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(i)   Introduction

In the most generic terms, learning may occur in all circumstances whereby agents have an

imperfect understanding of the world in which they operate - either due to lack of information about

it, or, more fundamentally, to an imprecise knowledge of its structure -; or, when they master only a

limited repertoire of actions in order to cope with whatever problem they face - as compared to the

set of actions that an omniscient observer would be able to conceive -; or, finally, when they have

only a blurred and changing understanding of what their goals and preferences are.

It is straightforward  that learning, so defined, is an ubiquitous characteristic of most economic and,

generally, social environments, with the remarkable exception of those postulated by the most

extreme forms of economic modelling, such as those assuming rational expectations or canonical

game-theoretic equilibria. But, even in the latter cases, - and neglecting any issue of empirical

realism of the underlying assumptions -, it is natural to ask how did agents learn in the first place

about e.g. the “true model” of the world in a RE set-up, or the extensive form of a particular game?

And, moreover, in the widespread case of multiple equilibria, how do agents select among them (i.e.

how do they learn how to converge to one of them)?

Of course, learning acquires even greater importance in explicitly evolutionary environments (which

we believe be indeed the general case), where a) heterogeneous agents systematically display

various forms of “bounded rationality”; b) there is a persistent appearance of novelties, both as

exogenous shocks, and, more important, as the result of technological,  behavioural and

organisational innovations by the agents themselves; c) markets (and other interaction

arrangements) perform as selection mechanisms; d) aggregate regularities are primarily emergent

properties stemming from out-of-equilibrium interactions (more detailed discussions are in Dosi and

Nelson (1994), Nelson (1995), Coriat and Dosi (1995)).

The purpose of this work is to present a sort of selective guide to an enormous and diverse literature

on learning processes in economics in so far as they capture at least some of the foregoing

evolutionary aspects. Clearly, this cannot be a thorough survey. Rather, we shall just refer to some

examples of each genre, trying to show their links and differences, setting them against a sort of

ideal framework of “what one would like to understand about learning...”. This allows also an easier

mapping of a wide and largely  unexplored research agenda. A significant emphasis shall be put on

learning models, in their barebone formal structure, but we shall always refer to the (generally

richer) non-formal theorising about the same objects.
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Needless to say, we are exclusively concerned here with positive (i.e. descriptive) theories of

learning: standard “rational-choice” models might well go a longer way as normative tools.

In section (ii) we set the scene for the discussion that follows by reference  to the usual decision-

theoretic archetype, briefly outlining many compelling reasons  why one needs to go well beyond it

in order to account for most learning processes. Once we do that, however, a sharp and unified -

albeit probably irrelevant - paradigm is lost. Learning happens in different cognitive and

behavioural domains, has different objects and most likely occurs through somewhat different

processes. Relatedly, we propose that a few basic empirical regularities on cognition, decision-

making and learning stemming from disciplines outside economics - ranging from cognitive

psychology to sociology, etc. - should be among the “building blocks” of an emerging theory of

agency (cf. section (iii)). Some taxonomic exercises are a useful introductory device. These we shall

present in section (iv). A taxonomy of learning dynamics, and the restrictions on its domain, helps

so in grouping and assessing various classes of learning models (cf. section (iv)). In particular, a

useful distinction appears to be whether one retains some elements of Savage’s original “Small

World assumption” (Savage (1954)) - in essence, the idea of a finite list of objects exhaustively

present from the start in the “heads” of learning agents-. This is the case of learning representations

through “evolutionary games” and other mechanisms of adaptation via environmental

reinforcement. Conversely, lower restrictions on the domain of learning and on the dimensionality

of the state space may well entail open ended evolutionary dynamics involving not only adaptation

but also discovery and emergence of novelty: in section (v), we shall compare different formal

approaches in these different veins.

The general thrust of the argument, there and throughout this work, shall be that learning crucially

entails cognitive activities of construction and modification of mental models and behavioural

patterns hardly reduceable to well defined problems of choice under imperfect information and

probabilizeable risk.

Some achievements and limitations of current learning models within this perspective and a few

other broad topics of investigation such as the relationship between learning and selection in

evolutionary models; the possible tension between individual and collective learning; the

specificities of organisational learning, shall be outlined in section (vi).
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(ii) Beyond “rational choice” and Bayesian learning: some preliminaries

As well known, the standard decision-theoretic model depicts agency (and, in primis, economic

agency) as a problem of choice where rational actors select, among a set of alternative courses of

action, the one which  will produce (in expectation) the maximum outcome as measured against

some utility yardstick. In that, agents are postulated to know the entire set of possible events of

“nature”, all possible actions which are open to them, and all notional outcomes of the mapping

between actions and events (or at least come to know them after some learning process). Clearly,

these are quite demanding assumptions on knowledge embodied into or accessible to the agents -

which hardly apply to complex and changing environments. In fact, they cannot apply almost by

definition in all environments where innovations of some kind are allowed to occur - irrespectively

of whether they relate to technologies, behavioural repertoires or organisational arrangements: as

Kenneth Arrow has been reminding for some time, if an innovation is truly an innovation it could

not have been into the set of events that all agents were able to contemplate before the innovation

actually occurred...

Moreover, equally demanding are the implicit assumptions concerning the procedural rationality

involved in the decision process.

As a paradigmatic illustration, take the usual decision-theoretic sequence leading from 1)

representation/”understanding” of the environment (conditional on whatever available

“information”), to 2) evaluation/judgement; 3) choice; 4) actions, and, ultimately, 5) consequences -

determined e.g. by the stochastic pairing of actions and “events of nature” and/or actions by other

agents.

We argue at some greater length elsewhere (Dosi et al. (1994))that in order for this “rationalist”

view to hold at least two assumptions are crucial.

First, the linearity of that sequence must strictly hold. That is, one must rule out the possibility of

reversing, so to speak, the procedural sequence. For example, one cannot have preferences and

representations which adapt to an action that has already been undertaken. and, likewise, one must

assume that consequences do not influence preferences (i.e. preferences are not endogenous).

Second, at each step of the process agents must be endowed with, or able to build, the appropriate

algorithm in order to tackle the task at hand - being it representing the environment, evaluating

alternatives or choosing courses of action, etc.

There are, indeed, a few rather compelling reasons why these assumptions might be a misleading

starting point for any positive theory of learning and choice.
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Complexity and procedural rationality

On purely theoretical grounds, computability theory provides some sort of dividing line between

problems which are solvable by means of a general recursive procedures in non-exponential times

and problems that are not (for discussions and some results cf. Lewis (1985a and 1985b), Casti and

Karlqvist (1986), Andersen (1994), Dosi and Egidi (1991), Dosi et al. (1994)). It is plausible to use

such a criteria to establish the upper bound of the complexity of the problems for which the theory

is allowed to assume that the agents “naturally” possess the appropriate problem-solving algorithm

(or are able to access them in finite time). It happens, however, that many decision tasks within and

outside the economic domain fall outside of this category (Lewis (1986), Dosi et al. (1994)).

We do not mean to overemphasize this point. After all, human agents tackle every day, with varying

degrees of success, highly complex and “hard” problems (in the sense of computability theory).

However, we do claim that the understanding  of how and when they happen to do it is a major

challenge for any theory of cognition and learning, which cannot be written out by assuming that

agents embody from the start a notionally unbounded procedural rationality1. Note that all this

equally applies to the “procedural rationality” of both decision-processes and of learning.

“Rationality” of the latter implies the availability of some inferential machinery able to extract the

“correct” information from environmental signals (Bayes rule being one of them, and possibly also

the most demanding in terms of what the agents must know from the start about alternative

hypotheses on what the world “really is”). But, again, our foregoing argument implies that such an

inferential machinery cannot be innocently postulated. Indeed, outside the rather special domain of

“small worlds” whose structure is known ex ante to the agents, a few impossibility theorems from

computation theory tell us that a generic inferential procedure does not and cannot exit (More on

this point in Dosi and Egidi (1991), Dosi et al. (1994), Binmore (1990)).

What said so far mainly implies restrictions on the applicability of the canonic, “rational”, account

of learning and decision-making. The bottom line is that the demands it makes in terms of a priori

knowledge of the environment and “algorithmic endowments” of the agents cannot be met, even in

principle, except for the simplest decision problems.

But, then, how do we theoretically depict agency and learning?

                                                
1 In this respect, the reader might notice that the view suggested here tends to imply a somewhat more radical departure
from fully “rational” theories of decision than Herbert Simon’s pathbreaking works on “bounded rationality” Simon
((1976), (1981) and (1988)), in that it does not only demand demands a constructive theory of the procedures
themselves by which agents develop their representations and action rules, but it allows the possibility of persistently
incoherent procedures (see below).
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“As...if” interpretations of rational behaviour.

One possible strategy basically involves a continuing commitment to “rational” microfoundations of

economic interactions, together with a radical redefinition of the status of rationality assumptions

themselves.

“Rationality” - however defined -, rather than being an approximation to the empirical behaviours of

purposeful, cognitively quite sophisticated, agents, is assumed to be, so to speak, an “objective”

property of behaviours in equilibrium. Add the presumption that (most) observed behaviours are

indeed equilibrium ones. And finally postulate some dynamics of individual adaptation or intra-

population selection leading there. What one gets is some version of the famous “as...if” hypothesis,

suggested by Milton Friedman (1953) and rejuvenated in different fashions by more recent efforts to

formalize learning/adaptation processes whose outcome is precisely the “rationality” assumed from

the start (Archetypical examples of this faith can be found in Sargent (1993) and Marimon (1995)).

A thorough, critical, discussion of the “as...if” epistemology  has been put forward by Sidney

Winter, in various essays (e.g. Winter (1971)) to which we refer the interested reader (and see also

Silverberg (1988), Andersen (1994) and Hodgson (1993)).

For our purposes here let us just note the following:

(i) Any “as...if” hypothesis on rationality , taken seriously, is bound to involve quite a few

restrictions similar to those briefly overviewed earlier with reference to more “constructive” notions

of rational behaviours, simply transposed into a more “ecological” dimension - being it the

“ecology” of minds, ideas, organisations, populations, etc. -. That is, canonical rationality, stricto

sensu, postulates that one decides and acts by purposefully using the appropriate procedures (or by

learning them in purposeful, procedurally coherent, ways). “As...if”’s of any  kind apparently relax

the demands on what agents must consciously know about the environment, their goals, the process

of achieving them, but at the same time must assume some background mechanism that generates

the available alternatives - which must include the “correct” ones. However, without any further

knowledge of the specific mechanisms, such a possibility remains a very dubious shortcut. And it is

utterly unlikely when there are infinite alternatives which ought to be scanned.

(ii) While “realistic” interpretations of rationality put most of the burden of explanation upon the

power of inbuilt cognition, “as...if” accounts shift it to selection dynamics - no matter whether

driven by behavioural reinforcements alike salivating Pavlovian dogs, or by differential
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reproduction of traits within populations.2 But, then, supporters of the view ought to show, at the

very least, robust convergence properties of some empirically justifiable selection dynamics. As it

stands, in our view, nothing like that is in sight. On the contrary, except for very special set-ups,

negative results are abundant in e.g. evolutionary games or other forms of decentralized interactions

- no matter whether applied to biology or economics -: path-dependency cannot easily be disposed

of; cyclical limit behaviours might occur (cf. Posch (1994) and Kaniovski and Young (1995)), etc.

And all this appears even before accounting for environments which are genuinely evolutionary in

the sense that novelties can emerge over time.

Of course, the “as...if” theoretical enterprise in its wildest formulation does not set to itself any

falsification challenge. Any kind of observation-based discipline on behavioural assumptions tends

to be contemptuously dismissed as “ad-hoc”. Thus, the question of “what do people do and how do

they learn” is generally transformed into another one, namely “given whatever behaviour, and,

knowing that, of course (?!), such a behaviour is an equilibrium one, how can I - the theorist -

rationalize it as the outcome of some adaptive process? (Mr. Pangloss, theologicians, and marxist-

leninists would not have any query with such an exercise...).

Bounded Rationality

Another major perspective maintains that cognitive and behavioural assumptions have to keep some

empirical foundations and, thus, when needed, account for constraints on memory, on the maximum

levels of complexity of problem-solving algorithms, and on computational time. It is, in a broad

sense, the bounded rationality approach, pioneered by the works of Simon (cf. (1986)) and

developed in quite different fashions in e.g. organisational studies (starting from March and Simon

(1958) and Cyert and March (1963)) ; evolutionary theories (building on Nelson and Winter

(1982) ; see also Dosi et al. (1988), Andersen (1994), Hodgson (1993)) ; “evolutionary games” (for

a rather technical overview, cf. Weibull (1995) ; for insightful remarks on bounded rationality and

games in general, Kreps (1996) and also in otherwise quite orthodox macroeconomics see e.g.

                                                
2 Incidentally note that the outcomes of pure “Pavlovian” - i.e. reinforcement - driven, consciously blind -, and
“Bayesian” - apparently sophisticatedly rational - dynamics can be shown to be sometimes asymptotically equivalent
(the review in Suppes ((1995a) and (1995b)) develops much older intuitions from behaviourist psychology - e.g. Bush
and Mosteller (1955))... However, in order for that equivalence to hold reinforcements must operate in the same
direction as the Bayesian inferential machinery - which is indeed a hard demand to make. The so-called condition of
“weak monotonicity” in the dynamics of adjustment that one generally finds in evolutionary games is a necessary, albeit
not sufficient, condition to this effect. Moreover, a subtle question regards the interpretative value that one should
attribute to asymptotic results: what do they tell us about finite time properties? (We shall briefly come back to the issue
at the end of this essay).
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Sargent (1993)3). Again, this is not the place to undertake any review of this vast literature.

However, few comments are required.

Of course, the very idea of “bounds” on rationality implies that, at least in finite time, agents so

represented fall short of full substantively rational behaviours, the latter involving among other

things, a) a full knowledge of all possible contingencies ; b) an exhaustive exploration of the entire

decision tree ; and c) a correct appreciation of the utility evaluations of all mappings between

actions, events and outcomes (Simon (1981) and (1988)).

Given that, a first issue concerns the characterization of the origins  and nature of the

“boundedness” itself. It is not at all irrelevant whether it relates mainly to limitations on the memory

that agents carry over from the past, or to algorithmic complexity, or to limited ability of defining

preferences over (expected) outcomes...

Or, more radically, couldn’t it be due to the fact that agents get it basically wrong (in terms of

representation of the environment, etc.) ?

Here the theory faces a subtle but crucial crossroad. An alternative - unfortunately found too often in

economic models, and especially but not only, in game theory - is to select the bounded-rationality

asssumptions with extreme casualness, suspiciously well-fitted to the mathematics the author knows

and to the results one wants to obtain. We have no problem in associating ourselves to those who

denounce the ad-hocry of the procedure. The other alternative entails the acknowledgement of an

empirical discipline upon the restrictions one puts upon the purported rationality of the agents. No

doubt, we want to advocate here the scientific soundness of this procedure, notwithstanding the

inevitable “phenomenological” diversity of cognitive and behavioural representations one is likely

to get. That is, whether and how “rationality is bound” is likely to depend on the nature of the

decision problem at hand, the content in which the decision-maker is placed, the pre-existing

learning skills of the agents, etc. Taxonomical exercises are inevitable, with their seemingly clumsy

reputation. But, in a metaphor inspired by Keith Pavitt, this is a bit like the comparison of Greek to

modern chemistry. The former, based on the symmetry of just four elements, was very elegant,

grounded in underlying philosophical principles, utterly irrelevant, and, from what we know

nowadays, essentially wrong. The latter is clumsy, taxonomic, and for a long time (until quantum

mechanics) lacking underlying foundations , but is certainly descriptively and operationally more

robust....

                                                
3Note, however, that in some interpretations - including Sargent’s and others discussed in section (iv) below - boundedly
rational behaviours are considered mainly in so far as they entail convergence to some predifined equilibrium outcomes.
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A second major issue, regards procedural  rationality. Granted the bounds on “substantive” rational

agency, as defined above, when and to what extent should one maintain any assumption of coherent

purposefulness and logical algorithmic consistency of the agents ? 4In a first approximation, H.

Simon’s approach suggests such a theoretical commitment (associated indeed to major contributions

to the identification of constructive procedures for learning and problem-solving in this vein ; cf.

Newell and Simon (1972) and Simon (1976)). However, even procedural consistency might not be

at all a generic property of empirical agents (including, of course, us !). And a lot of evidence from

most social disciplines seems to point in this direction (see also below).

Third, and relatedly, the very notion of “bounded rationality” commits from the start to an implicit

idea that “full rationality” is the underlying yardstick for comparison. In turn, this implies the

possibility of identifying some metrics upon which “boundedness” and, dynamically, learning

efforts could be measured and assessed. In quite a few circumstances this can be fruitfully done 5but

in others it might not be possible either in practice or even in principle. In particular, this applies to

search and learning in complex functional spaces (as many problems within and outside the

economic arena commonly do) 6. And of course this is also the case of most problems involving

discovery and/or adaptation to novelty.

Since indeed these features are typical of evolutionary environments, an implication is that one

might need to go well beyond a restricted notion of “bounded rationality”, simply characterized as

an imperfect approximation to a supposedly “full” one  - which, in these circumstances, one is even

unable to define what it should precisely be.

But then, again, how does one represent learning agents in these circumstances ?

(iii)  “Stylized facts” from cognitive and social sciences as building blocks of evolutionary theories

of learning.

Our somewhat radical suggestion is that evolutionary theories ought to make a much greater and

systematic use of the evidence from other cognitive and social sciences as sort of “building blocks”

                                                                                                                                                                 
Hence they turn out at the end being primarely instrumental building blocks of some dynamics vindicating, in the
intentions of the proponents, an “as...if” story.
4Note that procedural rationality requires all the “linearity assumptions” mentioned above (ruling out for example state-
dependent preferences) and also consistent search heuristics (allowing, for example, assessment rules along any decision
tree which at least in probability lead in the “right” direction).
5Promising results stem from a better understanding of the formal structure of problem-solving heuristics (c.f. e.g. Pearl
(1984), Vassilakis (1995) and, in a suggestive experimentally-based instance, Cohen and Bacdayan (1994) and Egidi
(1996)). See also below.
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for the hypotheses on cognition, learning and behaviours that one adopts. We fully realize that such

a perspective almost inevitably entails the abandonment of any invariant axiomatics of decision and

choice. But, to paraphrase R. Thaler (1992) this boils down again to the alternative between being

“vaguely right” or ”precisely wrong”: we certainly advocate the former (however, compare

Marimon (1995) for a sophisticated contrary view).

In this respect, the discussion of routines as foundational behavioural assumptions of evolutionary

models in Nelson and Winter (1982) is an excellent example of the methodology we have in mind,

unfortunately not pursued enough in subsequent evolutionary studies (For a discussion of the state-

of-the-art in the field, see Cohen et al. (1995)).

There are, however, many other fields where a positive theory of learning in economics can draw,

ranging from cognitive and social psychology all the way to anthropology and sociology of

knowledge.

Cognitive categories and problem-solving.

A crucial aspect of learning regards most often cognition, that is the process by which decision

makers form and modify representations in order to make some sense of a reality which is generally

too complex and uncertain to be fully understood. Hence, the necessity to acknowledge the

existence (and persistence) of a systematic gap between the agents cognitive abilities and “reality”

(were there an omniscient observer able to fully grasp it). Such a gap can take at least, two often

interrelated forms 7, namely, first, knowledge gap, involving incomplete, fuzzy or simply wrong

representations  of the environment and, second, a problem-solving gap between the complexity of

the tasks agents face and their capabilities on accomplishing them.

Regarding both, evolutionary theories of learning might significantly benefit from that branch of

cognitive studies concerned with the nature and changes of categories and mental models (in

different perspectives, cf. Johnson-Laird (1983) and (1993), Lakoff (1987), Holland et al. (1986),

Margolis (1987), and the presentation of a few alternative theories in Mayer (1992)). It is crucial to

notice that, if one accepts any “mental model” view, learning cannot be reduced to information-

acquisition (possibly cum Bayesian processing of it), but rather is centred around the construction of

new cognitive categories and “models of the world” (Few studies in economics have explicitly

taking this road: one of them is the promising attempt in Tordjman (1996) to interpret the dynamics

                                                                                                                                                                 
6For example, in Dosi et al. (1994) we consider quantity- and price-setting as cases to the point.
7Heiner (1983) introduces a similar concept which he calls the “C-D (competence - difficulty) gap”. In his definition
such a gap reflects the agent’s imperfect capabilities to correctly process the available information and act reliably.
Heiner’s C-D gap does not properly belong to the realm of cognitive gaps, but it rather capture their behavioural
consequences.
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of financial markets in this framework ; see also Marengo and Tordjman (1996) and Palmer et al.

(1994)).

In turn, a robust evidence shows that cognitive categories are no clear-cut constructions with sharp

boundaries and put together in fully consistent interpretative models. Rather, they seem to display

(in all our minds !) blurred contours, shaded by an intrinsic fuzziness, held around some cognitively

guiding “prototypes”, and organized together in ill-structured systems kept operational also via a lot

of default hierarchies (cf. on all those points Lakoff (1987), Holland et al. (1986), Tversky and

Kahneman (1982), Kahneman and Tversky (1986), Griffin and Tversky (1992), Marengo (1996),

Margolis (1987), Marengo and Tordjman (1996), Einhorn and Hogarth (1985)).8

Framing and social embededness.

Cognitive categories - it has been repeatedly shown - go together with various mechanisms of

framing by which information is interpreted and also rendered operationally meaningful to the

decision-makers (cf. Kahneman et al. (1982), Borcherding et al. (1990), March (1994)).

Frames appear to be indeed an ubiquitous feature of both decision-making and learning. What one

understands is filtered by the cognitive categories that one holds and the repertoires of elicited

problem-solving skills depend on the ways the problem itself is framed. That is, framing effects

occurs along all stages of the decision process - affecting representations, judgements and the

selection of behaviours (cf. Kahneman et al (1982), and, concerning the patterns of activation of

experts’ skills, Ericsson and Smith (1991)).

As James March put it,

Decisions are framed by beliefs that define the problem to be addressed, the information that must be
collected, and the dimensions that must be evaluated. Decision makers adopt paradigms to tell themselves
what perspective to take on a problem, what questions should be asked, and what technologies should be
used to ask the questions. Such frames focus attention and simplify analysis. They direct attention to
different options and different preferences. A decision will be made in one way if it is framed as a
problem of maintaining profits and in a different way if it is framed as a problem of maintaining market
share. A situation will lead to different decisions if it is seen as being about “the value of innovation”
rather than “the importance of not losing face” (March (1994), p. 14).

Note that in this view, “frames” include a set of (non-necessarily consistent) beliefs over “what the

problem is” and the goals that should be achieved in that case ; cognitive categories deemed to be

appropriate to the problem ; and a related menu of behavioural repertoires.

                                                
8”Prototypization” is easy to intuitively understand: you would give a sparrow rather than a penguin as an example of
what a bird is... But with that it is also easier to understand the basic ambiguity of boarderliners , fuzziness and
categorical attributions by default (how should one treat an ornithorincus?, as a mammel? or should one create a
separate  category, that of ovovivipars?...). A discussion of these issues bearing on economic judgments and behaviours
is in Tordjman (1996).
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Moreover, framing mechanisms appear at different levels of cognitive and behavioural observation:

they do so in rather elementary acts of judgement and choice, but are also a general organizing

principle of social experience and collective interactions (Bateson (1972), Goffman (1974)).

One can intuitively appreciate also the links between framing processes and social embeddedness of

both cognition and action 9.

Frames - in the broad definition given above - have long been recognized in the sociological and

anthropological literature (whatever name is used to refer to them) as being grounded in the

collective experience of the actors and in the history of the institutions in which agency is nested 10.

Indeed, embeddedness seems to go a striking long way and affect even the understanding and use of

cognitively basic categories such as that of causality and the very processes by which humans

undertake basic operations such as inferences, generalizations, deductions, etc. (Lakoff (1987),

Luria (1976)).

Heuristics in judgement and learning.

We were mentioning above the issue of procedural coherence in decision-making and learning

(which, to repeat, is a quite separate one from the sophistication in terms of memory and computing

power - of the procedures themselves). It happens that an overwhelming evidence points at the

widespread use by empirical agents of heuristics which may well lead to systematic biases in

judgements and action-choices as compared to the predictions of “rational” decision theoretic

models (cf. Kahneman, Slovic and Tversky (1982) and also Kahneman and Tversky (1986), Slovic

et al. (1989), Borcherding et al. (1990), Thaler (1992), Shafir and Tversky (1992)).

Broadly defined, heuristics are methods, rules or criteria guiding e.g. representation, judgement or

action - and include simple rules-of-thumb but also much more sophisticated methods explicitly

evoking the use of mental categories -.

It is impossible to provide here any thorough account of the findings in this area (The classic

reference is the cited Kahneman, Slovic and Tversky (1982)). Let us just recall heuristics such as

representativeness (i.e. evaluating whatever observation in terms of distance from some prototype

or modal case) 11 ; availability (i.e. ... what is primarily in your mind is what is in your sight...) ; and

anchoring (initial conditions, either related to the way the problem is posed or the experience of the

                                                
9On the notion of “social embeddedness” as from contemporary economic sociology, see Granovetter (1985) and several
contributions in Smelser and Swedberg (1994). A discussion quite germane to the argument developed here is in
Tordjman (1996).
10Within an enormous literature, just think of a good deal of the sociological tradition influenced by the works of Talcott
Parson or of the classic Bourdieu (1977); in anthropology, among others, cf. the discussions of “embeddedness” by Karl
Polanyi  ((1944) and (1957); and Geertz (1963); see also Edgerton (1985)).
11Tordjman (1996) discusses in this light speculative expectations.
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agent influence the final judgement). Other observed phenomena - touching, together,

representations, choices and the perceived utility of the latter - include status quo biases (entailing,

for choice under risk, risk-aversion for gains and risk-seeking for losses - as formalized by

Kahneman and Tversky through “prospect theory” -) ; overconfidence and illusion of control

(associated with the overestimation of one’s own capabilities and the neglect potentially relevant

outside information 12 ; and, more generally systematic “incoherences” vis-à-vis any canonic model

of utility-based decision under uncertainty).

Note that all these cognitive and behavioural regularities apply to both decisions (as taken once-and-

for-all) and learning processes (for example, representativeness heuristics lead to learning patterns

at odds with Bayesian predictions ; and illusion of control is likely to entail information-censuring

and escalating commitments in the face of unfavourable outcomes...).

It is straightforward that those cognitive and behavioural patterns openly conflict with “procedural

rationality” - which, as mentioned earlier, is a fundamental necessary condition for a standard

decision-theoretic account of agency.

It is also remarkable that the foregoing evidence is drawn to a considerable extent for experiments

that are simple enough to provide a corresponding “correct” decision-theoretic answer (i.e.

procedurally coherent, making the best use of the available information and in accordance to some

supposedly basic preference axioms)13. And in fact, a lot of the emphasis has been put upon the

biases that all this entails, as measured against the canonic normative yardstick. However, together

with such  (indeed crucial) exercises of empirical falsification, our impression is that not enough has

been done in terms development of alternative theories of cognition and action (Kahneman-

Tversky’s “prospect theory” being one of the few exceptions in a wider puzzle...). More than that: it

might well be that so-called “biases” emerging in relatively simple decision set-ups could be

revealing clues about cognition and behaviours in all other genuinely evolutionary circumstances

which are common to human decision makers (whether individuals or organisations): .. after all,

pushing it to the extreme, the collective evolution of human cultures has not been drawn from

repeated trials on lotteries but on quite diverse experiences having nonetheless in common

                                                
12Cf. Kahneman and Lovallo (1993) and Dosi and Lovallo (1995).
13Incidentally, an issue that is seldom raised, and that unfortunately we shall not be able to discuss here either, is whether
the “rationality” of decision and learning is assessed procedurally at each elicited step of the process or whether it is
blackboxed and just evaluated in terms of coherence of final (expected utilities/revealed preferences) outcomes. It is a
matter bearing some resemblance to the “as...if” discussion, and also to entrenched debates in psychology between
“behaviourist” and “cognitivist” views (whether “strong”, à - la Chomsky, or much weaker ones à - la Johnson-Laird or
Lakoff...). We do not have the arrogant casualness by which many practitioners of economics switch from one to the
other. However, just note that the experimental results on heuristics, etc. are equally damaging for the defences of
standard rationality in both view. So, for example, not only one finds “cognitive incoherences” but also revealed
behaviours might well display “pessimization” (!) as opposed to “maximization” of utility (Herrstein and Prelec (1991)).
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uniqueness features, out of which our cognition and beliefs had to make some precarious sense, ...

from the threats in the forest to deaths of the relatives, from unexpected kins’ violence to the

discovery of fire and microprocessors...14.

Endogenous Preferences.

The separation from the previous point is somewhat arbitrary: indeed, the just mentioned heuristics

and behavioural patterns often entail preferences which are state - dependent. Status quo biases are a

case to the point: the reference is not some invariant utility - however defined - but “... where I was,

what I had, etc., at time t minus one...” 15. Moreover, it has been shown, the framing of the problem

shapes revealed preferences (a huge literature in the field of marketing points in this direction, but

particularly sharp experiments are in Kahneman et al. (1991)) and so do authority relations (cf.

Milgram (1974)).

Endogenous preference may be often driven by the attempts to reduce regret and cognitive

dissonance (cf. Festinger (1957)): that is, as we put it jokingly in Dosi and Metcalfe (.......) citing a

pop song from the 60’s, “...if you cannot be with the one you love, love the one you are with... !”.

And, finally, of course, endogeneity of preference is likely to stem from social imitation and other

forms of social interactions (such as Veblenian “conspicuous consumption” and “snob effects”,

etc. ;: an early discussion is in Leibenstein (1950))16.

Collective Beliefs, Behaviours and learning.

What said so far on cognition, judgement, etc. applies in principle also to all set-ups where

individual agents may be assumed, in a first approximation, to act as insulated entities

(notwithstanding, of course, the whole experience of socialization they carry with them...). Other

circumstances, however, are explicitly and immediately social: multiple-actors decision-making,

such as those required by “teams”, economic organisations and other institutions belong to this

group (for a thorough discussion, cf. March (1988 and 1994).

                                                
14To our, limited, knowledge, one of the few exploratory attempts to positively account for “rational biases” as crucial
clues on cognitive patterns in Margolis (1987). Totally sharing the idea that they should not be simply dismissed as
pathologies (cf. Tordjman (1996)), in another work it is suggested that they could indeed provide a crucial collective
evolutionary role, at least with regard to a particular one (i.e. overconfidence and illusion of control) (Dosi and Lovallo
(1995), see also below).
15Which, of course, is in open violation of any standard, utility - based, decision - theoretic approach, whereby
preferences are supposed to be defined on levels and not history-dependent variations and, moreover, are supposed to
change on a time scale that is significantly slower than decisions and random occurrences of “nature”.
16In economics, empirical studies of preference formation were a lively field of investigation in the 50’s and 60’s (cf.
Katona (1951), and (1968)) but were pushed aside by a new generation of believers in expected utility theory. Among
the few contemporary discussions and formal models dealing with these issues in economics cf. March (1988), Akerlof
and Dickens (1982), Kuran (1991), Brock and Durlauf  (1995)).
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Once more, it would be futile to try to review the enormous literature in the field. Let us just offer a

few comments.

First, the evidence suggests that, if anything, collective decision making rather than curbing the

judgmental “biases” mentioned earlier (say, via some equivalent of a “law of large numbers”) tends

on the contrary to reinforce them (Lovallo (1996), March (1994)).

Second, the “opaqueness” of the relationship between beliefs, behaviours and outcomes undermines

the usefulness of representing multi-actor choice in terms of the canonical, linear, sequence outlined

at the beginning of section (ii). Rather the general case seems to fit quite well the observation of

Purkitt and Dyson (1990), who - describing the decision process during the Cuban missile crisis -

note the general lack of “explicit linkages between information, a sense of the problem and problem

responses” ( ! !) (Purkitt and Dyson (1990), p. 363). On the contrary, the archetypical decision-

process, and, dynamically, the archetypical learning process, might fit quite well the garbage can

model (Cohen, March and Olsen (1972)).

That is,

 “in a garbage can process, it is assumed that there are no exogenous, time-dependent arrivals of choice
opportunities, problems, solutions, and decision-makers. Problem, and solutions are attached to choices,
and thus to each other, not because of any means-ends linkage but because of their temporal proximity. At
the limit, for example, almost any solution can be associated to almost any problem - provided they are
evoked at the same time” (March (1994), p. 200).

Third, multiple (and possibly conflicting) believes, goals, identities are likely to entail systematic

decision inconsistencies, while learning and adaptation in these circumstances may well path-

dependently strengthen these inconsistencies themselves (March (1988a) and (1994)).

All this applies, even more so, in presence of multiple objectives of individual organisational

members and of the organisation as a whole. (A related and more detailed discussion is in Dosi

(1995)).
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Rules, organisational routines and competencies.

More generally, the issue of organisational learning involves the understanding of the processes by

which organisational rules and action patterns 17change over time. Here, the relevant evidence

coming from organisational studies - albeit far from clean and unequivocal - points at organisations

as rather inertial behavioural entities which nonetheless are able to (path-dependently) change either

under the pressures of external adversities of internal conflicts (cf. within an immense literature

March and Simon (1958), March (1988a), Nelson and Winter (1982), Levinthal (1996) and

(1996a)). A particularly important analytical task, in this respect, concerns the identification of the

nature of organisational routines (i.e. recurring, often complex, rather automatic, action patterns, set

in an organisational context) and their changes : in our view, the discovery, establishment and

modifications of routines are indeed an essential part of organisational learning... (On all these

issues, cf. Cohen et al. (1995)). Routines, in this perspective, store and reproduce a good deal of the

problem-solving competencies of the organisation and, together, its acquired patterns of governance

of potentially conflicting interests among its members (Nelson and Winter (1982), Coriat and Dosi

(1994)).

Toward an “evolutionary” view of agency and learning ?

There are deeps linkages among the findings, conjectures, “stylized facts” that we have

telegraphically mentioned so far. In fact, we would dare to suggest that they may eventually fit well

together in an “evolutionary” view of agency and learning, still to come, of which, however, one

begins to appreciate some basic features 18.

As we see it, such a view is going to embody the following “building blocks” namely

� Cognitive foundations focused on the dynamics of categories and mental models ;

� Heuristics as quite general processes for decision and learning ;

� Context-dependence, and, relatedly, social embeddedness of both interpretative models and

decision rules ;

� Endogeneity of (possibly inconsistent) goals and preferences ;

                                                
17Note that the two might not correspond at all, if by “rules” one means the explicitly stated operating procedures of
organisation, and “action patterns” are what actually members of the organisation do...
18We call it an “evolutionary view” because it is consistent with the evolutionary research programme as it is emerging
in economics. Similar views, defined from the perspective of other disciplines, might well take different labels. For
example, what we label here as “evolutionary” highly overlaps with the research programmes on “adaptive learning” and
“mental models” in cognitive psychology and artificial sciences.... See also below.
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� Organisations as behavioural entities in their own right (whose persistence and whose learning

patterns certainly depend also on what the members of the organisation do and learn, but cannot

at all be reduced to the latter) 19 ;

� Processes of learning, adaptation and discovery apt to (imperfectly) guide representations and

behaviours also (or primarily ?) in ever-changing environments (so that, even if “you cannot

bathe twice in the same river”, one still tries to develop some robust representations of the river

itself and some swimming heuristics...).

It is easy to understand the fundamental departures that this view entails vis-à-vis the canonic

decision-theoretic one.

First, it abandons any “small world” assumption : in fact it is centred on a sort of open world

postulate (one tries to make sense and survive in a world where there are many more things between

heaven and earth than in anybody’s philosophy... and, thus, one has always to face surprises...).

The clear down-side of this perspective is that, in practice and in principle, neither the agents we

want to describe nor the theorist (if not a God  with an infinitely accurate knowledge of all possible

histories 20) might be able even to define what is a “rational” decision procedure. The experimental

evidence recalled above suggests indeed that most of us depart from it also when such procedures

exist and are rather simple : but, to repeat, these “biases” might be precious symptoms of the ways

we develop tentatively robust cognitive categories, search heuristics and decision rules in

environments intrinsically characterised by knowledge-gaps and problem-solving gaps. The up-side

is that one is also able to recombine cognitive categories in unlikely, highly conjectural, thought

experiments and, paraphrasing March et al. (1991), “learn from samples of one or fewer”!!

Second, the evolutionary view, as we see it, is not committed to any procedural consistency : rather

than blackboxing the algorithms for cognition and action, it considers the understanding  of their

mistake-ridden development as a crucial analytical task.

                                                
19In fact, in Dosi (1995), we push the argument further and suggest that, for many purposes, institutions rather than
individual “rationalities” and preferences ought to be considered as the primitives of the analysis.
20Note that this condition on infinetely perfect knowledge does not only apply to the case of genuinely evolutionary
worlds: it holds also in all environments whose basic laws of motion are given and understood but exhibit non-linearities
and sensitive dependence on initial conditions - such as chaotic dynamics.  (A few more remarks are in Dosi and
Metcalfe (1991) and the references there in).
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Third, it  implicitly acknowledges the failure - as a general descriptive theory - of the axiomatic

route and undertakes the less elegant path of a constructive theory, almost inevitably tinted by

phenomenological specifications and restrictions.

The challenges and enormous difficulties involved in this research programme on the “evolutionary

microfoundations” of socio-economic change should be quite obvious to every reader.  And these

difficulties are compounded by the too frequent lack of robust taxonomies, models and

generalizable “process stories” from the social disciplines where one should find them (e.g.

psychology, sociology, etc.). In fact, in an ideal perspective, an economist with

evolutionary/institutionalist inclinations ought to be able to get there some “level zero” first

approximation properties - concerning e.g. cognition, social adaptation, collective learning, etc. - in

order to build his microeconomic assumptions 21. Unfortunately this too is rarely the case. Worse

still, one has witnessed significant inroads of the canonical decision-theoretic axiomatics into the

soft belly of many other social sciences (So that one finds child bearing, voting behaviours, drug

addiction and, soon to come, infibulation as the equilibrium results of forward-looking rational

choices...) 22.

Come as it may, the evolutionary research programme on agency and learning in economics cannot

sit as a sheer user of “stylized facts” and workable generalizations from other disciplines. Rather, it

seems to us, it has become urgent to pose to the practitioners of other disciplines the backlog of

puzzling questions that one faces when dealing with the microfoundations of evolutionary

processes, and possibly acquire also some of their investigative skills 23.

                                                
21A bit like, say, the relationship between physics and chemistry - whereby quantum physics provides, so to speak, the
“microfoundations” of chemical laws - or, probably more pertinent, the relationship between chemistry and biology:
while it is impossible to derive the notion of what a cow is just from the laws of chemistry, at the very least, the
description of a cow should be consistent with the latter, and, at best, they ought to provide “level zero” bricks in a
constructive theory of cows’ development (For a fascinating discussion of generative processes of different levels of
biological organisation, with some possible bearings on the issues of our concern here, cf. Fontana and Buss (            )).
22It is impossible to discuss here the reasons for this phenomenon, which have to do, together with the incumbent
epistemological loseness of those disciplines; the apparent rigour, parsimoniousness-on-assumptions and generality of
“economic imperialism” (...going back again to the strength of being rigorously wrong...); and, last but not least, a social
zeitgeist which makes today  “intuitively obvious” an account of behaviours in terms of utility maximization as it was
grace/temptation/Divine Providence up to three centuries ago... (On the latter, Hirschman (1965) presents a broad fresco
on modern cultural history which helps in putting Gary Becker and disciples into  perspective...; nearer to the
disciplinary topics of this paper, cf. Hodgson (1988) and (1993); more specifically, on the current interchanges between
economic and sociology, see Baron and Hannan (1994); a less concise outline of the views on these themes of one of the
authors  is in Dosi (1995)).
23The list of such questions is obviously very long: it includes e.g. the possible invariances in individual and
organisational learning processes, the nature and evolution of “rules” for both cognition and action, better specifications
of the social embeddedness of individual behaviours, and many others...
Regarding the interdisciplinary efforts we have in mind, the works by Cohen and Bacdayan (1994) and Egidi (1996) on
routines and learning are good examples.
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Well short of any comprehensive synthesis, it is useful to start, more modestly, from some basic

taxonomical exercises.

(iv) Learning processes : some taxonomies and appreciative theories

It is tautological that learning has a precondition in knowing less than one notionally could. And, of

course, the simplest representation of a learning process  - familiar from anyone’s economic training

- in terms of refinements of information partitions ; or updating of probability distributions ; or

estimations of parameters of some model ; or statistically coherent comparisons among competing

models...

However, if one accepts the view of cognition and problem-solving sketched above, one needs also

to open up the “procedural blackbox” and map different learning procedures into diverse types of

problems and learning contexts. Let us consider them from a few, complementary, perspectives.

Substantive and procedural uncertainty.

One angle from which to look at learning processes focuses on the levels of cognitive and problem-

solving complexity and its causes.

It is useful to distinguish between two different, albeit interrelated, sets of causes that make

problems “hard”, and that match our earlier distinction between knowledge-gaps and problem-

solving gaps. In general, knowledge gaps arise from the lack of isomorphism between the

environment and the agent’s model of it. This is what we call in Dosi and Egidi (1991),

paraphrasing H. Simon, substantive uncertainty. In turn, one may further distinguish between weak

uncertainty (i.e. probabilizable risk) and strong uncertainty, involving genuine ignorance and

intrinsic inadequacy of the mental models of the agents to fully capture the structure of the

environment.

Conversely, problem-solving gaps entail different degrees of procedural uncertainty, with or

without substantive uncertainty. (An impressionistic taxonomy is presented in figure 1) . The

distinction is clear,  for example, with reference to puzzles like the Rubik cube. Here the structure of

the problem is rather simple, ones the rules are known, and there is no substantive uncertainty :

rather, solving the problem itself is the difficult task, involving relatively complex skills of

subproblem decomposition and sophisticated logical skills (Dosi and Egidi (1991)). Similar

considerations apply to activities like theorem-proving and also, nearer to the economist’s concerns,
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to many tasks associated with technological innovation such as the design and implementation of

new products and processes.

The distinction helps also illuminating the somewhat different nature of the related learning

processes. In the case of procedural uncertainty they concern primarily the development of problem-

solving skills and heuristics.

Conversely when the latter can be reduced to rather simple and well understood algorithms, but

uncertainty is primarily substantive, learning regards essentially the representation and framing of

the problem 24.

Learning and the “logic of appropriateness”.

We have already mentioned that in most circumstances knowledge-gaps and problem-solving gaps

are often related.

First of all, they are likely to appear together in evolutionary environments : it is straightforward that

the continuous possibility of arrival of innovations implies “strong” substantive uncertainty, but,

relatedly, this implies a symmetric procedural uncertainty (how can I cope with a changed

environment ? How can I, myself, innovate?).

                                                
24Incidentally note that the standard decision theoretic tool kit handles essentially substantive uncertainty (in its “weak”
form) but is much less apt to deal with learning in the space of problem-solving procedeures.



Fig. 1. Substantive and procedural uncertainty : a taxonomy of problems
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Moreover, the psychological evidence shows, the knowledge of the “structure” of the problem and

problem-solving capabilities strongly influence each other : the way we perceive the structure of the

problem largely depends on the kind of problem-solving skills we possess and, conversely, the

problem-solving skills we develop are shaped by the ways we frame the problem (A germane

discussion of the intertwining between a particular representation and a particular expertise is in

Lane et al. (1996)).

The phenomenon hint at a more general property of decision making and learning which J. March

has named the logic of appropriateness. As opposed to the archetypical decision process based on

the evaluation of alternatives in terms consequences for utilities (i.e. the “logic of consequences”) in

the appropriateness logic,
“individuals and organisations fulfill identities, they follow rules or procedures that they see as
appropriate to the situation...[while] neither preferences as they are normally conceived nor
expectations of future consequences enter directly into the calculus...
Decision makers are imagined to ask (explicitly or implicitly) three questions :
     1 - The question of recognition : what kind of situation is this ?
     2 - The question of identity : what kind of person am I ?
      Or what kind of organisation is this ?
     3 - The question of rules : what does a person such as I, or an organisation such as this, do in a
situation such as this ? (March (1994), pp. 57-8).

Note that under the logic of appropriateness, so defined, an important part of learning is about the

understanding and implementation of the appropriate rules, and, in a broader perspective entails the

co-evolution if identities, representations and rules.

It is our believe that indeed the “logic of appropriateness” informs a good deal of individual and

organisational  behaviours, and, to anticipate one of our conclusions, an urgent task ahead is to

formally incorporate it into evolutionary theorising.

Information, knowledge and learning. 25

Many contributors to contemporary evolutionary theory have drawn a fundamental distinction

between information and knowledge. The former entails well stated and codified propositions about

(i) states-of-the world (e.g. “it is raining”...), (ii) properties of nature (e.g. “...A causes B...”)) ; (iii)

identities of the other agents (“I know Mr. X and he is a crook...”) and (iv) explicit algorithms on

how to do things 26. Conversely, knowledge, in the definition we propose here, includes a) cognitive

categories ; b) codes of interpretation of the information itself ; c) tacit skills, and d) search and

problem-solving heuristics irreducible to well defined algorithms.

                                                
25This paragraph is largely drawn from Dosi (1995a).
26These four sets correspond quite closely to the codified aspects of Lundvall’s taxonomy, distinguishing know-what,
know-why, know-who and know-how (Lundvall (1995)).
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So, for example, the few hundred pages of demonstration of the last Fermat theorem would come

under the heading of “information”. Having said that, only some dozen mathematicians in the world

will have adequate knowledge to understand and evaluate it. On the other hand, a chimpanzee,

facing those same pages of information might just feel like eating them, and the vast majority of

human beings would fall somewhere in between these two extremes... Similarly a manual on “how

to produce microprocessors” is “information”, while knowledge concerns the pre-existing ability of

the reader to understand and implement the instructions contained therein. Moreover, in this

definition, knowledge includes tacit and rather automatic skills like operating a particular machine

or correctly driving a car to overtake another one (without stopping first in order to solve the

appropriate system of differential equations ! !).

And, finally, it includes “visions” and ill-defined rules of search, like those involved in most

activities of scientific discovery, and in technological and organisational innovation (e.g. proving a

new theorem, designing a new kind of car, figuring out the behavioural patterns of a new kind of

crook that appeared on the financial market...).

In this definition, knowledge is to varying degrees tacit, at the very least in the sense that the agent

itself, and even a very sophisticated observer, would find it very hard to explicitly state the sequence

of procedures by which information is coded, behavioural patterns are formed, problems are solved,

etc.

In fact, as Winter (1987) suggests varying degrees of tacitness together with other dimensions (see

figure 2 below)provide a sort of interpretative grid by which to classify different types of

knowledge.
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Fig. 2. Taxonomic Dimensions of Knowledge Assets (from Winter (1987), p.170)

In this perspective, learning has three inter-related meanings.

First, rather obviously, it might involve, as in the conventional view, the acquisition of more

information (conditional on the ability of correctly interpreting it).

Second, it entails various forms of augmentation of knowledge stricto sensu (which might well be

independent from any arrival of new pieces of information).

Third, it might concern the articulation and codification of previously tacit knowledge (learning here

involves so to speak “knowing better what you know”).

In particular, this third aspect has recently drawn a lively debate concerning whether new

information technologies accelerate the pace of codification and fundamentally upset the relative

importance in contemporary economies between “information” and “tacit knowledge”.

Appreciative theories of knowledge accumulation and innovation.

The levels of generality of most of what said so far - on decision, knowledge, learning processes,

etc. - place the argument very near major foundational issues on cognition and agency in

evolutionary environments. However, a good deal of (highly complementary) efforts by

evolutionary-inclined scholars has been recently devoted to empirically grounded  “appreciative”

theories, to use the definition of Nelson and Winter (1982), in particular in the fields of

technological and organisational learning. As a result - within the broad field of the “economics of

innovation” - one knows much more as compared to, say, thirty years ago about the variety of

processes by which knowledge is augmented and diffused in the economy (major contributions in

this area include those of Christopher Freeman (cf. Freeman (1994)), Nathan Rosenberg (cf.

Rosenberg(1994)), Keith Pavitt (cf. Pavitt(1984)), Richard Nelson (cf. Nelson (1987)), Paul David

(cf. David (1990)) and others).

A first broad property (probably not surprising for non-economists, but with far reaching analytical

implications) is the diversity of learning modes and sources of knowledge across technologies and

Tacit   ---------------------------   Articulable
Not teachable   ----------------Teachable

Not articulated   -------------------Articulated
Not observable  in use ----------------- Observable  in use

Complex   -----------------------   Simple
An element of a system  ----------------  Independent
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across sectors. For example, in some activities knowledge is accumulated primarily via informal

mechanisms of learning-by-doing and learning-by-interacting with customers, suppliers, etc. In

others, it involves much more formalized activities of search (such as those undertaken in R&D

labs). In some fields, knowledge is mostly generated internally and specific to particular

applications. In others it draws much more directly upon academic research and scientific advances.

Recent research suggests that this diversity of learning modes may be a major determinant of the

diverse patterns of evolution in industrial structures (e.g. in terms of distribution of firm sizes,

natality and mortality of firms, corporate diversification).

An important step in the understanding of the “anatomy” of contemporary systems of production

and knowledge accumulation has involved taxonomic exercises (e.g. Pavitt (1984)) trying to map

families of technologies and sectors according to their sources of innovative knowledge and thair

typical innovative procedures.

At the same time, one has tried to identify possible invariances which hold across technologies, in

the patterns of learning (notions like “technological paradigms”, “regimes” and “technological

trajectories” belong to this domain of analysis), and descriptive indicators for these same patterns

(e.g. Dosi (1984)). Relatedly, variables like the levels of “innovative opportunity” associated to each

technological paradigm, the degrees of “cumulativeness” displayed by technical advances, etc. have

turned out to be quite useful in interpreting the determinants of the particular “trajectories” of

innovation that one observes (Malerba and Orsenigo (1996)).

Second, in modern economies, firms are major, albeit by no means unique, repositories of

knowledge. Individual organizations embody specific ways of solving problems that are often very

difficult to replicate in other organizations or even within the organization itself.In turn,

organizational knowledge as mentioned earlier is stored to a good extent into the operating

procedures (“the routines”) and the higher level rules (concerning e.g. “what to do when something

goes wrong”, or “how to change lower level routines”) that firsms enact while handling their

problem-solving tasks in the domains of production, research, marketing, etc.

Dynamically, technological knowledge is modified and augmented partly within individual

firms, and partly through the interaction with other firms (competitors, users, suppliers, etc.) and

other institutions (universities, technical societies, etc.). In these domains, growing litterature on

organizational capabilities and competences has begun to explore the links between specific

ensembles of organizational routines, types of organizational knowledge and corporate strategies

(cf. Teece and Pisano (1994) introducing a special issue of Industrial and Corporate Change on
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these topics ; Lundvall (1995), Winter (1987) and (1988) and also the somewhat more theoritical

considerations in Dosi and Marengo (1994)).

Third, building upon the foregoing properties of the nature of technological learning and of

the ways organizations incorporate knowledge, a few scholars have started to explore an explicity

co-evolutionary view, whereby the accumulation of technological knowledge is shaped and

constrained by the nature of the organizations and institutions where this knowledge demand and

possibly trigger changes in corporate organizations and broader institutions (Nelson (1983), Kogut

(1993), Coriat and Dosi (1995a)).

From appreciative theories to formal models.

To what extent have formal theories been able to capture the foregoing “stylised facts”, taxonomies

and historically-grounded generalisations on collective learning ?

In order to offer some answers, let us rephrase the earlier taxonomic intuitions into a language

nearer to possible modelling translations.

Recall the canonic steps of decision processes mentioned at the beginning of this work (i.e.

representation ; judgement ; choice ; action ; consequences). When accounting for learning, each of

these steps define some state-space of exploration. Accordingly, different classes of learning models

can be distinguished with respect to the dimensions of the state space in which learning occurs.

Objects and state-spaces of learning processes.

What is learning about ?

There are basically four classes of objects of learning : a) the “states-of-the-world” (as in games

against nature) ; b) other agents’ behaviours (as in strategic games) ; c) how to solve problems

(where the object of learning is not forecasting but designing algorithms) ; and d) one’s own

preferences (i.e. agents learn, so to speak, about their own characteristics and identity).

Note, first, that a full fledged evolutionary model (yet to come) ought to be able to account for all

four classes, and, even better, generate empirically testable conjectures on the coupled dynamics

among the different learning processes.

Second, it might well be that different objects of learning might imply also different mechanisms of

search and learning (as far as we know, no robust generalisation appears to be available on this

issue : yet another question that ought to be sorted out together with cognitive psychologists,

sociologists, etc...).
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This categorisation of learning objects partially maps into different formal representation of the

dimensions of the state-space in which learning is generally assumed to occur, namely :

a)  the space of representations or models of the world, b) the space of parameters within a given

model, c) the space of actions and d) the space of realised performance outcomes 27.

In the former case, learning is modelled as a search for better representations of the environment in

which the agent is operating. Agents are supposed to hold models of the environment either

explicitly (as in rule-based models) or implicitly (as in connectionist models) and learning is defined

as a structural modification (and not just the tuning of parameters) of the models themselves. Note

that in the expression “better representation”, better can have two very different meanings : it can

either indicate better performing models, that is yielding more effective action, or more

knowledgeable models, that is producing better predictions of the state of the environment. In the

case where “better” means “better performing”, the agent is assumed to adjust behaviours according

only to the payoffs he receives, and a completely wrong representation which by chance produces

effective action in relation to the actually experienced states of the world has to be preferred to an

“almost” correct representation which, though being “close” to the real model, produces less

effective actions in some of the same states of the world. But a similar question arises also when

“better” means “better predicting”, both because, in a similar fashion, bad representations which

produce good predictions are preferred to good representations which produce worse prediction, and

also because the very perception of what is a good prediction depends on the model itself : for

instance a change in the state of the world form si to sj might not be perceived as such by the agent

whose information partition has si and sj in the same equivalence class, and, thus, the agent is led to

think that his model has not decreased his predictive power (see also below).

Learning in the space of parameters assumes that the model of the world is given in its functional

structure and is equal or at least isomorphic to the “real” one and learning is just a refinement of the

estimation of some unknown parameters. A typical example is Bayesian learning, where the

learning agent updates his probability estimates within a given and immutable set of categories

which constitute a partition of the real world (whatever that means).

Learning in the space of actions assumes instead that either the representation is constant or that it

does not exist at all. As we shall see, this is typically the case of simple stimulus-response models of

learning  and most of the evolutionary games models, where the learning is simply modelled  as a

selection process in the space of alternative actions.

                                                
27The mapping with the above classification is imprecise also in the sense that one leaves out, as most of the formal
literature does, endogenous changes in goals and preferences.
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Finally, learning can be modelled as a dynamic process in the space of realised performance

outcomes, whereby the actual process of learning is not modelled at all but the model considers only

its results in terms of dynamics in the space of some performance parameters. Typical examples can

be found in models of technological learning, where learning is a stochastic process in the space of

productivity coefficients.

It is clear that a) implies b) implies c) implies d) : learning in the space of representations involves

also the possibility of parameter estimates within a given structural form, a selection process among

possible actions 28, and of course results into some movement in the space of performance outcome.

Thus modelling strategies which remain at the higher level of description and do not explicitly

address the “deeper” cognitive search and behavioural adaptation either assume that the latter has

been “solved” (for instance the “right” information partition has been found) or, acknowledging the

relevance of those lower levels, they only model, more parsimoniously, a “reduced form”.

Domains and constraints of learning processes

Given the underlying object of learning or, more formally, the dimensions of state space of learning

dynamics, what constraints does one assume on the domains of learning processes themselves ?

Here the most important distinction is between search/adaptation over a fixed menu of possibilities

which are all accessible from the start to all agents vs. an open-ended dynamics where the discovery

of genuine novelties is always possible. As we shall illustrate below, this distinction marks an

important cleavage between alternative modelling frameworks.

If all the notional elements of the learning set ate known from the start, agents might be assumed to

attach probabilities to each of them and to their consequences, thus possibly using some inferential

procedure to adjust their behaviours. (Here the basic paradigm is the Bayesian model). Or, often to

the same effects, the sheer availability of all possible behaviours in population, given a stationary

environment, establishes an environmental landscape in which it might be too difficult to define the

adaptation drive at work and the related equilibria. (The philosophy of evolutionary games’ is near

to this spirit). Conversely, whenever novelties happen to persistently appear, probability updating

are likely to turn out to be a rather clumsy learning procedure, since the state-space can no longer be

usefully partitioned, due to the emergence of surprises  and unforeseen (indeed, unforseeable) events
29.

                                                
28Note that actions might be considered part of the representation, as it is the case, for instance, when representations are
modeled as condition-action rules.
29It is true that probabilistic decision making allows for the introduction of a complement-to-the-universe category (i.e.
“all other events”) in the information partition in order to close it, but in presence of genuine novelty (that is, “strong”
substantive uncertainty, as defined above), it is unplausibly farfetched to assume that a probability could be attached to
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And, rather symmetrically, in population-based adaptive frameworks, the systematic appearance of

novelties implies also an ever-expanding payoff matrix, continuously deformed by the interaction

with new events and strategies 30.

Mechanisms of learning.

The very notion of learning, also in the common language, imply a sort of reference yardstick,

measuring some “improvement”, however defined, in terms of e.g. cognition, forecasting abilities,

collectively assessed performances, inwardly evaluated utilities, etc.

Assume, in a first approximation, that those same criteria are what drive the learning process. Even

then, one may well find quite different mechanisms at work (and correspondingly  different formal

“laws of motion”). For example, “learning” could be simply a shorthand characterisation of a

population-level selection mechanism involving differential reproduction of entities (e.g., in

economics, business firms) carrying different behavioural, organisational, or technological traits.

Or, it may mean an adaptation process driven by stimulus-response adjustments, without any

explicit underlying cognitive process. Or, again, it could be based on agent-specific mechanisms

involving expectations, internal involvement of credit, etc. While in the simplest specifications of

the object of learning the three types of dynamics may well turn out to be (asymptotically)

equivalent, they might make indeed a major difference, in terms of finite-time properties even for

simple learning processes, and, a fortiori, in terms of long-term outcomes of discovery and

adaptation in evolutionary environments.

With respect to the modelling frameworks, at one extreme, stimulus-response adaptation (with or

without environmental selection) implies agents without any explicit “reasoning”, memory or

inferential algorithms leading from the outcomes of their actions to the revision of their future

decision rules. At another extreme, agents may be modelled as forward-looking users of the best

available information (at least in terms of what their bounded competencies allow).

In some peculiarly simple circumstances, the two apparently opposite mechanisms of learning can

be shown to lead to identical limit outcomes (...which look too often like all those cases whereby

electrical shocks to rats leads them to converge to those equilibrium behaviours predicted by

rational-expectation rats  facing the same environment ...) 31.

                                                                                                                                                                 
an unbounded set of events not even conceivable for the decision-maker. In the debate between the advocates of non-
probabilistic approaches to uncertainty vs. supporters of the probability paradigm, see also Dubois and Prade (1988) and
the references therein.
30In biological models, this corresponds to endogenous lanscapes with no ex-ante defineable fitness maxima.
31And this is indeed the amusing behavioural support that Lucas (1986) suggests for the rational expectation hypothesis.
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However, in most other set-ups, the specification of the mechanisms of learning does make a

difference : this is an area where unfortunately, to our knowledge, one does not have yet empirically

robust generalisations which can be easily translated into formal modelling assumptions.

On the grounds of the foregoing distinctions, fig. 3 presents an impressionistic classification of

examples of each genre in the current modelling literature. These differences in learning processes

can also be formally accounted as variations and restrictions on the grounds of a unified basic

representation. This is what we shall attempt to do in the next section.



Fig. 3. Dimensions of learning and contraints on learning process : a guide to the (modeling) literature

                                                                                                    Learning spaces
actions/strategies Representation/

“Models of the world”
Realized
Performances

Preferences

Domains and
contraints on
learning
processes

“fixed menus”

� learning in game- thoeretic setups
� “evolutionary” games
� adaptive learning in multi-arm bandit

problems (e.g. Arthur (1993))
� self-organization models à la

Lesourne (1991)
� Urn models 1and other types of

innovation innovation- adoption
models (cf. Arthur et al. (1987),
Arthur and Lane (1993)., Kirman
(1993) etc.)

� Special cases of evolutionary  models
(cf. Winter (1971))

� Bayesian reduction
   of information
   incompleteness in
   games

� learning-by
   doing and
   by using
   for given
   best-practice
   technologies
   (e.g. Silverberg
   et al. (1988),
   Eliasson (1985))

� Socially shaped
preferences (e.g.
Kuran (1987),
Brock and
Durlauf (1995),
Akerlof and
Dickens (1972)

(implicitly) adaptive models in stationary
environments (e.g. Arifovic (1994), Marimon, et al.(1990))

“open-ended
sets of
learning objects

Behavioral search in Lindgren (1991),
Silverberg and Verspagen (1995),
Andersen (1994)

� Marengo and Tordjman (1996), Dosi, Marengo,
Bassanini and Valente (1994)

� open-ended
   technological
   search such as
   in Nelson and
   Winter (1982),
    Silverberg and
    Verspagen (1995) ;
   Chiaromonte,
   Dosi and
   Orsenigo (1994) ;
   Dosi
   et al. (1995)
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(v) A basic model and various specifications

Let us consider a standard decision problem whereby an agent faces an environment which can be in

one out of an enumerable set of states :

S = {s1, s2,....., si,....}

In most relevant economic problems, the agent will not know the whole set of states of the world S

(and even less so their casual links), but he will possess only an imprecise and partial representation

thereof :

{ }Θ Θt t t
j
t

j
t tS S= ⊆ ⊆ϑ ϑ ϑ ϑ1 2 2, ,...... , , .....    where    and  .

Here, ϑj is the set of states of the world which the agent considers as possible, or cannot

discriminate, when sj occurs. In most economic models it is assumed that  Θt = S - meaning that the

agent “knows” the structure of the world or, at least, Θ is assumed to be a partition of S. Assuming

instead that more generally Θ⊆2S we have a representation which can account for :

1.  complete ignorance:

ϑ i
t S=       for every  i = 1,2....n

2.  partial ignorance of some states of the world, if

Uiϑ i
t S⊂

i.e. the agent may be “surprised” by some events which he did not even think of.

3.  hierarchies of hypotheses and/or partially overlapping hypotheses:

ϑi ⊂ϑj

or, more generally,

ϑi ∩ϑj =∅ and  ϑi ≠ϑj

4. systematic mistakes, when an outcome is believed to occur when it is not, and it is not thought

to be possible when it actually occurs.

Let then assume that the agent is notionally endowed with an enumerable set of possible actions :

A = {a1,a2,....aj,.....}

At any point in time, the agents holds a finite behavioural repertoire constructed from the basic

:“atomic” actions contained in A, subject to revision, modification and recombination. Note that in
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general one ought to allow the agent to know only a subset of all notional repertoire derivable form

A. Let us call the known repertoire :

{ }Ξ Ξt t t
j
t

j
t tA A= ⊆ ⊆ξ ξ ξ ξ

1 2 2, , ..... , , ....   where    and .

It must be pointed out that Θt and Ξt do not only reflect the agent’s sharpness at interpreting the

information coming from the environment, by defining how sharp or coarse are his categories

(information processing capabilities, in the standard decision-theoretic jargon), but embed also a lot

of the causal structure that the agent imposes on the world. The set Θt, in particular, contains the

variables and categories that the agent perceives as relevant to the representation problem in the

undifferentiated flow of signals coming from the environment.

Hence, beyond very simple and special cases, Θt and Ξt entail some sort of grammar determining

the legal cognitive and behavioural structures that can be notionally generated. Genuinely

constructive models of cognition and problem-solving ought to tackle the processes of search in

some functional space space of which some ϑ’s are themselves the outcome. So, for example, the

proposition “we are in the state ϑi ” is generated through cognitive operations attributing a semantic

value to the signals received in the environmental state interpreted by the agent under ϑi. As we

shall see we are unfortunately still very far from the fulfillment of this research task (see however

Fontana and Buss (1996) for a fascinating framework which might possibly be applied also to these

problems).

The set of “perceived” histories at time t contains some finite-length histories of perceived states of

the world and perceived actions which have occured up to time t :

{ }H h ht t t= 1 2, , . . . . . .

{ }where    hi
t t k t t k t= − −ϑ ϑ ξ ξ, .. .. , , , .. .. . , .

A decision rule is a mapping between a recursive function (or algorithm) on a subset of perceived

histories upon a recursive function (or algorithm) applied on the set of action repertoires :

r Hi
t t t: ( ) ( )Φ Ψ Ξ→

A special case, which is the most commonly considered in the models analyzed below, is when the

algorithm Ψ defines a probability distribution over the set of action repertoires.

An agent’s decision making capabilities at time t can therefore be represented by the (finite) set of

decision rules he holds :

{ }ℜ =t t t
q
tr r r1 2, , .... ,

When the agent acts upon the environment, it receives a payoff given by:
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p S A R: × →

but, in general, the agent will only know an imprecise and partial representation of such a payoff

function, given by:

π t t t R:Θ Ξ× →

On the grounds of this very general model of decision making, we can re-examine the different loci

of learning discussed earlier in a more qualitative fashion.

1)  Learning about the states of the world.

This obviously implies changing the representation Θt. Moreover, these changing representations

could simply involve search in the parameter space or, more fundamentally, the very structure of the

model of the world itself.

Suppose for instance that S is governed by a stochastic process. The agent might know which kind

of stochastic process generates the sequence of states of the world - e.g. a Markov process - and

have only to “learn” the correct estimate of the parameters - e.g. Markov transition probabilities -.

Or he might ignore the nature of the stochastic process or even that there is a stochastic process at

all 32.

Note also that the possibility for the decision maker to learn about the stochastic process in S

depends on the representation Θt he holds : only if the latter discriminates among the states in the

sequence s0,s1,s2,....,st,...in separate categories will the agent have a chance to correctly learn the

underlying stochastic process . But the converse might also be true : having chuncks of states held

together might make it easier to find deterministic patterns out of what might look like a random

sequence.

The nature and degree of uncertainty about the stochastic process depends also on the general causal

structure of the environment. In particular, we can distinguish among :

� interactions with nature without feed-back.

� interactions with nature with feed-back.

� multi-agent strategic interactions (including standard game-theoretic ones).33

A fundamenal case for our purposes arises when the actions of the agent himself generate new states

of the world which did not exist in the original notional set S. Innovative behaviours are a typical

case to the point : new environmental opportunities are endogenously created, thus making also any

                                                
32  There exists ample experimental evidence that probability matching, which amounts to ignoring that data are
generated by a stochastic process, is a typical judgemental bias which appears even in the behaviour of expert decision
makers.
33  A similar distinction is made in Marimon (1995).
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sharp distinction between exploration over S and exploration over A only a first cut

approximation34. As argued in Dosi and Egidi (1991), it might well be the case that in such

innovative environment a) the set S loses the enumerability property, and b) even an agent who has

a perfect knowledge of S to start with will be bound to revise his representation.

2.  Learning about the actions space (changing the repertoires Ξt).

The set of action repertoires Ξ t can be modified through time, reflecting the “technology” of the

agent. New actions can be discovered which were not in the agent’s repertoire before, or existing

actions can be combined in new ways : both circumstances are isomorphic to the search in the

problem-solving space (and the related procedural uncertainty) discussed earlier..

3.  Learning about the payoff function (changing the mapping πt).

If the agent does not know S and A but holds only imprecise and partial representations thereof, a

fortiori he will have an imprecise and partial knowledge of the payoff function. It is worth pointing

out that most learning algorithms model learning as a modification of representation of the world

and action repertoires where the learning agent adaptively develops quasi-payoff-equivalent

categories of events and actions, i.e. categories which tend to reflect the regularities of the payoff

function, rather than the regularities of the underlying sets of states and actions. Thus, under some

conditions, adaptive learning algorithm tend to produce a better knowledge of the payoff function

than of the sets S and A.

Note also that endogenous preferences cum reduction of cognitive dissonance etc. (see above)

involve a dynamics in both πt and  Θt conditional on past realizations (something which one hardly

finds in any current model, evolutionary or not).

4.  Learning about the decision rules (changing the set of rules ℜ t ).

A basic (and again largely unresolved) issue concerns the dimension of the state space of rule

search. In the spirit of the foregoing discussion, it ought to concern some (metaphoric)

representation, internal to the agent, of the mappings on Θ Ξt t t× ×π . However, the generality of

existing models are stuck to a much simpler view (a reduced form ? Or, rather, a trivialization ?)

                                                
34  This notwithstanding, we do maintain that it is a useful first approximation, and in that we take issues with the radical
proponent of “social constructivism” (which in the formal framework presented here would also mean collapsing
representations into actions). Putting it into a rather caricatural way, while we claim that a world with the atomic bomb
entails a set of events different (and greater) than a world without it, we also maintain that any exploration in the
problem solving space, no matter how well “socially constructed” will hardly allow violation of the law of gravitation or
time-reversibility of actions.
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with a fixed menu of rules to begin with and three, possibly overlapping, learning mechanisms,

namely : first, some selection mechanism which modifies the weights attributed to each rule and

therefore its probability of being selected for action ; second, mechanisms for modifying the domain

of applicability of a rule, that is the subset of the set of perceived histories which fire the rule ; and,

third (often not easily distinguishable from the above), a process for generating new rules which

previously did not exist, possibly by modifying or recombining in some way already existing ones.

What kind of formal modelling and results does one currently find ? In the rest of this section we

will discuss briefly some of the main classes of models. Departing from a sketch of the classical

Bayesian leaning models, we will then consider a class of models which are evolutionary in the

sense that they explicitely take on board learning and adjustment dynamics of some kind, although

they tackle primarily adaptation rather than evolutiona stricto sensu : i.e. they still keep some “small

world” assumption on S, A, etc. and moreover generally tend to rule out (with some noticeable

exceptions) any endogeneity of the environmental (or cognitive) landscapes over which

representations, actions and decision rules are selected. (Most of the work in this field comes under

the heading of “evolutionary games”).

Bayesian Learning : single and multi agent without feedback.

As a starting point, consider Bayesian learning in the single and multi agents situation without feed-

back from the environment. A typical case is based on the assumptions that the state of the world is

determined by an unknown stochastic process and the agent(s) has to select at each time t a proper

action. Hence, the agent has to produce an estimate of the stochastic process and compute the

expected utility of a course of action. A “subjectively rational” agent holds a prior distribution µ

which he updates thorugh a Bayesian rule, by computing a posterior distribution after observing the

realizations of the stochastic process and the payoff received.

In the multi agent case (Kalai and Lehrer (1993)), the prior distribution concerns the actions of the

other players (their “types”). Contrary to the hypotheses which are made in the literature on e.g.

rationalizable strategies, such a prior ditribution does not require knowledge of the other agents’

payoff matrices, but only of one’s own ; however, S and A must be common knowledge.

Bayesian updating processes in this case strongly converge (“strongly merge”) if the sequence of

posterior distributions converge, in the limit, to the real distribution on S (Blackwell and Dubins

(1962)). But this can happen only if prior distributions attach positive probability to all and only the

subsets of S which have positive probability for the underlying stochastic process. This amounts to
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postulating perfect ex-ante knowledge of all possible events. Kalai and Lehrer (1993) show this

result in a nxn game without feed-back, in which they assume agents do not have complete

knowledge of the space of strategies of the other players, nor do they have to share omogeneous

priors, but their prior must be “compatible with the truth”, that is they have to attach positive

probability to all and only the events which can occur with positive probability (the so-called “grain

of truth” condition).

Moreover Feldman (1991) ha shown that if the set A is non-enumerable, convergence of posterior

distributions to the true one cannot be guaranteed.

Stochastic Learning Models

Of course, Bayesian learning is highly demanding on the prior knowledge agents are assumed to

have from the start (a point nowadays acknowledged also by scholars otherwise inclined to some

“rationalist” axiomatics of learning processes).

A much less demanding way, common in the contemporary literature, to introduce learning is to

suppose some form of selection process among a finite set of possible actions. Two modelling

strategies are possible in this respect : on the one hand, models might assume the existence of a

population of agents, each identified with one action 35 and consider the learning/selection process

taking place entirely at the population level. On the other hand, each agent could be modelled by a

population of actions, with the selection process being a metaphor of his search capabilities. This

distinction goes beyond the interpretation of the metaphor itself but - as will shall see - has some

substantial consequences on the modelling strategy.

First, consider a face-value interpretation of standard evolutionary games. Indeed, evolutionary

games assume away any problem of representation, both on states of world and on actions, and, so

to speak, collapse learning of decision rules into selecting among a set of given behavioural

repertoires (further assuming that such a selection process is exogenously driven by the

environment). Agents carry no cognitive capability, but have basically two roles : that of carrying

the “memory” of the system (e.g. that of being “replicators” of some kind) and that of introducing

some exploration (via random mutation).

In one standard formulation, evolutionary game models (cf.. the pioneering work of Maynard Smith

(1982) and, later, in economics e.g. the work by Friedman (1991) and Kandori, Mailath and Rob

(1993), Young (1993) and Weibull (1995)) assume that there exists a population of N agents and a

                                                
35  Coherently with the terminology introduced in the basic model, we use the term action rather than the more common
strategy for this kind of models.
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finite set of actions a1,a2.....ak. If we denote by ni(t) the number of agents adopting strategy ai , the

basic selection principle states that :

n t n t
n t

n t n t
n t

i i

i

j j

j

( ) ( )
( )

( ) ( )
( )

+ −
>

+ −1 1
             if and only if πt(ai,s

t)> πt(ai,s
t) (1)

The fundamental selection principle therefore implies that actions which have higher payoff are

increasingly sampled in the population. It is often (though not always) the case that this selection

principle takes the special form of replicator dynamics equation, originally suggested by biological

arguments (cf.. the pioneering work of Maynard Smith (1982) and, earlier, Fisher (1985)) but

widely used also in economic models - though with less convincing arguments 36

n t
N

g a s
n t

N
i t

i t
t i( )

( ( , ) )
( )+

= −
1 π π        (2)

where π t   is the average payoff across the population.

Learning is driven by the joint action of a selection principle and a variation mechanism, i.e. the

constant introduction of search by means of random mutation, whereby some agents mutate their

strategy with some given (small) probability.

Originally, mutation was conceived as a pointly and isolated phenomenon (cf. Maynard Smith

(1982)), introduced as a device for studying the evolutionary stability of equilibria. An equilibrium

was said to be evolutionary stable if, once achieved, it could not be disrupted if a small proportion

of mutants appeared in the population. More recent developments (cf., for instance, Kandori,

Mailath and Rob (1993), Foster and Young (1990), Fudenberg and Harris (1992)) of stochastic

evolutionary games, have incorporated mutation as a continuous process : hence the equilibria

generally correspond to limit distributions of some dynamic process (in some cases, however,

ergodicity is lost such as in Fudenberg and Harris (1992) and in Kaniovski and Young (1995)).

Further developments concern the nature of the selection process in (2). The dynamics can in fact be

made dependent upon the past history of interactions, as summarized by the relative frequencies of

actions within the population and/or by the some sample of the past payoffs. Along these lines,

Young (1993) considers a stochastic version of a replication mechanism whereby an action diffuses

across the population according to a sample of the payoff obtained in the last few periods. Along

similar lines, a class of models (see especially Milgrom and Roberts (1991) and Fudenberg and

Kreps (1993)), considers more sophisticated agents, by endowing them with some form of memory

which keeps track of the consequences of actions and of the other players’ replies in the past.

Learning becomes a process of selection of sequence of actions which are best reply to sampled
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strategies and might induce the emergence of “conventions”, i.e. stable patterns of behaviour (which

are at least locally stable Nash equilibria ; Young (1993) shows it in the cases of very simple

memory endowments).

Stochastic models with self-reinforcement.

In evolutionary games it is customary to assume that actions which have better performed in the past

tend to diffuse more rapidly across the population of players, while the selection mechanism itself is

either a replicator equation or is constructed via adaptation driven by infinetely frequent interactions

among agents at each iteration (as in Kandori et al. (1993)). Other kinds of models consider

different mechanisms of diffusion, where agents choose an action according to some simple

algorithm, such as a majority rule (that is, choose the action which is adopted by the majority of

some observed sample of the population).

First, if one considers a finite population of players, the number of agents who select action ak at

time t defines a Markov chain where transition probabilities depend on actual frequencies of actions

in the population. For instance, assume a population of N individuals and A={a1,a2}. Agent i, who

has selected action a1 at time t-1, switches at time t to action a2 with probability :

P a a
n t

Ni
t ( )

( )
1 2

2→ = +α ε (3)

where n2(t)=N- n1(t) is the number of agents selecting action a2. The α parameter measures the

weight of the self-reinforcing component of the selection process, while ε captures components

which are indipendent from the choice of the other agents. It is possible to show the existence of a

limit distribution (cf. Kirman (1992) and (1993), Orléan (1992), Topol (1991)). Depending on the

values of α, the population may oscillate between the two states with the limit distribution itself

determining the average time that the system spends in each state in the limit.

A second modelling strategy considers infinitly growing populations, where at each time step t a

new agent makes a once-and-forever choice of action ak with probability depending on the relative

frequencies of past choices. In these models (cf., among the others, Arthur, Ermoliev and Kaniovski

(1983), Dosi and Kaniovski (1994)) learning takes place primarely at the population level (agents

cannot change their decision) and this occurs in a typical “incremental” fashion.

The population dynamics can be described by an equation of the type :

                                                                                                                                                                 
36  Many recent models have worked with a more general setting where broader classes of selection rules are considered,
rather than strict replicator dynamics (cf., for instance, Kandori, Mailath and Rob (1993), Kaniovski and Young (1995)).
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where N is the size of the population after t arrivals of “new agents”, xk(t) is the share of the

population which has chosen action ak and ε is a stochastic term with zero mean.

The function fk embeds possible self-reinforcing mechanisms, and its functional form determines the

number and the asyptotic properties of fixed points. In case of multiple equilibria, the process is

generally non-ergodic (i.e. it displays path-dependency), and convergence to one or another

equilibrium depends on initial conditions and finite-time sequences of “early” choices (cf. Arthur et

al. (1984), Glaziev and Kaniovski (1991)).

It is worth pointing out that in the former class of models with finite population, also in the limit the

population might keep oscillating between states and spend some fraction of time on each of them.

Models can only predict the limit distribution and thus the average time the population spends on

each of the states which have in the limit positive probability measure37. In the latter infinite

population models, instead, the size of the population goes to infinity in the limit and the system

will almost surely be found in one of the absorbing states. But if such absorbing states are multiple,

which one is selected depends on initial conditions and on the path followed by the system in finite

time38.

Moreover, in both classes of models, it is assumed that agents base their decisions on observed

frequencies. Thus, if these models are to be taken as representation of distributed, agent-based,

learning, such information must be somehow available to them : Arthur, Ermoliev and Kaniovski

(1983) postulate that frequencies are public costless information (possibly with noisy disturbance),

while Dosi, Ermoliev and Kaniovski (1994) assume that agents estimate frequencies by observing a

sample of the population.

                                                
37  It is true that after determining the limit distribution as t→∞, one might collapse it to a measure-one mass
corresponding to one of the equilibria by further assuming that ε→0 (i.e. that the “error” or “search” term vanishes).
However, it seems to us that this is primarely a display of technical virtuoso, with not much interpretative value added
(note also, in this respect, that if one takes the assumption of ε→0 as realistic, one must, symmetrically, allow a speed of
convergence to the “good” equilibrium which goes to zero).
38  Note also that the infinite-population case, most often formalized through generalized Polya urns (for a survey and
applications, cf. Dosi and Kaniovski (1994)), allows a much easier account of dynamic increasing returns. Formally, the
latter imply some equivalent to a possibly unboundedly increasing potential function. Conversely, all the finite-
population cases we are aware of are driven by some equivalent to an invariant conservation principle. As we see it,
learning most often does imply dynamic increasing returns : e.g., even in the most trivial cases, efforts in search, when
successful, yield relatively easy replication (and thus near-zero marginal costs). A straightforward implication is that
history matters, and increasingly so as the process goes on. The fact that so far, in the finite-population cases one must
formally rely upon time-invariant Markov processes most often carries - due to the formal properties of the model itself -
conclusions that the system may flactuate also in the limit across action patterns (or systems of collective
representations). We do not have any problem in accepting the heuristic value of the conclusion under bounded
increasing returns (suchas those stemming from informational interdipencies on e.g. financial markets), but we have
great reservations in the cases when returns to knowledge are in principle unbounded..
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Finally, note that in the models with infinite population no learning takes place at the level of a

single agent, as the latter cannot modify its once-and-for-all decision, while in finite population

models some primitive form of individual learning does accur as agents modify their actions

according some observation of the behaviour of the other agents.

In fact, all this hints at a more general issue, namely the interaction between, so to speak, “the

weight of history” and agents’ abilities to extract information from it. For example, Arthur and Lane

(1993) consider a model of choice between two technologies A and B with a feedback between past

adoptions and choice criteria. The states of the world represent the properties of such technologies

S={sA,sB} : these are unknown to agents, who only hold prior distributions N(µA,σA) and

N(µB,σB). At each time t one agent adopts one of the two technologies by maximizing his expected

utility :

E U c U c c X dci i i i[ ( )] ( ) ( )= ∫ π

where U is utility function (with constant risk-aversion) and π ( )c Xi  is the posterior distribution

computed as follows. When an agents makes ita choice, it samples τ agents among those who have

already chosen. X is thus a vector of dimension τ, whose components are each single observation in

the sample, which is supposed to be drawn from a normal distribution with finite variance :

x c Nj i= + ≈ε ε σ            ( , )0 2

By applying Bayesian updating agents can compute posterior distributions and choose the

technology with higher expected utility.

Interestingly, it can be shown that in these circumstances, notwithstanding the procedural

“rationality” of the agents, the dynamics might lead to collective lock-in into the “inferior” option

(but, remarkably, in Lane and Vescovini (1996) apparently less “rational” decision rules turn out to

be dynamically more efficient from a collective point of view).

Note that this model is equivalent to a learning model with single agent and environmental feed-

back : at each time t the agent observes τ realizations of the states of the world, where the

probability that each observation is generated by A or B is initially identical and is then modified

through Bayesian updating, but this very learning process will change the distribution from which

the agent samples the following time step by producing a feed-back on the states of the world.

Models with local learning

The class of models illustrated above assume that agents base their actions on some global

observation of (or feedback with) the population or a sample thereof. Another perspective describes
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instead set-ups where agents respond to some local observation of the characteristic of a given

subset of the population. Agents only observe their “neighbours” (cf. for instance Kirman (1994),

David (1993), and Dalle (1993) and (1994)) defined according to some spatial or socio-economic

measure of distance. Let be d(i,j) the distance between agent i and j and be d* a given threshold, the

set of agents who are neighbours of agent i is defined as :

Vi = {j∈I : d(i,j)≤d*}

If the set Vi are not mutually disjoint, it is possible that local phenomena of learning and adaptation

(i.e. inside a given neighbourhood) spread to the entire population.

One way of modelling this kind of processes is based on Markov fields (e.g. Allen (1982), An and

Kiefer (1995), Dalle (1994), Durlauf (1994), Orléan (1990)) assuming that agents stochastically

select their actions depending on the actions or “states” of their neighbours. Suppose for instance

that payoffs increase in the degrees of coordination with neighbours. Collective outcomes will

depend upon the strength of the incentives (as compared to some “internal” motivation of each

agent) : when incentives are not strong enough, high levels of heterogeneity will persist ;

conversely, if premium on coordination is high enough, the system will spend most of its time in

states of maximal coordination (though it might keep oscillating between them, cf. Kirman

(1993))39.

Another class of models assume that agents choose their action deterministically (cf. Blume (1993)

and (1994), Berninghaus and Schwalbe (1992) and (1996), Anderlini and Ianni (1993), Hertz

(1994), Nowak and May (1992) and (1993), in ways that are basically isomorphic to simple cellular

automata, whereby the state of each agent depends, according to some deterministic rule, on the

states of its neighbours.

Certainly, having some space which specifies learning mechanisms, in principle conditional on

“where a particular agent belongs”, is a fruitful development in accounting for heterogeneity and

path-dependency in processes of adaptive learning40. However, note also that in terms of how

learning occurs, a fixed “spatial” structure implies indeed a “structure” - being it on metaphorically

geographical, technological or cultural spaces - which ought to be phenomenologically justified : on

the contrary, it is lamentable to find most often e.g. a bi-dimensional lattice, a taurus, etc. being

introduced with careless casualness.

                                                
39 Such results however do not seem to show much robustness with respect to both the algorithm that agents use to
choose actions and the size of the population (cf. Follmer (1974) and Hors and Lordon (1995)).
40 An important limitations of these models is the rigidity with which the structure of the neighborhood is defined.
However, Kirman, Oddou and Weber (1986) and Ioannides (1990) Bala and Goyal (1993) have given a more general
formulation, in which the very structure of the graph is modified stochastically.
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In the perspective discussed so far, both stochastic and deterministic models of local learning

consider learning as a selection over a fixed menu of actions. However, an alternative interpretation

suggest that they could somehow model also processes of learning in the (fixed) space of

representations.

Consider N agents on a bi-dimensional graph who select among k possible actions, and assume

further that :

� the set of states of the world is given by all the Nk possible configurations of the graph

(assuming that the action taken by the corresponding agent characterizes the state of a node)

� agents hold a partial representation of such a set S, as they only observe a part of the state of the

world, i.e. that given by the state of its neighbours.

An agent’s neighbourhood represent a sort of window through which he can only observe a part of

the world : thus the agents try to adaptively infer the state of the entire graph from such window

observation.

But, given this interpretation, we should expect that learning should involve a progressive

“enlargement of the window” so that agents could achieve an ever more complete picture of the

world. Some results show that above a threshold of interconnection in the graph all agents globally

converge to a state where they implicitely access to all the information available in the system (cf.

Bala and Goyal (1993), Hammersley and Welsh (1980), Grimmet (1989)). However, there seem to

be no monotonicity in the relation between the “width of the window” and the asymptotic quality of

the learning process (holding the nature of interconnections constant, between agents and between

the past and the present).

Population-level vs. agent-level learning.

We have already remarked that one way of interpreting standard evolutionary games is in terms of

agents who are simple replicators which, individually, do not actually learn anything : only the

population does. More sophisticated models (cf. for instance the already mentioned contribution by

Young (1993)) take a different route and are also meant to explore some (boundedly rational)

cognitive capability of agents, such as some memory of previous events and some simple decision-

making algorithms41.

But it is clear that, with some modification, these kind of selection based models have an immediate

appeal also as models of individual learning: once the population of individuals - each characterised
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by a single action - has been replaced by a single individual who adaptively learn to select among a

set of possible actions at his disposal. Stochastic approximation models of adaptive beliefs try to

move in this direction. The basic idea behind these models can be cast in the following way.

Suppose that the learning agent has a set of actions A={a1, a2,....., an} ; does not know the realisation

of the state of the world st, but only observes the realised payoff πt. In this case a rational Bayesian

decision maker should form prior beliefs on all the possible payoff matrices. An adaptive learner

instead randomly chooses among actions according to some strength which he attaches to actions.

Let us call Fk
t  the strength assigned to action ak at time t. The strength is updated according, say, to

the rule :
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Actions are randomly selected with probabilities given by
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This selection mechanism induces a stochastic process on the strengths assigned to competing rules

whose asymptotic behaviour can be studied.

This and similar selection mechanisms can be found, for instance, in Arthur (1993), Easley and

Rustichini (1995), Fudenberg and Levine (1995), Marimon and McGrattan (1995). Easley and

Rustichini’s model, in particular, provides a neat connection between population-level and

individual-level evolutionary arguments. In their model, Rustichini and Easley consider an

individual decision maker facing an unknown environment represented by a stochastic variable.

Instead of forming beliefs on the set of possible processes and updating them according to the

Bayesian approach, he adaptively selects among a set of behavioural rules R (of the same kind of

our basic model) according to a strength updating rule of the kind of expression (6) and a random

selection rule of the kind of expression (7). This enables them to study the stochastic process

induced on the strengths of rule ri, which is given by the expression :
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With some further assumptions on the characteristics of the underlying stochastic process on the

states of the world (stationarity and ergodicity) and on the selection dynamics (monotonicity,

                                                                                                                                                                 
41 A further step towards models of agent-level learning could be introduced by labelling agents (cf. the models with
local learning presented below).
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simmetry and independence) they are able to prove that an individual who uses this kind of adaptive

selection dynamics eventually acts as if it was an objective expected utility maximizer and,

moreover, that the set of rules which are selected by such dynamics corresponds to the set of rules

which would be selected by a replicator dynamics.

Some considerations on the importance and limitations of these kinds of models are in order. First

of all, note that these approaches end up being pure adaptation/selection models.It is indeed an

encouraging result that such simple selection mechanisms are a some times (but not always) able to

select behavioural rules which mimic optimising behaviour prescribed by normative theories, but of

course a necessary (and highly demanding) condition for such behaviour to be selected is that it is

there in the first place. Populations must contain optimising individual in order to have them

selected by replication mechanisms of selection. On the same token, rules which mimic expected

utility maximising behaviour must be in the decision maker’s endowment of behavioural rules in

order to have them asymptotically selected by the strength updating process. One could say that, by

moving from standard models of optimising behaviour to stochastic models of adaptive learning,

one moves from a world where agents are assumed to be naturally endowed with the correct model

of the world, to a world where agents are endowed with the correct behavioural rules (which define

an implicit model of the world), but these are mixed together with incorrect ones and have to

adaptively emerge. It is clear that the latter assumption amounts to assuming away the cognitive

problem of how such rules are formed and modified. In complex and changing environments in

particular, it seems a rather farfetched assumption to start with. In fact stationarity in the underlying

selection environment, is a fair approximation whenever one can reasonably assume that the speed

of convergence to given fundamentals is of order of magnitude faster than the rate of change in the

fundamentals themselves. Ergodicity comes here as a handy auxiliary property : if it does not hold

much more detail is needed on initial conditions and adjustment processes.

Relatedly, an important question concerns how long the selection process takes to select good

rules42.

Second, and again related to the previous points, as in Rustichini and Easley (1995) suppose that, at

each stage of the adaptive learning process, the strength of all rules is updated according to the

payoff they would have received in the realised state of the world. This assumption is justified if and

only if the learning agent’s actions do not determine any feed-back on the environment and if and

                                                
42 Some considerations on this problem can be found in Arthur (1993), who argues that the speed of convergence is
highly sensitive to the variance of payoffs associated to different actions. Of course the longer the convergence process,
the more implausible appears the assumption of stationarity of the environment.
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only if the agent knows it. When this is not the case, only the strength of the actually employed rule

can be updated and therefore lock-in phenomena and non-ergodicity may well emerge : exploitation

vs. exploration and multi-armed-bandit type dilemmas are unavoidable.

These quite fundamental questions in fact hints at some general issues, a fortiori emerging in fully

fledged evolutionary environments. And, indeed a theoretical in order to explore them is based on

so-called Artificially Adaptive Agents, which are briefly examined in the next section.

Artificially Adaptive Agents.

If we drop the assumption that agents are naturally endowed with the correct model of the

environment in which they operate, the fundamental topic of inquiry becomes how models and

representations of the world are generated, stored and modified by economic agents. On the one

hand, as we have already argued, this consideration carries the requirement for some form of

cognitive and psychological grounding. On the other hand it opens new possibilities for applications

to economics of families of models developed in Artificial Intelligence, and especially in that

branch of AI which considers selection and variation mechanisms as a basic driving force for

learning.

The main point of interest in this kind of models is that the dynamics involved is essentially open-

ended, both when the object of the modelling exercise is the dynamics of multi-agent interactions

and when instead modelling concerns individual learning (for a general overview on the AAA

perspective in economics see, for instance, Arthur (1993) and Lane (1993a) and (1993b)).

Open-ended dynamics is a consequence of two strong theoretical commitments of the AAA

perspective. Firstly, AAA models are not restricted to pure selection dynamics, but consider the

introduction of novelty, innovation, generation of new patterns of behaviour as a basic force for

learning and adaptation. Thus the dynamics never really settles into equilibrium states.

Second, the AAA perspective considers heterogeneity among agents and complexity of interaction

patterns (among agents in models of collective interaction, among behavioural rules in models of

individual learning) as crucial aspects of the modelling exercise. In fact, in the AAA approach

heterogeneity among agents (in terms of representations, expectations, learning paths) is the norm

and homogeneity the exception : therefore equilibria tend to be transient states of temporary

“ecological” stability, where small variation can trigger non linear self-reinforcing effects.

An interesting prototypical example of AAA can be found in Lindgren (1991). He considers a

classical repeated prisoner’s dilemma played by a given population of players. Each agent is defined

by a strategy, which deterministically maps finite-lengths histories of the game (here represented by
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sequences of Defeat or Cooperate actions performed by the player itself and his opponent) into an

action (Defect or Cooperate). This population is then processed via an extended genetic algorithm

which allows for variable length genomes. Simply allowing for strategies based on variable length

histories makes the number of possible species in the population practically infinite and the search

space unlimited. Hence, evolution is no longer a selection path in a finite and closed space of

alternatives, but “[.......] can then be viewed as a transient phenomenon in a potentially infinite-

dimensional dynamical system. If the transients continue forever, we have open-ended evolution”

(Lindgren (1991), p. 296, emphasis in original).

The dimension and complexity of strategies becomes itself one of the elements subject to

evolutionary selection and variation. This perspective enriches the concept of strategy implicit in the

standard evolutionary game framework. While in the latter “strategy” is most often squeezed down

to an action taken from a given set of possibilities, in AAA models, it is easy to account for

evolving “strategies” made up by changing combinations of a set of basic operators, categories,

variables. (However, what is still missing in AAA models is the possibility to model learning as a

modification of this set of basic operators, variables, detectors of environmental staes, unless they

originate from some combination of the elementary ones with which the system is initially

endowed). In terms of our earlier basic model, this difference amounts to an explicit search process

regarding the algorithm mapping “internal” representations to action patterns (in the case of AAA

models), as compared to its “blackboxing” into adaptive selection of actions themselves (in the case

of most evolutionary games).

This distinction is even clearer in more explicitely rule-based AAA models.

Rule-based AAA models differ from the stochastic models outlined in the previous section at least

in two fundamental respects. They consider learning as the joint outcome of the processes of

generation, replication, selection and modification of behavioural rules. As the space of behavioural

rules is potentially unlimited - even in relatively simple problems - and the very search space is ill-

defined and subject to change, the generation of new rules, new representations and new actions is

an essential mechanism for learning and adaptation.

The second aspect, related to the previous one, is that, except in very simple problems nested in

stationary environments, the outcome of the learning process cannot be constrained to be a single

behavioural rule, but may be a whole “ecological” system of rules which together form a

representation of the environment (on the so-called “computational ecologies” see also Huberman

(19**)). Behavioural patterns which emerge in AAA models may therefore be much richer than
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those predicted by pure selection models. Here, learning takes explicitely place in both spaces of

representations/models of the world and action repertoires43.

A prototypical example of rule-based learning models is represented by the so-called Classifiers

Systems (cf. Holland (1986), Holland et al. (1986), for an overview of actual and possible

applications to economics Arthur (1991) and (1993) and Lane (1993b), for some specific

applications Marimon, McGrattan and Sargent (1990), Marengo (1992), Marengo and Tordjman

(1996), for a survey see also Hoffmeister and Bäck (1991)).

Learning in Classifiers Systems presents the following general features :

1.  learning takes place in the space of representations. In a complex and ever changing

world agents must define sets of states which they consider as equivalent for the purpose

of action. In other words, they have to build representations of the world in order to

discover regularities which can be exploited by their actions. These representations have a

pragmatic nature and are contingent upon the particular purpose the routine is serving.

2.  learning must be driven by the search for better performance. Learning agents must

therefore use some system of performance assessment.

3.  if rules of behaviour have to be selected, added, modified and discarded, there must exist

a procedure for the evaluation of the usefulness of rules. This problem might not have a

clear solution when the performance of the system may be assessed only as a result of a

long and complex sequence of interdependent rules (such as in the game of chess, for

instance).

Let us consider again the basic model of decision making introduced above and suppose that

it is faced repeatedly by the same agent. The decision maker, by using its experience of the previous

stages of the game, makes a forecast of the state of the world which will occur next and chooses an

action which he or she considers as appropriate. At the outset the player has no knowledge either of

the payoff matrix or of the “laws” which determine the changes in the environment. The decision

process consists therefore of two elements : the state of knowledge about the environment,

represented by the agent’s forecasting capabilities, and the rules for choosing an action, given this

forecast.

In its most basic formulation, a Classifier System is a set condition-action rules which are

processed in parallel. Each rules makes the execution of a certain action conditional upon the

agent’s perception of a certain state of the world.

                                                
43  In this respect, a particularly interesting question concerns the circumstances under which simple behavioural patterns
do emerge notwithstanding the potential cognitive complexity which these models entail. In Dosi et al. (1995) we show
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A first element which characterizes a classifier system is the message (signal) the learning agents
receives from the environment. Such a message has to be interpreted and connected to a consequent
action according to a model of the world which is subject to revisions. The signal is usually encoded
as a binary string of given length:

m1 m2.....mn with mi ∈ {0,1}

The learning is modelled as a set of condition-action rules which are processed in a parallel fashion.
Each rule makes a particular action conditional upon the fulfilment of a condition concerning the
present state of the world. The condition part is therefore actually made up of a string of the same
length as the message’s, which encode a subset of the states of nature and is activated when the last
detected state of the world falls into such a subset:

c1c2.....cn with ci ∈ {0,1,#}

The condition is satisfied when, either ci = mi or ci = #; i.e. the symbol # acts as a "don't care"
symbol which does not pose any constraint on the corresponding bit of the environmental message.

Thus, consistently with the framework discussed in the previous section, a set of conditions

defines a subset of the power set of S. It is important to notice that each condition defines one

subjective state of the world, as perceived by the agent and defines its relationship with the

objective states of the world. This relationship remains anyway unknown to the decision maker,

who “knows” only the subjective states.

The action part is instead a string of length p (the number of the agent’s possible actions)

over some alphabet (usually a binary one) which encodes possible actions:

a1a2.....ap          with  ai ∈{0,1}

The decision maker can be therefore represented by a set of such condition-action rules :

R = {R1,R2,.....Rq}

where :

Ri :  c1c2....cn → a1a2....ap     with  ci ∈ {0,1,#} and  ai ∈{0,1}

In addition each rule is assigned a “strength” and a “specificity” (or its reciprocal “generality”)

measure. The strength basically measures the past usefulness of the rule, that is the payoffs

cumulated every time the rule has been applied (minus other quantities which will be specified

later) ; the specificity measures the strictness of the condition : the highest specificity (or lowest

                                                                                                                                                                 
that this is often the case in the presence of competence gaps of the agent vis-à-vis the complexity of the changing
environment (see also below).
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generality) value is given to a rule whose condition does not have nay symbol “#” and therefore is

satisfied only when that particular state of the world occurs, whereas the lowest specificity (or the

highest generality) is given to a rule whose condition is entirely formed by “#’s” and is therefore

always satisfied by the occurrence of any state of the world.

At the beginning of each simulation the decision maker is usually supposed to be absolutely

ignorant about the characteristics of the environment : thus all the rules are initially randomly

generated.

The decision maker is also assumed to have limited computational capabilities, therefore the

number of rules stored in the system at each moment is kept constant and relatively “small” in

comparison to the complexity of the problem which is being tackled.

This set of rules is processed in the following steps throughout the simulation process :

1.  Condition matching : a message is received from the environment which informs the system

about the last state of the world. Such message is compared with the condition of all the rules and

the rules which are matched, i.e. those which apply to such a state of the world enter the

following step.

2.  Competition among matched rules : all the rules whose condition is satisfied compete in order to

designate the one which is allowed to execute its action. To enter this competition each rule

makes a bid based on its strength and on its specificity. In other words, the bid of each matched

rule is proportional to its past usefulness (strength) and its relevance to the present situation

(specificity) :

Bid(Ri,t) = k1(k2 + k3Specificity(Ri)) Strength(Ri,t)

Where k1, k2 and k3 are constant coefficients.

The winning rule is chosen randomly, with probabilities proportional to such bids.

3.  Action and strength updating : the winning rule executes the action indicated by its action part

and has its own strength reduced by the amount of the bid and increased by the payoff that the

action receives, given the occurrence of the “real” state of the world. If the j-th rule is the winner

of the competition, we have :

Strength(Rj,t+1) = Strength(Rj,t) + Payoff(t) - Bid(Rj,t)

4.  Generation of new rules : the system must be able not only to select the most successful rules, but

also to discover new ones. This is ensured by applying “genetic operators” which, by

recombining and mutating elements of the already existing and most successful rules, introduce

new ones which could improve the performance of the system. In this way new rules are

constantly injected into the system and scope for new search is always made available.
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Genetic operators generate new rules which both recombine “building blocks” of, and,

explore other possibilities in the proximity of the presently most successful ones, in order to

discover the elements which determine their success and exploit them more thoroughly : the search

is not completely random but influenced by the system’s past history. New rules so generated

substitute the weakest ones, so that the total number of rules is kept constant.

Three types of genetic operators are normally employed. The first two types are forms of simple

mutation which operate in opposite directions :

a) Specification: a new condition is created which increases the specificity of the parent one:
wherever the parent condition presents a "#", this is mutated into a "0" or a "1" (randomly chosen)
with a given (small) probability.
b)  Generalisation: the new condition decreases the specificity of the parent one: wherever the latter

presents a "0" or a "1", this is mutated into a "#" with a given (small) probability.

The third operator is a standard crossover, which reflects the idea of generating new conditions by
recombining useful elements ("building blocks") of the conditions of successful rules. Two parent
rules are probabilistically selected among the ones with higher strength, then a random crossover
point is selected for each condition part and strings are exchanged across such crossover points.
If, for instance, the conditions of the two parent rules' are:

aaaaaa
AAAAAA

with a, A  ∈ {0,1,#}
if 2 is randomly drawn as crossover point, the two following offsprings are generated:

aaAAAA
AAaaaa

The above mentioned economic models which employ classifiers systems for the analysis of multi-

agent interaction problem, basically study the emergence of “ecologies of representations”.

Heterogeneous agents adaptively modify their models of the world in order to achieve better

performance, and stationary environments tend to generate relatively stable ecological equilibria,

but, in general, agents will not converge to homogeneous models, but only to models which are

somehow “compatible” for the particular states of the world which actually occur. The same

environment can in fact support very diverse non-partitional representations : stochastic elements in

the learning process, combined with the hish degree of path-dependency of the systems, will very

likely produce a high degree of diversity of representations even when we begin with perfectly

homogeneous agents. Moreover, learning never actually stops and the application of the genetic
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algorithm always introduce an element of exploration of new possibilities which might disrupt the

temporary ecological equilibrium.

Marengo (1992) and (1996) applies this model to the emergence of a commonly shared knowledge

basis in team decision making processes, and shows that different types of environment can

generate very different balances between homogeneity and heterogeneity of knowledge. Palmer et

al. (1996), Vriend (1996) and Marengo and Tordjman (1996) examine a population of rule-based

AAA operating in an artificial markets and show that the market can sustain persistently high degree

of diversity between agents’ models of the world and generate at the same time a price dynamics

which has many features in common with real speculation markets phenomena.

A slightly different modelling strategy, albeit very much in the same spirit, employs Genetic

Programming (Koza (1993)) : unlike standard genetic algorithms and classifiers systems, search

does not take place in the space of fixed-length binary string representations, but in the space of all

variable length functions which can be generated with a given primitive set of operators and

operands. Representations here are no longer mere sets of subsets of subjective states of the world,

but are more complex functional relationships which link variables to actions by means of

mathematical and logical operators. Dosi, Marengo, Bassanini and Valente (1994) show an

application of this methodology to pricing decisions by firms in oligopolistic markets44.

In general, these models produce simulations of Artificial Economies (in parallel with the “Artificial

Life” approach, cf. Langton (1993)), in which the analysis is no longer based on equilibrium

concepts and on the search for convergence and stability conditions, but on the investigation of

collective emergent properties, i.e. aggregate regularities which are relatively robust and persistent

(cf. Lane (1993a) and (1993b)).

An interesting family of Artificial Economies models analyzes local learning phenomena. For

instance, Axtell and Epstein (1994) consider a population of agents located on a bi-dimensional

space where some resources (e.g. food) are also (unevenly) distributed. Agents are endowed with a

set of simple algorithms which control their movements, their use of available resources, their

behaviour towards other agents they can meet. Adaptation takes place at two different levels : a)

                                                
44  In particular, it has been shown there the endogenous emergence of pricing routines as an evolutionary robust form of
adaptation to non-stationary environments.
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with respect to the environment agents move towards sites where they more easily fulfill their

objectives ; b) with respect to their neighbours, they generate local organization of exchange (i.e.

markets where they can exchange goods and achieve Pareto-superior distribution of resources).

Take all this as a preliminary metaphor of a set of models still to come where propositions of

economic theory (e.g. downward sloping demand curves, laws of one price, etc.) could be derived as

emergent properties of decentralized interaction processes.

Learning as dynamics in the space of outcomes.

The typologies of learning models review so far attempt, to different degrees, to provide some

account of the dynamics of e.g. what agents know about the world, or the ways people select among

different actions, etc.

Alternative modelling strategies involve, on the contrary, an explicit blackboxing of the

learning/decision processes, folding them together into some dynamics on the possible states in

which the agents might happen to be. In turn, this “blackboxing” in some approaches has to be

considered as just a reduced form of an underlying richer dynamics on cognition, problem-solving

,etc., while in others tends to be considered almost all that can be said about learning.

The latter perspective certainly applies to a long tradition of formal models in psychology building

on stimulus-response processes, dating back at least to Estes (1950) and Bush and Mosteller (1955).

(Note that insofar as the “states”, - through which the agents are driven by reinforcement -, are

behavioural responses, this modelling philosophy largely overlaps with that of “evolutionary

games”, briefly discussed earlier).

A good summary of the basic ideas is from Suppes (1995) :
“The organism is presented with a sequence of trials, on each of which he makes a response, that is one
of several possible choices. In any particular experiment it is assumed that there is a set of stimuli from
which the organism draws a sample at the beginning of each trial. It is also assumed that on each trial
each stimulus is conditioned to at most one response. The probability of making a given response on
any trial is postulated to be simply the proportion of sampled stimuli conditioned on that response,
unless there is no conditioned stimuli in the sample, in which case there is a “guessing” probability for
each response. Learning takes place in the following way. At the end of the trial a reinforcement event
occurs that identifies which one of the possible response was correct. With some fixed probabilities the
sample stimuli become conditioned to this response, if they are not already, and the organism begins
another trial in a new state of conditioning... (Suppes (1995), p. 5).

Notice that here all dynamics on Θ, Ξ, R, and π one was trying to disentangle above are blackboxed

into the distribution of stimuli and the conditional probabilities of transition across responses.

A simple illustration (Suppes (1995)) with two states, one conditioned to the correct response ( C)

and the other unconditioned (U) is a Markov process of the type
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C U

C 1 0

U C 1-C

with the elements of the matrix being the transition probabilities. Not too surprising, “learning is the

convergence to the absorbing state”.

Moreover, notice that the basic methodology requires an underlying “small”/stationary world

assumption (all states must have from the start a positive probability measure) and is essentially

looking for asymptotic properties of the models45.

Technological learning.

Nearer to the spirit of a good deal of contemporary evolutionary theories, a quite different type of

“blackboxing” is common to a lot of models of growth and industrial change driven by

technological advances. Here the learning dynamics is typically represented in terms of changes in

the space of some technological coefficients.

Possibly the simplest formalisation is the early account by Arrow (1962) of learning-by-doing, since

then corroborated by a few empirical studies, showing a “quasi-law” of falling costs (or increasing

productivity) as a function of cumulated production46.

In Silverberg, Dosi and Orsenigo (1988), learning how to efficiently use a new capital embodied

technology (i.e. a new “paradigm” : see above) is formalised via a logistic-type dynamics on firm-

specific skills (si), dependent on current and cumulated production using the new technology

(xi and  Xi , respectively) :
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where C is a constant proportional to the capital stock and sp is the level of skills generally available

in the industry, which is a sort of dynamic, industry-wide, externality changing as

                                                
45It is true that in some simple experimental set-ups stimulus-response models generate also predictions on the
convergence paths. But this is not the case in general, especially outside the domains whereby stimulus sampling and
conditioning can be given a straightforward psychological interpretation (representation-building  and problem-solving
are two cases to the point). So, for example, one is left to wonder what is the empirical content of the “main theorem”,
from Suppes (1969) (see also (1995)) according to which “given any finite automaton, there is a stimulus-response
model that under appropriate learning conditions asymtotically becomes isomorphic to the finite automaton”.
One is very far indeed from any constructive, empirically disciplined, notion of learning...
46Something like ct = co  Xt

β , the cumulated production, = Σt x t ; - 1 < β< 0 ; and c =  unit production costs.
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′ = −s B s sp p2 ( )

with s  a weighted average of firm-specific skills 47.

Further, many evolutionary models starting from the seminal work of Nelson and Winter (1982),

explicitly account for the uncertainty associated with technical search, and often, also for the

dependence of future discoveries upon the knowledge already achieved in the past.

In the last resort, modelling learning in the technology space comes down to specification of the

stochastic process driving agents from one technique to the next.

For example, in one of the models presented in Nelson and Winter (1982), learning occurs in the

space of two variable input coefficients a1 and a2. After some renormalization 48, assume that the

technique of each firm at time t is the random pair Ut , Vt and the search outcome is represented by

the random pair (Gt , Ht) which capture the number of steps that the firm takes in the U and V

dimensions49, with (Gt , Ht) - in the simplest formulation, independent of (Ut,1 , Vt,1) - distributed on

a finite support (Nelson and Winter  (1982), pp. 177-9). The time-independent random process,

together with a selection criterion simply comparing (Ut,1 , Vt,1) and (Ut , Vt) at prevailing input

prices, implies that the sequence of techniques is a Markov chain50. The distribution of innovative

outcomes is centred on the prevailing productivity of a firm and, in the more general formulation,

there is no exogenous constraint on technological possibilities (Nelson and Winter (1982), p. 285),

although there is one related to internal capabilities : what one knows limits what one can achieve

within a given number of search periods.

                                                
47Of course, s; and sp are bounded to be less or equal to one (i.e. the “perfect” ability to fully exploit the technical
specifications of use on any one given vintage of capital).
Somewhat more complicated learning patterns, modeled in a similar spirit, are in Eliasson (1985).
A “Verdoorn-Kaldor” law, with learning driven by  learning-by-doing and economics of scale underpins the model by
Verspagen (1993). And system-level deterministic learning dynamics is presented in Granstrand (1994).
48So that the refined dimensions are U = log (a2  / a1) and V = log (a1a2).
49Subject to the constraint that u1 ≤U ≤un . Conversely, V, itself a proxy for input productivities, in the spirit of
evolutionary models, is allowed to range on  −∞ < V  < +∞.
50 Cf. Nelson and Winter (1982), pp. 179-92. Note also that in this Nelson - Winter model, while in terms of relative
input intensities the process define a finite, time-invariant, Markov process, in the V - dimension the number of states is
notionally infinite and the system is allowed, so to speak, to climb to ever greater levels of productivity (although only
finite levels of them are accessible from a given state).
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Other representations in a similar spirit include Silverberg and Lehnart (1994) whereby innovations

arrive according to a Poisson distribution, adding to the productivity of new technological vintages

of equipment ; Chiaromonte and Dosi (1993), and Chiaromonte et al. (1993) which have the support

of the probability distributions on (labour) coefficients for “machine” production and machine-use

dependent on time T realizations for each firm ; Dosi et al. (1994 a) and (1995), who model the

dynamics of (proportional) increments in firm “competitiveness” drawn from different variants of a

Poisson process ; Kwasnicki (1996) who presents more complex dynamics of search driven also

recombination and mutation on incumbent knowledge bases (see also below).

In other versions of evolutionary models, one assumes an exogenously determined drift in learning

opportunities (a metaphor for scientific advances, etc.). For example, in another model presented in

Nelson and Winter (1982), firms sample from a log - normal distribution of values of capital

productivities whose increasing mean follows a time dependent trend. And somewhat  similarly,

Conlisk (1989) postulate productivity growth driven by draws from a normal distribution (with

positive mean).

Finally a few evolutionary models account also for learning via imitation, that is by the stochastic

access of each firm to the best practice available at each time or to the set of combinations between

best practice and the technique currently known by any generic incumbent  (cf. Nelson and Winter

(1982), Chiaromonte et al. (1993), Silverberg  and Verspagen (1995), Kwasnicki (1996), among

others).

First, note that the spirit of most formalizations of learning processes in a technology space,

however defined, has an essential “phenomenological” flavour : formal representations are meant to

capture stylised facts, basic dynamic regularities, etc. generally placed at a much “higher” (and more

aggregate) level of description than the “foundational” processes of cognition, problem-solving, etc.

discussed earlier (on the relationships between the two levels we shall come back in a moment).

Given this more phenomenological level, however, a requirement far from fulfilled in the current

state-of-the-art concerns the empirical robustness of the purported dynamics 51 : for example, on

which empirical grounds does one justify the assumption of Poisson arrival processes ? Why not

another distribution function ? On what criteria does one choose the specification of the Markov

processes driving search ?, etc.

                                                
51And this should be indeed a self-criticism of all of us who have been working on evolutionary modeling...
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This is an area where evolutionary modellers would certainly benefit from more precise insights

coming from “inductive” statistical exercises concerning e.g. microeconomic processes of

innovation, productivity growth, etc.

Second, even when considering learning over an upper-bounded set of “knowledge states” (such as

in Silverberg et al. (1988)), and, obviously so in open-ended knowledge dynamics, the analytical

focus is upon transient rather than limit properties.

An example in the set-up concerning innovation-diffusion and learning-by-using on two

technologies is presented in Silverberg et al. (1988). The properties of limit states could in principle

be found, given initial conditions, etc. However, the attention is mainly devoted to the finite-time

properties of the system and the finite-time learning profile of individual agents.

A fortiori, all this applies to learning dynamics which are open ended in the sense that there is an

infinite number of states that agents can take as time goes to infinity, even if, most likely,

conditional on given knowledge level, only a finite number of states can be reached with positive

probability in a finite time52.

Third, it seems to us rather straightforward  that any representation of learning as a dynamics across

technological (or for that matter “organisational”) states in low dimensional spaces is just an

inevitable (indeed, very useful) reduced form of underlying learning process in spaces of

explosively high dimensionality (as those entailed by the earlier, more “constructive” discussion of

exploration on cognitive and problem-solving categories...53). But then the question of the

compatibility and mappings across different levels of description becomes crucial (let alone a direct

derivation “higher” from “lower” levels, which might well turn out to be an impossible task without

a lot of further phenomenological  details and constraints : cf. our earlier ”parable of the cow”....).

Behavioural and cognitive foundations of technological learning.

Of course, the easiest way to provide cognitive/behavioural foundations to learning in the

technology space is by assuming that it is the direct outcome of the choices of fully rational (and

forward looking) agents. This is, indeed, the path followed by “New Growth” theories - if their

                                                
52A major analytical challange ahead regards in fact the possibility of characterizing in the limit some expected
(average) properties of these open-ended processes ( - an ongoing research involving S. Winter, Y. Kaniovski and the
authors at IIASA, Austria, is currently beginning to painstakingly  address the problem...).
53Collective learning entities such as “firms” further explode the space of search/adaptation...
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microfoundations are to be taken at face value -. (cf. Romer(1990), Grossman and

Helpman(1981),or, in a stochastic version, Aghion and Howitt (1992)54.

However, if one accepts the foregoing argument, fully ‘rational’ decision models fall well short of

applicability to technological search and innovation : on the contrary, this is the domain where one

is most likely to find strong substantive and procedural uncertainty, surprises, delusions and

unexpected successes (for a review of the empirical evidence in this area, see Dosi (1988)).But then

one is back to  the relationships between a phenomenological account of learning processes and the

underlying cognitive and behavioural procedures...

In this respect, Nelson and Winter (1982) suggest a promising appeciative theory, nesting

technological learning (and some of its properties, such as the possible cumulativeness of

technological advances,the ‘locality’ of search,etc.) into a theory of organisational learning,based -

in a good part - on the establishment, reproduction and change of organisational routines.

 Moreover,Nelson-Winter, - as well as,earlier, the inspiring work of Cyert and March (1963),and

later,many models in this evolutionary tradition - formally model the ‘access’ to change as being

triggered or driven by some stylized decision rule.

A way of capturing this bridge between the behavioural domain and an apparently “agent-free”

learning dynamics is by assuming some sort of rather simple allocation-to-search rule (such as “..

invest x% of turnover in R&D ..”) - which are indeed robustly corroborated  by the managerial

evidence - , and then formalize a probability of access to  innovative (or imitative) learning

dependent on these search efforts.

A binomial distribution of the kind

P(inn = 1) = a ⋅ exp (b ⋅ R&D)

is a first approximation to the general idea (with a and b being parameters which implicit account

for both ‘objective’ opportunities and firm-specific competencies) (Cf. e.g. Nelson and Winter

(1982), Chiaromonte et al.(1993)).55

                                                
54 This equally applies to e.g. game-theoretic models of innovation and diffusion, "patent races",etc. (thorough surveys
are in Stoneman (1995)).
 Whether such microfoundations ought to be  taken seriously is a debatable question. The more sophisticated view
suggests that they should not  -  forward looking representative agents,etc. being only a sort of theoretical shortcut in
order to get to some some aggregate dynamic properties which a fortiori   hold under less restrictive behavioural
assumptions ( a lot of contributions of e.g. Paul Romer , and , in other perspectives, Joseph Stiglitz, and others are
interpretable in this way). On the contrary, the conclusions of too many other models seem to be sensitively dependent
upon the fine specifications of 'rational behaviours' themselves .
55 And the same goes for imitation.
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 Hence the learning dynamics is modelled as the outcome of a two-stages stochastic process,

separating a first (‘behavioural’) process depending, in principle, on believes, expectations, and

action patterns (that is the ϑ’s and ξ’s variables - in our erlier formulation - ),and a second

one,trying to capture some modal properties of the learning process itself56.

Other formalizations of the interactions between behaviours and learning modes stylize “triggering

effects”, so that for example,change and search is undertaken only if actual performance falls below

a certain threshold level57.

For many analytical purpuses, the assumption that behavioural rules (such as R&D- rules) are given

and invariant throughout the history of each agent is a perfectly legitimate approximation (which

captures also the relative inertia of organisational routines ..).And this is what one finds in many

evolutionary models up to now.

In fact,invariant search rules (or invariant ‘meta-rules’ for change) can be understood in two

ways,namely (a) as empirically-grounded ‘stylized facts’,or, (b) as useful first-approximation

assumptions whose precise status has to be understood also in terms of complementary processes of

behavioural learning.They certainly capture a bit of both : but,in order to move further at the former

level it is urgent to achieve more robust microbehavioural evidence58, and , at, the latter level,to

show if and how endogenous process of adaptation lead to relatively persistent (metastable) search

rules.This latter analysis is what Silverberg and Verspagen (1995) have begun to do,assuming rules

that are invariant as such,but whose parameters may adaptively change via a stochastic search

process ( with different modeling tools based on genetic algorithms Kwasnicki (1996) explores a

similar path).

Alternatively, one might want to take a more constructive route to behavioural search and

adaptation, but, so far, at the cost of further simplifying the environment in which agents operate (an

example is Dosi et al. (1994), where “routines” like mark-up pricing are indeed shown, as already

mentioned to be endogenous emergent properties but one totally neglects learning in the

technology/problem-solving domain).

More generally,technological learning is possibly  one of  most revealing points of observations in

order to assess the state-of-the-art in the theories of learning in evolutionary environments.

                                                
56 Which, putting it into our earlier formalization, would be a synthetic account of externally evaluated (or 'market-
evaluated') performances of the combinations between menus of actions and 'states of the world'. It is also important to
notice that the general assumption here is that agents do not and cannot know  that mapping algorithm.
57 Cf. Nelson and Winter (1982) ,and also outside the technological domain Cyert and March (1963).
58 Whose collection, interestingly enough, has nearly stopped after the 60's,as a result also of the conflict between what
researchers were finding and the axiomatic boldness of the theory (cf. for example the neglect on mark-up findings with
regards to pricing behaviours: a  short but pertinent discussion is in Winter (1971).
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Hopefully, there should be little doubt that technologies (together with organisational forms and

institutions) are major domains of economic evolution. Technical change is also one of the few

fields where an explicitly-inspired evolutionary thinking has some widely acknowledged lead in the

methodology of empirical reseach, appreciative theories, and also formal models. And it also

continues to be a major challenge for all those scholars who want to take  microfoundations

seriously .As it stands now, it is probably a crucial test for any  foundations of cognition, decision

and learning -at least in economics-,robust enough to account for what people and organizions do

when they know inevitably little about what the future might deliver to them. In this respect,

‘rational’ formalizations sound sometimes helplessly silly ( ..suppose that stone-age men had

rational expectations about helicopters, or more mundanely, that IBM’s CEO’s knew what a PC was

and had whatever prior on their impact...).But, competing interpretations face the equally

formidable challenge to develop “level zero” theories consistent with “higher level” models of the

empirical patterns of learning in e.g. companies, or industries, communities, or whole countries ..

For the purposes of this work, let us just notice that a major step forward would come from

constructive theories of entities that at higher levels of observations one calls  “knowledge bases”,

“organisational competences”, “heuristics”,etc. : that is, theories showing how elementary ‘pieces of

knowledge’, or routines or elementary actions coherently combine together in higher level entities

that  self-maintain over time. But in turn,as convincingly argued by Fontana and Buss (1994) and

(1996) in the domain of biology, this demands a constructive theory of organisations  ,whose

existence, on the contrary, is most often postulated rather than explained 59.

                                                
59 In economics, principal/agent models as well as transaction cost theories of course try to do that. But , in the former
case they do it by  reducing them to a sort of epiphenomenological 'veil' ,which is just a collective name for an ensemble
of contracts among rational agents. Conversely, transaction cost models do fully acknowledge organisations as entities in
their own right, but, in our view , they still fall short of providing a 'physiology'  of organisation themselves,whereby
governance procedures and problem-solving knowledge are reproduced and modified over time.
For  remarks in a similar spirit, cf. Padgett (1995), who also present a simple 'hypercycle model' of emergence of an
'ecology'  of mutually consistent skills.
See also Warglien (1995), on the evolution of organisational learning as a hierarchically nested process  of selection
among 'projects'.
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(vi)  Many open questions by way of a conclusion

It was one of the purposes of this paper to provide a broad map of diverse lines of inquiry, which, in

different ways, take the analysis of cognition, action and learning beyond the boundaries of the

canomic model of rational decision and rational learning.  The underlying perspective - as we have

tried to argue - is that a positive theory of agency in evolutionalry environment will have to rely

upon quite different building blocks as compared to the standard model.

Despite the length of this essay, we have been forced to leave out a few pertinent issues.

Let us conclude by flagging them out and suggest also some further research questions that we

consider very high on the evolutionalry research agenda.

Learning and selection

Coupled with learning, the other major tenet of evolutionary theory is, of course, selection, that is

some collective mechanism providing differential rewards and penalties (involving also differential

diffusion and survival probabilities) to different traits (being they behaviours, routines,

technologies, etc...) of which the agents are so to speak “carriers”60.

More generally, we suggest almost all dynamics of socio-economic change fell somewhere in

between the two extreme archetypes of “pure learning” and “pure selection”.  The former

corresponds to the extremist decision-theoretic or game-theoretic models : all agents make the best

use of the available information, are endowed with identical information-processing algorithms, etc.

(representative-agent, rational expectation models are the most striking example).  Clearly, here

selection plays no role since every agent has the same access to the available opportunities (i.e. in

some loose sense, has the same “environmental fitness”).  Conversely, in the opposite “Darwinian”

archetype, nobody learns and system dynamics is driven by selection operating upon blindly

generated variants of e.g. behaviours, technologies, etc,, (taken literally this is also the “as..if”

interpretation of rational behaviour).  As briefly discussed earlier, the outcomes of the two

dynamics, for whatever given environment, are equivalent only in some rather special cases.  In

general, the balance and interaction between learning and selection matters in terms of both finite-

time properties of the process and long-term outcomes.

                                                
60  General discussions of selection processes in socio-economic evolution can be found in Nelson and Winter (1882),
Hodgson (1988), Dosi and Nelson (1995), Witt (1992), Metcalfe (1996), Nelson (1995), Silverberg (1988), Winter
(1988), among others.
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An implication is also that the nature and intensity of selective mechanisms are not orthogonal to

learning patterns.  There might be subtle trade-offs here.  Weak selective pressures most likely

allow the persistence of “slack” and “inefficient” behaviours (no matter how “efficiency” is defined

in a particular context).  On the other hand, too strong selective pressure might hinder learning in so

far as the latter involves trial-and-error processes, probably bound to be, on average. Failures.

It is a dilemna that J.March has phrased in terms of “exploitation vs. exploration” (March (1991)).

It can be seen also as a time-scale issue : learning and selection might well proceed at different

paces.  So for example, even the tighest selection environment can leave room for individual

learning provided that selection is a low frequency event as compared to the rates of search/learning.

In biology, selection takes place at a generational time scale.  Hence the trade-off is very clear :

individual learning is favoured by having long-living organisms, while collective evolution takes

advantage of short-living organisms and frequent generational renewal.  Conversely, in the social

domain the picture is more complicated : environments such as markets are not only fundamental

selection mechanisms, but also an essential source for feedbacks which stirs learning processes.

Low frequency feedbacks can slow down and render “opaque” individual learning but a frequent

and tight application of selective forces might leave little room for experimentation and innovation.

Moreover, note that the cultural reproduction of knowledge and behaviours within economic

institutions introduces strong “Lamarkian” features into the relationships between learning and

selection.

Another, related, issue concerns the possible tension between individual and collective learning : for

example, it might well happen that persistent individual mistakes (e.g. decision biases) turn out to

have a positive collective role (an interpretation along these lines of the process of entry of business

firms is in Dosi and Lovallo (1995) but a lot more needs to be done in order to explore the value of

this conjecture).
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Learning, path-dependency and co-evolution

A quite general property of learning processes is often their path-dependent nature.  This sometimes

holds even under quite conventional learning mechanisms 61 and even more so in evolutionary

environments.  Of course, path-dependency implies that initial conditions and/or early fluctuations

along the learning path shape long term outcomes.  Furthermore, if learning entails the development

of rather inertial cognitive frames and routinized action rules, one should expect inertia and “lock-

in” to be indeed one of the corollaries of the very fact that “agents have learned”.

Above, we have surveyed a few models of e.g. technological learning, etc... which do generate path-

dependency, lock-in,etc. even in rather simple environments, driven by some forms of dynamic

increasing returns or social adaptation.  A more complicated and fascinating question concerns

those path-dependent outcomes which are driven by the correlation across (cognitive, behavioural,

organisational) traits, which in biology comes under the heading of epistatic correlation (cf.

Levinthal (1996) for a suggestive exploratory application to the analysis of organisational “inertia”)
62.  The basic intuition is simple.  Suppose that, say, cognitive and behavioural repertoires come as

rather folded packages - either due to some proximate internal coherence, or simply to the fact that

originally they randomly happened to come together -.  For example, in the above formal

framework, suppose that the set of representations/actions which turned out to be “learned” involves

the rule rp mapping an “understanding” of the world in terms of (###1,###2,...) into procedures (###

1,###2,....).  Suppose also that that rule happened to “win” because in an environment with “true”

states which are cognitively coded under ###i, procedure ξi  was reinforced by the obtained payoffs.

However, under some other states  , which, say, are coded in ###j, triggering ξj, , the decision rule is

strikingly bad. Of course, with no trait correlation, agents would hold on, to that part of the original

rule that links ###i to ξi and change the rest of the repertoire by merging it with e.g. representation  

###k and intended action ###k .  However, suppose that the first “package” can be hardly unbundled,

and so does the other one where, say  ###k  ###k and  come also correlated within another “model”

yielding “bad” responses under the states coded under ###i. One can intuitively see here how some

system

                                                
61  For example, this is true for Bayesuan learning if the set of events upon which agents form their priors is different,
and also in finite-time if agents hold the same priors but are exposed to different sample paths.  And it appears as a limit
property of environments where Bayesian agents sample across other bayesian agents in order to decide among
alternative options (cf. Arthur and Lane (1993)).
62   Kauffman's model of biological evolution is an acknowledged source of inspiration (Kauffman (1993)).
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interrelatedness can easily produce inertia and lock-in (cf. David (1995), discussing also the

appealing analogy between technological and institutional systems).

It is important to notice that interrelatedness and trait correlation are far from being theoretical

curiosa.  Rather, they are almost intrinsic properties of all entities embodying relatively coherent

inner structures.  This applies to knowledge systems, as well as business organisations and all other

institutions. (A deeper understanding of these correlations draws back to the challenge of

developing constructive theories of these entities themselves, mentioned earlier,...)

The ramifications of this point are even broader , linking with the idea of learning as a co-

evolutionary process. It is quite straightforward from our earlier discussion that the general view of

learning that we propose rests on the co-evolution between cognitive representations, behavioural

repertoires and preferences.  In a nutshell, this implies a notion of mutual adaptation, not only, of

course, along the canonic sequence from what one believes to know to what one does, judged

according to what one deems to be better for himself, but also the other way round, from what one

does to what one has to believe in order to justify what has been done, and from what one gets to

what one likes .

Preference and expectation

We have presented above some tentative insights toward the formalisation of the co-evolution

between mental models and action repertoires.  Two other domains, however have been so far

largely neglected, namely expectation formation and endogenous preferences.  With regards to

expectations, the rather unfortunate state-of-the-art is that one is largely stuck between a rational

expectation paradigm which basically assumes agents who already know what they are supposed to

learn and various extrapolative expectation mechanisms.  Between the two, evolutionary modellers

tend, rightly so, to choose the latter as a first approximation (cf. for example, Chiaramonte et al.

(1993)), but, sooner or later, one should try to model agents that elaborate conjectures about the

“structure of the world” and its parametrization and test them against experience.  More precisely,

this is indeed what adaptive learning models do (e.g. Holland et al. (1986), Marengo and Tordjman

(1996), etc.), but the drawback is that one either has “pure forecast” models (whereby the triggered

“action” is the forecast itself) or models where forecast and action-selection (concerning e.g. price-
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levels, selling-or buying, etc.) are folded together.  A major step forward would be, in our view, the

development of models whereby search in the space of expectations on the states-of-the-world and

search in the space of actions is partly de-coupled 63.  A consequence would be also the possibility

of handling the coexistence of partly conflicting systems of beliefs and action patterns 64, and it

would allow also an explicit account of phenomena like cognitive dissonance (Festinger (1957),

Hirshman (1965) and Akerlof and Dickens (1972) for some economic applications) 65.

This leads directly to the issue of endogenous preferences.  Some progress has been recently made

toward modeling preferences as influenced by social interactions (cf. e.g. Kuran (1987)) and Brock

and Durlauf (1995)).  The time is possibly ripe to take the issue further, right into the foundational

model of agency, and account for the endogeneity of the criteria by which representations, actions

and “payoffs” are evaluated, certainly as a result of social imitation, but also driven by attempts to

adjust “desires” to realized outcomes. (A probably apocriphal citation of Joseph Stalin, mentions his

definition of “pure happiness as the perfect correspondance between expectations and reality” ( ! !) :

certainly he was trying hard to work on the former...).  So far, these phenomena have been neglected

by adaptive learning models : indeed, an aspect that we consider rather unsatisfactory is the general

assumption of an invariant payoff function, which also drives the learning process, by providing the

yardstick against which the outcomes of cognition/action are judged.  Our proposal, on the contrary,

in our earlier language, is to render the  π function endogenous -an implication being also that one

disposes of any notion of “utility” as one of the primitives of the theory and operationalizes on idea

of adaptive identities of agents much nearer a lot of sociological intuitions.

Co-evolutionary determinants of routines and other organisational traits

Isomorphic issues appear also at higher levels of description. Consider, for example, the co-

evolution of technologies, business organisations and related institutions, raised in an appreciative

theorizing mode by Nelson (1994) ; or the multiple nature of routines as procedures for both

problem-solving and governance of conflict (Coriat and Dosi (1995)).  In all these cases,

                                                
63  See a preliminary attempt in Riolo (1990).
64  Think for example of action patterns that continue to be implemented because they "work" even if they conflict with
agent-held theories.  Speculative behaviour involving both a rule "buy as long as the market is bullish" and expectation
"the market is going to collapse" belong to this class (we owe this observation to H. Tordjman).
65  The fact that the belief system and the action system remain partly coupled, generally entails imperfect attempts to
reduce cognitive dissonance by modifying also the system of beliefs in order to accomodate the action patterns.  Every
smoker, for example, is familiar with such exercises!!  In a very similar vein, we plan to call a model of this kind, that
we are beginning to build,  "the spirit is strong, but the flesh is weak.."(!?)
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organisational learning is driven by multiple, and possibly contradictory, selection mechanisms (for

example, success in innovative search but also control over the possibility of opportunistic or

conflictual behaviours, and political “coherence” of the organisation, etc.) 66. On all that there is a

wealth of empirical evidence and one starts having some appreciative theories : it might be worth

beginning to explore also some simple formal models whereby organisational learning concerns the

development of collectively-shared cognitive models and action repertoires which, so to speak,

“make sense” according to multiple dimensions (implying also that what members of the

organisation “know”, do and believe to be their interests, co-evolve.).

A major implication of all that is also that evolutionary theories of learning might head toward the

hierarchically nested levels of description of learning prosses 67, possibly related to different

learning entities. At one extreme, one is only beginning to explore the dynamics of, so to speak,

“agentless” organizations where learning is driven by evolution under some selective pressure upon

bundles of routines, skills, etc. (preliminary efforts are in Marengo (1996), Padgett (1995)). At the

other extreme, it seems equally promising to explore explicit agent-based models where collective

knowledge emerge from the endogenous networking among entities embodying diverse pieces of

knowledge68.

Somewhere in between, as discussed at greater length in Coriat and Dosi (1995), a major challange

ahead is modelling agents which imperfectly learn how to adapt (in terms of skills, behaviours,

goals) to existing institutions while the imperfectness of adaptation itself is a fundamental source of

institutional change69.

There is a lot on the plate.  It seems to us that one faces nowadays the possibility of an

interdisciplinary construction of a positive theory of agency and learning whose scope goes well

beyond the limits of applicability of the usual (rational) decision-theoretic model.  And, for the first

time, one is beginning to develop the instruments to make it “harder” - able to generate also formal

“toy models” that, moreover, have a positive interaction with models based on more orthodox

notions of rationality.  (Although, in our view, it will never be able to present the axiomatic

                                                
66 A few more comments are in Dosi (1995).
67  An exploratory attempt is in Warglien (1995).
68  Which would indeed put on more rigourous grounds also the Hayekian proposition on capitalist institutions
(including markets) as mechanisms for the coordination of distributed knowledge (cf. also Egidi (1996) and Lane et al.
(1996)).
69  One can easily see how this could represent also a major bridge between evolutionary theories and institutionalist
analyses of the mechanism holding together and changing the social fabric (a thorough discussion of many related issues
in Hodgson (1988)). Enormously difficult but fascinating issues such as e.g. the dynamic coupling between institutions
and economic behaviours; and the role of trust and power come under this broad headings.
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“hardness” of the latter, notwithstanding its measure-zero empirical content, whenever stripped of

any phenomenological restrictions).

As economists, we are tempted to call this emerging approach with the labels of “evolutionary” or

“institutionalists”.  But, in other disciplines similar approaches come under quite different headings.

Moreover, even within the economists’ arena, a few “revisionists” developments building on

“bounded rationality”, “far-from-equilibrium learning”, etc. promise challenging dialogues.

Nowadays, it is certainly far too early to know whether it will turn out to be scientifically more

fruitful to pursue some equivalent of a “new Ptolemaic synthesis” or conversely, some more radical

views, still largely to be developed.  Where our inclinations are should be clear from this essay.  In

any case, whether one succeeds or not, it remains important to establish sort of equivalence classes,

partly mapping problems and formal instruments across different approaches.  This kind of bridge is

also part of what we have tried to do in this paper.  But, of course, it will never be long enough to

reach rationality fanatics and drunkmen who search for their lost house-key under some  street light

even if they know they forgot somewhere else....
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POST-SCRIPTUM (OCTOBER 2001)

Notwithstanding the significant lag between the preparation of the chapter (1996) and the final

delivery to the publisher (late 2001), we have decided to keep the manuscript, except minor

bibliographical updating, as it was.

It has, hopefully, its own internal consistence and, conversely, it would be futile to try to follow

up the fast-expanding literature since the mid-90's. A new article would be required.

Here, let us just flag for the ease of the reader some promising directions of inquiry which

overlap, complement or improve upon those discussed in the text.

First, growing attention has been drawn by learning processes in general and experimental games

in particular: cf. among others, Erev and Roth (1998) and (1999), Camerer (1997) and Camerer and

Ho (1998, 1999).

Second, empirical regularities in decisions and behaviour - concerning in particular systematic

deviations from the predictions of canonical "rational" theories - are at least adding up into an

emerging "behavioral" perspective concerning e.g. inter-temporal choices, financial investments and

consumption: after the early contributions in Loewenstein and Elster (1992), cf. the discussions in

Browning and Lusardi (1996) and Rabin (1998), among many others.

A big and controversial issue regards of course how the observed patterns of decision and

behaviour ought to be interpreted. One way involves the "re-axiomatization" of choice twisting it

just enough as to make theoretical postulates not too conflicting with the evidence (for example

rationalization of the evidence on intertemporal choice just in terms of hyperbolic rather than

exponential discounts is a paramount illustration of this genre).

An alternative way of tackling observed "biases" is by arguing that in fact they are not biases

after all, but rather relatively smart forms of evolutionary adaptation (e.g. Gigerenzer et al. (1999)

and Gigerenzer (2000), and some of the contribution to Gigerenzer and Selten (2001)).

Third, yet another approach, in tune with some of the conjectures discussed in the foregoing

essay, painstakingly proceeds in the exploration of the very foundations of reasoning and 'mental

models' underlying cognition, motivations and behaviours: cf. Girotto et al. (2000), Goldvarg and

Johnson-Laird (2000), Johnson-Laird (2000), Johnson-Laird and Byrne (2000).
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The alternative interpretation of purported "biases", as well as of seemingly 'unbiased'

behaviours, hint indeed at deeper conjectures on the very "human nature" (whatever that means…).

Being unable to discuss here the many controversies concerning the tangled relations between

learning and environmental selection, let us just mention three critical issues, namely.

(i) What are the degrees of "hardwiring" of human cognition and behaviours into some

underlying 'genetic' predisposition ?

(ii) Does such evidence, if any, regards primarily syntactic and inferential rules (such as our

relative ability of performing syllogism, modus ponens vs. modus tollens, deduction vs.

induction, etc.) ? Or, does it impinge on the very content of behavioural patterns (such as our

deepest inclinations to selfishness, obedience, altruism, etc.) ? And, finally:

(iii) Can one impute some optimality properties to whatever 'mankind-invariant' regularities, if

any ?

Given the foregoing essay, our deep scepticism about 'strong hardwiring' à la Dawkins (1986)

should come as no surprise. And even more so, it comes together with deeply routed presumptions

on the evolutionary optimality of the revealed outcomes (the arguments in Cosmides and Toody

(1994) and (1996) being an appealing and, in our view, also misleading template).

Rather, our discussion above is quite agnostic on some 'hardwired' inclinations, leaving their

possibility well open, but, together, it conjectures: (a) a very long leash between genes and utterly

diverse cultural expressions; and: (b) the general lack of evidence supporting Pangloissian theories

("…whatever exists it must be optimal, at least in a local sense, otherwise it would not exist…”).

Indeed we are rather worried about increasingly frequent encounters between Dr. Pangloss and

rudimentary versions of evolutionary theories, yielding rather unfounded but often sinister apologies

of a status quo whose optimality is supposedly grounded in our very genes.

One way of supporting such a theoretical perspective has been through what we consider an

improper use of evolutionary games. As hinted above and argued at some length in Dosi and Winter

(2002), in the socio-economic domain the latter are important instruments to explore "reduced

form" evolutionary processes essentially driven by collective adaptation. But certainly we consider

rather far-fetched any application grounded on daring equivalencies between "genes" and "cultural

memes", and on doubtful simplifications of the selection landscapes over which socio-economic

adaptation occurs.

Fourth, today, as compared to few years ago, one finds a much richer discussion of endogenous

preferences. Certainly, they can be studied from different angles. In some quarters, one tentatively
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begins to explore the coupled dynamics of preferences, behaviours and mental models (cf. for

example, Aversi et al. (1999) and the critical discussion of the evidence in Devetag (1999). Along

different lines of research, others cunningly attempts to unveil also the "rationality" hidden behind

preference dynamics (cf. Elster (1998)).

Fifth, a lot of work has gone over the last few years into the understanding of organizational

capabilities and learning: cf. among others Dosi, Nelson and Winter (2000). At the same time, a few

works have attempted to formalise the problem-solving dynamics of organization themselves, in

ways certainly rooted in the pioneering lessons of Herbert Simon but possibly further relaxing even

Simonesque requirements of procedural rationality and quasi-decomposability of problems: cf.

Levinthal (1996), Levinthal and Warglien (1999) and Marengo and Lazaric (2000).

Still, many of the issues raised in the essay concerning a would-be positive theory of agency are

obviously far from settled. However the comparison between the state-of-the-art half a decade ago

and nowadays highlights a certainly encouraging picture. Sure, there are still many neoclassical

“Talibans” around. Together, there is still a lot of fuzziness on alternative perspectives on cognition,

behaviours and learning. But there are also multiple encouraging signs of progress toward

microfoundations of economic behaviours which rape less and less an increasingly rich micro

evidence.
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