge (xi, xj)
between them.

The generators of the 1-skeleton can be described as the elements in the
set:

S1(An,m) = {(xi, xj) ∈ X × X \ ∆ | xi and xj are adjacent}.

Two elements in S1(An,m) are consecutive if and only if the second entry
of the first pair is equal to the first entry of the second pair: for example,
(xi, xj) and (xj, xk). Given a subset of consecutive elements in S1(An,m)

{(xi1 , xi2), (xi2 , xi3), . . . , (xik−2
, xik−1

), (xik−1
, xik)} ∈ S1(An,m)

we define their formal sum as:

(xi1 , xik) =
k−1
∑

j=1

(xij , xij+1
). (1)
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Let Ci and Cj be two adjacent chambers separated by the hyperplane
H. We say that we move from Ci to Cj across H if we move along the edge
(xi, xj). Thus, by moving across hyperplanes, we can reach any chamber
of the arrangement starting from a given one. If we only cross each hyper-
plane once, we call this path minimal. Obviously, there are many minimal
paths, depending on which order we cross hyperplanes, however, they are all
homotopically equivalent (Salvetti 1987).

It follows that given a rule ºR, any edge (xi, xj) ∈ Y1,ºR
can be written

as a formal sum of a minimal number of consecutive elements in S1(An,m).
The number of elements is exactly the number of hyperplanes that separate
the two social outcomes xi, xj ∈ X.

Moreover, let (xi, xj) ∈ Y1,ºR
be an edge given by a formal sum with

coefficient 1 of edges which are in Y1,ºR
. Then, under the assumption of

transitive preferences, it can be deleted.

Example 6 Given the rule ≻R in the example 3, we may notice, for in-
stance, that the element (000, 101) ∈ Y1,ºR

can be represented in two ways
as a formal sum of a minimal number of consecutive elements in S1(A3,2) as
follows:

(000, 101) = (000, 100) + (100, 101) or (000, 101) = (000, 001) + (001, 101)

By proceeding this way the graph in figure 1 can be reduced into the one
in figure 2. To be precise, the graph in figure 2 does not exactly represent
Salvetti’s complex, as the latter is in the complexification of A3,2, i.e. in R6,
which allows paths to “go around” hyperplanes. However figure 2 gives a
useful, though not totally precise, visual representation.

Clearly, there are many ways we can reduce the set Y1,ºR
to a basic num-

ber of elements, and this number is not unique since we are not in a vector
field. However, all the reduced graphs represent exactly the same pairwise
social preferences.

The graph of fig. 2 corresponds to reducing Y1,ºR
to the following base:

{(000, 011), (000, 010), (000, 100), (110, 000), (001, 011), (011, 111),

(111, 110), (111, 001), (010, 110), (100, 101), (101, 110)}
(2)

but there is also another base given by the following 10 elements:

{(000, 010), (001, 000), (000, 011), (010, 101), (100, 010),

(011, 111), (111, 100), (101, 110), (111, 001), (110, 000)}.

which is represented in graph 3.
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Figure 2: Reduced graph with a base of 11 elements

Figure 3: Reduced graph with a base of 10 elements

However if we move along these two graphs, pairwise preferences are ex-
actly the same and correspond to those of example 3.

The reduced graph carries very useful information. For example it is
relatively simple to find the fundamental cycles that generate all the others.
Looking at the graph in fig. 2 it is clear that, for this base, the foundamental
cycles are:

001 ≻R 011 ≻R 111 ≻R 001,

000 ≻R 010 ≻R 110 ≻R 000,

000 ≻R 011 ≻R 111 ≻R 110 ≻R 000,

000 ≻R 100 ≻R 101 ≻R 110 ≻R 000.

(3)

By construction, the first one depends on the existence of the edge (111, 001),
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while the other three depend on (110, 000). Later in this paper we will use
this information in order to determine which set of objects can break these
cycles.

So far we have described the cells of a complex. Obviously there is a
boundary map on Salvetti’s complex which is also very informative. We
will introduce the boundary only for the 1-skeleton of the complex S(An,m).
Let us consider the free abelian groups S1(An,m) and S0(An,m) generated by
S1(An,m) and S0(An,m) considering all the formal sums with integer coeffi-
cients.

The boundary map ∂ : S1(An,m) −→ S0(An,m) is defined as follows.
Given a generator (xi, xj) ∈ S1(An,m), then:

∂(xi, xj) = xj − xi.

The map extends to S1(An,m) by linearity.

Given a social rule ºR we obtain a graph YºR
which is, as we have seen

above, a subcomplex of Salvetti’s complex in 0 and 1-dimensions. We can
compute its first homology group H1(YºR

) that is the free abelian group
generated by all cycles in YºR

.
Studying the first homology group of our graph is equivalent to studying

the Condorcet-Arrow’s cycles of the corresponding social rule. For example,
if H1(YºR

) = 0 one can infer that the social rule R has generated transitive
social preferences.

Remark 3.1 The boundary operator transforms a geometric problem into
an algebraic one and makes it possible to develop an algorithm that compu-
tationally performs the reduction of a given directed graph. We may begin by
noticing that if two formal sums with coefficients 1 in Y1,≻R

are equivalent
from a social point of view, i.e. they correspond to the same pairwise prefer-
ences, then they have the same boundary. Indeed, by linearity, the boundary
of the sum in (1) is given by:

∂

k−1
∑

j=1

(xij , xij+1
) =

k−1
∑

j=1

∂(xij , xij+1
) =

k−1
∑

j=1

xij+1
−

k−1
∑

j=1

xij = xik − xi1 = ∂(xi1 , xik).

Thus the boundary of such a formal sum depends only by its initial and final
points.
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Example 7 In example 3 the boundary of each edge in Y1,≻R
is

∂(f1f2f3, g1g2g3) = g1g2g3 − f1f2f3.

We get a boundary matrix of 28 columns, one for each edge, and 8 rows, one
for each vertex, with two entries equal 1 and −1 (those corresponding to the
vertices of the edge in question) in each column and all the other entries equal
to 0. Now our algorithmic implementation must simply delete any column
which is the sum of two or more other columns. In our example, we can get
the following reduced matrix:

























−1 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 −1 0 0
1 0 0 0 1 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 −1
0 0 0 −1 0 0 1 0 1 0 1
0 0 0 0 0 1 −1 −1 0 0 0

























where the columns are ordered following the order of set (2) in the example 6
above and the rows are ordered lexicographically. The above matrix represents
the boundary map of the graph in figure 2. Moreover, if the sum of three or
more columns is the zero column, then we have a cycle. Indeed, for example,
the sum of the 5-th 6-th and 8-th columns is 0 and it corresponds to the first
cycle described in (3).

Our graph representation enables us to determine the number of cycles
in a very straightforward way. Indeed, if G is a graph, the number of cycles
is the rank of the first homology group H1(G) and in graph theory there is a
theorem (see for instance Massey (1981)) which states that:

rank(H0(G)) − rank(H1(G)) = ♯(G0) − ♯(G1).

where ♯(G0) − ♯(G1) is the Euler Characteristic of the graph G, i.e. the
difference between the number of vertices and the number of edges. More-
over, we are typically dealing with connected graphs and therefore, recalling
that the rank of the 0-homology group of a connected graph is 1, we have
rank(H1(G)) = 1 − ♯(G0) + ♯(G1).

Remark 3.2 Notice that Salvetti’s complex is a CW-complex in Cn, but it
has a underlying real structure which is a purely simplicial complex. This
structure can be used in order to recast and generalize some existing geometric
models of voting such as those provided by Saari (1994).
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4 Object construction and social outcomes

In this section we develop our main results. We define objects as bundles
of features, and show that, in general, by appropriate manipulations of the
set of objects, almost every social outcome may be obtained from a given
social rule (e.g. majority voting). Such “object construction power”, that
is, the power of determining social outcomes by appropriately bundling or
unbundling features, is stronger than the agenda power traditionally studied
in the literature (McKelvey 1976). We then show that this power of manipu-
lation also includes the possibility of breaking or creating intransitive cycles
à la Condorcet-Arrow and of overturning the median voter effect. Finally we
discuss the emerging trade-off between non manipulability and decidability.
Coarser objects make social decisions less manipulable but they also increase
the likelihood of intransitive cycles and the time required to reach a socially
optimal outcome (if any). On the other hand finer objects make cycles less
likely and reach a social outcome faster, but the number of locally optimal
social outcomes greatly increases and, therefore, the scope for manipulability
becomes broader.

4.1 Objects in social choice

With the notation introduced above, let An,m be the hyperplane arrangement
defined by n features and m possibilities for each of them, and let ºR be
the social preferences over the set of social outcomes X. Given a subset
I ⊂ {1, . . . , n}, an object AI is a non empty subset of the arrangement An,m

of the form
AI = {Hi,j} i∈I

0≤j≤m−1

.

The cardinality of AI is called size of the object AI . We will also denote by
AIc = An,m \ AI the complement of the arrangement AI in An,m.

A set of objects A = {AI1 , . . . ,AIk
} such that ∪k

j=1Ij = {1, . . . , n} is an
objects scheme. Notice that an objects scheme does not have to partition
the set of features, as some of them may belong to more than one object.
However, we require that the union of all objects covers all the features,
otherwise the remaining features would not be decided on and could be simply
omitted from the model.

Let xj be a social outcome in X, i.e. a chamber of An,m, then the object
instantiation xj(AI) is the chamber of the subarrangement AI which contains
the chamber corresponding to xj, as shown, for instance, in figure 4.

We can also define an operator between instantiations of different objects
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xj

xj(AI
)

Figure 4: A graphical characterization of object instantiation

as follows:
xi(AI) ∨ xj(AJ) = z(AI ∪ AJ)

where z is the chamber of the arrangement AI ∪AJ obtained as intersection
between xi(AI) ∩ xj(AJ \ AI).

Moreover, the size of an objects scheme is the size of its largest object:

| A |= max{| AI1 |, . . . , | AIk
|}.

Given an objects scheme A = {AI1 , . . . ,AIk
}, we say that a social out-

come xj is a preferred neighbor of a social outcome xi with respect to an
object AIh

∈ A if the following conditions hold:

1. xj ºR xi,

2. xj(AIc
h
) = xi(AIc

h
), i.e. xi and xj belong to the same chamber of the

arrangement AIc
h
,

3. xj(AIh
) 6= xi(AIh

), i.e. xi and xj belong to different chambers of the
arrangement AIh

.

Let us define the set:

Φ(xi,AIh
) = {xj | xj is a preferred neighbor of xi with respect to AIh

}

and Φ(xi, A) = ∪k
j=1Φ(xi,AIj

).
The set of best neighbors B(xi,AIh

) ⊂ Φ(xi,AIh
) with respect to an

object AIh
∈ A is defined as:

B(xi,AIh
) = {xj ∈ Φ(xi,AIh

) | xj ºR xk ∀xk ∈ Φ(xi,AIh
)};
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and B(xi, A) = ∪k
j=1B(xi,AIj

).
We call P (xi, xj, A) a path through A, starting from xi and ending in

xj a succession of best neighbors with respect to the objects in A, i.e. a
succession:

xi = xi0 ¹R xi1 ¹R . . . ¹R xis+1
= xj (4)

such that there exist objects AIh0
, . . .AIhs

∈ A with xit+1
∈ B(xit ,AIht

) for
all 0 ≤ t ≤ s.

A social outcome xj is reachable from xi with respect to an objects scheme
A if and only if there exists a path P (xi, xj, A). A social outcome xi is a
local optimum for A if and only if for all xj ∈ Φ(xi, A), (xj, xi) /∈ Y1,ºR

. In
the case of strict preferences, this amounts to the condition Φ(xi, A) = ∅.

Let A = {AI1 , . . . ,AIk
} be a scheme; we call agenda α an ordered tuple

of indices (h0, . . . , ht) such that the set {h0, . . . , ht} = {1, . . . , k}. Then an
agenda α states the order in which objects AIi

are decided on. In general
all objects of the given scheme appear at least once in an agenda, but they
may appear more than once. In fact, because of non-separabilities, it is
possible that after modifications of other objects, an object previously set
into what appeared to be a locally optimal social outcome, may undergo
further improvements. In order to study only the stable limit properties of
agendas, we suppose that the agenda is repeated over and over again until
either a stable optimum or a cycle is reached.

Let α = (h0, . . . , ht) be an agenda and Aα be the ordered tuple of objects
in A, we say that a path

xi0 ¹R xi1 ¹R . . . ¹R xis (5)

is ordered along α iff xi1 ∈ B(xi0 ,AIh0
) and, if xij ∈ B(xij−1

,AIhq
) then

xij+1
∈ B(xij ,AIhq+1

), with the condition that ht+1 = h0. Such a path is

denoted by P (xi0 , xis , Aα).
We say that a path P (x,Aα) is maximal if and only if it ends up in a

local optimum or a limit cycle.
For a given social outcome xi and an objects scheme A, we define the

basin of attraction of xi as the set:

Ψ(xi, A) = {xj | ∃ a maximal path P (xj, xi, A)}.

Clearly Ψ(xi, A) 6= ∅ iff xi is a local optimum for some agenda. While the
ordered basin of attraction of xi is:

Ψ(xi, Aα) = {xj | P (xj, Aα) ends up in xi}

and Ψ(xi, Aα) 6= ∅ iff xi is a local optimum for the agenda α.
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Let Λ(A) be the set of all possible agendas for an objects scheme A, then:

Ψ(xi, A) = ∪α∈Λ(A)Ψ(xi, Aα).

A social outcome z ∈ X is a global optimum for an agenda α if and only if
Ψ(xi, Aα) = X. It is a global optimum for the objects scheme A if and only
if Ψ(xi, Aα) = X for all agendas α ∈ Λ(A), i.e. it is a global optimum for all
agendas.

It is easy to verify that local and global optima strictly depend on the
choice of the objects scheme A.

Example 8 Let us go back to example 3 and denote by Hi the hyperplane
with equation xi = 0 for i = 1, 2, 3. If the objects scheme is given by A =
{{H1, H2, H3}}, or by A = {{H1, H2}, {H3}} then the social rule always
produces a cycle, that may be either 001 ≻R 011 ≻R 111 ≻R 001 or 000 ≻R

010 ≻R 110 ≻R 000 depending on the chosen agenda and initial condition.
While if A = {{H1, H3}, {H2}} or A = {{H2, H3}, {H1}} then there exists a
unique global optimum 001 for all agendas.

The dependence of the optimum on the objects scheme is very strong.
Indeed, there are many examples in which two different social outcomes
z1, z2 ∈ X are global optima for two different choice of objects schemes. More
precisely, there exist two objects schemes A1 and A2 such that Ψ(zi, Ai) = X
and Ψ(x, Ai) = ∅ for all social outcomes x 6= zi and i = 1, 2.

Example 9 Let us consider the space of social outcomes X as in example 1
with the following preferences ≻R:

(0, 0, 0) preferred to all except (0, 1, 1) ≻R (0, 0, 0)

(0, 1, 1) preferred to all except (1, 0, 1) ≻R (0, 1, 1)

(1, 0, 1) ≺R (1, 0, 0), (1, 0, 1) ≻R (1, 1, 1), (1, 0, 1) ≻R (0, 0, 1),

(1, 0, 1) ≺R (1, 1, 0), (1, 0, 1) ≺R (0, 1, 0)

(0, 0, 1) ≻R (1, 1, 1), (0, 0, 1) ≺R (0, 1, 0), (0, 0, 1) ≺R (1, 1, 0), (0, 0, 1) ≺R (1, 0, 0)

(1, 1, 0) ≻R (1, 1, 1), (1, 1, 0) ≻R (1, 0, 0), (1, 1, 0) ≺R (0, 1, 0)

(1, 1, 1) ≺R (0, 1, 0), (1, 1, 1) ≺R (1, 0, 0)

(0, 1, 0) ≻R (1, 0, 0).

With the objects scheme A1 = {{H1, H2}, {H3}} the social outcome (0, 0, 0) is
the unique global optimum, while with the objects scheme A2 = {{H2, H3}, {H1}}
the unique global optimum is (0, 1, 1).
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From now on A will be an objects scheme for a given social rule ≻R on a
social outcome space X that corresponds to the arrangement An,m.

An interesting question is to what extent a local optimum xi depends on
the agenda. Let xi be a local optimum for the agenda α ∈ Λ(A) and let
β ∈ Λ(A) be another agenda, then is xi still a local optimum for the new
agenda?

The answer to this question is yes. Indeed, we can prove the following
theorem which demonstrates that object construction power is, in some sense,
stronger than agenda power.

Theorem 1 Let A be an objects scheme. A social outcome z ∈ X is a local
optimum for A, i.e. Ψ(z, A) 6= ∅ if and only if it is a local optimum for all
possible agendas, i.e. Ψ(z, Aα) 6= ∅ for all α ∈ Λ(A).

In order to prove the theorem we need the following lemma:

Lemma 4.1 Let A be an objects scheme and a social outcome z ∈ X be a
local optimum for A, then

z ∈ ∩α∈Λ(A)Ψ(z, Aα)

Proof. Let z be a local optimum for A then for all objects AI ∈ A the
set Φ(z,AI) = ∅. It follows that z ∈ Ψ(z, Aα) 6= ∅ for all α ∈ Λ(A) ¤

Proof of Theorem 1. It is a direct consequence of the above lemma.
¤

Notice, however, that the basin of attraction of a social outcome is, in
general, different for different agendas and, therefore, even when starting
from the same initial social outcome the choice processes may end up in
different local optima for different agendas.

Another interesting question is whether and under which conditions, given
a social outcome z ∈ X, it is possible to choose an objects scheme A such
that the basin of attraction Ψ(z, A) is not empty, i.e. such that z is a local
optimum or a global one for some objects scheme and some agenda. The
answers to these questions are given in the next two sections.

4.2 Objects and manipulability: local optimality

Suppose one of the agents has a preferred social outcome z ∈ X and some
form of power in the determination of the objects, e.g. because he or she is
chairing a committee or he/she may somehow influence the cognitive framing
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of the choice, for instance through persuasion (Mullainathan, Schwartzstein,
and Shleifer 2008). An interesting question is whether there exists an objects
scheme A = {AI1 , . . . ,AIk

} such that z is a local optimum for A, and, if this is
the case, which combination of initial social outcome and agenda will produce
z as social outcome.

Let z and x be two social outcomes, we say that they are separated by
an hyperplane H ∈ An,m, z | H | x, if H separates the chambers Cz and Cx.
Moreover we say that z and x are prominently separated if there exist two
hyperplanes Hi1,j1 , Hi2,j2 ∈ An,m with i1 6= i2 and z | Hi1,j1 | x, z | Hi2,j2 | x.

Let us define the subset Hx,z ⊂ An,m as follows:

Hx,z = {H ∈ An,m | x | H | z}.

Moreover we say that z and x are prominently separated if there exist two
hyperplanes Hi1,j1 , Hi2,j2 ∈ An,m with i1 6= i2 and z | Hi1,j1 | x, z | Hi2,j2 | x.

We define the distance between z and x as:

d(z, x) = min♯{H ∈ An,m such that z | H | x}.

The prominent distance dp(z, x), is the minimum number of hyperplanes that
prominently separate z and x. If z 6= x, we say that dp(x, z) = 1 if z and x
are not prominently separated.

Let us note that, according to our definition of an object A, if Hi,j1 ∈ A
then Hi,j ∈ A for all 0 ≤ j ≤ m − 1. Thus if dp(x, z) = 1 and d(x, z) > 1
then all hyperplanes that separate z and x must be within the same object
A.

Now we can give the main result of this section, i.e. a necessary and
sufficient condition for a social outcome z to be a local optimum for an
appropriate set of objects. This condition requires any other social outcome
that is preferred to z to have a prominent distance of at least 2 from z itself
for that objects scheme.

Theorem 2 Let ºR be a social decision rule over X = S0(An,m) and z ∈ X
be a given social outcome. Then z is a local optimum for an objects scheme
Az if and only if for any social outcome x such that x ≻R z, the prominent
distance is dp(x, z) > 1.

Proof. Given a social outcome z, let xi1 , . . . , xik be all the social out-
comes such that xij ≻R z. By hypothesis dp(xij , z) > 1, then xij and z are
prominently separated at least by two hyperplanes.

It follows that we can build an objects scheme Az such that Hxij
,z * A

for all A ∈ Az and all 1 ≤ j ≤ k. For example, if H1
ij
, H2

ij
∈ Hxij

,z are two
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hyperplanes related to different features for 1 ≤ j ≤ k, then let us consider
an objects scheme Az such that for any xij there exist two objects A1

ij
,A2

ij

in Az with H1
ij
∈ A1

ij
, H2

ij
∈ A2

ij
and {H1

ij
, H2

ij
} * A for all A ∈ Az.

It is obvious that such an objects scheme exists. Moreover z is a local
optimum for Az. Indeed for all xij ≻R z and for all A ∈ Az the chambers

Cij(A
c) and Cz(A

c) are always separated by H
ij
1 or H

ij
2 . That is xij(A

c) 6=
z(Ac) and then Φ(z,A) = ∅ for all A ∈ Az. It follows that z ∈ Ψ(z, Az) and,
by theorem 1, z ∈ Ψ(z, Az,α) for all agendas α, i.e. z is a local optimum.

On the other hand if x is a social outcome x ≻R z such that dp(x, z) = 1
then for any objects scheme A there is at least one object A such that all
hyperplanes H separating x from z are in A. Then, by definition, x ∈
Φ(z,A) 6= ∅. This concludes the proof. ¤

Remark 4.2 Theorem 2 also gives a description of how to construct an ob-
jects scheme which makes social choice converge to a desired local optimum.
Moreover, the independence of our construction from the 1-dimensional dis-
tance, i.e. the distance along the 1-dimensional family of hyperplanes
{Hi,j}0≤j≤m−1 for a fixed i, is a consequence of the independence of the choice
from the order in which a 1-dimensional list of objects is given.

If a social outcome z does not meet the necessary and sufficient condition
of theorem 2 it cannot be a local optimum. However, an agent with object
construction power may nevertheless make choices converge to another social
outcome close enough to z.

We say that a social outcome z is free with respect to a social decision rule
ºR if and only if for any social outcome x such that x ≻R z then dp(x, z) > 1.
Thus, by the theorem 2, z is the local optimum for an objects scheme Az if
and only if z is free.

Moreover a social outcome z has minimal distance from z with respect to
ºR if and only if z is free with respect to a decision rule R and

d(z, z) = min{d(z, x) | x is free }

If z is free then it coincides with its social outcome of minimal distance.
Thus, as a direct consequence of theorem 2 we have the following:

Corollary 4.3 Given a decision rule ºR and a social outcome z it is always
possible to build an objects scheme Az such that the social outcome z of
minimal distance from z with respect to ºR is a local optimum.

Remark 4.4 If we consider the classical 1-dimensional problem, then the
prominent distance between two social outcomes x and z is always dp(x, z) =
1. It follows:
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• the social outcome z is free if and only if z is an optimum, i.e. for any
social outcome x, z ≻R x;

• if the social outcome of minimal distance from z with respect to ºR

exists then it is the only optimum;

• if the social outcome of minimal distance from z with respect to ºR

does not exist, then our theorem simply recovers the usual intransitive
cycles.

4.3 Objects and manipulability: global optimality

We now analyze under which condition a local optimum z is a global opti-
mum for an agenda A, i.e. when there exists an agenda α of A such that
the basin of attraction Ψ(z, Aα) = X and when this is true for all agendas
α inΛ(A).

From now on, given a social outcome z ∈ X we will denote by Az an
objects scheme such that Φ(z, Az) = ∅.

Let us remark that, given a social outcome z ∈ X, if z is a global optimum
for an agenda α ∈ Λ(Az) then the following two conditions hold:

1. if x ∈ X is a social outcome such that x ≻R z then there exist social
outcomes {xi1 , . . . , xik} such that

z ≺R x ≺R xi1 ≺R . . . ≺R xik ≺R z

Indeed if this is not the case, all paths P (x,A) starting from x would
never end up in z for all possible objects schemes A; i.e. x 6∈ Ψ(z, A)
for any objects scheme A.

2. Φ(x,Az) 6= ∅ for all social outcomes x 6= z. Otherwise if Φ(x,Az) 6= ∅,
then x ∈ Ψ(x,Az,α) for all agendas α ∈ Λ(Az).

Obviously, these conditions also hold for a global optimum for an objects
scheme A.

The first condition is simple to verify. The second one is true for all social
outcomes x ∈ X that are not free (see theorem 2), while free social outcomes
must satisfy the following conditions.
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Theorem 3 Let x ≻R z be two free social outcomes in X with respect to a
social rule ≻R. Then there exists an objects scheme Az such that Φ(z, Az) = ∅
and Φ(x,Az) 6= ∅ if and only if the following condition holds:

∃y ≻R x such that Hw,z * Hx,y ∀w ≻R z. (6)

In order to prove this theorem we need the following:

Lemma 4.5 Let ≻R be a social rule over a space X and x ≻R z be two
social outcomes. Let us assume that for all social outcomes y ≻R x there
exists w ≻R z such that Hw,z ⊆ Hx,y. Under these hypothesis if z is a local
optimum for an objects scheme A, then also x is a local optimum for A.

Proof of Lemma 4.5: Let A be an objects scheme such that z is a local
optimum for A, then Φ(z, A) = ∅.
Let us suppose that x is not a local optimum for A, then Φ(x,A) 6= ∅. Let y
be a social outcome in Φ(x,A), then y ≻R x and, by hypothesis, there exists
a social outcome w ≻R z such that for all H ∈ An,m which separate w from
z then H separates x from y.
Recall that y ∈ Φ(x,A) iff ∃A ∈ A such that y(A) 6= x(A) and y(Ac) =
x(Ac). Then, by construction, all hyperplanes H which separate y and x
must be in A, i.e. Hx,y ⊂ A. By hypothesis it follows that also Hw,z ⊂ A,
i.e. w(A) 6= z(A) and w(Ac) = z(Ac). Then w ∈ Φ(z,A) and z is not a
local optimum anymore. But this is absurd. Then Φ(x,A) is empty and x is
a local optimum for A ¤

We are now ready to provide the:

Proof of Theorem 3: Sufficiency trivially follows from Lemma 4.5. As
to necessity, let z be a local optimum for an objects scheme Az obtained as
in theorem 2. Let G(z, Az) ⊂ X be the set

G(z, Az) = {x ∈ X | x ≻R z and Φ(x,Az) = ∅}

i.e. if x ∈ G(z, Az) then it is a local optimum for Az. If G(z, Az) = ∅ we have
proven necessity, otherwise given x ∈ G(z, Az) we can build a new objects
scheme A′

z as follows. Let y ≻R x as in the hypothesis, then we can consider
the new objects scheme

A′
z = Az ∪Hx,y

Clearly y ∈ Φ(x,Hx,y), i.e. x is not a local optimum for A′
z while z is still

a local optimum for A′
z. Indeed Φ(z,A) = ∅ for all A ∈ Az by construction
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while Φ(z,Hx,y) = ∅ by hypothesis:

let w be a social outcome in Φ(z,Hx,y) 6= ∅. Then w ≻R z and Hw,z ⊂
Hx,y, but this is not possible as y is such that Hw,z * Hx,y for all w ≻R z.

We have a new objects scheme A′
z such that z is a local optimum for A′

z

and G(A′
z, z) ⊂ G(z, Az) \ {x}. We can iterate until we obtain an objects

scheme A such that z is a local optimum and G(A, z) = ∅. ¤

Theorem 4 Let x ≺R z be free social outcomes in X with respect to a social
rule ≻R. Then there exists an objects scheme Az such that Φ(z, Az) = ∅ and
Φ(x,Az) 6= ∅ if and only if the following condition holds:

∃y ≻R x such that Hw,z * Hx,y ∀w ≻R z. (7)

Proof: Sufficiency: if Φ(x,Az) 6= ∅ then there exists a social outcome y
in Φ(x,Az). By construction y satisfies the following two conditions:

1. y ≻R x

2. there exists A ∈ Az such that Hx,y ⊂ A or, equivalently,
Hc

x,y ⊃ Ac.

Moreover Φ(z, Az) = ∅ implies that for all objects A ∈ Az and for all w ≻R z
the intersection Ac ∩Hw,z 6= ∅, then Hc

x,y ∩Hw,z 6= ∅, i.e. Hw,z * Hx,y for all
w ≻R z.
Necessity: let L(z, Az) ⊂ X be the set defined as:

L(z, Az) = {x ∈ X | x ≺R z and Φ(x,Az) = ∅}.

By hypothesis if x ∈ L(z, Az) then there exists a social outcome y ≻R x
such that Hc

x,y ∩ Hw,z 6= ∅ for all w ≻R z. We define a new objects scheme
A′

z = Az ∪Hx,y.
Then y ∈ Φ(x,A′

z) 6= ∅ while z is still a local optimum for A′
z, i.e.

Φ(z, A′
z) = ∅:

let w be a social outcome in Φ(z, A′
z) then w ∈ Φ(z,Hx,y), i.e. Hw,z ⊂ Hx,y

which is impossible by hypothesis.

Moreover L(z, A′
z) ⊂ L(z, Az)\{x}, indeed if t ∈ X such that Φ(t, Az) 6= ∅

then, obviously, Φ(t, A′
z) 6= ∅. It follows that we can iterate the above con-

struction until we get an objects scheme A such that L(z, A) is empty. ¤
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The above propositions allow us to construct an objects scheme Az such
that for all possible agenda and all possible starting social outcomes x ∈ X
the voting process ends up in z or in a cycle.
Moreover, given a starting social outcome x ∈ X, conditions (6) and (7)
allow us to construct an objects scheme Az and an agenda α in A such that
x ∈ Ψ(z, Az,α).

4.4 How to get there from here

So far we have analyzed cases in which objects, agenda and initial status
quo may all be manipulated in order to obtain a desired social outcome. In
this section instead we assume that the initial condition is exogenously given
and only objects and agenda are subject to manipulation. In theorem 5 we
give a necessary and sufficient condition that a status quo social outcome x
needs to be satisfied in order to belong to the basin of attraction of a chosen
social outcome z with respect to an objects scheme A. In other words, given
an agent with preferred free social outcome z, we find the conditions under
which he/she may obtain z from the given initial condition.

Let Π(An,m) be the set of all possible objects schemes in An,m. We call
the universal basin of attraction of a social outcome z ∈ X the set

Ψ(z) = ∪A∈Π(An,m)Ψ(z, A)

i.e. the set of all social outcomes x such that there exists an objects scheme
delivering a path from social outcome x and ending in social outcome z.

By theorem 2 the universal basin is nonempty, Ψ(z) 6= ∅, if and only if z
is a free social outcome.

As above, let x ∈ X be a starting social outcome which satisfies the
conditions of theorems 3 and 4 with respect to a preferred social outcome
z ∈ X. Let us define the following set:

Gz
x = {y ≻R x | Hw,z * Hx,y ∀w ≻R z and B(x,Hx,y) 6= ∅}. (8)

Proposition 4.6 Given two social outcomes x, z ∈ X, if x is in the universal
basin of attraction Ψ(z) then Gz

x 6= ∅.

Proof. Let us assume that Gz
x is empty then either:

i) neither condition 6 nor 7 is met by any of the social outcomes y ∈ X.
Therefore, by theorems 3 and 4, it follows that Φ(x,Az) = ∅ for all Az such
that Φ(z, Az) = ∅, i.e. if x is the starting social outcome then all maximal
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paths in Az end up in x for any agenda α;

or:
ii) Φ(x,Az) 6= ∅ but B(x, Az) = ∅ for all objects schemes Az such that

Φ(z, Az) = ∅, i.e. if x is the starting social outcome then all voting processes
end up in a cycle.

In both cases x /∈ Ψ(z) and this concludes the proof ¤

Let x ∈ X be a social outcome such that Gz
x 6= ∅. Clearly if B(x,Hx,y) 6= ∅

then its cardinality is one, i.e. B(x,Hx,y) = {bx,y} and we can consider the
set:

BGz
x = {bx,y | y ∈ Gz

x}.

It is worth remarking that, with the above notations, BGz
x is a subset of

Gz
x; i.e. BGz

x ⊆ Gz
x. Indeed if bx,y ∈ BGz

x, then bx,y ≻R x and Hx,bx,y
⊆ Hx,y

implies that condition Hw,z * Hx,bx,y
∀w ≻R z is satisfied. Moreover if

A1 ⊆ A2 are two objects such that B(x,Ai) = wi for i = 1, 2, then w1 = w2

or w1 ≺R w2; it follows that B(x,Hx,bx,y
) = {bx,y} 6= ∅ and bx,y ∈ Gz

x.

Then we can consider the following finite subsets in X:

Ez
0 = {z};

Ez
1 = {x ∈ X \ {z} | z ∈ BGz

x};

Ez
2 = {x ∈ X \ ∪1

i=0E
z
i | Ez

1 ∩ BGz
x 6= ∅};

...

Ez
h = {x ∈ X \ ∪h−1

i=0 Ez
i | Ez

h−1 ∩ BGz
x 6= ∅};

Ez
h+1 = {x ∈ X \ ∪h

i=0E
z
i | Ez

h ∩ BGz
x 6= ∅} = ∅.

It is a simple remark that the number h+1 of subsets in the above definition
depends only on z.
Let us define:

Ez = ∪h
i=1E

z
i . (9)

We have the following:

Theorem 5 Given two social outcomes x, z ∈ X, where z is free, then x is
in the basin of attraction Ψ(z) if and only if x ∈ Ez; i.e.

Ψ(z) = Ez. (10)
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Proof. If x ∈ Ψ(z) is a social outcome, then there exists an objects
scheme A = {AI1 , . . . ,AIt

} such that x ∈ Ψ(z, A) and an agenda α =
(hk, . . . , h1) for A such that the ordered path along α

x = xk ≺R xk−1 ≺R . . . ≺R x1 ≺R x0 = z

is maximal.
Since we have x0 = z ∈ Ez, then, by induction, let us assume that xj ∈
Ez, then xj ∈ Ez

i for some i. By construction xj ∈ B(xj+1,Ahj+1
) then

xj ∈ B(xj+1,Hxj+1,xj
) 6= ∅. Moreover Hw,z * Hxj+1,xj

∀w ≻R z, indeed if
w ≻R z is a social outcome such that Hw,z ⊆ Hxj+1,xj

⊆ Ahj
then z /∈ Ψ(z, A)

which is absurd.
It follows that xj ∈ BGz

xj+1
and, by induction, xj ∈ Ez

i , i.e. xj+1 is such

that xj ∈ Ez
i ∩ BGz

xj+1
6= ∅. Then either xj+1 ∈ Ez

i+1 or xj+1 ∈ ∪i−1
s=0E

z
s , i.e.

xj+1 ∈ Ez.

Viceversa, if x ∈ Ez then x ∈ Ez
i and we can construct a path P as

follows:
x = xi ≺R xi−1 ≺R . . . ≺R x1 ≺R x0 = z

such that xj ∈ Ez
j ∩ BGxj+1

for 0 ≤ j ≤ i − 1.
Let us consider an objects scheme Az such that z ∈ Ψ(z, Az), then

A = {Hxj ,xj+1
}0≤j≤i−1 ∪ Az

still satisfies z ∈ Ψ(z, A).
Moreover let α = (h0, . . . , hk) be an agenda for A such that the ht-object in
the ordered scheme Aα is Hxi−t,xi−t−1

for 0 ≤ t ≤ i−1. Then, by construction,
P is exactly the maximal path P (x, z, Aα) and x ∈ Ψ(z). ¤

4.5 Breaking intransitive cycles

In this section we show that also intransitive cycles which, as well known,
can be generated by any social aggregation rule are subject to manipulation
through object construction. The main result of this section, theorem 6,
demonstrates that almost any intransitive cycle may be broken by appro-
priate modification of the objects scheme. It turns out that cycles may be
broken by introducing new local optima. Thus, we observe a trade-off be-
tween decidability, i.e. the possibility of reaching some social optimum in a
feasible time, and non-manipulability, that is, the convergence of the social
decision process to a unique global outcome that does not depend on initial
condition and agenda. The balance in this trade-off is struck by the objects
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scheme. In particular, we will show that coarse objects containing many fea-
tures tend to produce many cycles and few local optima, whereas fine objects
containing only one or a few features are much less likely to induce cycles
but tend to generate many local optima and, therefore, greatly increase the
opportunity for manipulation.

We first prove that given a set Γ of free cycles it is always possible to
choose an objects scheme A such that social choice according to some rule
ºR will never enter into any cycle belonging to Γ. Suppose that for some
objects scheme A′ social preferences may encounter a set of cycles Γ. We will
say that an objects scheme A 6= A′ breaks the cycles Γ if social choice does
not enter into any cycle belonging to Γ with the new objects scheme.

Given a cycle γ : xi1 ≺R . . . ≺R xik ≺R xik+1
= xi1 , let us define the

following subset of hyperplanes in An,m:

Hγ =
⋃

1≤j≤k+1

Hxij
,xij+1

. (11)

We will say that a cycle γ : xi1 ≺R . . . ≺R xik ≺R xik+1
= xi1 is free if

there are at least two consecutive indices ij, ij+1 such that dp(xij , xij+1
) > 1.

Then we have the following:

Theorem 6 Let Y≻R
be the oriented graph for a given social rule ≻R and

An,m the arrangement associated to the space of social outcomes. Then for
any given set Γ = {γ1, . . . , γh} of free cycles in Y≻R

there exists an objects
scheme A such that all voting process will never end up in any cycle of Γ.
Moreover this scheme can be chosen with maximum size.

In order to prove this theorem we need the following:

Lemma 4.7 Let γ ∈ Y≻R
be a cycle and A an objects scheme such that:

1. Hγ * A for any object A ∈ A;

2. for any agenda α and any starting configurations x the path P (x,Aα)
does not end up in γ.

then γ disappears in A.

Proof. The proof is obvious. ¤

Lemma 4.8 Let γ ∈ Y≻R
be a cycle and A an objects scheme such that at

least two consecutive outcomes xij ≺R xij+1
in the cycle satisfy Hxij

,xij+1
* A

for any object A ∈ A. Then γ disappears in A.
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Proof. Condition 1 of Lemma 4.7 is trivially satisfied. Moreover, by
hypothesis, let xij ≺R xij+1

be two consecutive outcomes in γ such that
Hxij

,xij+1
* A for any object A ∈ A. Then, by definition, xij+1

/∈ B(xij ,A)
for all objects A ∈ A, i.e. it is not possible to move from xij to xij+1

directly
and then condition 2 of Lemma 4.7 holds. This conclude the proof. ¤

Lemma 4.9 A given free cycle γ ∈ Y≻R
disappears for the trivial object

scheme
A = {{Hi,j} 1≤i≤n

0≤j≤m−1

} .

Proof. The proof is a direct consequence of Lemma 4.8. ¤

Proof of Theorem 6. Let us consider the finite set AΓ of all possible
objects schemes A of An,m such that all voting process in A will never end
up in any cycle in Γ. By Lemma 4.9 this set is not empty, indeed the trivial
objects scheme

A = {{Hi,j} 1≤i≤n

0≤j≤m−1

}

is such that any social choice process will never end up in any cycle in Γ.
Moreover the set of sizes of elements A ∈ AΓ is a finite non-empty set of
natural numbers N and then it admits a maximum.
This conclude the proof. ¤

Example 10 In the example 8 the objects schemes A = {{H1, H3}, {H2}}
and A = {{H2, H3}, {H1}} break at once all cycles in the graph Y≻R

of
example 3.

Remark 4.10 A cycle γ which is not free can also be broken in most cases,
but not always. An example is given by the cycle γ : 00 ≺R 01 ≺R 11 ≺R

10 ≺R 00 in the case A2,1. Indeed, in this case, the only two objects schemes
are A = {{H1, H2}} and A = {{H1}, {H2}} and none of them breaks γ.

Cycles which are not free are very few and far between with respect to free
one, but nevertheless they deserve further study.

The above theorem proves the existence of an objects scheme A such that
all the cycles in a given set Γ = {γ1, . . . , γh} are broken, while Lemma 4.8
shows how to construct it.

All in all, a cycle γ may be broken, i.e. it disappears in a given objects
scheme A, if there exist consecutive configurations x,w involved in the cycle
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γ such that Hx,w * A for all A belonging to the scheme A. Thus, the number
of cycles broken by a given objects scheme A increases when the size of A,
i.e. the cardinality of its largest object, decreases.

Symmetrically, the number of local optima increases when the size of the
objects scheme A decreases. Indeed by theorem 2, a free configuration z is
a local optimum for a scheme A if and only if for all configurations x ºR z
Hx,z * A for all A belonging to the scheme A. It follows that if the objects
scheme A is composed by k objects, then we have at least (k − 1)! different
local optima. Thus we obtain a decidability vs. non-manipulability trade-
off. Schemes composed of few large objects tend to produce cycles, while
schemes of many small objects tend to produce considerably fewer cycles but
increasingly many local optima.

4.6 On the median voter theorem

In addition to intransitive cycles and agenda power, also another classic result
of social choice theory, the median voter theorem, is subject to manipulability
through object construction. By appropriately modifying the objects scheme,
the outcome of a social decision may be made as distant as one wishes from
the median voter’s preferred configuration.

Recall that the median voter theorem in its strong version (Black 1958,
Downs 1957) states that if a voter with median preferences exists, her/his
most preferred outcome will beat any other alternative in pairwise majority
voting.

In our framework we can easily prove the following:

Remark 4.11 Given a rule ≻R with free configurations, if a median voter
m exists, theorem 2 proves that it is always possible to find objects scheme
A for which the preferred outcome is different from the one of the median
voter. Moreover, if z is the opposite configuration with respect to the median
voter’s preferred one and z is free, then it is possible to find a scheme with
preferred outcome z.

This is equivalent to saying that in our construction it is always possible
to manipulate the scheme in such a way that the median voter theorem does
not apply.
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5 Conclusions

Economic theory usually reduces decision problems to choice problems, by
assuming that alternatives are given and agents have to simply pick the one
they prefer according to some criterion. However a considerable amount of
time and resources in many political and economic organizations and insti-
tutions are devoted to figuring out these alternatives. We have proposed
a model that analyzes the situations in which alternatives are constructed
through bundling of constituent elements and have shown that different bun-
dles of the same constituent elements lead to very different social outcomes.
By controlling the formation of these bundles an authority may strongly ma-
nipulate social decisions, even when the latter are taken by majority voting
or any other kind of free and democratic selection criterion.

At least two issues have been left unexplored in this paper which need
further investigation. First, we assumed that agents sincerely express their
preferences, but they could strategically misrepresent their preferences in
order to countervail the object construction power. The extent to which
object construction may be offset or mitigated by strategic behaviors is an
interesting issue.

Second, we only compared the properties of different objects schemes un-
der the implicit assumption that objects schemes could be constructed and
modified at will and object construction power can be fully exerted because
the authority knows everybody’s preferences. In many real-life situations ob-
ject construction is strongly path-dependent and objects can be only modified
through a process of adaptive small changes that allow a boundedly rational
authority to learn the preferences of the other agents. An evolutionary model
of learning and adaptation of objects could account for these dynamics.

A Appendix: Some basic notions of hyper-

planes arrangements

In this appendix we recall some basic notions from the theory of hyperplanes
arrangements. The interested reader can refer to, for instance, Orlik and
Terao (1992) for a much more detailed and extended survey.

In geometry and combinatorics, an arrangement of hyperplanes is a
finite set A of hyperplanes in a linear, affine, or projective space S. Questions
about hyperplane arrangements A generally concern geometrical, topological,
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or other properties of the complement, M(A), that is the set that is left when
hyperplanes are removed from the space. One may ask how these properties
are related to the arrangement and its intersection semilattice.

The intersection semilattice of A, written L(A), is the set of all subspaces
that are obtained by intersecting some of the hyperplanes. Among these
subspaces are S itself, all the individual hyperplanes, all the intersections
of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set).
These subspaces are called the flats of A. L(A) is partially ordered by
reverse inclusion.

If the space S is 2-dimensional, the hyperplanes are lines2, if S is 3-
dimensional we have arrangements of planes.

More precisely, let K be a field and let VK be a vector space of dimension
n. A hyperplane H in VK is an affine subspace of dimension (n − 1). A
hyperplane arrangement

AK = (AK, VK)

is a finite set of hyperplanes in VK.
One is normally interested both in the real and the complex cases, hence

K = R, C and V = Rn, Cn. Thus, given the canonical base {e1, . . . , en} in V ,
each hyperplane H ∈ A is the kernel of a polynomial αH ∈ K[x1, . . . , xn] of
degree 1 defined up to a costant. The product:

Q(A) =
∏

H∈A

αH

is called the defining polynomial of A.
The cardinality | A | of the arrangement A is the number of hyperplanes

in A.
If B ⊂ A is a subset of A, then it is called a subarrangement of A. We

define the set of all nonempty intersections of elements of A as:

L(A) = {∩H∈BH | B ⊆ A}

and the complement of A by:

M(A) = V \ ∪H∈AH.

The complement of an arrangement A in Rn is clearly disconnected: it is
made up of separate pieces called chambers or regions, each of which may
be either a bounded or an unbounded region.

Each flat of A is also divided into sections by the hyperplanes that do
not contain the flat; these sections are called the faces of A. Chambers are

2Historically, real arrangements of lines were the first to be investigated.
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faces because the whole space is a flat. The faces of codimension 1 may be
called the facets of A.

The face semilattice of an arrangement is the set of all faces, ordered
by inclusion.

Example 11 Let us give some examples:

• if the arrangement consists of three parallel lines, the intersection semi-
lattice consists of the plane and the three lines, but not the empty set.
There are four regions, none of them bounded (panel a) of figure 5
below).

• If we add a line crossing the three parallels, then the intersection semi-
lattice consists of the plane, the four lines, and the three points of in-
tersection. There are eight regions, still none of them bounded (panel
b) of figure 5 below).

• If we add one more line, parallel to the last, then there are 12 regions,
of which two are bounded parallelograms (panel c) of figure 5 below).

Figure 5: A graphical illustration of example 11

Every arrangement (AR, Rn) also generates an arrangement over C. Let
(AR, Rn) be an arrangement with defining polynomial Q(AR). The C-extended
arrangement is in Cn. It consists of the hyperplanes which are the kernel of
the polynomial αH in Cn instead of Rn.
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