ECDNETOR

Provided in Cooperation with:

Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies

Suggested Citation: Manfredini, Sandro; Parveen, Saima; Settepanella, Simona (2012) : Braid groups in complex spaces, LEM Working Paper Series, No. 2012/15, Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM), Pisa

This Version is available at:
https://hdl.handle.net/10419/89542

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

LEM

Working Paper Series

Braid groups in complex spaces

Sandro Manfredini"
 Saima Parveen ${ }^{\S}$
 Simona Settepanellaº

${ }^{\text {T}}$ Department of Mathematics, University of Pisa, Italy
${ }^{\text {§ }}$ Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan
${ }^{\circ}$ Institute of Economics and LEM, Scuola Superiore Sant'Anna, Pisa, Italy

Braid groups in complex spaces

Sandro Manfredini* Saima Parveen ${ }^{\dagger}$
Simona Settepanella ${ }^{\ddagger}$

September 13, 2012

Abstract

We describe the fundamental groups of ordered and unordered k-point sets in \mathbb{C}^{n} generating an affine subspace of fixed dimension.

Keywords:

complex space, configuration spaces, braid groups.

MSC (2010): 20F36, 52C35, 57M05, 51A20.

1 Introduction

Let M be a manifold and Σ_{k} be the symmetric group on k elements. The ordered and unordered configuration spaces of k distinct points in $M, \mathcal{F}_{k}(M)=$ $\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k} \mid x_{i} \neq x_{j}, i \neq j\right\}$ and $\mathcal{C}_{k}(M)=\mathcal{F}_{k}(M) / \Sigma_{k}$, have been widely studied. It is well known that for a simply connected manifold M of dimension ≥ 3, the pure braid group $\pi_{1}\left(\mathcal{F}_{k}(M)\right)$ is trivial and the braid group $\pi_{1}\left(\mathcal{C}_{k}(M)\right)$ is isomorphic to Σ_{k}, while in low dimensions there are non trivial pure braids. For example, (see $[\mathrm{F}]$) the pure braid group of the plane $\mathcal{P B}_{n}$ has the following presentation

$$
\mathcal{P} \mathcal{B}_{n}=\pi_{1}\left(\mathcal{F}_{n}(\mathbb{C})\right) \cong\left\langle\alpha_{i j}, 1 \leq i<j \leq n \mid(Y B 3)_{n},(Y B 4)_{n}\right\rangle,
$$

[^0]where $(Y B 3)_{n}$ and $(Y B 4)_{n}$ are the Yang-Baxter relations:
\[

$$
\begin{aligned}
& (\text { YB3 })_{n}: \quad \alpha_{i j} \alpha_{i k} \alpha_{j k}=\alpha_{i k} \alpha_{j k} \alpha_{i j}=\alpha_{j k} \alpha_{i j} \alpha_{i k}, 1 \leq i<j<k \leq n, \\
& (Y B 4)_{n}: \quad\left[\alpha_{k l}, \alpha_{i j}\right]=\left[\alpha_{i l}, \alpha_{j k}\right]=\left[\alpha_{j l}, \alpha_{j k}^{-1} \alpha_{i k} \alpha_{j k}\right]=\left[\alpha_{j l}, \alpha_{k l} \alpha_{i k} \alpha_{k l}^{-1}\right]=1, \\
& 1 \leq i<j<k<l \leq n,
\end{aligned}
$$
\]

while the braid group of the plane \mathcal{B}_{n} has the well known presentation (see [A])

$$
\mathcal{B}_{n}=\pi_{1}\left(\mathcal{C}_{n}(\mathbb{C})\right) \cong\left\langle\sigma_{i}, 1 \leq i \leq n-1 \mid(A)_{n}\right\rangle
$$

where $(A)_{n}$ are the classical Artin relations:

$$
\begin{gathered}
(A)_{n}: \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, 1 \leq i<j \leq n-1, j-i \geq 2 \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, 1 \leq i<n-1
\end{gathered}
$$

Other interesting examples are the pure braid group and the braid group of the sphere $S^{2} \approx \mathbb{C} P^{1}$ with presentations (see [B2] and [F])

$$
\begin{gathered}
\pi_{1}\left(\mathcal{F}_{n}\left(\mathbb{C} P^{1}\right)\right) \cong\left\langle\alpha_{i j}, 1 \leq i<j \leq n-1 \mid(Y B 3)_{n-1},(Y B 4)_{n-1}, D_{n-1}^{2}=1\right\rangle \\
\pi_{1}\left(\mathcal{C}_{n}\left(\mathbb{C} P^{1}\right)\right) \cong\left\langle\sigma_{i}, 1 \leq i \leq n-1 \mid(A)_{n}, \sigma_{1} \sigma_{2} \ldots \sigma_{n-1}^{2} \ldots \sigma_{2} \sigma_{1}=1\right\rangle,
\end{gathered}
$$

where $D_{k}=\alpha_{12}\left(\alpha_{13} \alpha_{23}\right)\left(\alpha_{14} \alpha_{24} \alpha_{34}\right) \cdots\left(\alpha_{1 k} \alpha_{2 k} \cdots \alpha_{k-1}\right)$.
The inclusion morphisms $\mathcal{P} \mathcal{B}_{n} \rightarrow \mathcal{B}_{n}$ are given by (see [B2])

$$
\alpha_{i j} \mapsto \sigma_{j-1} \sigma_{j-2} \ldots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \ldots \sigma_{j-1}^{-1}
$$

and due to these inclusions, we can identify the pure braid D_{n} with Δ_{n}^{2}, the square of the fundamental Garside braid ([G]). In a recent paper ([BS]) Berceanu and the second author introduced new configuration spaces. They stratify the classical configuration spaces $\mathcal{F}_{k}\left(\mathbb{C} P^{n}\right)\left(\right.$ resp. $\left.\mathcal{C}_{k}\left(\mathbb{C} P^{n}\right)\right)$ with complex submanifolds $\mathcal{F}_{k}^{i}\left(\mathbb{C} P^{n}\right)\left(\right.$ resp. $\left.\mathcal{C}_{k}^{i}\left(\mathbb{C} P^{n}\right)\right)$ defined as the ordered (resp. unordered) configuration spaces of all k points in $\mathbb{C} P^{n}$ generating a projective subspace of dimension i. Then they compute the fundamental groups $\pi_{1}\left(\mathcal{F}_{k}^{i}\left(\mathbb{C} P^{n}\right)\right)$ and $\pi_{1}\left(\mathcal{C}_{k}^{i}\left(\mathbb{C} P^{n}\right)\right)$, proving that the former are trivial and the latter are isomorphic to Σ_{k} except when $i=1$ providing, in this last case, a presentation for both $\pi_{1}\left(\mathcal{F}_{k}^{1}\left(\mathbb{C} P^{n}\right)\right)$ and $\pi_{1}\left(\mathcal{C}_{k}^{1}\left(\mathbb{C} P^{n}\right)\right)$ similar to those of the braid groups of the sphere. In this paper we apply the same technique to the affine case, i.e. to $\mathcal{F}_{k}\left(\mathbb{C}^{n}\right)$ and $\mathcal{C}_{k}\left(\mathbb{C}^{n}\right)$, showing that the situation is similar except in one case. More precisely we prove that, if $\mathcal{F}_{k}^{i, n}=\mathcal{F}_{k}^{i}\left(\mathbb{C}^{n}\right)$ and $\mathcal{C}_{k}^{i, n}=\mathcal{C}_{k}^{i}\left(\mathbb{C}^{n}\right)$ denote, respectively, the ordered and unordered configuration spaces of all k points in \mathbb{C}^{n} generating an affine subspace of dimension i, then the following theorem holds:

Theorem 1.1. The spaces $\mathcal{F}_{k}^{i, n}$ are simply connected except for $i=1$ or $i=n=k-1$. In these cases

1. $\pi_{1}\left(\mathcal{F}_{k}^{1,1}\right)=\mathcal{P} \mathcal{B}_{k}$,
2. $\pi_{1}\left(\mathcal{F}_{k}^{1, n}\right)=\mathcal{P} \mathcal{B}_{k} /<D_{k}>$ when $n>1$,
3. $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)=\mathbb{Z}$ for all $n \geq 1$.

The fundamental group of $\mathcal{C}_{k}^{i, n}$ is isomorphic to the symmetric group Σ_{k} except for $i=1$ or $i=n=k-1$. In these cases:

1. $\pi_{1}\left(\mathcal{C}_{k}^{1,1}\right)=\mathcal{B}_{k}$,
2. $\pi_{1}\left(\mathcal{C}_{k}^{1, n}\right)=\mathcal{B}_{k} /<\Delta_{k}^{2}>$ when $n>1$,
3. $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)=\mathcal{B}_{n+1} /<\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\cdots=\sigma_{n}{ }^{2}>$ for all $n \geq 1$.

Our paper begins by defining a geometric fibration that connects the spaces $\mathcal{F}_{k}^{i, n}$ to the affine grasmannian manifolds $G r a f f^{i}\left(\mathbb{C}^{n}\right)$. In Section 3 we compute the fundamental groups for two special cases: points on a line $\mathcal{F}_{k}^{1, n}$ and points in general position $\mathcal{F}_{k}^{k-1, n}$. Then, in Section 4, we describe an open cover of $\mathcal{F}_{k}^{n, n}$ and, using a Van-Kampen argument, we prove the main result for the ordered configuration spaces. In Section 5 we prove the main result for the unordered configuration spaces.

2 Geometric fibrations on the affine grassmannian manifold

We consider \mathbb{C}^{n} with its affine structure. If $p_{1}, \ldots, p_{k} \in \mathbb{C}^{n}$ we write $<p_{1}, \ldots, p_{k}>$ for the affine subspace generated by p_{1}, \ldots, p_{k}. We stratify the configuration spaces $\mathcal{F}_{k}\left(\mathbb{C}^{n}\right)$ with complex submanifolds as follows:

$$
\mathcal{F}_{k}\left(\mathbb{C}^{n}\right)=\coprod_{i=0}^{n} \mathcal{F}_{k}^{i, n}
$$

where $\mathcal{F}_{k}^{i, n}$ is the ordered configuration space of all k distinct points p_{1}, \ldots, p_{k} in \mathbb{C}^{n} such that the dimension $\operatorname{dim}<p_{1}, \ldots, p_{k}>=i$.

Remark 2.1. The following easy facts hold:

1. $\mathcal{F}_{k}^{i, n} \neq \emptyset$ if and only if $i \leq \min (k+1, n)$; so, in order to get a non empty set, $i=0$ forces $k=1$, and $\mathcal{F}_{1}^{0, n}=\mathbb{C}^{n}$.
2. $\mathcal{F}_{k}^{1,1}=\mathcal{F}_{k}(\mathbb{C}), \mathcal{F}_{2}^{1, n}=\mathcal{F}_{2}\left(\mathbb{C}^{n}\right)$;
3. the adjacency of the strata is given by

$$
\overline{\mathcal{F}_{k}^{i, n}}=\mathcal{F}_{k}^{1, n} \coprod \cdots \coprod \mathcal{F}_{k}^{i, n} .
$$

By the above remark, it follows that the case $k=1$ is trivial, so from now on we will consider $k>1$ (and hence $i>0$).

For $i \leq n$, let $G r a f f^{i}\left(\mathbb{C}^{n}\right)$ be the affine grassmannian manifold parametrizing i-dimensional affine subspaces of \mathbb{C}^{n}.
We recall that the map $G r a f f^{i}\left(\mathbb{C}^{n}\right) \rightarrow G r^{i}\left(\mathbb{C}^{n}\right)$ which sends an affine subspace to its direction, exibits $\operatorname{Graf} f^{i}\left(\mathbb{C}^{n}\right)$ as a vector bundle over the ordinary grassmannian manifold $G r^{i}\left(\mathbb{C}^{n}\right)$ with fiber of dimension $n-i$. Hence, $\operatorname{dimGraff} f^{i}\left(\mathbb{C}^{n}\right)=(i+1)(n-i)$ and it has the same homotopy groups as $G r^{i}\left(\mathbb{C}^{n}\right)$. In particular, affine grassmannian manifolds are simply connnected and $\pi_{2}\left(G r a f f^{i}\left(\mathbb{C}^{n}\right)\right) \cong \mathbb{Z}$ if $i<n$ (and trivial if $i=n$). We can also identify a generator for $\pi_{2}\left(\operatorname{Graff} f^{i}\left(\mathbb{C}^{n}\right)\right)$ given by the map

$$
g:\left(D^{2}, S^{1}\right) \rightarrow\left(G r a f f^{i}\left(\mathbb{C}^{n}\right), L_{1}\right), \quad g(z)=L_{z}
$$

where L_{z} is the linear subspace of \mathbb{C}^{n} given by the equations

$$
(1-|z|) X_{1}-z X_{2}=X_{i+2}=\cdots=X_{n}=0
$$

Affine grasmannian manifolds are related to the spaces $\mathcal{F}_{k}^{i, n}$ through the following fibrations.

Proposition 2.2. The projection

$$
\gamma: \mathcal{F}_{k}^{i, n} \rightarrow \operatorname{Graff}^{i}\left(\mathbb{C}^{n}\right)
$$

given by

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto<x_{1}, x_{2}, \ldots, x_{k}>
$$

is a locally trivial fibration with fiber $\mathcal{F}_{k}^{i, i}$.

Proof. Take $V_{0} \in G r a f f^{i}\left(\mathbb{C}^{n}\right)$ and choose $L_{0} \in G r^{n-i}\left(\mathbb{C}^{n}\right)$ such that L_{0} intersects V_{0} in one point and define $\mathcal{U}_{L_{0}}$, an open neighborhood of V_{0}, by

$$
\mathcal{U}_{L_{0}}=\left\{V \in G r a f f^{i}\left(\mathbb{C}^{n}\right) \mid L_{0} \text { intersects } V \text { in one point }\right\}
$$

For $V \in \mathcal{U}_{L_{0}}$, define the affine isomorphism

$$
\varphi_{V}: V \rightarrow V_{0}, \varphi_{V}(x)=\left(L_{0}+x\right) \cap V_{0} .
$$

The local trivialization is given by the homeomorphism

$$
\begin{gathered}
f: \gamma^{-1}\left(\mathcal{U}_{L_{0}}\right) \rightarrow \mathcal{U}_{L_{0}} \times \mathcal{F}_{k}^{i, i}\left(V_{0}\right) \\
y=\left(y_{1}, \ldots, y_{k}\right) \mapsto\left(\gamma(y),\left(\varphi_{\gamma(y)}\left(y_{1}\right), \ldots, \varphi_{\gamma(y)}\left(y_{k}\right)\right)\right)
\end{gathered}
$$

making the following diagram commute (where $\mathcal{F}_{k}^{i, i}\left(V_{0}\right)=\mathcal{F}_{k}^{i, i}$ upon choosing a coordinate system in V_{0})

Corollary 2.3. The complex dimensions of the strata are given by

$$
\operatorname{dim}\left(\mathcal{F}_{k}^{i, n}\right)=\operatorname{dim}\left(\mathcal{F}_{k}^{i, i}\right)+\operatorname{dim}\left(\operatorname{Graf} f^{i}\left(\mathbb{C}^{n}\right)\right)=k i+(i+1)(n-i)
$$

Proof. $\mathcal{F}_{k}^{i, i}$ is a Zariski open subset in $\left(\mathbb{C}^{i}\right)^{k}$ for $k \geq i+1$.
The canonical embedding

$$
\mathbb{C}^{m} \longrightarrow \mathbb{C}^{n}, \quad\left\{z_{0}, \ldots, z_{m}\right\} \mapsto\left\{z_{0}, \ldots, z_{m}, 0, \ldots, 0\right\}
$$

induces, for $i \leq m$, the following commutative diagram of fibrations

which gives rise, for $i<m$, to the commutative diagram of homotopy groups

where the leftmost and central vertical homomorphisms are isomorphisms. Then, also the rightmost vertical homomorphisms are isomorphisms, and we have

$$
\begin{equation*}
\pi_{1}\left(\mathcal{F}_{k}^{i, n}\right) \cong \pi_{1}\left(\mathcal{F}_{k}^{i, m}\right) \cong \pi_{1}\left(\mathcal{F}_{k}^{i, i+1}\right) \text { for } i<m \leq n \tag{1}
\end{equation*}
$$

Thus, in order to compute $\pi_{1}\left(\mathcal{F}_{k}^{i, n}\right)$ we can restrict to the case $k \geq n$ (note that $k>i)$, computing the fundamental groups $\pi_{1}\left(\mathcal{F}_{k}^{i, i+1}\right)$, and for this we can use the homotopy exact sequence of the fibration from Proposition 2.2, which leads us to compute the fundamental groups $\pi_{1}\left(\mathcal{F}_{k}^{i, i}\right)$. This is equivalent, simplifying notations, to compute $\pi_{1}\left(\mathcal{F}_{k}^{n, n}\right)$ when $k \geq n+1$.
We begin by studying two special cases, points on a line and points in general position.

3 Special cases

The case $i=1$, points on a line.
By remark 2.1 the space $\mathcal{F}_{k}^{1,1}=\mathcal{F}_{k}(\mathbb{C})$ for all $k \geq 2$ and the fibration in Proposition 2.2 gives rise to the exact sequence

$$
\begin{equation*}
\mathbb{Z}=\pi_{2}\left(\operatorname{Graff}^{1}\left(\mathbb{C}^{2}\right)\right) \xrightarrow{\delta_{*}} \mathcal{P} \mathcal{B}_{n}=\pi_{1}\left(\mathcal{F}_{k}(\mathbb{C})\right) \rightarrow \pi_{1}\left(\mathcal{F}_{k}^{1,2}\right) \rightarrow 1 . \tag{2}
\end{equation*}
$$

It follows that $\pi_{1}\left(\mathcal{F}_{k}^{1,2}\right) \cong \mathcal{P} \mathcal{B}_{n} / \operatorname{Im} \delta_{*}$. Since $\pi_{2}\left(\operatorname{Graf} f^{1}\left(\mathbb{C}^{2}\right)\right)=\mathbb{Z}$, we need to know the image of a generator of this group in $\mathcal{P B}_{n}$. Taking as generator the map

$$
g:\left(D^{2}, S^{1}\right) \rightarrow\left(\operatorname{Graff}^{1}\left(\mathbb{C}^{2}\right), L_{1}\right), \quad g(z)=L_{z}
$$

where L_{z} is the line of equation $(1-|z|) X_{1}=z X_{2}$, we chose the lifting

$$
\tilde{g}:\left(D^{2}, S^{1}\right) \rightarrow\left(\mathcal{F}_{k}^{1,2}, \mathcal{F}_{k}\left(L_{1}\right)\right)
$$

$$
\tilde{g}(z)=((z, 1-|z|), 2(z, 1-|z|), \ldots, k(z, 1-|z|))
$$

whose restriction to S^{1} gives the map

$$
\begin{gathered}
\gamma: S^{1} \longrightarrow \mathcal{F}_{k}\left(L_{1}\right)=\mathcal{F}_{k}(\mathbb{C}) \\
\gamma(z)=((z, 0),(2 z, 0), \ldots,(k z, 0))
\end{gathered}
$$

Lemma 3.1. (see $[B S]$) The homotopy class of the map γ corresponds to the following pure braid in $\pi_{1}\left(\mathcal{F}_{k}(\mathbb{C})\right)$:

$$
[\gamma]=\alpha_{12}\left(\alpha_{13} \alpha_{23}\right) \ldots\left(\alpha_{1 k} \alpha_{2 k} \ldots \alpha_{k-1, k}\right)=D_{k} .
$$

From the above Lemma and the exact sequence in (2) we get that the image in $\pi_{1}\left(\mathcal{F}_{k}(\mathbb{C})\right)$ of the generator of $\pi_{2}\left(\operatorname{Graff} f^{1}\left(\mathbb{C}^{2}\right)\right)$ is D_{k} and the following theorem is proved.

Theorem 3.2. For $n>1$, the fundamental group of the configuration space of k distinct points in \mathbb{C}^{n} lying on a line has the following presentation (not depending on n)

$$
\pi_{1}\left(\mathcal{F}_{k}^{1, n}\right)=\left\langle\alpha_{i j}, 1 \leq i<j \leq k \mid(Y B 3)_{k},(Y B 4)_{k}, D_{k}=1\right\rangle .
$$

The case $k=i+1$, points in general position.
Lemma 3.3. For $1<k \leq n+1$, the projection

$$
p: \mathcal{F}_{k}^{k-1, n} \longrightarrow \mathcal{F}_{k-1}^{k-2, n}, \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{1}, \ldots, x_{k-1}\right)
$$

is a locally trivial fibration with fiber $\mathbb{C}^{n} \backslash \mathbb{C}^{k-2}$
Proof. Take $\left(x_{1}^{0}, \ldots, x_{k-1}^{0}\right) \in \mathcal{F}_{k-1}^{k-2, n}$ and fix $x_{k}^{0}, \ldots, x_{n+1}^{0} \in \mathbb{C}^{n}$ such that $<x_{1}^{0}, \ldots, x_{n+1}^{0}>=\mathbb{C}^{n}$ (that is $<x_{k}^{0}, \ldots, x_{n+1}^{0}>$ and $<x_{1}^{0}, \ldots, x_{k-1}^{0}>$ are skew subspaces). Define the open neighbourhood \mathcal{U} of $\left(x_{1}^{0}, \ldots, x_{k-1}^{0}\right)$ by

$$
\mathcal{U}=\left\{\left(x_{1}, \ldots, x_{k-1}\right) \in \mathcal{F}_{k-1}^{k-2, n} \mid<x_{1}, \ldots, x_{k-1}, x_{k}^{0}, \ldots, x_{n+1}^{0}>=\mathbb{C}^{n}\right\}
$$

For $\left(x_{1}, \ldots, x_{k-1}\right) \in \mathcal{U}$, there exists a unique affine isomorphism $T_{\left(x_{1}, \ldots, x_{k-1}\right)}$: $\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, which depends continuously on $\left(x_{1}, \ldots, x_{k-1}\right)$, such that

$$
T_{\left(x_{1}, \ldots, x_{k-1}\right)}\left(x_{i}^{0}\right)=\left(x_{i}\right) \text { for } i=1, \ldots, k-1
$$

and

$$
T_{\left(x_{1}, \ldots, x_{k-1}\right)}\left(x_{i}^{0}\right)=\left(x_{i}^{0}\right) \text { for } i=k, \ldots, n+1 .
$$

We can define the homeomorphisms φ, ψ by :

$$
\begin{gathered}
p^{-1}(\mathcal{U}) \stackrel{\varphi}{\stackrel{\varphi}{\psi}} \mathcal{U} \times\left(\mathbb{C}^{n} \backslash<x_{1}^{0}, \ldots, x_{k-1}^{0}>\right) \\
\varphi\left(x_{1}, \ldots, x_{k-1}, x\right)=\left(\left(x_{1}, \ldots, x_{k-1}\right), T_{\left(x_{1}, \ldots, x_{k-1}\right)}^{-1}(x)\right) \\
\psi\left(\left(x_{1}, \ldots, x_{k-1}\right), y\right)=\left(x_{1}, \ldots, x_{k-1}, T_{\left(x_{1}, \ldots, x_{k-1}\right)}(y)\right)
\end{gathered}
$$

satisfying $p r_{1} \circ \varphi=p$.

As $\mathbb{C}^{n} \backslash \mathbb{C}^{k-2}$ is simply connected when $n>k-1$ and $k>1$, we have
$\pi_{1}\left(\mathcal{F}_{k}^{k-1, n}\right) \cong \pi_{1}\left(\mathcal{F}_{k-1}^{k-2, n}\right) \cong \pi_{1}\left(\mathcal{F}_{2}^{1, n}\right)=\pi_{1}\left(\mathcal{F}_{2}\left(\mathbb{C}^{n}\right)\right) \cong \pi_{1}\left(\mathcal{F}_{1}^{0, n}\right)=\pi_{1}\left(\mathbb{C}^{n}\right)=0$,
in particular $\pi_{1}\left(\mathcal{F}_{n}^{n-1, n}\right)=0$. Moreover, since $\mathbb{C}^{n} \backslash \mathbb{C}^{k-2}$ is homotopically equivalent to an odd dimensional (real) sphere $S^{2(n-k)-1}$, its second homotopy group vanish and we have

$$
\pi_{2}\left(\mathcal{F}_{k+1}^{k, n}\right) \cong \pi_{2}\left(\mathcal{F}_{k}^{k-1, n}\right) \cong \pi_{2}\left(\mathcal{F}_{1}^{0, n}\right)=\pi_{2}\left(\mathbb{C}^{n}\right)=0
$$

in particular $\pi_{2}\left(\mathcal{F}_{n}^{n-1, n}\right)=0$.
In the case $k=n+1, \mathbb{C}^{n} \backslash \mathbb{C}^{n-1}$ is homotopically equivalent to \mathbb{C}^{*}, and we obtain the exact sequence:

$$
\pi_{2}\left(\mathcal{F}_{n}^{n-1, n}\right) \rightarrow \mathbb{Z} \rightarrow \pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right) \rightarrow \pi_{1}\left(\mathcal{F}_{n}^{n-1, n}\right) \rightarrow 0
$$

By the above remarks, the leftmost and rightmost groups are trivial, so we have that $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)$ is infinite cyclic.
We have proven the following
Theorem 3.4. For $n \geq 1$, the configuration space of k distinct points in \mathbb{C}^{n} in general position $\mathcal{F}_{k}^{k-1, n}$ is simply connected except for $k=n+1$ in which case $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)=\mathbb{Z}$.

We can also identify a generator for $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)$ via the map

$$
\begin{equation*}
h: S^{1} \rightarrow \mathcal{F}_{n+1}^{n, n} \quad h(z)=\left(0, e_{1}, \ldots e_{n-1}, z e_{n}\right) \tag{3}
\end{equation*}
$$

where $e_{1}, \ldots e_{n}$ is the canonical basis for \mathbb{C}^{n} (i.e. a loop that goes around the hyperplane $\left.<0, e_{1}, \ldots e_{n-1}>\right)$.

4 The general case

From now on we will consider $n, i>1$.
Let us recall that, by Proposition 2.2 and equation (1), in order to compute the fundamental group of the general case $\mathcal{F}_{k}^{i, n}$, we need to compute $\pi_{1}\left(\mathcal{F}_{k}^{n, n}\right)$ when $k \geq n+1$. To do this, we will cover $\mathcal{F}_{k}^{n, n}$ by open sets with an infinite cyclic fundamental group and then we will apply the Van-Kampen theorem to them.

4.1 A good cover

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{p}\right)$ be a sequence of subsets of $\{1, \ldots, k\}$ and the integers d_{1}, \ldots, d_{p} given by $d_{j}=\left|A_{j}\right|-1, j=1, \ldots, p$. Let us define

$$
\mathcal{F}_{k}^{\mathcal{A}, n}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{F}_{k}\left(\mathbb{C}^{n}\right) \mid \operatorname{dim}<x_{i}>_{i \in A_{j}}=d_{j} \text { for } j=1, \ldots, p\right\}
$$

Example 4.1. The following easy facts hold:

1. If $\mathcal{A}=\left\{A_{1}\right\}, A_{1}=\{1, \ldots, k\}$, then $\mathcal{F}_{k}^{\mathcal{A}, n}=\mathcal{F}_{k}^{k-1, n}$;
2. if all A_{i} have cardinality $\left|A_{i}\right| \leq 2$, then $\mathcal{F}_{k}^{\mathcal{A}, n}=\mathcal{F}_{k}\left(\mathbb{C}^{n}\right)$;
3. if $p \geq 2$ and $\left|A_{p}\right| \leq 2$, then $\mathcal{F}_{k}^{\left(A_{1}, \ldots, A_{p}\right), n}=\mathcal{F}_{k}^{\left(A_{1}, \ldots, A_{p-1}\right), n}$;
4. if $p \geq 2$ and $A_{p} \subseteq A_{1}$, then $\mathcal{F}_{k}^{\left(A_{1}, \ldots, A_{p}\right), n}=\mathcal{F}_{k}^{\left(A_{1}, \ldots, A_{p-1}\right), n}$;
5. $\bigcup_{j \geq i} \mathcal{F}_{k}^{j, n}=\bigcup_{\mathcal{A}=\{A\}, A \in\binom{\{1, \ldots, k\}}{i+1}} \mathcal{F}_{k}^{\mathcal{A}, n}$.

Lemma 4.2. For $A=\{1, \ldots, j+1\}, j \leq n$, and $k>j$ the map

$$
P_{A}: \mathcal{F}_{k}^{(A), n} \rightarrow \mathcal{F}_{j+1}^{j, n}, \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{1}, \ldots, x_{j+1}\right)
$$

is a locally trivial fibration with fiber $\mathcal{F}_{k-j-1}\left(\mathbb{C}^{n} \backslash\left\{0, e_{1}, \ldots, e_{j}\right\}\right)$.
Proof. Fix $\left(x_{1}, \ldots, x_{j+1}\right) \in \mathcal{F}_{j+1}^{j, n}$ and choose $z_{j+2}, \ldots, z_{n+1} \in \mathbb{C}^{n}$ such that $<x_{1}, \ldots, x_{j+1}, z_{j+2}, \ldots, z_{n+1}>=\mathbb{C}^{n}$.
Define the neighborhood \mathcal{U} of $\left(x_{1}, \ldots, x_{j+1}\right)$ by

$$
\mathcal{U}=\left\{\left(y_{1}, \ldots, y_{j+1}\right) \in \mathcal{F}_{j+1}^{j, n} \mid<y_{1}, \ldots, y_{j+1}, z_{j+2}, \ldots, z_{n+1}>=\mathbb{C}^{n}\right\}
$$

There exists a unique affine isomorphism $F_{y}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, which depends continuously on $y=\left(y_{1}, \ldots, y_{j+1}\right)$, such that

$$
\begin{aligned}
& F_{y}\left(x_{i}\right)=y_{i}, \quad i=1, \ldots, j+1 \\
& F_{y}\left(z_{i}\right)=z_{i}, \quad i=j+2, \ldots, n+1
\end{aligned}
$$

and this gives a local trivialization

$$
\begin{aligned}
f: P_{A}^{-1}(\mathcal{U}) & \rightarrow \mathcal{U} \times \mathcal{F}_{k-j-1}\left(\mathbb{C}^{n} \backslash\left\{x_{1}, \ldots, x_{j+1}\right\}\right) \\
\left(y_{1}, \ldots, y_{k}\right) & \mapsto\left(\left(y_{1}, \ldots, y_{j+1}\right), F_{y}^{-1}\left(y_{j+2}\right), \ldots, F_{y}^{-1}\left(y_{k}\right)\right)
\end{aligned}
$$

which satisfies $p r_{1} \circ f=P_{A}$.

Let us remark that P_{A} is the identity map if $k=j+1$ and the fibration is (globally) trivial if $j=n$ since $\mathcal{U}=\mathcal{F}_{n+1}^{n, n}$; in this last case $\pi_{1}\left(\mathcal{F}_{k}^{(A), n}\right)=\mathbb{Z}$ (recall that we are considering $n>1$).
Let $\mathcal{A}=\left(A_{1}, \ldots, A_{p}\right)$ be a p-uple of subsets of cardinalities $\left|A_{j}\right|=d_{j}+1$, $j=1, \ldots, p$. For any given integer $h \in\{1, \ldots, k\}$, we define a new p-uple $\mathcal{A}^{\prime}=\left(A_{1}^{\prime}, \ldots, A_{p}^{\prime}\right)$ and integers $d_{1}^{\prime}, \ldots, d_{p}^{\prime}$ as follows:

$$
A_{j}^{\prime}=\left\{\begin{array}{l}
A_{j}, \text { if } h \notin A_{j} \\
A_{j} \backslash\{h\}, \text { if } h \in A_{j}
\end{array} \quad, \quad d_{j}^{\prime}=\left\{\begin{array}{l}
d_{j}, \text { if } h \notin A_{j} \\
d_{j}-1, \text { if } h \in A_{j}
\end{array}\right.\right.
$$

The following Lemma holds.
Lemma 4.3. The map

$$
p_{h}: \mathcal{F}_{k}^{\mathcal{A}, n} \rightarrow \mathcal{F}_{k-1}^{\mathcal{A}^{\prime}, n},\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{1}, \ldots, \widehat{x_{h}}, \ldots, x_{k}\right)
$$

has local sections with path-connected fibers.
Proof. Let us suppose that $h=k$ and $k \in\left(A_{1} \cap \ldots \cap A_{l}\right) \backslash\left(A_{l+1} \cup \ldots \cup A_{p}\right)$. Then the fiber of the map $p_{k}: \mathcal{F}_{k}^{\mathcal{A}, n} \rightarrow \mathcal{F}_{k-1}^{\mathcal{A}^{\prime}, n}$ is

$$
p_{k}^{-1}\left(x_{1}, \ldots, x_{k-1}\right) \approx \mathbb{C}^{n} \backslash\left(L_{1}^{\prime} \cup \ldots \cup L_{l}^{\prime} \cup\left\{x_{1}, \ldots, x_{k-1}\right\}\right)
$$

where $L_{j}^{\prime}=<x_{i}>_{i \in A_{j}^{\prime}}$. Even in the case when $\operatorname{dim} L_{j}=n$, we have $\operatorname{dim} L_{j}^{\prime}<$ n, hence the fiber is path-connected and nonempty. Fix a base point $x=$ $\left(x_{1}, \ldots, x_{k-1}\right) \in \mathcal{F}_{k-1}^{\mathcal{A}^{\prime}, n}$ and choose $x_{k} \in \mathbb{C}^{n} \backslash\left(L_{1}^{\prime} \cup \ldots \cup L_{l}^{\prime} \cup\left\{x_{1}, \ldots, x_{k-1}\right\}\right)$. There are neighborhoods $W_{j} \subset G r a f f^{d_{j}^{\prime}}\left(\mathbb{C}^{n}\right)$ of $L_{j}^{\prime}(j=1, \ldots, l)$ such that $x_{k} \notin L_{j}^{\prime \prime}$ if $L_{j}^{\prime \prime} \in W_{j}$; we take a constant local section

$$
\begin{gathered}
s: W=g^{-1}\left(\left(\mathbb{C}^{n} \backslash\left\{x_{k}\right\}\right)^{k-1} \times \prod_{i=1}^{l} W_{i}\right) \rightarrow \mathcal{F}_{k}^{\mathcal{A}, n} \\
\left(y_{1}, \ldots, y_{k-1}\right) \mapsto\left(y_{1}, \ldots, y_{k-1}, x_{k}\right),
\end{gathered}
$$

where the continuous map g is given by:

$$
\begin{gathered}
g: \mathcal{F}_{k-1}^{\mathcal{A}^{\prime}, n} \rightarrow\left(\mathbb{C}^{n}\right)^{k-1} \times \operatorname{Graff}^{d_{1}^{\prime}}\left(\mathbb{C}^{n}\right) \times \ldots \times \operatorname{Graff}^{d_{l}^{\prime}}\left(\mathbb{C}^{n}\right) \\
\left(y_{1}, \ldots, y_{k-1}\right) \mapsto\left(y_{1}, \ldots, y_{k-1}, L_{1}^{\prime \prime}, \ldots, L_{l}^{\prime \prime}\right)
\end{gathered}
$$

and $L_{j}^{\prime \prime}=<y_{i}>_{i \in A_{j}^{\prime}}$ for $j=1, \ldots, l$.

Proposition 4.4. The space $\mathcal{F}_{k}^{\mathcal{A}, n}$ is path-connected.
Proof. Use induction on p and $d_{1}+d_{2}+\ldots+d_{p}$. If $p=1$, use Lemma 4.2 and the space $\mathcal{F}_{j+1}^{j, n}$ which is path-connected. If A_{p} is not included in A_{1} and $d_{p} \geq 3$, delete a point in $A_{p} \backslash A_{1}$ and use Lemma 4.3 and the fact that if C is not empty and path-connected and $p: B \rightarrow C$ is a surjective continuous map with local sections such that $p^{-1}(y)$ is path-connected for all $y \in C$, then B is path-connected (see [BS]). If $A_{p} \subset A_{1}$ or $d_{p} \leq 2$, use Example 4.1, (3) and (4).

Let e_{1}, \ldots, e_{n} be the canonical basis of \mathbb{C}^{n} and

$$
M_{h}=\left\{\left(x_{1}, \ldots, x_{h}\right) \in \mathcal{F}_{h}\left(\mathbb{C}^{n} \backslash\left\{0, e_{1}, \ldots, e_{n}\right\}\right) \mid x_{1} \notin<e_{1}, \ldots, e_{n}>\right\}
$$

the following Lemma holds.
Lemma 4.5. The map

$$
p_{h}: M_{h} \rightarrow\left(\mathbb{C}^{n}\right)^{*} \backslash<e_{1}, \ldots, e_{n}>
$$

sending $\left(x_{1}, \ldots, x_{h}\right) \mapsto x_{1}$, is a locally trivial fibration with fiber $\mathcal{F}_{h-1}\left(\mathbb{C}^{n} \backslash\left\{0, e_{1}, \ldots, e_{n}, e_{1}+\cdots+e_{n}\right\}\right)$.

Proof. Let $G: B^{m} \rightarrow \mathbb{R}^{m}$ be the homeomorphism from the open unit m-ball to \mathbb{R}^{m} given by $G(x)=\frac{x}{1-|x|}$, (whose inverse is the map $G^{-1}(y)=\frac{y}{1+|y|}$). For $x \in B^{m}$ let $\tilde{G}_{x}=G^{-1} \circ \tau_{-G(x)} \circ G$ be an homeomorphism of B^{m}, where $\tau_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the translation by $v . \tilde{G}_{x}$ sends x to 0 and can be extended to a homeomorphism of the closure $\overline{B^{m}}$, by requiring it to be the identity on the $m-1$-sphere (the exact formula for $\tilde{G}_{x}(y)$ is $\left.\frac{(1-|x|) y-(1-|y|) x}{(1-|x|)(1-|y|)+|(1-|x|) y-(1-|y|) x|}\right)$. We can further extend it to an homomorphism G_{x} of \mathbb{R}^{m} by setting $G_{x}(y)=y$ if $|y|>1$. Notice that G_{x} depends continuously on x.
Let $\bar{x} \in\left(\mathbb{C}^{n}\right)^{*} \backslash<e_{1}, \ldots, e_{n}>$, fix an open complex ball B in $\left(\mathbb{C}^{n}\right)^{*} \backslash<e_{1}, \ldots, e_{n}>$ centered at \bar{x} and an affine isomorphism H of \mathbb{C}^{n} sending B to the open real $2 n$-ball $B^{2 n}$. For $x \in B$, define the homeomorphism F_{x} of $\mathbb{C}^{n} F_{x}=H^{-1} \circ G_{H(x)} \circ H$ which sends x to \bar{x}, is the identity outside of B and depends continuously on x. The result follows from the continuous map

$$
\begin{gathered}
F: p_{h}^{-1}(B) \rightarrow B \times p_{h}^{-1}(\bar{x}) \\
F\left(x, x_{2}, \ldots, x_{h}\right)=\left(x,\left(\bar{x}, F_{x}\left(x_{2}\right), \ldots, F_{x}\left(x_{h}\right)\right)\right)
\end{gathered}
$$

(whose inverse is the map $F^{-1}: B \times p_{h}^{-1}(\bar{x}) \rightarrow p_{h}^{-1}(B), F^{-1}\left(x,\left(\bar{x}, x_{2}, \ldots, x_{h}\right)\right)=$ $\left.\left(x, F_{x}^{-1}\left(x_{2}\right), \ldots, F_{x}^{-1}\left(x_{h}\right)\right)\right)$.
The fiber $p_{h}^{-1}(\bar{x})$ is homeomorphic to $\mathcal{F}_{h-1}\left(\mathbb{C}^{n} \backslash\left\{0, e_{1}, \ldots, e_{n}, e_{1}+\cdots+e_{n}\right\}\right)$ via an homeomorphism of \mathbb{C}^{n} which fixes $0, e_{1}, \ldots, e_{n}$ and sends \bar{x} to the sum $e_{1}+\ldots+e_{n}$.

Thus we have, since $n \geq 2, \pi_{1}\left(M_{h}\right)=\mathbb{Z}$, and we can choose as generator the map $S^{1} \rightarrow M_{h}$ sending $z \mapsto\left(z\left(e_{1}+\cdots+e_{n}\right), x_{2}, \ldots, x_{h}\right)$ with x_{2}, \ldots, x_{h} of sufficient high norm (i.e. a loop that goes round the hyperplane $\left.<e_{1}, \ldots, e_{n}>\right)$.

Lemma 4.6. For $A=\{1, \ldots, n+1\}, B=\{2, \ldots, n+2\}$, and $k>n+1$ the map

$$
P_{A, B}: \mathcal{F}_{k}^{(A, B), n} \rightarrow \mathcal{F}_{n+1}^{n, n}, \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{1}, \ldots, x_{n+1}\right)
$$

is a trivial fibration with fiber M_{k-n-1}
Proof. For $x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathcal{F}_{n+1}^{n, n}$ let F_{x} be the affine isomorphism of \mathbb{C}^{n} such that $F_{x}(0)=x_{1}, F_{x}\left(e_{i}\right)=x_{i+1}$, for $i=1, \ldots, n$. The map

$$
\mathcal{F}_{n+1}^{n, n} \times M_{k-n-1} \rightarrow \mathcal{F}_{k}^{(A, B), n}
$$

sending

$$
\left(\left(x_{1}, \ldots, x_{n+1}\right),\left(x_{n+2}, \ldots, x_{k}\right)\right) \mapsto\left(x_{1}, \ldots, x_{n+1}, F_{x}\left(x_{n+2}\right), \ldots, F_{x}\left(x_{k}\right)\right)
$$

gives the result.

4.2 Computation of the fundamental group

From Lemma 4.6 it follows that $\pi_{1}\left(\mathcal{F}_{k}^{(A, B), n}\right)=\mathbb{Z} \times \mathbb{Z}$ and that it has two generators: $\left((z+1)\left(e_{1}+\ldots+e_{n}\right), e_{1}, \ldots, e_{n}, e_{1}+\ldots+e_{n}, x_{n+3}, \ldots, x_{k}\right)$ and $\left(0, e_{1}, \ldots, e_{n}, z\left(e_{1}+\ldots+e_{n}\right), x_{n+3}, \ldots, x_{k}\right)$, where x_{n+3}, \ldots, x_{k} are chosen far enough to be different from the first $n+2$ points. The first generator is the one coming from the base, the second is the one from the fiber of the fibration $P_{A, B}$.
Note that using the map

$$
P_{A, B}^{\prime}: \mathcal{F}_{k}^{(A, B), n} \rightarrow \mathcal{F}_{n+1}^{n, n}, \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{2}, \ldots, x_{n+2}\right)
$$

we obtain the same result and the generator coming from the base here is the one coming from the fiber above and vice versa.

The map $P_{A, B}$ factors through the inclusion $i_{A}: \mathcal{F}_{k}^{(A, B), n} \hookrightarrow \mathcal{F}_{k}^{(A), n}$ followed by the map

$$
P_{A}: \mathcal{F}_{k}^{(A), n} \rightarrow \mathcal{F}_{n+1}^{n, n}, \quad\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(x_{1}, \ldots, x_{n+1}\right)
$$

and we get the following commutative diagram of fundamental groups:

Since P_{A} induces an isomorphism on the fundamental groups, this means that $i_{A *}$ sends the generator of $\pi_{1}\left(\mathcal{F}_{k}^{(A, B), n}\right)$ coming from the fiber to 0 in $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)$. That is, the generator of $\pi_{1}\left(\mathcal{F}_{k}^{(B), n}\right)$ (which is homotopically equivalent to the generator of $\pi_{1}\left(\mathcal{F}_{k}^{(A, B), n}\right)$ coming from the fiber) is trivial in $\pi_{1}\left(\mathcal{F}_{k}^{(A), n}\right)$ and (given the symmetry of the matter) vice versa.
Applying Van Kampen theorem, we have that $\mathcal{F}_{k}^{(A), n} \cup \mathcal{F}_{k}^{(B), n}$ is simply connected. Moreover the intersection of any number of $\mathcal{F}_{k}^{(A), n}$, is path connected and the same is true for the intersection of two unions of $\mathcal{F}_{k}^{(A), n}$, s since the intersection $\bigcap_{A \in\binom{\{1, \ldots, k\}}{n+1}} \mathcal{F}_{k}^{(A), n}$ is not empty.

From the last example in 4.1 with $i=n$ we have $\mathcal{F}_{k}^{n, n}=\bigcup_{A \in\binom{\{1, \ldots, k\}}{n+1}} \mathcal{F}_{k}^{(A), n}$, and when $k>n+1$, we can cover it with a finite number of simply connected open sets with path connected intersections, so it is simply connected by the following

Lemma 4.7. Let X be a topological space which has a finite open cover U_{1}, \ldots, U_{n} such that each U_{i} is simply connected, $U_{i} \cap U_{j}$ is connected for all $i, j=1, \ldots, n$ and $\bigcap_{i=1}^{n} U_{i} \neq \emptyset$. Then X is simply connected.

Proof. By induction, let's suppose $\bigcup_{i=1}^{k-1} U_{i}$ is simply connected. Then, applying Van Kampen theorem to U_{k} and $\bigcup_{i=1}^{k-1} U_{i}$, we get that $\bigcup_{i=1}^{k} U_{i}$ is simply connected if $U_{k} \cap\left(\bigcup_{i=1}^{k-1} U_{i}\right)$ is connected. But $U_{k} \cap\left(\bigcup_{i=1}^{k-1} U_{i}\right)=\bigcup_{i=1}^{k-1}\left(U_{k} \cap U_{i}\right)$ is the union of connected sets with non empty intersection, and therefore is connected.

Now, using the fibration in Proposition 2.2 with $n=i+1$, we obtain that $\mathcal{F}_{k}^{n-1, n}$ is simply connected when $k>n$.
Summing up the results for the oredered case, the following main theorem is proved

Theorem 4.8. The spaces $\mathcal{F}_{k}^{i, n}$ are simply connected except

1. $\pi_{1}\left(\mathcal{F}_{k}^{1,1}\right)=\mathcal{P} \mathcal{B}_{k}$,
2. $\pi_{1}\left(\mathcal{F}_{k}^{1, n}\right)=\left\langle\alpha_{i j}, 1 \leq i<j \leq k \mid(Y B 3)_{k},(Y B 4)_{k}, D_{k}=1\right\rangle$ when $n>1$,
3. $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)=\mathbb{Z}$ for all $n \geq 1$, with generator described in (3).

5 The unordered case: $\mathcal{C}_{k}^{i, n}$

Let $\mathcal{C}_{k}^{i, n}$ be the unordered configuration space of all k distinct points p_{1}, \ldots, p_{k} in \mathbb{C}^{n} which generate an i-dimensional space. Then $\mathcal{C}_{k}^{i, n}$ is obtained quotienting $\mathcal{F}_{k}^{i, n}$ by the action of the symmetric group Σ_{k}. The map $p: \mathcal{F}_{k}^{i, n} \rightarrow \mathcal{C}_{k}^{i, n}$ is a regular covering with Σ_{k} as deck transformation group, so we have the exact sequence:

$$
1 \rightarrow \pi_{1}\left(\mathcal{F}_{k}^{i, n}\right) \xrightarrow{p_{*}} \pi_{1}\left(\mathcal{C}_{k}^{i, n}\right) \xrightarrow{\tau} \Sigma_{k} \rightarrow 1
$$

which gives immediately $\pi_{1}\left(\mathcal{C}_{k}^{i, n}\right)=\Sigma_{k}$ in case $\mathcal{F}_{k}^{i, n}$ is simply connected.
Observe that the fibration in Proposition 2.2 may be quotiented obtaining a locally trivial fibration $\mathcal{C}_{k}^{i, n} \rightarrow \operatorname{Graff} f^{i}\left(\mathbb{C}^{n}\right)$ with fiber $\mathcal{C}_{k}^{i, i}$.
This gives an exact sequence of homotopy groups which, together with the one from Proposition 2.2 and those coming from regular coverings, gives the following commutative diagram for $i<n$:

In case $i=1, \mathcal{F}_{k}^{1,1}=\mathcal{F}_{k}(\mathbb{C})$ and $\mathcal{C}_{k}^{1,1}=\mathcal{C}_{k}(\mathbb{C})$, so $\pi_{1}\left(\mathcal{F}_{k}^{1,1}\right)=\mathcal{P} \mathcal{B}_{k}$ and $\pi_{1}\left(\mathcal{C}_{k}^{1,1}\right)=\mathcal{B}_{k}$, and since $\operatorname{Im} \delta_{*}=<D_{k}>\subset \mathcal{P} \mathcal{B}_{k}$, the left square gives $\operatorname{Im} \delta_{*}^{\prime}=<\Delta_{k}^{2}>\subset \mathcal{B}_{k}$, therefore $\pi_{1}\left(\mathcal{C}_{k}^{1, n}\right)=\mathcal{B}_{k} /<\Delta_{k}^{2}>$.

For $i=n=k-1$, we have $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)=\mathbb{Z}$, and we can use the exact sequence of the regular covering $p: \mathcal{F}_{n+1}^{n, n} \rightarrow \mathcal{C}_{n+1}^{n, n}$ to get a presentation of $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)$.

Let's fix $Q=\left(0, e_{1}, \ldots, e_{n}\right) \in \mathcal{F}_{n+1}^{n, n}$ and $p(Q) \in \mathcal{C}_{n+1}^{n, n}$ as base points and for $i=1, \ldots n$ define $\gamma_{i}:[0, \pi] \rightarrow \mathcal{F}_{n+1}^{n, n}$ to be the (open) path

$$
\left.\gamma_{i}(t)=\left(\frac{1}{2}\left(e^{i(t+\pi)}+1\right) e_{i}, e_{1}, \ldots, e_{i-1}, \frac{1}{2}\left(e^{i t}+1\right)\right) e_{i}, e_{i+1} \ldots, e_{n}\right)
$$

(which fixes all entries except the first and the $(i+1)$-th and exchanges 0 and e_{i} by a half rotation in the line $<0, e_{i}>$).
Then $p \circ \gamma_{i}$ is a closed path in $\mathcal{C}_{n+1}^{n, n}$ and we denote it's homotopy class in $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)$ by σ_{i}. Hence $\tau_{i}=\tau\left(\sigma_{i}\right)$ is the deck transformation corresponding to the transposition $(0, i)$ (we take Σ_{n+1} as acting on $\{0,1, \ldots, n\}$) and we get a set of generators for Σ_{n+1} satisfying the following relations

$$
\begin{gathered}
\tau_{i}^{2}=\tau_{i} \tau_{j} \tau_{i} \tau_{j}^{-1} \tau_{i}^{-1} \tau_{j}^{-1}=1 \text { for } i, j=1, \ldots, n \\
{\left[\tau_{1} \tau_{2} \cdots \tau_{i-1} \tau_{i} \tau_{i-1}^{-1} \cdots \tau_{1}^{-1}, \tau_{1} \tau_{2} \cdots \tau_{j-1} \tau_{j} \tau_{j-1}^{-1} \cdots \tau_{1}^{-1}\right]=1 \text { for }|i-j|>2}
\end{gathered}
$$

If we take T, the (closed) path in $\mathcal{F}_{n+1}^{n, n}$ in which all entries are fixed except for one which goes round the hyperplane generated by the others counterclockwise, as generator of $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)$, then $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)$ is generated by T and the
$\sigma_{1}, \ldots, \sigma_{n}$.
In order to get the relations, we must write the words $\sigma_{i}^{2}, \sigma_{i} \sigma_{j} \sigma_{i} \sigma_{j}^{-1} \sigma_{i}^{-1} \sigma_{j}^{-1}$ and $\left[\sigma_{1} \sigma_{2} \cdots \sigma_{i-1} \sigma_{i} \sigma_{i-1}^{-1} \cdots \sigma_{1}^{-1}, \sigma_{1} \sigma_{2} \cdots \sigma_{j-1} \sigma_{j} \sigma_{j-1}^{-1} \cdots \sigma_{1}^{-1}\right]$ as well as $\sigma_{i} T \sigma_{i}^{-1}$ as elements of $\operatorname{Ker} \tau=\operatorname{Im} p_{*}$ for all appropriate i, j.
Observe that the path $\gamma_{i}^{\prime}:[\pi, 2 \pi] \rightarrow \mathcal{F}_{n+1}^{n, n}$, defined by the same formula as γ_{i}, is a lifting of σ_{i} with starting point $\left(e_{i}, e_{1}, e_{2}, \ldots, e_{i-1}, 0, e_{i-1}, \ldots, e_{n}\right)$ and that $\gamma_{i} \gamma_{i}^{\prime}$ is a closed path in $\mathcal{F}_{n+1}^{n, n}$ which is the generator T of $\pi_{1}\left(\mathcal{F}_{n+1}^{n, n}\right)$ (as you can see by the homotopy $\left.\left(\frac{\epsilon}{2}\left(e^{i(t+\pi)}+1\right) e_{i}, e_{1}, \ldots, e_{i-1}, \frac{2-\epsilon}{2}\left(e^{i t}+\frac{\epsilon}{2-\epsilon}\right)\right) e_{i}, e_{i+1} \ldots, e_{n}\right)$, $\epsilon \in[0,1]$, where for $\epsilon=0$ we have the point e_{i} going round the hyperplane $<0, e_{1}, e_{2}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}>$ counterclockwise).
Thus we have $p_{*}(T)=\sigma_{i}^{2}$ for all $i=1, \ldots, n$ (and that $\operatorname{Im} p_{*}$ is the center of $\left.\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)\right)$.
Moreover, it's easy to see, by lifting to $\mathcal{F}_{n+1}^{n, n}$, that the σ_{i} satisfy the relations

$$
\sigma_{i} \sigma_{j} \sigma_{i} \sigma_{j}^{-1} \sigma_{i}^{-1} \sigma_{j}^{-1}=1 \text { for } i, j=1, \ldots, n
$$

and

$$
\left[\sigma_{1} \sigma_{2} \cdots \sigma_{i-1} \sigma_{i} \sigma_{i-1}^{-1} \cdots \sigma_{1}^{-1}, \sigma_{1} \sigma_{2} \cdots \sigma_{j-1} \sigma_{j} \sigma_{j-1}^{-1} \cdots \sigma_{1}^{-1}\right]=1 \text { for }|i-j|>2
$$

We can represent a lifting of $\sigma_{i}^{\prime}=\sigma_{1} \sigma_{2} \cdots \sigma_{i-1} \sigma_{i} \sigma_{i-1}^{-1} \cdots \sigma_{1}^{-1}$ (which gives the deck transformation corresponding to the transposition $(i, i+1))$ by a path which fixes all entries except the i-th and the $(i+1)$-th and exchanges e_{i} and e_{i+1} by a half rotation in the line $<e_{i}, e_{i+1}>$.
We can now change the set of generators by first deleting T and introducing the relations

$$
\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{n}^{2}
$$

and then by choosing the $\sigma_{i}^{\prime \prime}$ s instead of the σ_{i} 's. Then we get that the generators σ_{i}^{\prime} 's satisfy the relations

$$
\begin{gathered}
\sigma_{i}^{\prime} \sigma_{i+1}^{\prime} \sigma_{i}^{\prime}=\sigma_{i+1}^{\prime} \sigma_{i}^{\prime} \sigma_{i+1}^{\prime} \text { for } i=1, \ldots, n-1, \\
{\left[\sigma_{i}^{\prime}, \sigma_{j}^{\prime}\right]=1 \text { for }|i-j|>2}
\end{gathered}
$$

and

$$
\begin{equation*}
{\sigma_{1}^{\prime 2}}^{2}={\sigma_{2}^{\prime 2}}^{2}=\cdots=\sigma_{n}^{\prime 2} \tag{4}
\end{equation*}
$$

Namely, $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)$ is the quotient of the braid group \mathcal{B}_{n+1} on $n+1$ strings by relations (4) and the following main theorem is proved.

Theorem 5.1. The fundamental groups $\pi_{1}\left(\mathcal{C}_{k}^{i, n}\right)$ are isomorphic to the symmetric group Σ_{k} except

1. $\pi_{1}\left(\mathcal{C}_{k}^{1,1}\right)=\mathcal{B}_{k}$,
2. $\pi_{1}\left(\mathcal{C}_{k}^{1, n}\right)=\mathcal{B}_{k} /<\Delta_{k}^{2}>$ when $n>1$,
3. $\pi_{1}\left(\mathcal{C}_{n+1}^{n, n}\right)=\mathcal{B}_{n+1} /<\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\cdots=\sigma_{n}{ }^{2}>$ for all $n \geq 1$.

References

[A] Artin, E. (1947), Theory of braids, Ann. of Math. (2)48, pp. 101-126.
[BS] Berceanu, B. and Parveen, S. (2012), Braid groups in complex projective spaces, Adv. Geom. 12, p.p. 269-286.
[B2] Birman, Joan S. (1974), Braids, Links, and Mapping Class Groups, Annals of Mathematics vol. 82, Princeton University Press.
[F] Fadell, E.R, Husseini, S.Y. (2001), Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics, Springer-Verlarg Berlin.
[G] Garside, F.A. (1969), The braid groups and other groups, Quat. J. of Math. Oxford, 2^{e} ser. 20, 235-254.
[H] Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.
[M1] Moran, S. (1983), The Mathematical Theory of Knots and Braids, North Holland Mathematics Studies, Vol 82 (Elsevier, Amsterdam).
[M2] Moulton, V. L. (1998), Vector Braids, J. Pure Appl. Algebra, 131, no. 3, 245-296.

[^0]: *Department of Mathematics, University of Pisa, manfredi@dm.unipi.it
 \dagger^{2} Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan, saimashaa@gmail.com
 ${ }^{\ddagger}$ LEM, Scuola Superiore Sant'Anna, Pisa, s.settepanella@sssup.it

