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1 Introduction

The analysis of the determinants of self-sustained processes of economic growth fueled by

technological advances has received an increasing attention in the past few years.

On the theoretical side, ‘Endogenous Growth’ and ‘Evolutionary’ models have been try-

ing to explain how positive feedbacks in knowledge accumulation affect per-capita income

growth (Romer (1990), Grossman & Helpman (1991), Nelson & Winter (1982), Verspagen

(1993) and Silverberg & Verspagen (1994)). On the empirical side, a rapidly expanding

literature on the economics of technological change has been instead exploring the drivers

of innovation and diffusion at the levels of firms, sectors and whole Countries (see, among

others, Freeman (1994), Rosenberg (1994), Nelson (1995) and Stoneman (1995)).

Notwithstanding this great effort, many scholars have recently spelled out a negative

assessment on the extent to which ‘neoclassical’, ‘endogenous’ and ‘evolutionary’ growth

theories have been able to match ‘old’ and ‘new’ growth ‘stylized facts’ and to provide

‘fresh’ testable implications (cf. Durlauf & Quah (1998), McGrattan & Schmitz (1998)

and Silverberg & Verspagen (1996)). As argued by a large body of literature (cf. e.g.

Nelson (1998) and Dosi, Freeman & Fabiani (1994)), these difficulties are mainly due to

the large gap still existing between what we historically know about the microeconomics

of technical change, innovation and technological diffusion, and the ways we represent that

knowledge in formal models.

For example, economic growth models do not usually account for both systematic het-

erogeneity observed in technological competencies and the fine details of the mechanisms

governing the dynamics of interactions among economic agents. However, microeconomic

diversity and institutional settings have been shown to affect in non trivial ways the prop-

erties of aggregate dynamics. Hence, any ‘representative agent’ reduction employed by a

good deal of contemporary literature might turn out to be misleading whenever hetero-

geneity and interactions are important factors in explaining economic growth (see Kirman

(1992) and Kirman (1998)).

Furthermore, technological advances typically involve business firms whose R&D activ-

ity is characterized by routinized decisions, trial-and-error, mistakes and unexpected dis-

coveries (cf. Dosi & Lovallo (1998)). Consequently, forward-looking rationality typically

imputed to agents in standard models of growth might not be a good proxy, especially when

firms face complicated environments where novelty endogenously emerges as the outcome

of others’ behaviors (cf. Conlisk (1996) and Dosi, Marengo & Fagiolo (2002)).

In economies populated by heterogeneous agents (e.g. firms) who repeatedly interact,

innovate and adaptively learn about the world where they live in, observed aggregate reg-

ularities can hardly be understood as equilibrium paths (Silverberg & Verspagen (1997)).
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Empirically observed properties of macroeconomic time-series might be instead more fruit-

fully interpreted as ‘metastable’ regularities emerging in a complex evolving system. For

example, the observed regularities displayed by the patterns of self-sustained GDP aggre-

gate growth may be described as emergent properties of an economy composed of many

heterogeneous simple firms interacting in some properly defined technological space (cf.

Lane (1993a) and Lane (1993b)).

Following this intuition, we present a computer-simulated model of endogenous growth

in which simple, boundedly-rational firms produce a homogeneous good employing tech-

nologies located in an open-ended (i.e. without boundaries) productivity space. Technolo-

gies located close to each other have similar productivities, while more distant technologies

perform better on average. Entrepreneurs can either imitate existing practices (similar

to the one they currently master) or locally explore the technological space to find new

and more productive techniques (i.e. innovate). We ask whether (and, if so, in which

technological regimes) such an economy is able to generate self-sustaining patterns of ag-

gregate growth with statistical properties similar to those displayed by empirically observed

time-series.

The paper is organized as follows. In Section 2, we outline in more detail the building

blocks and theoretical conjectures supporting the model described in Section 3. Next, in

Sections 4 through 6, we present an extensive analysis of computer simulations. Section 7

discusses some econometric properties of the simulated time-series. The tension arising in

the model between individual rationality and collective performance is illustrated with a

simple example in Section 8. Finally, Section 9 draws some conclusions and flags research

developments ahead.

2 Decentralized Knowledge Accumulation, Interactions

and Collective Outcomes

A large body of empirically-grounded contributions has recently investigated the main

properties of the processes underlying the emergence of self-sustaining growth patterns.

In a nutshell, two key sets of insights emerge from this literature (cf. Rosenberg (1982),

Freeman (1982) and Dosi (1982)).

First, technological search and knowledge diffusion in presence of dynamic increasing

returns seem to play a primary role among the engines of growth. Technological advances

are endogenously generated through resource-expensive search undertaken by a multiplic-

ity of agents. Search is generally characterized by radical uncertainty and innovative en-

trepreneurs are driven by the belief that “there might be something profitable out there”.
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As agents are generally unable to form probability distributions on the outcomes of their

search efforts, systematic mistakes in innovative search and adoption are very likely.

Second, the process of technical change appears to be driven not only by innovation

but also by time-consuming diffusion (see also Jovanovic & Rob (1989) and Jovanovic

(1997)). Innovations are indeed not entirely appropriable and knowledge progressively

spreads (with some time lags involved) to other agents who might catch-up by investing

in imitation. Knowledge accumulation generally entails dynamic increasing returns at the

level of individual agents. However, radically new technologies typically involve discontinu-

ities and only part of the old knowledge might be useful in the exploitation of subsequent

technologies.

In order to embody the foregoing properties in the present analysis, we will start by

describing search and innovation activities, technological diffusion and knowledge accumu-

lation as direct interaction processes taking place in some (high-dimensional) technological

space (see Kirman (1998) and Chiaromonte & Dosi (1993)). Suppose indeed that the

technologies currently adopted by all firms in the economy, as well as those still to be

discovered, are associated to points of a metric space (e.g. a 2-dimensional regular lattice).

Any metrics the space is endowed with will then metaphorically represent technological

dissimilarity: similar technologies will lie close to each other, while more productive tech-

nologies will be situated far from existing ones. Both imitative and innovative activity

might be therefore represented as an interaction process in which the sets of interacting

units are firms and technologies. Any firm will directly affect the behaviors of other firms

employing similar technologies. Since adopted technologies will typically change in time,

interaction structures (e.g. who interacts with whom) are likely to endogenously change

over time as well.

More precisely, we will employ the following metaphor. Think of the technological

space as an empty, unbounded sea. The notional production possibility set is composed

of a discrete, countable set of production activities (technologies, paradigms, etc.), each of

which can be thought as an island randomly placed in a point of the sea and endowed with

a mine. The economy is populated by a discrete, finite population of firms (or ‘Schum-

peterian’ entrepreneurs) initially distributed across a small subset of islands (i.e. the set of

fundamentals). We assume that an island can be at any point in time exploited by more

than one agent, while each agent cannot exploit more than an island at the same time.

Every agent currently living on an island represents one of the adopters of technology

embodied in it (or, in our metaphor, a ‘miner’) and extracts a homogeneous good (i.e.

GDP). Mining is possibly characterized by increasing returns to scale in the number of

current adopters due to knowledge-accumulation. Since distances between islands in the sea

are a proxy of technological (productivity) differences and the sea is unbounded, notionally
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unlimited opportunities do exist in the economy, albeit at each point in time only a small

subset of mines are known and exploitable, i.e. those which have been operated by any

one firm so far.

We suppose that miners might become explorers by leaving the island they are work-

ing on and traveling around to find still unknown, possibly better, islands. The set of

fundamentals can be therefore enlarged through endogenous innovations. Alternatively,

miners might try to capture informative signals about the location of already known, bet-

ter, islands and decide whether to imitate firms currently working on them. Of course,

this representation of the space of technological opportunities and of the related innova-

tion processes is much more abstract than any particular empirical example. However,

we believe that it captures some of their general features, including the intrinsic uncer-

tainty of search, the idiosyncratic and cumulative nature of technological learning, and the

painstaking patterns of melioration and diffusion of specific bodies of knowledge (i.e. of

technological paradigms).

Within this framework, we will address the following issues. First, we will attempt

to identify conditions under which the economy is able to tackle the trade-off between

‘exploitation’ of existing technologies and ‘exploration’ of potentially superior ones and

to generate patterns of self-sustaining growth1. Second, extensive Montecarlo simulations

will be performed so as to map technological regimes (i.e. strength of path-dependency

in learning achievements, levels of individual willingness to explore, etc.) into aggregate

growth patterns. Third, as a plausibility check, we shall investigate whether the model is

able to generate GDP time-series displaying statistical properties similar to the empirically

observed ones. Finally, we will discuss the conflict arising in the model between individ-

ual rationality and collective economic performance. In particular, we shall investigate a

simple situation wherein boundedly rational firms are replaced by a representative agent

with unbounded computational skills and complete information about the structure of the

economy.

3 The Model

Consider a technological space represented as a 2-dimensional, infinite, regular lattice en-

dowed with the ‘Manhattan’ metrics d12. Time is discrete and the generic time-period is de-

noted by t = 0, 1, 2, .... The economy is populated by a finite set of agents I = {1, 2, . . . , N},
1The exploitation-exploration trade-off in individual decisions (as well as its consequences for aggregate

efficiency) is studied in March (1991).
2The distance between any two nodes (x, y) and (x0, y0) in the lattice is thus: d1 = |x− x0|+ |y − y0|.

The choices of the lattice (and its dimension), as well as that of the metrics, do not crucially affect our
results.

5



N ¿ ∞, and a countable infinite number of islands, indexed by j ∈ {1, 2, . . .}. There is
only one good (GDP), which can be ‘extracted’ from any island.

Each node (x, y) in the lattice can be either an island or not and each island has a size

of one node. Let p(x, y) be the probability that the node (x, y) is an island. We will assume

that p(x, y) = π, all (x, y), where π ∈ (0, 1). Each island j is completely characterized by

its coordinates (xj, yj) in the lattice and by a ‘productivity’ coefficient sj = s(xj, yj) ∈ <+
(i.e. the amount of good which can be extracted if there is only one agent on j).

Each agent i ∈ I is in turn characterized, at each t, by her state ai,t and her position

in the lattice (xi,t, yi,t). The state of an agent ai,t can be: ‘miner’, ‘explorer’ or ‘imitator’,

i.e. ai,t ∈ {‘mi’,‘ex’,‘im’}.
Denote by mt(xj, yj) the number of agents currently working on island j and define an

island j to be currently ‘known’ if mτ(xj, yj) > 0 for at least a τ : 0 ≤ τ ≤ t, i.e. if it

currently hosts some agents or if did host some miners in the past. Accordingly, let the set

of currently ‘known’ islands be defined as:

Lt = {j = 1, 2, ... : ∃ 0 ≤ τ ≤ t : mτ(xj, yj) > 0} (1)

Let us call ‘colonized’ a known island which is currently exploited at t, i.e. an island

j ∈ Lt : mt(xj, yj) > 0. Conversely, all islands which are not in Lt will be ‘unknown’, since

no agent has previously exploited them. Finally, denote the cardinality of Lt by 
t. Let us

turn now to describe how the economy evolves.

3.1 Production

Suppose that at time t agent i ∈ I is a ‘miner’ currently located on island j ∈ Lt with

coordinates (xj, yj). We assume that i will extract, at no cost, an output Qi,t given by:

Qi,t = s(xj, yj)[mt(xj, yj)]
α−1 (2)

where α ≥ 1. Hence, the current total output of island j ∈ Lt will be:

Qt(xj, yj) = s(xj, yj)[mt(xj, yj)]
α. (3)

Total output (GDP) will obviously read: Qt =
P
j∈Lt

Qt(xj, yj).

3.2 Exploration and Innovation

At time t, each miner currently working on island j ∈ Lt decides to become explorer (i.e.

ai,t+1 =‘ex’) with probability ε ≥ 0, where ε is taken to measure the willingness to explore
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of agent i (which in this first approximation is the same for all agents).

If i decides to become explorer, she leaves island j and ‘sails’ around until another —

possibly still unknown — island is discovered. During the search, explorer i is not able to

extract any output and moves through the lattice following the ‘naïve’ stochastic rule:

Prob{(xi,t+1, yi,t+1) = (x, y)|(xi,t, yi,t)} =
1

4
⇔ |x− xi,t|+ |y − yi,t| = 1, all (x, y) (4)

While exploring, each agent carries the ‘memory’ of the last quantity of output produced

in the state of ‘miner’ that is Qi,τ , where τ is the last period of mining before leaving.

The new location of the explorer (xi,t+1, yi,t+1) might obviously be: (i) ‘sea’; (ii) a

‘known’ island j ∈ Lt; (iii) a ‘new’ island j ∈ {1, 2, ...}\Lt. Let us focus on the third case3.

If the node inspected by explorer i at time t + 1 is a ‘new’ island (which happens with

probability π), we assume that the new island j∗ with coordinates (xj∗, yj∗) = (xi,t+1, yi,t+1)

is added to the set of ‘known’ islands, i.e. Lt+1=Lt ∪ {j∗} and 
t+1 = 
t + 1.

In order to capture the crucial distinction between innovations within existing knowl-

edge bases and introduction of radically new ‘technological paradigms’ (cf. Dosi (1982)),

we let the ‘intrinsic’ productivity coefficient of a ‘new’ island j∗ discovered by an explorer

carrying the output memory Qi,τ to be:

sj∗ = s(xj∗, yj∗) = (1 +W ) · {[|xj∗|+ |yj∗|] + ϕ ·Qi,τ +�}, (5)

where W is a Poisson-distributed r.v. with mean λ > 0, � is a uniformly-distributed

r.v., independent of W , with mean zero and variance 1; and, finally, ϕ ∈ [0, 1]. The

interpretation of Eq. (5) is straightforward. The initial productivity of a ‘new’ island

depends on four factors, namely: (i) its distance from the origin; (ii) past ‘skills’ of the

discoverer, i.e. ϕ · Qi,τ (that is, a cumulative learning effect); (iii) a random variable W

which allows for low probability high ‘jumps’ (i.e. changes in technological paradigms);

(iv) a stochastic i.i.d. zero-mean noise � controlling for high-probability low-jumps (i.e.

incremental innovations).

3.3 Interactions, Diffusion of Knowledge and Imitation

Exploitation of existing technologies is not associated to production only. Indeed, miners

might also decide to imitate currently known technologies by taking advantage of infor-

3In the first case (xi,t+1, yi,t+1) 6= (xj , yj) for all j, and ai,t+1 =‘ex’ (i.e. the exploration goes on),
while in the second case, there will be a j ∈ Lt such that (xi,t+1, yi,t+1) = (xj , yj) and hence the explorer
i becomes miner on j ∈ Lt, i.e. ai,t+1 =‘mi’.
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mational spill-overs emanated by more productive islands located in their technological

neighborhood.

More formally, the process of knowledge diffusion and imitation works as follows. Let

mt be the number of ‘miners’ currently present in the economy. At time t, agents mining

on any ‘colonized’ island j deliver a signal which is instantaneously spread in the system.

A signal delivered from (xj, yj) is received by a miner currently located at (x, y) 6= (xj, yj),

independently of all other delivered signals, with probability:

wt(xj, yj;x, y) =
mt(xj, yj)

mt

exp{−ρ[|x− xj|+ |y − yj|]}, ρ ≥ 0. (6)

We call wt(xj, yj;x, y) the intensity of the signal. Notice that wt(xj, yj;x, y) is increasing

in the share of miners working on j and decays exponentially with the distance between

source and receiver.

Furthermore, each signal has a content ct(xj, yj) equal to actual productivity of the

island is emitted by:

ct(xj, yj) =
Qt(xj, yj)

mt(xj, yj)
. (7)

Agent i will simply choose the signal associated to the largest content among all signals

she has received (and randomizing if ties occur).

Let us suppose that the receiver i is a miner on j. If the selected technology h is not

the one she is currently mastering (i.e. h 6= j), she will become an ‘imitator’ (ai,t+1 =‘im’).

She will then move toward the imitated island (one step per period) and following the

shortest path leading to h. Therefore, she will adopt h after k = |xh − xj|+ |yh − yj| time
periods. This allows us to embody in the model the time-consuming nature exhibited by

many processes of technological adoption and diffusion. Finally, once the imitated island

is reached, she will turn again her state into ‘miner’, i.e. ai,t+k+1 =‘mi’. If on the contrary

she chooses to stay on her current island, nothing happens and she will keep working on j

at time t + 1.

3.4 Discussion

Before describing the implementation of the model and discussing the results, some consid-

erations are in order. First, in tune with the philosophy of agent-based and evolutionary

modeling, we start by analyzing a very simple economy populated by naïve agents behaving

according to routinary, myopic rules. For instance, the exploration rule (4) implies that

agents are not aware of (and cannot learn) the fact that islands are on average more and

more productive the further away one goes from the origin of the lattice, as the expected
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location after k periods is simply the starting node:

E[(xi,t+k, yi,t+k)|(xi,t, yi,t)] = (xi,t, yi,t).

Moreover, we make the extreme assumption that the activities of exploration, imitation

and production are costless and mutually exclusive. In fact, miners cease to produce while

imitating and exploring. This can be interpreted as a sort of opportunity cost agents must

bear in order for diverting resources from production to R&D or imitation. In a more

realistic picture, firms should have been endowed with additional decision rules governing

allocation of resources among exploitation and exploration activities (see e.g. Nelson &

Winter (1982)). The strategy of keeping as small as possible the microeconomics of firm

behaviors allows us to focus on the effects of the purported engines of growth only (i.e.

innovation, diffusion, etc.).

Second, the parameters governing production, exploration, innovation and imitation

define easily identifiable technological regimes. In particular, whether ε ∈ (0, 1] or ε = 0
allows us to discriminate between economies in which endogenous innovation is permitted or

not. Furthermore, α tunes the regime of returns to scale in production, with α > 1meaning

increasing returns to scale due e.g. to learning by doing or economies of agglomeration. In

addition, λ and π tune the degree of notional ‘opportunities’ in the economy. Indeed, a large

λ lets average productivity of a newly discovered technology to be sensibly larger than that

associated to currently ‘known’ islands. Conversely, a smaller λ implies search processes

characterized by small improvements upon currently mastered practices (i.e. incremental

innovations). Likewise, a larger π induces a larger average number of per-period discoveries

and thus is associated to economies where technological opportunities are very likely.

Third, the strength of path-dependency in innovation depends positively on ϕ. Large

ϕ0s mean that more skilled ‘explorers’ (i.e. ‘miners’ who have been more efficient in the

past) are likely to discover more productive islands today and therefore to produce more

in the future, thanks to a sort of ‘learning-to-learn’ mechanism à la Stiglitz (1987).

Fourth, the process of knowledge diffusion governs the interaction regime in the model

(see Fagiolo (1998) and Kirman (1998)). Indeed, the behaviors of any firm is directly

affected by the information signals emanated by agents employing similar technologies.

The parameter ρ ≥ 0 tunes the ‘degree of locality’ of the interactions: the larger ρ, the

more the process of diffusion of knowledge is local, since signals will tend to reach, in

probability, only ‘nearest neighbors’. Two extreme cases are: (i) ρ = 0, i.e. interactions

are global, as information diffusion does not depend on the distance between source and

receiver; and (ii) ρ =∞, i.e. no signals are spread and interactions are shut down.

9



3.5 Initial Conditions, Timing and Implementation

Suppose that at time t = 0 a set of initial islands L0 (together with their coordinates

in the lattice) is given and that all agents are randomly distributed across the 
0 ‘mines’.

Assume also that the intrinsic productivity coefficients of any initial island j ∈ L0 is simply

s(xj, yj) = |xj|+ |yj|.
In each t = 1, 2, ... , given current agents’ coordinates and states, the timing of decisions

and events occurring in a generic iteration (i.e. in the time interval (t − 1, t] ) runs as
follows. First, agents take their decisions: miners update output and choose whether to

start searching; explorers select the next portion of the lattice to explore (and, possibly,

they find a new island); imitators keep approaching the technologies they have chosen to

adopt. Second, interactions take place through information diffusion. Finally, all time-t

system variables are accordingly updated and the next iteration starts.

The model is an example of a so-called ‘artificial economy’ (cf. Lane (1993a) and Epstein

& Axtell (1996)). Unless the focus is not on particular stationary cases (e.g. ε = 0), one

is bound to analyze its main properties by resorting to computer simulations. Analytical

solutions are not indeed achievable for the full-fledged form, because of the underlying

complication of the stochastic processes updating micro — and accordingly macro — system

variables.

In the next sections we will present an overview of simulation results4, with particular

emphasis on the aggregate properties of the simulated time-series of the log of GDP, i.e.

q(ω) = {logQt, t = 1, ..., T ;ω}, where ω is a point in the parameter space Ω, that is:

ω ∈ Ω ≡ {(ρ, λ, α, ϕ, π, ε, N, T ) ∈ <2+ × [1,∞)× [0, 1]3 × {1, 2, ...}2} (8)

To begin with, we will analyze how the model behaves in some ‘benchmark’ parametriza-

tions, in order to assess the role played by knowledge-specific increasing returns, imitation

and exploration in the dynamics of the economy. In particular, we will start by addressing

the question whether the model is able to display patterns of persistent growth and — if so

— under which behavioral and system parametrizations (especially concerning the degree

of ‘open-endedness’ of the economy, as well as innovation and diffusion rates).

4For a thorough discussion of the results presented in the following Sections and for extensions of the
model, cf. Fagiolo (2000).
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4 The Emergence of Self-Sustained Growth: Bounded

vs. Open-Ended Economies

A key feature of the model resides in its ability to allow for an endogenous evolution of the

set of fundamentals of the economy. But, in the first place, what happens if one bounds,

to some extent, the dynamics governing the progressive enlargement of the technological

frontier? Put it differently, is the economy able to generate patterns of self-sustaining

aggregate growth if one considers stationary environments where agents behave on the

grounds of a fixed set of fundamentals?

The answer to this question in no. Too see this, let us first analyzing the benchmark

case of a ‘bounded’ economy (i.e. one in which Lt ≡ L, ∀t) and considering two distinct
setups.

4.1 Bounded Economies without Exploration

Assume first no possibility of exploration whatsoever, i.e. ε = 0. In this setup, agents

can exchange information about a fixed set of technologies, but they cannot endogenously

introduce innovations in the system. To study the behavior of the system, we can focus,

without loss of generality, on economies composed of only two islands, i.e. |L0| = 
0 = 2.

In this case we may neglect any spatial consideration and suppose that the productivity

coefficients (s1, s2) ∈ <2+ also represent the technological distance between islands. More
precisely, let (s1, s2) = (1, s), s = 1, 2, ..., and suppose that if a miner working on island

j ∈ {1, 2} at the beginning of time t−s decides to imitate island j0 6= j, then she will reach

j0 at the end of time t−1 and start producing at time t. Island 2 plays here the role of the
‘best practice’ for s ≥ 2, while the case s = 1 depicts the benchmark case of homogeneous
technologies.

In either case, the dynamics of the economy is entirely driven by the process of infor-

mation diffusion (cf. Section 3.3), until one out of the two technologies, say j, manages

to capture all N agents. In that case, no signal can be emitted by the other island and

therefore the economy locks-in at the steady state where total output is Q∗ = sjN
α. An

example of the behavior of the time-series qt is shown in Figure (1a).

As intuition suggests, however, path-dependency entailed by increasing returns will

tend to drive all agents, through waves of imitation, toward the island characterized by

the actual (not initial) highest productivity. This in turn implies non-ergodicity in the

stochastic process governing output evolution and, consequently, potential inefficiency.

More formally, defineMjt as the random variable: “number of agents ‘mining’ on island

j at time t”, j ∈ {1, 2}. It can be easily shown (see Fagiolo (2000) for details), that, if

11



s ≥ 2, M t = {(M1t,M2t), t ≥ 1} is a non-stationary, aperiodic Markov process with two
absorbing states m+ = (0, N) and m− = (N, 0).

Moreover, let ps−(m0;α, ρ) be the absorption probability in island 1, i.e. the probability

of being absorbed in the inefficient limit state if s ≥ 2 given m0 = m10 ∈ {1, . . . , N − 1}
and system parameters. Simulations indicate that ps−(m0;α, ρ) is non-increasing in s and

ρ and non-decreasing in m0 and α. Figures (1b) and (1c) show examples of the estimation

of ps−(m0;α, ρ) for s = 1, 2, as (m0;α, ρ) vary in the relevant parameter space. Notice that

when the initial number of ‘inefficient’ adopters is below a certain threshold (which itself

increases with the strength of returns to scale α and the technological gap s), the system

will inevitably converge to the efficient outcome no matter how large are the incentives to

stick to the initial choice. However, when m0 goes through that threshold, the probability

of ending up in the inefficient state becomes strictly positive and grows as the incentives to

knowledge accumulation increase. In the limit, when only a few miners are initially aware

of the superior technology and returns to scale are increasing (α > 1), the probability

that the system is absorbed by island 2 converges to zero. Finally, when s ≥ 2, the more
information diffusion is local (i.e. the greater ρ), the smaller the average number of miners

which leave their islands and, consequently, the less likely the event that waves of imitation

triggers a migration from the efficient technique toward the inefficient one — see Figure (1d).

Therefore, for a given (m0, α), the probability of being absorbed in island 1 will decrease

with ρ (increasingly fast as s grows).

4.2 Bounded Economies with Exploration

In a setup without exploration, non-ergodicity of the stochastic processM t implies that the

long-run steady-state GDP level is determined by unpredictable, early waves of imitation

(cf. David (1992)). As it happens in Polya urn schemes (cf. Arthur (1994)), the system

locks-in in the long run. However, in Arthur’s model lock-in occurs because population

size increases without bound. This implies that the perturbations introduced by individual

choices become irrelevant in the long-run. Conversely, in the reduced form of the model

presented here the population size is constant and perturbations die away as soon as an

island manages to capture all miners.

In order to explore what happens when the perturbation rate does not vanish, we study

a second benchmark setup where: (i) the probability of finding new islands (that is the

innovation probability) is π = 0 as before; (ii) exploration (as well as information diffusion)

is permitted (ε > 0), but only inside the initial set of ‘knowledge bases’.

In this economy miners can become explorers with some probability ε > 0, but they will

only be able to ‘sail’ within the box containing all initial islands (or, equivalently, on a finite
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regular lattice with periodic boundaries). This implies that, for a given population size, the

lock-in of the system will not generally occur, since there is always a positive probability

that ‘non conformist’ decisions will induce phase-transitions in the system. Notice that

here we allow for a high potential source of ‘irrationality’ and ‘idiosyncrasy’ in individual

behaviors, because agents could always decide to leave the island they are working on, even

though all agents are mining on it.

In a two-islands setup, the economy is characterized as before by the Markov pro-

cess M t, together with the stochastic process describing the current number of explorers.

However, unlike the previous case, transition probabilities are not only influenced by the

propensities to imitate technologies with higher revealed productivity, but also involve a

certain probability of ‘exploring’. Islands represent here ‘basins of attraction’ among which

the system continually oscillates5. The stochastic process of exploration/imitation yields

persistent output fluctuations but only transitory growth. Over finite time periods, increas-

ing returns and knowledge diffusion induce agents (on average) to move toward currently

more efficient islands — cf. Figures 2(a) and 2(b) for the two cases s1 = s2 and s1 < s2.

However, exploration allows with positive probability ‘de-locking’ bursts, also toward no-

tionally less efficient islands. In a sense, persistent fluctuations are in this case generated

by a problem of imperfect Schumpeterian coordination in presence of dynamic increasing

returns to learning.

4.3 Exploring in an Open-Ended Economy: Some Qualitative

Results

In both stationary environments analyzed so far, self-sustaining growth emerges only if

one superimposes an exogenous Solow-like drift on the best-practice production function.

Otherwise, as long as agents behave on the grounds of fixed fundamentals, economic growth

is a transient phenomenon.

Consider now the more general case where ε > 0 and the economy is open-ended

(i.e. agents explore in a technological space without boundaries). Since firms are able to

endogenously induce a drift in the technological frontier, the economy exhibits, for a wide

range of parameters, patterns of self-sustaining (exponential) growth, cf. Figure 36.

In all these cases, many other interesting regularities do actually arise. Suppose to start

5The properties of the stochastic process governing the evolution of the system are qualitatively similar
to those discussed in Kirman (1993). For instance, when the ratio between willigness to explore and the
size of the population (ε/N) decreases, the system tends to spend an increasing number of time periods
close to the absorbing states of an ε = 0 economy.

6All results reported in this section refer to the parametrization: π = 0.1, ρ = 0.1, ε = 0.1, λ = 1,
ϕ = 0.5, N = 100, α = 1.5, T = 1000. Cf. Section (5) for an extensive Montecarlo investigation of the
parameter space.

13



from a fairly uniform distribution of N agents working on the initial set of ‘known’ islands

L0. First, the number of currently ‘known’ islands linearly increases in time. However, both

the percentage of ‘known’ islands and the number of ‘colonized’ technologies fall quickly and

then follow a stationary process. This suggests that a typical evolution of the system runs

as follows. In the first time periods, diffusion of knowledge drives agents to concentrate on

a relatively small cluster of ‘known’ islands which, thanks to dynamic increasing returns,

tend to be the most efficient ones. Relatively ordered spatial patterns of colonized islands

are then likely to emerge, due to the local nature of both the exploration and imitation

processes. In Figure (4a), the path of expansion of a ‘best practice’ proxy b∗t is plotted
7,

together with four ‘snapshots’ showing the locations of currently ‘colonized’ islands in the

positive orthant of the technological space for different time periods t = 0, 500, 1000, 1500.

While in the early time periods of the simulation small (stochastic) events select the region

of the lattice where exploration will be initially carried through, the path-dependent nature

of the overall process tends to keep the economy inside that region. Therefore, ‘rare’ events

(i.e. exceptional discoveries), feeding path-dependently upon diffusion and incremental

innovations thereafter, might be able to trigger a self-reinforcing process whose ultimate

outcome is a pattern of exponential growth. Indeed, some ‘lucky’ explorers are likely to

find intrinsically superior islands outside the ‘realized economy’. Although they might

not be able to adequately exploit the opportunities of the ‘new’ island by themselves, the

‘extraordinary’ nature of their discovery might nevertheless induce other agents to move

there in the future and, consequently, increase its actual productivity. This allows the

system to avoid lock-in, provided that ε > 0 and the technological regime is characterized

by sufficiently strong opportunities (see Section 5 below).

Second, in accordance with empirically observed patterns of innovation, diffusion and

adoption (see e.g. Dosi (1982)), the model generates s-shaped diffusion curves in the number

of agents currently mastering a given technology. Moreover, because many techniques

are allowed to coexist over the same time intervals (if they exhibits sufficiently similar

realized productivities), one usually detects overlapping diffusion patterns as those depicted

in Figure (4b). As the set of current available technologies keeps enlarging due to the

unceasing process of exploration and innovation, firms migrate toward more productive

islands, entailing processes of diffusion which occur at different rates. These rates typically

depend on the characteristics of the technologies involved in the process, the incentives

provided by the economic environment and the features of the adopters themselves. In very

general terms, the speed at which innovations are adopted (and replaced) is increasing in

7We define b∗t = (x∗t , y∗t ), where x∗t = max{|xjt|, j ∈ Lt} and y∗t = max{|yjt|, j ∈ Lt}, i.e. the vertex
of the smallest rectangle containing all currently known islands whose distance from the origin is the
maximum one. Notice that b∗t does not necessarily coincide with a known island.
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both their absolute initial productivity distance and the extent to which interactions are

global. Also, if information is diffused not too locally, radical innovations tend to retain

their leadership much longer than incremental ones. Yet, the rate at which innovations

are substituted is decreasing with the average willingness to explore of the agents in the

system.

5 The Sources of Self-Sustaining Growth

The basic conclusion stemming from the analyses presented so far is that patterns of

exponential growth might be endogenously generated in the system only if firms are able

to explore in an open-ended technological space. In this Section, we study by means

of extensive Montecarlo (MC) exercises how system parameters affect the distribution of

long-run average grow rates (AGR):

gm(ω) =
qm,T − qm,0

T
, (9)

where m = 1, ...,M is the MC run, T is the econometric sample-size, ω ∈ Ω is defined in
eq. (8) and qm,t is the log of aggregate GDP at time t. In particular, we will ask how the

overall performance of the economy, as measured by the mean of AGR:

gM(ω) =M−1
MX

m=1

gm(ω), (10)

changes in different technological and learning regimes (i.e. in different regions of the

parameter space)8.

A first clear-cut result that MC simulations point out is that — everything else being

constant — gM(ω) appears to be positively influenced by: (a) the extent to which the

system is fueled with innovation ‘opportunities’ (i.e. larger λ and π); (b) the magnitude of

path-dependency affecting the innovation process (i.e. larger ϕ); (c) the degree of globality

of the information diffusion in the interaction process (i.e. smaller ρ).

This claim is supported by the surfaces in Figures (5a) and (5b) where, for a given

choice of α and ε, we plot MC mean of AGRs against (log10 ρ, ϕ) in two distinct oppor-

tunity setups (i.e. for different values of π and λ). Notice that, as typically happens in

8All results presented below are not affected by the particular choice of the AGRs. Indeed, employing
alternative specifications as g0m = [(qm,T/qm,0)1/(T+1) − 1] or g00m = [(Qm,T/Qm,0)1/(T+1) − 1], will only
change the scale of attainable growth rates. Moreover, we have chosen values of T in such a way that
recursive Montecarlo mean and variance of AGR converge. Therefore, properties about gM (ω) are not
influenced by the econometric sample size. Finally, in the chosen range for T and M , the Montecarlo
variance of AGR is typically negligible. This allows us to avoid reporting confidence intervals for gM (ω).
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evolving complex systems (see Batten (2000)), the causal relationships between system pa-

rameters and aggregate variables are characterized by threshold effects and non-linearities

(see Figures (5c) and (5d)). On the one hand, path dependence linearly affects the mean of

AGRs. On the other hand, as one gradually increases the rate of information diffusion, an

abrupt change in AGRs usually arises around ρ∗(ω) ∼= 1.0. If ρ < ρ∗(ω), the performance

of the system is barely influenced by ρ. When ρ > ρ∗(ω), small changes in the degree of

locality of interactions bring about dramatic consequences in the mean of AGRs.

Let us turn now to study how the willingness to explore of the system (ε) affects AGRs.

As intuition suggests, larger AGRs could be attained if the economy somehow manages to

optimally solve the trade-off between exploitation and exploration (cf. March (1991) and

Allen & McGlade (1986)). However, it turns out that the levels of willingness to explore

required to optimally balance between exploitation and exploration strongly depend on the

technological and learning regime which characterize the economy. As illustrated in Figures

(6a-d), four distinct regimes emerge in setups where returns to scale are increasing (α > 1).

When no interaction takes place (ρ = ∞) and opportunities are low, higher exploration
rates are totally harmful because agents hardly find radically new practices and, if they

do, they cannot benefit from increasing returns to scale. Hence gM(ω) monotonically

decreases with ε — no matter the degrees of path-dependence (cf. Figure (6a)). Conversely,

economies in which information is globally diffused (ρ = 0) and innovators strongly benefit

from learning by doing (high ϕ) typically maximize their AGR when all agents commit

themselves to exploration and production on new islands only lasts one period (see Figure

(6b)). Moreover, if information is spread locally — i.e. 0 << ρ <<∞ as in Figure (6c) — the

overall performance of the economy increases either if few explorers are around or if there

are very many: in the first case, a large population of miners can continually exploit both

increasing returns to scale and incremental, path-dependent, innovations through small-

scale migrations driven by local imitation. In the second case, thanks to local information

diffusion, small clusters of ‘colonized islands’ can immediate benefit from the large-scale

introduction of innovations.

The most interesting regime, however, arises in all other ‘intermediate’ settings where

MC mean of AGRs are maximized by an interior value of ε, cf. Figure (6d). The intuition

here corresponds to that suggested in March (1991, p.71). As he points out, systems

that engage in exploration to the exclusion of exploitation “exhibit too many undeveloped

new ideas and too little distinctive competencies”, while, at the opposite extreme, they

“are likely to find themselves trapped in sub-optimal stable equilibria”. In our model,

this condition applies in two setups, namely: (a) agents face very large opportunities but

they are unable to completely exploit dynamic increasing returns because information is

not spread around; (b) interactions are global but knowledge does not accumulate as the
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economy evolves. In both situations, higher economic performances cannot be attained

by entirely committing either to technological search or to production. As a result, losses

stemming from the exploitation-exploration trade-off are reduced by an appropriate balance

between the two forces9.

This point arises even more strongly when one allows for heterogeneity in agents’ will-

ingness to explore. Consider for instance an economy in which an initial distribution

E = (ε1, ε2, . . . , εN ), εi ∈ [0, 1] and εi0 6= εi00 for some i0 6= i00 is given. To keep things

simple, let us suppose that E is such that εi = 0, i = 1, 2, . . . , bµNc and εi = ε0,

i = bµNc + 1, . . . , N , where µ ∈ [0, 1] and ε0 ∈ (0, 1]. The aggregate consequences of
increasing µ’s (in terms of economy’s AGRs) are once again strictly related to the han-

dling of the exploitation-exploration trade-off, which in turn depends on the prevailing

technological and institutional regimes, cf. Figures (7a-c). Again, in all ‘intermediate’

setups described above, AGRs are maximized by some 0 < µ∗(ω) < 1, with poor perfor-

mances when the economy commits either small or too many resources in the exploration

of unknown knowledge bases.

6 Growth Rates Volatility and System Performance

Higher average economic performances are generated in the model if the economy is gradu-

ally injected by increasingly powerful sources of growth (i.e. stronger increasing returns to

scale, more global knowledge diffusion, higher path-dependency and technological oppor-

tunities). It is then of interest to assess how the volatility of aggregate performances (both

across MC samples and within time-series realizations) is affected by system parameters

governing these forces.

Despite what one could have expected, patterns of self-sustaining growth characterized

by higher AGRs are not generally associated with overly increasing levels of growth rates

volatility. On the one hand, a strong positive correlation emerges between gM(ω) and MC

sample standard deviations:

σgM (ω) = [M
−1

MX
m=1

g2m(ω)− g2M(ω)]
1
2 , (11)

so that the latter appear to be monotonically increasing with λ, π, ϕ and−ρ, everything else

9Simpler patterns arise when one analyzes how different regimes of returns to scale in production
affect economic performance. When interactions are shut down (ρ = ∞), MC means of AGRs tend to be
decreasing with α when opportunities are low (and only mildly increasing for large α’s when they are high).
Conversely, if information is globally diffused, AGRs are monotonically increasing in α for any (λ, π) and
ϕ.
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being constant10. On the other hand, MC sample standard deviations never ‘explode’ as

one increases the strength of the sources of growth. Therefore, despite the self-reinforcing

nature of the mechanisms triggering economic growth in the system (i.e. exploration,

innovation and more efficient production), the model yields sufficiently ordered growth

paths, which turn out neither to overlap nor to converge as long as one considers sets

of GDP time-series generated by points in the parameter space far enough from each

other. To illustrate this property, Figure 8 plots time-series describing the 5% and the 95%

percentiles of the MC distributions qt(ω) = {qm,t(ω), m = 1, . . . ,M}, as t = 1, . . . , T , in

four different parameter setups (M = 10000). Notice that even in a global information /

high opportunities setup, the band including the 90% of MC observations does not widen as

T grows. Moreover, 90% confidence intervals do not overlap even for very small econometric

sample sizes.

Let us turn now to the properties of the within-sample volatility of growth rates time-

series (GRTS) hm(ω) = {hm,t(ω), t = 1, . . . , T}, where:

hm,t(ω) =
qm,t − qm,t−1

qm,t−1
. (12)

Here a first important result is that, unlike MC sample standard deviations, self-sustaining

growth does not always imply a larger volatility in GRTS (for a given econometric sample

size T ), as measured by the MC mean of its standard deviation:

σ(hm(ω)) =

vuutT−1
TX
t=1

h2m,t(ω)− [T−1
TX
t=1

hm,t(ω)]2. (13)

In particular, when radical innovations are very likely, setups typically yielding self-sustaining

growth (e.g. small ρ’s, large ϕ’s) are characterized by a lower magnitude of average volatil-

ity, whereas economies usually generating stationary GDP time-series or very mild growth

display a higher GRTS variation — cf. Figure (9a).

Even more unexpectedly, persistently higher AGRs seem to be attained by the system

through a process characterized by GRTS volatility decreasing in time (i.e. across subse-

quent phases of development). To illustrate this property, consider — as done in Figure

(9b) — four prototypal environments yielding: (a) stationary GDP time-series; (b) levels

of GDP evolving around a S-shaped trend; and self-sustaining growth emerging from (c) a

low opportunities setup; or (d) a high opportunities setup. As one takes into account the

time evolution of MC mean of the distributions of recursive standard deviation of GRTS

(i.e. computed over enlarging econometric sub-samples {T0, T0+1, . . . , T}, for T = T0+20,

10For a similar property displayed by actual time-series in a cross-section of countries, cf. Fatas (2000).
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T0+21, . . . , T and T0 = 50) a striking pattern arises. Indeed, recursive standard deviation

of GRTS appears to behave as T
β−1
, β > 0, in each of the above environments. However,

while in the stationary GDP case one has 1 ≤ β < 2, as soon as some evidence of persistent

growth emerges in the system, β becomes less than unity and recursive standard deviations

turn out to be monotonically decreasing toward some positive constant level. In general, a

negative correlation emerges between β and the overall performance of the economy: the

more one fuels the system with opportunities and path-dependency, the higher the rate at

which GRTS volatility, as measured by average recursive standard deviation, decreases in

time.

Therefore, the model seems to account for the appearance, over finite time periods,

of distinct ‘phases’ of development. Under structural conditions above certain thresholds,

the economy displays an aggregate dynamics wherein phases of almost steady positive

growth rates are punctuated by temporary slowdowns. Exponential growth thus emerges

as the outcome of a process leading to ‘ordered’ GDP time-series characterized by fairly

moderate variability both across independent histories and, more importantly, within the

sample path.

7 Statistical Properties of Simulated GDPTime-Series

The foregoing exercises have attempted to shed some light on the mechanisms underlying

the emergence of self-sustained growth in the model. In this Section we will ask whether

(and if yes, under which technological regime) the model is able to generate simulated

GDP time-series which display statistically properties similar to those empirically detected

in actual output time-series (e.g. non-stationarity, auto-correlation in output growth, per-

sistence of oscillations, etc.).

Let us start to address this ‘exercise in plausibility’ by noticing that (when they arise)

patterns of self-sustaining growth are always associated in the model to ‘difference station-

ary’ log(GDP) time-series (as opposed to trend-stationary ones). In fact, according to stan-

dard ADF tests — and irrespective of the employed Dickey-Fuller regression specification —

one cannot reject the null of a unit root (at 5%), which, on the contrary, is systematically

not accepted for both first differences ∆qm,t and growth rates hm,t = ∆Qm,t/Qm,t−111.

Even more interestingly, we find that the ways in which system parameters affect the

likelihood of generating I(1) time-series (i.e. patterns of self-sustaining growth) are very

similar to the ways in which system parameters affect system performances (i.e. mean of

AGRs). Indeed, the behavior of MC mean of ADF(1) test statistics t1(qm,t(w)) mimics the

11For a critical discussion on trend vs. difference stationarity and drawbacks of ADF tests, cf. Fagiolo
(2000).
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one found for MC mean of AGRs as one tunes the relevant system parameters. As Figure

(10a) shows, t1(qm,t(w)) are indeed increasing exponentially with ρ and linearly with ϕ —

for any given levels of the opportunity setup (λ, π), willingness to explore (ε) and returns to

scale (α). Consequently, the null hypothesis (i.e. presence of a unit-root in the log(GDP)

time-series) is accepted with an increasing MC frequency as one tunes up the sources

of growth. Accordingly, the portion of the (ϕ, log10 ρ)-plane containing MC frequencies

of the ADF(1) test acceptance greater than 90% is larger the greater the magnitude of

opportunities. In fact, a sort of threshold emerges in the (ϕ, log10 ρ)-plane: beyond some

given combinations of path-dependency and globality of interactions the model delivers

almost always difference-stationary log(GDP) time-series, cf. Figure (10b). Results in line

with the analysis in Section 5 also arise when one investigates how the MC acceptance

frequency of the ADF tests varies with the magnitude of the willingness to explore (ε).

Again, in all those cases whereby the economy is characterized either by global interactions

and low path-dependency or by no information diffusion and high opportunities, the system

seems to be able to generate self-sustaining patterns of growth only if a suitable balance

between R&D and production is achieved — cf. Figure (10c).

As a result, the model is able to deliver quite precise predictions about how technological

regimes affect both system performances and the likelihood that a self-sustaining process

of growth is triggered in the economy.

In addition to all that, the model is able to robustly generate growth rate time-series

whose autocorrelation functions (ACF) are characterized by positive, statistically signif-

icant, terms over short horizons and declining toward zero over higher lags12. Figures

(11a-b) shows examples of MC mean (over M = 1000 replications) of the ACF of GDP

growth rates and the associated estimates for the spectral densities in some revealing pa-

rameter regions yielding I(1) patterns of log(GDP) time-series. In particular, whenever

interactions are global and opportunities are large enough, positive shocks to output growth

rates coming from innovations are almost instantaneously spread in the economy, leading

to high and positive first- and second-order autocorrelation coefficients, followed by not

significant values over longer horizons. Conversely, when interactions are local and oppor-

tunities are low, GDP growth does not display ACF coefficients significantly different from

zero (as they almost always fall inside 5% Bartlett confidence bands). Accordingly, spectral

densities, albeit much smoother than empirical ones, usually display a peak around low

frequencies and then tend to decrease as the length of the period becomes small.

As a further test of the ability of the model to generate simulated output growth

12This is indeed one of the few unquestioned ‘stylized facts’ in the business cycle literature. This shape
for the ACF of quarterly GDP growth rates has been observed in almost all Countries, with some notable
exceptions: see Campbell & Mankiw (1989).

20



time-series with statistical properties similar to the empirically ones, we have investigated

whether GDP fluctuations are characterized by a permanent component and, if so, how big

such a component might be. Following Campbell & Mankiw (1987) and Cochrane (1988),

we have computed non-parametric measures of persistence of GDP fluctuations based on

sample estimates of auto-correlations of output growth (cf. the Appendix for details).

As Table 1 shows, both measures decrease as the window size k grows, but they gener-

ally stabilize around values exceeding unity in all experimented parametrizations. Despite

the well-known drawbacks of this estimation procedure, our results, quite in tune with

the findings of Campbell & Mankiw (1989), imply that simulated GDP time-series do not

appear to revert toward any smooth exogenous trend and exhibit very persistent fluctua-

tions: a 1% shock to output should indeed change the long-run univariate forecast of GDP

levels by far more than 1%. Also, persistence turns out to be higher the more interactions

are global, the larger the likelihood of ‘radical’ innovations and the smaller the density of

islands in the economy.

Finally, the model, notwithstanding increasing returns to learning achievements, does

not display the well-known ‘size-effects’ characterizing many endogenous growth models

(see Jones (1995) and Jones (1999)). Figure 12 depicts the behavior of MC mean of AGRs

as a function of the population size (N) and econometric sample size (T ), in a parameter

setup usually yielding self-sustaining growth. If any, a weak evidence on falling AGRs

the larger the size of the economy for a given time-length emerges. Moreover, AGRs do

not display any monotone pattern when N and T both increase. The intuition behind

this result is that, while ceteris paribus larger economies face potentially higher returns to

knowledge exploitation, it also holds that they must cope with higher ‘adjustment lags’

to new knowledge bases (as proxied in our model by the time it takes to move a certain

fraction of the N agents toward superior islands).

8 Individual Rationality and Collective Outcomes

Given the rather heroic assumptions made on the rational bounds of the agents populating

our economy, the model is particularly suited to explore potential conflicts between degrees

of individual rationality and collective performances. For instance, what happens to average

growth rates if the population of our naïve entrepreneurs is injected with more ‘rational’

players, which behave on the grounds of some (appropriately defined) expectations about

the net returns from exploration?

In order to illustrate this point, consider the following simple example. Assume an

economy characterized by: (i) constant returns to scale in production (i.e. α = 1); (ii) no

knowledge diffusion (i.e. ρ =∞); (iii) no path-dependency in innovation (i.e. ϕ = 0); (iv)
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all N agents working at time t = 0 on a single island (
0 = 1) with coordinates (x∗, y∗) and

initial productivity s∗ = x∗ + y∗; (v) a constant positive per-period ‘transportation’ cost

β > 0, which explorers must pay during their search. As far as behavioral assumptions

are concerned, let us concentrate on two different settings, namely: (a) the population

is composed of N agents behaving according to the rules defined in Section 3; and: (b)

the population is made of N copies of a ‘representative individual’ (RI), with unbounded

computational skills and complete information. In particular, assume that the RI knows:

(i) the coordinates (x∗, y∗); (ii) the system parameters; (iii) the model of the economy.

Although the RI is aware that, on average, the initial productivity of a new island is

increasing in its distance from the origin, she does not know where new islands are actually

located (i.e. the RI does not have rational technological expectations). Therefore, assume

that if she is exploring around the node (x, y), she will make use of a more ‘rational’

exploration rule putting equal probability on the nodes (x + 1, y) and (x, y + 1). Finally,

suppose for simplicity that the intertemporal discount rate is zero.

At time t = 1, the problem for the RI is to decide whether to continue to produce

the good at time t = 2 or to start exploring. In the first case, she will get a per-period

net output from mining equal to QM = s∗. In the second case, the expected per-period

net output from exploration will be: QE = [(1 + λ)(s∗ + τ ) − βτ ]/τ , where τ = 1/π is

the expected length of exploration (or, equivalently, the expected distance between (x∗, y∗)

and a new island). Then, the RI will decide to remain on island (x∗, y∗) if and only if

QM > QE, i.e. iff:

π <
1

1 + λ
− 1

s∗
+

β

(1 + λ)s∗
= π∗(β, λ, s∗) (14)

As one can easily check, π∗(β, λ, s∗) is increasing in β, decreasing in λ, and increasing in

s∗ if λ > β − 1 (i.e. if opportunities are large enough compared to ‘transportation’ costs).
Notice that if s∗ →∞ the RI will always stay on (x∗, y∗), while if λ→∞ she will always

leave.

Consider now, for any value of s∗, the set of (β, λ) satisfying Eq. (14) for some π ∈ (0, 1).
In such a parameter region, the RI will decide to continue to work as a ‘miner’ and get

a constant output QM = s∗. On the contrary, any economy characterized by the same

(β, λ, π, s∗) and composed of myopic agents behaving as in setup (a) above (cf. Section

3), will face a rather ‘poor’ environment, in which there is neither knowledge diffusion,

nor path-dependency in innovation, nor increasing returns to scale. Furthermore, let us

assume that our ‘naïve’ agents are characterized by a very low ‘willingness to explore’ (i.e.

ε = 0.05). Notwithstanding all that, as Figure 13 shows, the economy is able to get a

per-capita net output persistently greater than QM .
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Thus, even in this very simple setting, higher collective performance are generated

despite (or thanks to) ‘irrational’ individuals. Notice that this property adds to another

one shared with ‘new growth’ literature (cf. Aghion & Howitt (1992)), according to which

in presence of externalities or dynamic increasing returns a systematic divergence between

endogenously generated growth rates and socially optimal ones is likely to emerge.

9 Conclusions

The paper presents a simple model in which self-sustaining growth endogenously emerges,

under suitable technological and behavioral conditions, as the result of imperfect coordi-

nation among stylized, boundedly-rational, heterogeneous, firms locally interacting in an

open-ended technological space.

The model shows that the very possibility of notionally unlimited (albeit unpredictable)

technological opportunities is a necessary condition for patterns of persistently fluctuating

exponential growth to be generated in the economy.

In that circumstance, exponential growth is attained whenever technological opportu-

nities (as captured by both the density of ‘islands’ π and the mean of Poisson jumps to

radically new paradigms λ), path-dependency (i.e. the fraction of idiosyncratic knowledge,

ϕ, that agents are able to carry over to newly discovered technologies) and globality of in-

teractions in the information diffusion process (−ρ), are beyond identifiable thresholds. In
that region of the parameter space, the system goes through subsequent phases of develop-

ment and exhibits ordered GDP time-paths characterized by small growth-rates volatility.

Furthermore, the overall performance of the economy appears to be monotonically increas-

ing in any of the latter sources of growth, with the degree of globality of interactions

engendering a strong threshold effect in the average performance of the system.

A trade-off between exploitation of the fundamentals and exploration of still unknown

technologies clearly emerges, however, when one investigates how growth is affected by the

propensity to explore (ε). In well-defined technological regimes, the system generates self-

sustaining patterns of growth and higher overall performances only if a suitable balance

between R&D and production is achieved.

As mentioned, the model could be considered as a sort of ‘reduced form’ evolutionary

model, with an almost exclusive emphasis upon the learning/diffusion aspects of economic

evolution, while repressing the competition/selection features of market interactions. Al-

though the limitations stemming from this assumption are quite obvious (for example, the

‘microeconomics’ is bound to be rather limited), the model is nonetheless able to generate

GDP time-series with statistical properties which robustly replicate a few of the stylized

facts of macroeconomic dynamics (including GDP growth autocorrelation structure and

23



persistence of fluctuations). Moreover, it does so in ways that are in tune with general mi-

croeconomic stylized facts, such as time-consuming diffusion of innovations and persistent

asymmetries in efficiency among agents. All this represents indeed a significant interpre-

tative advantage vis-à-vis ‘new-growth’ theories. Furthermore, unlike most of the latter,

the foregoing model is also able to avoid size effects (i.e. the positive influence of the sheer

size of an economy upon its growth).

Many extensions of the model can be conceived. First, one should try to explore how the

results presented here change with the introduction of a demand side (and, thus, of some

‘Keynesian’ features). Second, one might likewise study the relevance of adding explicit

selection processes affecting the frequency in the population (i.e. the size) of different agents

which are ‘carriers’ of different technologies. Finally, given reasonable rules of interaction

between economies, one may also investigate convergence-divergence issues across-countries.
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Appendix

Assume that the change in log of GDP ∆qt follows a stationary ARMA process, so that
∆qt = A(L)νt, with νt a white-noise process. Following Cochrane (1988), Campbell &
Mankiw (1987) and Campbell & Mankiw (1989), we computed estimates of the following
persistence measures:

V k =
1

k + 1

V ar(qt+k+1 − qt)

V ar(qt+1 − qt)
=

"
1 + 2

kX
j=1

µ
1− j

k + 1

¶
ρj

#
,

where ρj is the j-th autocorrelation coefficient of ∆qt and A(1) = 1 +
∞P
j=1

Aj .

If {qt} were even more persistent than a random walk, both A(1) and V k would exceed
unity. Moreover, as:

A(1) =

r
V

1−R2

where V = limk→∞V k ≡ 1 + 2(ρ1 + ρ2 + . . .) and R = 1− V ar(νt)/V ar(∆qt), estimation
of V k and A(1) can be done non-parametrically employing sample estimates of the auto-
correlation function, i.e. rj = γ̂(j)/γ̂(0). An estimate of V k (consistent for V if k is large)
is found simply by replacing population auto-correlations with sample counterparts (after
having corrected by a downward bias), i.e.:

V̂ k =
T − k

T

"
1 + 2

kX
j=1

µ
1− j

k + 1

¶
rj

#
,

while A(1) is estimated (for large k) by:

Âk(1) =

s
V̂ k

1− r21
.

Notice also that since r21 underestimates R
2, Âk(1) tends to underestimate A(1) for large

k. Also, the standard error of V̂ k is equal to:

S.E.(V̂ k) = V k

·
3T

4(k + 1)

¸−1
2

.

Finally, both Montecarlo standard deviations and theoretical standard errors are increasing
with V k (or with its estimate).
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Figure 1a: A Bounded Economy without Exploration. A typical log(GDP) time series. Par.
Setup: N = 100, π = 0.1, ρ = 0.1, α = 1.5.
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Figure 1b: A Bounded Economy without Exploration. Estimated Probability of Absorption in
Island 1 as a function of α and m0 in the case s = 1.
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Figure 1c: A Bounded Economy without Exploration. Estimated Probability of Absorption in
Island 1 as a function of α and m0 in the case s = 2 (ρ = 0.01).
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Figure 1d: A Bounded Economy without Exploration. Estimated Probability of Absorption in
Island 1 as a function of ρ and s. Par. Setup: m0 = 65, α = 1.4.
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Figure 2a: A Bounded Economy with Exploration: Number of Miners in Island j = 1, 2 when
s1 = s2. Thick Line: Island 2. Par. Setup: N = 100, ρ = 0.1, ε = 0.1, α = 1.4, m0 = 50.
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Figure 2b: A Bounded Economy with Exploration: Number of Miners in Island j = 1, 2 when
s1 < s2. Thick Line: Island 2. Par. Setup: N = 100, ρ = 0.1, ε = 0.1, α = 1.4, m0 = 50.
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Figure 3: Patterns of Exponential Growth in an Open-Ended Economy with Exploration. Par.
Setup: N = 100, π = 0.1, ρ = 0.1, α = 1.5, ε = 0.1, λ = 1, ϕ = 0.5, T = 1000.
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Figure 4a: Spatial Diffusion of Colonized Islands and ‘Best Practice’ proxy (x∗t ,y
∗
t ). Par. Setup:

N = 100, π = 0.1, ρ = 0.1, α = 1.5, ε = 0.1, λ = 1, ϕ = 0.5.
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T = 1000.
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Figure 5a: Mean of Montecarlo AGR distributions as a function of (ρ, ϕ). Low opportunity
regime: λ = 1, π = 0.1. Par. Setup: N = 100, α = 1.5, ε = 0.1, T = 1000, M = 10000.
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Figure 5b: Mean of Montecarlo AGR distributions as a function of (ρ, ϕ). High opportunity
regime: λ = 5, π = 0.4. Par. Setup: N = 100, α = 1.5, ε = 0.1, T = 1000, M = 10000.
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Figure 5c: Non Linear Behavior of Mean of Montecarlo AGR distributions as a function of ρ.
Par. Setup: N = 100, π = 0.4, α = 1.5, ε = 0.1, λ = 5, ϕ = 0.5, T = 1000, M = 10000.
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Figure 5d: Linear Behavior of Mean of Montecarlo AGR distributions as a function of ϕ. Par.
Setup: N = 100, π = 0.4, α = 1.5, ε = 0.1, λ = 5, ρ = 0.1, T = 1000, M = 10000.

33



-0,4%

-0,2%

0,0%

0,0 0,2 0,4 0,6 0,8

ε

A
G

R
Figure 6a: Mean of Montecarlo AGR Distributions as a function of the willingness to explore ε.

Technological Regime: λ = 1, π = 0.1, ρ =∞, ϕ = 0.1. Other parameters: α = 1.4,
N = 100, M = 10000.
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Figure 6b: Mean of Montecarlo AGR Distributions as a function of the willingness to explore ε.
Technological Regime: λ = 5, π = 0.4, ρ = 0, ϕ = 0.5. Other parameters: α = 1.4, N = 100,

M = 10000.
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Figure 6c: Mean of Montecarlo AGR Distributions as a function of the willingness to explore ε.
Technological Regime: λ = 1, π = 0.1, ρ = 0.1, ϕ = 0.5. Other parameters: α = 1.4,

N = 100, M = 10000.
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Figure 6d: Mean of Montecarlo AGR Distributions as a function of the willingness to explore ε.

Technological Regime: λ = 5, π = 0.4, ρ =∞, ϕ = 0.5. Other parameters: α = 1.4,
N = 100, M = 10000.
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Figure 7a: Mean of Montecarlo AGR distributions as a function of the share of ‘sedentary’
agents in the population (µ). Technological Regime: Low Opportunities (λ = 1, π = 0.1), No
Info Diffusion (ρ =∞), Low Path Dependency (ϕ = 0.1). Par. Setup: α = 1.4, ε = 0.1,

N = 100, M = 10000, T = 500.
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Figure 7b: Mean of Montecarlo AGR distributions as a function of the share of ‘sedentary’
agents in the population (µ). Technological Regime: Mild Opportunities (λ = 2, π = 0.2),
Global Info Diffusion (ρ = 0), No Path Dependency (ϕ = 0). Par. Setup: α = 1.4, ε = 0.1,

N = 100, M = 10000, T = 500.
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Figure 7c: Mean of Montecarlo AGR distributions as a function of the share of ‘sedentary’
agents in the population (µ). Technological Regime: High Opportunities (λ = 1, π = 0.1). Par.

Setup: α = 1.4, ε = 0.1, N = 100, M = 10000, T = 500.
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log(GDP) time-series observations over M = 10000 MC simulations in different technological

regimes. Par. Setup: α = 1.5, ϕ = 0.4, ε = 0, 1, N = 100.
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Figure 9a: Mean of Montecarlo standard deviations of log (GDP) time-series growth rates as a
function of (ρ, ϕ). High Opportunities: λ = 5, π = 0.4. Par. Setup: N = 100,

α = 1.5, ε = 0.1, T = 1000, M = 10000.
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Figure 9b: Time evolution of GDP time-series growth rates (GRTS) volatility in four
paradigmatic growth regimes. Y-Axis: Montecarlo Mean of recursive standard deviations of

GRTS (within simulations).
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Figure 10a: A Montecarlo study of thresholds in the emergence of unit-roots in log(GDP)
time-series. Mean of Montecarlo ADF(1) test statistics distribution in a high opportunity
regime (λ = 5, π = 0.4). Critical values: -3.441 (5%); -4.022 (1%). Par. Setup: ε = 0.1,

α = 1.5, N = 100, T = 1500, M = 10000.
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Figure 10b: A Montecarlo study of thresholds in the emergence of unit-roots in log(GDP)
time-series. Frequency of acceptance of the 5%-ADF(1) test in a high opportunity regime
(λ = 5, π = 0.4). Par. Setup: ε = 0.1, α = 1.5, N = 100, T = 1500, M = 10000.
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Figure 10c: A Montecarlo study of thresholds in the emergence of unit-roots in log(GDP)
time-series. Frequency of acceptance of the 5%-ADF(1) test as a function of ε in a high
opportunity, no info diffusion regime with low path dependency (λ = 5, π = 0.4, ρ =∞,
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Figure 11a: A Montecarlo study of growth rates time-series autocorrelation structure. Mean of
MC autocorrelation function. Technological regime: high opportunities (λ = 5, π = 0.4), global
info diffusion (ρ = 0) and high path-dependency (ϕ = 0.5). Dotted lines: 95% Bartlett bands.

Parameter setup: α = 0.1, ε = 0.1, N = 100, M = 10000, T = 1500.
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Figure 11b: A Montecarlo study of growth rates time-series autocorrelation structure. MC
estimate of log(GDP) growth rates spectral density. Technological regime: high opportunities

(λ = 5, π = 0.4), global info diffusion (ρ = 0) and high path-dependency (ϕ = 0.5).
Frequencies are scaled so as to map the unit interval. Spectra computed by smoothing the
periodogram using a Bartlett window with width=50. Parameter setup: α = 0.1, ε = 0.1,

N = 100, M = 10000, T = 1500.
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Figure 12: Mean of Montecarlo AGR distributions as a function of econometric sample size (T )
and population size (N). Par. Setup: λ = 1, π = 0.1, α = 1.5, ε = 0.1, ρ = 0.01, ϕ = 0.5,

M = 10000.

40



0

100

200

300

400

500

1 400 800 1200 1600
Time

G
D

P

Irrational Individuals

Rational Individuals

Figure 13: Individual vs. collective rationality: A simple example. GDP time series generated
by irrational and ‘more rational’ firms. Par. Setup: s∗ = 100, N = 100, ε = 0.05, ϕ = 0,

λ = 5, π = 0.15, ρ =∞, α = 1.
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Table 1: Montecarlo Estimates of Persistence in GDP growth. Campbell and Mankiw (1989)
Statistics (MC st. dev. in parentheses). Par. Setup: N = 100, α = 1.4, ε = 0.1, M = 10000,
T = 500. (a) Top: Global Information (ρ = 0) and High Path-Dependency (ϕ = 0.5). (b)

Bottom: Local Information (ρ = 0.1) and Low Path-Dependency (ϕ = 0.1).

λ = 1 λ = 3 λ = 5
ρ = 0
ϕ = 0.5

K bV k bAk(1) bV k bAk(1) bV k bAk(1)

10 1.716
(0.294)

1.319 2.157
(0.294)

1.508 2.479
(0.425)

1.645

20 1.637
(0.387)

1.288 1.949
(0.461)

1.433 2.300
(0.544)

1.584

π = 0.1 30 1.449
(0.417)

1.212 1.745
(0.502)

1.356 2.141
(0.616)

1.528

40 1.324
(0.438)

1.159 1.625
(0.537)

1.309 2.044
(0.676)

1.493

50 1.262
(0.465)

1.131 1.539
(0.567)

1.274 1.959
(0.722)

1.462

10 1.585
(0.271)

1.263 1.987
(0.340)

1.430 2.285
(0.391)

1.548

20 1.526
(0.361)

1.239 1.776
(0.420)

1.352 2.141
(0.507)

1.498

π = 0.4 30 1.371
(0.394)

1.174 1.616
(0.465)

1.289 2.072
(0.596)

1.474

40 1.277
(0.422)

1.133 1.532
(0.507)

1.256 2.009
(0.664)

1.452

50 1.226
(0.452)

1.111 1.467
(0.541)

1.229 1.941
(0.716)

1.427

λ = 1 λ = 3 λ = 5
ρ = 0.1
ϕ = 0.1

K bV k bAk(1) bV k bAk(1) bV k bAk(1)

10 1.149
(0.197)

1.072 1.390
(0.238)

1.180 1.623
(0.278)

1.279

20 1.198
(0.284)

1.095 1.451
(0.343)

1.206 1.641
(0.388)

1.286

π = 0.1 30 1.183
(0.340)

1.088 1.387
(0.399)

1.179 1.531
(0.440)

1.242

40 1.155
(0.382)

1.075 1.323
(0.437)

1.151 1.452
(0.480)

1.209

50 1.135
(0.419)

1.065 1.287
(0.475)

1.136 1.410
(0.520)

1.192

10 1.096
(0.188)

1.047 1.334
(0.228)

1.155 1.513
(0.259)

1.232

20 1.171
(0.277)

1.082 1.422
(0.336)

1.193 1.560
(0.369)

1.251

π = 0.4 30 1.195
(0.344)

1.093 1.383
(0.398)

1.176 1.478
(0.425)

1.217

40 1.200
(0.397)

1.095 1.337
(0.442)

1.157 1.427
(0.472)

1.196

50 1.203
(0.443)

1.097 1.385
(0.485)

1.147 1.409
(0.520)

1.189
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