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Abstract

This paper proposes a general formulation of a nonparametric frontier model intro-
ducing external environmental factors that might influence the production process but
are neither inputs nor outputs under the control of the producer. A representation is
proposed in terms of a probabilistic model which defines the data generating process.
Our approach extends the basic ideas from Cazals, Florens and Simar (2002) to the
full multivariate case. We introduce the concepts of conditional efficiency measure and
of conditional efficiency measure of order-m. Afterwards we suggest a practical way
for computing the nonparametric estimators. Finally, a simple methodology to inves-
tigate the influence of these external factors on the production process is proposed.
Numerical illustrations through some simulated examples and through a real data set
on Mutual Funds show the usefulness of the approach.

Keywords: production function, frontier, nonparametric estimation, environmental factors,
robust estimation.

JEL Classification: C13, C14, D20.

∗Research support from the “Progetto Giovani Ricercatori 2002 (EGIOV03CD)”, Scuola Superiore S.
Anna, is gratefully acknowledged.
†Research support from “Projet d’Actions de Recherche Concertées” (No. 98/03–217) and from the

“Interuniversity Attraction Pole”, Phase V (No. P5/24) from the Belgian Government are also acknowledged.



1 Introduction

Most of the economic theory on efficiency analysis dates back to Koopmans (1951) and

Debreu (1951) on activity analysis. We might consider a production technology where the

activity of the production units is characterized by a set of inputs x ∈ IRp
+ used to produce a

set of outputs y ∈ IRq
+. In this framework the production set is the set of technically feasible

combinations of (x, y). It is defined as

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y}. (1.1)

Assumptions are usually done on this set, such as free disposability of inputs and outputs,

meaning that if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ, as soon as1 x′ ≥ x and y′ ≤ y. Often convexity

of Ψ is also assumed, and so on (see e.g. Shephard, 1970, for a modern formulation of the

problem).

As far as efficiency is of concern, the boundaries of Ψ are of interest. For instance, if we

are looking in the input direction, the Farrell-Debreu measure of input-oriented efficiency

score for a unit operating at the level (x, y) is usually defined as:

θ(x, y) = inf{θ | (θx, y) ∈ Ψ}. (1.2)

If (x, y) is inside Ψ, θ(x, y) ≤ 1 is the proportionate reduction of inputs a unit working

at the level (x, y) should perform to achieve efficiency. The corresponding radial efficient

frontier in the input space, for units producing a level y of outputs, is defined by points

with efficiency scores equal to 1. This frontier is then described as the set (x∂(y), y) ∈ Ψ,

where x∂(y) = θ(x, y)x is the radial projection of (x, y) on the frontier, in the input direction

(orthogonal to the vector y).

If we are looking in the output direction, the Farrell-Debreu measure of output-oriented

efficiency score for a unit operating at the level (x, y) is similarly defined as:

λ(x, y) = sup{λ | (x, λy) ∈ Ψ}. (1.3)

Here λ(x, y) ≥ 1 represent the proportionate increase of outputs the unit operating at level

(x, y) should attain to be considered as being efficient. The efficient frontier corresponds to

those points where λ(x, y) = 1.

In empirical studies, the set Ψ is unknown and so are the efficiency scores. The econo-

metric problem is therefore to estimate these quantities from a random sample of production

units X = {(Xi, Yi)|i = 1, . . . , n}. Since the pioneering work of Farrell (1957), the literature

has developed a lot of different approaches to achieve this goal.

1From here and below inequalities between vectors have to be understood element by element.
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The nonparametric models are particularly appealing since they don’t rely on restrictive

hypothesis on the Data Generating Process (DGP). The most popular approaches are based

on envelopment estimators in the spirit of Farrell approach. Deprins, Simar and Tulkens

(1984) have proposed the Free Disposal Hull (FDH) of the set of the observations to estimate

Ψ:

Ψ̂FDH =
{

(x, y) ∈ IRp+q
+ |y ≤ Yi, x ≥ Xi, i = 1, . . . , n

}
. (1.4)

The convex hull of Ψ̂FDH provides the Data Envelopment Analysis (DEA) estimator of

Ψ, popularized as linear programming estimator by Charnes, Cooper and Rhodes (1978):

Ψ̂DEA = {(x, y) ∈ IRp+q
+ |y ≤

n∑

i=1

γiYi ; x ≥
n∑

i=1

γiXi for (γ1, . . . , γn)

such that
n∑

i=1

γi = 1 ; γi ≥ 0, i = 1, . . . , n}, (1.5)

it is the smallest free disposal convex set covering all the data. The corresponding estimators

of the efficiency scores are then obtained by plugging Ψ̂ in the equations (1.2) and (1.3) above

in place of the unknown Ψ.

Today, statistical inference based on DEA/FDH type of estimators is available either by

using asymptotic results (Kneip, Park and Simar, 1998 and Park, Simar and Weiner, 2000)

or by using the bootstrap, see Simar and Wilson (2000) for a recent survey of the available

results. In summary, if the true attainable set is free disposal, then Ψ̂FDH is a consistent

estimator of Ψ, but Ψ̂DEA is not. If Ψ is free disposal and convex then both estimators are

consistent, but the DEA estimator takes advantage of the convexity assumption and achieves

a slightly faster rate of convergence.

During the last decades, the literature on efficiency estimation has been extended to

explore the reasons of different level of efficiencies across production units. The idea was to

relate efficiency measures to some external or environmental factors which might influence

the production process but that are not under the control of the producers.

The evaluation of the influence of environmental factors on the efficiency of producers is

indeed a relevant issue related to the explanations of efficiency, the identification of economic

conditions that create inefficiency, and finally to the improvement of managerial performance.

When categorical factors are considered (like the form of ownership,. . . ), we are in the

presence of different groups of producers; in this situation, testing issues for comparing

group efficiency scores can be proposed using appropriate bootstrap algorithms (in the spirit

of Simar and Wilson, 2002). When these external factors z ∈ IRr are continuous mainly

two approaches have been proposed in literature but both are flawed by restrictive prior
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assumptions on the DGP and/or on the role of these external factors on the production

process.

The first family of models is based on a one-stage approach (see e.g. Banker and Morey,

1986; Fare, Grosskopf, Lovell and Pasurka, 1989; Fare, Grosskopf and Lovell, 1994, p. 223-

226), where these factors z are considered as free disposal inputs and /or outputs which

contribute to define the attainable set Ψ ⊂ IRp
+ × IRq

+ × IRr, but which are not active in the

optimization process defining the efficiency scores. For instance, the analog of (1.2), would

be:

θ(x, y|z) = inf{θ | (θx, y, z) ∈ Ψ}, (1.6)

and the estimator of Ψ is defined as above by adding the variables z in defining the FDH and

/or the DEA enveloping set, with a variable z being considered as an input if it is conducive

(favorable, advantageous, beneficial) to efficiency and as an output if it is detrimental (dam-

aging, unfavorable) to efficiency. The drawback of this approach is twofold: first we have to

know a priori what is the role of z on the production process, and second we assume the

free disposability (and eventually convexity, if DEA is used) of the corresponding attainable

extended set Ψ.

The second family of models is based on a two-stage approach. Here the estimated

efficiency scores are regressed, in an appropriated limited dependent variable parametric re-

gression model (like truncated normal regression models) on the environmental factors z.

Some models in this family propose also three-stage and four-stage analysis as extension of

the two-stage approach (for more details see Fried, Schmidt, and Yaisawarng 1999; Fried,

Lovell, Schmidt, and Yaisawarng 2002). As pointed out by Simar and Wilson (2003), most

of these models are flawed by the fact that usual inference on the obtained estimates of

the regression coefficient is not available. Simar and Wilson (2003) give a list of references

where this approach has been used and propose a bootstrap algorithm to obtain more accu-

rate inference. However, also this bootstrap-based approach, even when corrected, has two

inconveniences. First, it relies on a separability condition between the input × output space

and the space of values for z: the extended attainable set is the cartesian product Ψ× IRr

and so the value of z does not influence the position of the frontier of the attainable set.

Second, the regression in the second stage relies on some parametric assumptions (like linear

model and truncated normal error term).

In this paper, we propose a more general full nonparametric approach which overcomes

most of the drawbacks mentioned above. It relies on a probabilistic definition of the frontier

and of the efficiency which is equivalent to the definition proposed above but allows an easy

introduction of environmental factors. The basic ideas where proposed in Cazals, Florens
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and Simar (2002) (from hereafter CFS). Here, we extend to a more general multivariate

setup and we propose a practical methodology to evaluate the estimators. We will define

conditional efficient frontier and also conditional order-m frontier and their corresponding

nonparametric estimators. In particular, order-m frontier estimators are known as being

more robust to outliers and/or extreme values than the full frontier estimates. We also

suggest an easy procedure for evaluating the impact of these environmental factors on the

production process.

The paper is organized as follows. The next section introduces the multivariate proba-

bilistic model for defining the DGP of a production process. This section includes also the

definition of the full frontier and of the order-m frontier. Section 3 shows how this frame-

work can easily be adapted to the introduction of environmental factors. Section 4 addresses

some practical computational issues and Section 5 illustrates the methodology by using some

simulated data sets and a real data set on mutual funds. Section 6 concludes.

2 Production Frontiers: a probabilistic formulation

The production process is here described by the joint probability measure of (X, Y ) on IRp
+×

IRq
+. The support of (X, Y ) is the attainable set Ψ. In terms of the joint probability measure

of (X, Y ), the Farrell-Debreu input efficiency defined in (1.2) can also be characterized, under

free disposability, as:

θ(x, y) = inf{θ | FX(θx | y) > 0}, (2.1)

where FX(x | y) = Prob(X ≤ x | Y ≥ y).

A nonparametric estimator of θ(x, y) can be provided by plugging the empirical version

of FX(x | y) in (2.1) given by

F̂X,n(x | y) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)
∑n
i=1 1I(Yi ≥ y)

, (2.2)

where 1I(·) is the indicator function. Then, the estimator of the input efficiency score for a

given point (x, y) is the solution of

θ̂n(x, y) = inf{θ | F̂X,n(θx | y) > 0}. (2.3)

Now, as pointed in CFS, this coincides to the FDH estimator of θ(x, y) given by

θ̂n(x, y) = inf{θ | (θ x, y) ∈ Ψ̂FDH} = min
i|Yi≥y

{
max
j=1,...,p

(Xj
i

xj

)}
, (2.4)

where aj denotes the jth component of a vector a.
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We know that under the free disposal assumption, this is a consistent estimator of θ(x, y)

but with a poor rate of convergence n1/(p+q): this is the curse of dimensionality shared by

most nonparametric estimators (see Park, Simar and Weiner, 2000 for more properties of

θ̂n(x, y)).

The FDH estimator Ψ̂FDH is very sensitive to extreme points, since as an estimator of

the full-frontier, it envelops all the cloud of points X . Therefore, CFS propose to estimate

an order-m frontier, which corresponds to another definition of the benchmark against which

units will be compared. The idea can be summarized as follows (we extend somewhat the

presentation of CFS, introducing here the concept of order-m efficiency).

For a given level of outputs y in the interior of the support of Y , consider now m i.i.d. ran-

dom variables Xi, i = 1, . . . , m generated by the conditional p-variate distribution function

FX(x | y) and define the set:

Ψm(y) = {(x, y′) ∈ IRp+q
+ | x ≥ Xi, y

′ ≥ y, i = 1, . . . , m}. (2.5)

Then, for any x, we may define

θ̃m(x, y) = inf{θ | (θx, y) ∈ Ψm(y)}. (2.6)

Note that θ̃m(x, y) may be computed by the following formula:

θ̃m(x, y) = min
i=1,...,m

{
max
j=1,...,p

(Xj
i

xj

)}
. (2.7)

θ̃m(x, y) is a random variable since the Xi are random variables generated by FX(x | y).

Now, adapting the Definition 5.1 in CFS for the expected order-m frontier, we can define

the expected order-m input efficiency measure, or in shorter, the order-m input efficiency

measure as follows:

Definition 2.1 For any x ∈ IRp
+, the (expected) order-m input efficiency measure denoted

by θm(x, y) is defined for all y in the interior of the support of Y as:

θm(x, y) = E(θ̃m(x, y) | Y ≥ y), (2.8)

where we assume the existence of the expectation.

So, in place of looking for the lower boundary of the support of FX(x | y), as was typically

the case for the full-frontier and for the efficiency score θ(x, y), the order-m efficiency score

can be viewed as the expectation of the minimal input efficiency score of the unit (x, y),

when compared to m units randomly drawn from the population of units producing more
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outputs than the level y. This is certainly a less extreme benchmark for the unit (x, y)

than the “absolute” minimal achievable level of inputs: it is compared to a set of m peers

producing more than its level y and we take as benchmark, the expectation of the minimal

achievable input in place of the absolute minimal achievable input.

Note that the order-m efficiency score is not bounded by 1: a value of θm(x, y) greater

than one indicates that the unit operating at the level (x, y) is more efficient than the

average of m peers randomly drawn from the population of units producing more output

than y. Then for any x ∈ IRp
+, the expected minimum level of inputs of order-m is defined

as x∂m(y) = θm(x, y) x which can be compared with the full-frontier x∂(y) = θ(x, y) x. From

Theorem 5.1 and Theorem 5.2 of CFS one immediately obtains:

Theorem 2.1 For any x ∈ IRp
+ and for all y in the interior of the support of Y , if θm(x, y)

exists, we have:

θm(x, y) =
∫ ∞

0
(1− FX(ux | y))mdu (2.9)

= θ(x, y) +
∫ ∞

θ(x,y)
(1− FX(ux | y))mdu, (2.10)

lim
m→∞ θm(x, y) = θ(x, y). (2.11)

A nonparametric estimator of θm(x, y) is straightforward: we replace the true FX(· | y)

by its empirical version, F̂X,n(· | y). We have

θ̂m,n(x, y) = Ê(θ̃m(x, y) | Y ≥ y)

=
∫ ∞

0
(1− F̂X,n(ux | y))mdu, (2.12)

= θ̂n(x, y) +
∫ ∞

θ̂n(x,y)
(1− F̂X,n(ux | y))mdu (2.13)

This leads to an estimator of the frontier, which for finite m, does not envelop all the observed

data points and so, is less sensitive to extreme points and /or to outliers. As shown by (2.13),

as m increases and for fixed n, θ̂m,n(x, y)→ θ̂n(x, y). Simar (2003) proposes a semi-automatic

procedure to flag potential outliers by investigating the convergence of θ̂m,n(x, y) to θ̂n(x, y)

as m increases: if θ̂m,n(x, y) is still larger than 1 even for large values of m, then (x, y) could

be an extreme points of the cloud X .

CFS analyze the asymptotic properties of the proposed nonparametric estimators. In

particular, they show the
√
n-consistency of θ̂m,n(x, y) to θm(x, y) for m fixed, as n → ∞.

Note that we avoid the curse of dimensionality for the nonparametric estimator of the order-

m efficiency.

We now briefly sketch the main differences for the output oriented case. The Farrell-

Debreu output efficiency score can be characterized as

λ(x, y) = sup{λ | SY (λy | x) > 0}, (2.14)
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where SY (y | x) = Prob(Y ≥ y | X ≤ x). A nonparametric estimator of λ(x, y) is provided

by the empirical version of SY (y | x):

ŜY,n(y | x) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)
∑n
i=1 1I(Xi ≤ x)

. (2.15)

Then, the estimator of the output efficiency score for a given point (x, y) is the solution of

λ̂n(x, y) = sup{λ | ŜY,n(λy | x) > 0}, (2.16)

which coincides to the FDH estimator:

λ̂n(x, y) = sup{λ | (x, λy) ∈ Ψ̂FDH} = max
i|Xi≤x

{
min

j=1,...,p

(Y j
i

yj

)}
, (2.17)

For a given level of inputs x in the interior of the support of X, consider m i.i.d. random

variables Yi, i = 1, . . . , m generated by the conditional q-variate distribution function FY (y |
x) = Prob(Y ≤ y | X ≤ x) and define the set:

Ψm(x) = {(x′, y) ∈ IRp+q
+ | x′ ≤ x, Yi ≤ y, i = 1, . . . , m}. (2.18)

Then, for any y, we may define

λ̃m(x, y) = sup{λ | (x, λy) ∈ Ψm(x)} (2.19)

= max
i=1,...,m

{
min

j=1,...,p

(Y j
i

yj

)}
. (2.20)

The order-m output efficiency measure is defined as follows.

Definition 2.2 For any y ∈ IRq
+, the (expected) order-m output efficiency measure denoted

by λm(x, y) is defined for all x in the interior of the support of X as:

λm(x, y) = E(λ̃m(x, y) | X ≤ x), (2.21)

where we assume the existence of the expectation.

As above, we obtain

Theorem 2.2 For any y ∈ IRq
+ and for all x in the interior of the support of X, if λm(x, y)

exists, we have:

λm(x, y) =
∫ ∞

0
[1− (1− SY (uy | x))m] du (2.22)

= λ(x, y)−
∫ λ(x,y)

0
(1− SY (uy | x))mdu, (2.23)

lim
m→∞λm(x, y) = λ(x, y). (2.24)

A nonparametric estimator of λm(x, y) is given by:

λ̂m(x, y) =
∫ ∞

0

[
1− (1− ŜY,n(uy | x))m

]
du (2.25)

= λ̂n(x, y)−
∫ λ̂n(x,y)

0
(1− ŜY,n(uy | x))mdu. (2.26)
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3 Introducing Environmental Factors

The analysis of the preceding section can easily be extended to the case where additional

information is provided by other variables Z ∈ IRr, exogenous to the production process

itself, but which may explain part of it. The basic idea for introducing this additional

information in the model is to condition the production process to a given value of Z = z.

CFS propose the idea for order-m frontiers and for the univariate case (one input for the

input oriented case or one output for the output oriented case). We propose below a more

general presentation inspired from Section 5.1 and 5.2 of CFS, allowing to handle the multi-

input (multi-output) and the full frontier cases. To save place, we describe the basic ideas

in the input oriented framework. Practical computational issues are addressed in Section 4.

The joint distribution on (X, Y ) conditional on Z = z defines the production process if

Z = z. In particular the efficiency measure defined above in (2.1) has to be adapted to the

condition Z = z as follows:

θ(x, y | z) = inf{θ | FX(θx | y, z) > 0}, (3.1)

where FX(x | y, z) = Prob(X ≤ x | Y ≥ y, Z = z).

A nonparametric estimator of the conditional full-frontier efficiency θ(x, y|z) is given by

plugging a nonparametric estimator of FX(x|y, z). This requires some smoothing techniques

in z. At this purpose we use a kernel estimator of FX(x|y, z) defined as:

F̂X,n(x | y, z) =

∑n
i=1 1I(xi ≤ x, yi ≥ y)K((z − zi)/hn)
∑n
i=1 1I(yi ≥ y)K((z − zi)/hn

, (3.2)

where K(·) is the kernel and hn is the bandwidth of appropriate size (we discuss practical

bandwidth selection issues in the next section). Hence, we obtain the “conditional FDH

efficiency measure” as follows:

θ̂n(x, y | z) = inf{θ | F̂X,n(θx | y, z) > 0}. (3.3)

Note that the asymptotic properties of θ̂n(x, y | z) have not yet been derived in the

literature, but we might expect that the rate of convergence of the usual FDH estimator will

deteriorate with the dimension of Z, due to the smoothing in getting F̂X,n(x | y, z).
The conditional order-m input efficiency measure is introduced accordingly. For a given

level of outputs y in the interior of the support of Y , consider the m i.i.d. random variables

Xi, i = 1, . . . , m generated by the conditional p-variate distribution function FX(x | y, z) and

define the set:

Ψz
m(y) = {(x, y′) ∈ IRp+q

+ | x ≥ Xi, y
′ ≥ y}. (3.4)
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Note that this set depends on the value of z since the Xi are generated through FX(x | y, z).
Then, for any x, we may define

θ̃zm(x, y) = inf{θ | (θx, y) ∈ Ψz
m(y)}. (3.5)

Note that θ̃zm(x, y) may be computed by the following formula:

θ̃zm(x, y) = min
i=1,...,m

{
max
j=1,...,p

(Xj
i

xj

)}
. (3.6)

Now we can define the conditional order-m input efficiency measure by following the idea

of Definition 2.1.

Definition 3.1 For any x ∈ IRp
+, the conditional order-m input efficiency measure given

that Z = z, denoted by θm(x, y|z) is defined for all y in the interior of the support of Y as:

θm(x, y|z) = E(θ̃zm(x, y) | Y ≥ y, Z = z), (3.7)

where we assume the existence of the expectation.

Therefore, for any x ∈ IRp
+, the expected minimum level of inputs of order m, given that

Z = z, is defined as x∂m(y|z) = θm(x, y|z) x. As above we have immediately the following

theorem.

Theorem 3.1 For any x ∈ IRp
+ and for all y in the interior of the support of Y , if θm(x, y|z)

exists, we have:

θm(x, y|z) =
∫ ∞

0
(1− FX(ux | y, z))mdu, (3.8)

lim
m→∞ θm(x, y|z) = θ(x, y|z). (3.9)

A nonparametric estimator of θm(x, y|z) is provided by plugging the nonparametric esti-

mator of FX(x|y, z) proposed above in (3.2). As showed in CFS, the resulting estimator of

the order-m efficiency measure achieves the rate of convergence
√
nhrn, where r = dim(Z),

so here, due to the smoothing in Z, we cannot avoid the curse of dimensionality in the

dimension of Z.

Formally, the estimator is obtained as follows

θ̂m,n(x, y|z) = Ê(θ̃zm(x, y) | y, z) =
∫ ∞

0
(1− F̂X,n(ux | y, z))mdu (3.10)

where θ̃zm(x, y) is defined above in (3.6), and the m random variables Xi are generated

according to the estimated F̂X,n(x | y, z). For a given kernel and a given bandwidth, the
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univariate integral in (3.10) can be evaluated for any point (x, y) and for any level of the

environmental factors Z = z, by using an appropriate numerical method. Note that here

again, for a fixed value of n we have limm→∞ θ̂m,n(x, y|z) = θ̂n(x, y | z).
The derivations of the formulae for the definition and the estimation of the conditional

output efficiency scores (full-frontier and order-m) are obtained in a similar way by replacing

in Section 2, SY (λy | x) by SY (λy | x, z) and ŜY,n(λy | x) by ŜY,n(λy | x, z).

4 Practical computations

Again, the presentation here is limited to the input oriented case to save place.

FDH and conditional FDH efficiency estimates

For any given point (x, y), the FDH estimator θ̂n(x, y) is very easy and fast to compute.

The operational formula comes from (2.4):

θ̂n(x, y) = inf{θ | F̂X,n(θx | y) > 0} = min
i|Yi≥y

{
max
j=1,...,p

(Xj
i

xj

)}
. (4.1)

It is easy to show that for any (symmetric) kernel with compact support (K(u) = 0 if

|u| > 1, as for the uniform, triangle, epanechnikov or quartic kernels), the conditional FDH

efficiency estimator is given by:

θ̂n(x, y|z) = inf{θ | F̂X,n(θx | y, z) > 0} = min
{i|Yi≥y,|Zi−z|≤h}

{
max
j=1,...,p

(Xj
i

xj

)}
, (4.2)

where h is the chosen bandwidth. It is interesting to note that our plug-in estimates

F̂X,n(θx | y, z) > 0 is such that for kernels with unbounded support, like the gaussian kernel,

θ̂n(x, y|z) ≡ θ̂n(x, y): the estimate of the full-frontier efficiency is unable to detect any in-

fluence of the environmental factors. Therefore, in this framework of conditional boundary

estimation, kernels with compact support have to be used.

Order-m and conditional order-m efficiencies

For the order-m efficiency θ̂m,n(x, y) and θ̂m,n(x, y|z), the univariate integrals (2.13) and

(3.10) could be evaluated by numerical methods2, even when p ≥ 1. The algorithms are

very fast: the computation of such integrals for one point, is of the order of a hundredth of

a second on a “old” Pentium III, 450 Mghz machine. However numerical integration can be

avoided by an easy Monte-Carlo algorithm (proposed in CFS for the order-m frontier), that

2All the Matlab codes allowing to compute the input and/or output oriented efficiency measures described
in this paper (unconditional, conditional to Z = z ∈ IR and of any order m) are freely available on request at
simar@stat.ucl.ac.be. When numerical integration is required, the build-in Matlab “quad” procedure (based
on adaptive Simpson quadrature) is used.
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we describe below, as fast for small values of m such as m = 10, but much slower when m

increases:

[1 ] For a given y, draw a sample of size m with replacement among those Xi such that

Yi ≥ y and denote this sample by (X1,b, . . . , Xm,b);

[2 ] Compute θ̃bm(x, y) = mini=1,...,m

{
maxj=1,...,p

(Xj
i,b

xj

)}
.

[3 ] Redo [1]-[2] for b = 1, . . . , B, where B is large.

[4 ] Finally, θ̂m,n(x, y) ≈ 1
B

∑B
b=1 θ̃

b
m(x, y).

The quality of the approximation can be tuned by increasing B but in most applications, say

B = 200, seems to be a reasonable choice (see Simar, 2003, for a code written in Matlab).

This Monte-Carlo algorithm can be adapted as follows for the conditional order-m effi-

ciency score. Suppose that h is the chosen bandwidth for a particular kernel K(·):

[1 ] For a given y, draw a sample of size m with replacement, and with a probability

K((z − zi)/h)/
∑n
j=1 K((z − zj)/h), among those Xi such that Yi ≥ y. Denote this

sample by (X1,b, . . . , Xm,b);

[2 ] compute θ̃b,zm (x, y) = mini=1,...,m

{
maxj=1,...,p

(Xj
i,b

xj

)}
.

[3 ] Redo [1]-[2] for b = 1, . . . , B, where B is large.

[4 ] Finally, θ̂m,n(x, y | z) ≈ 1
B

∑B
b=1 θ̃

b,z
m (x, y).

Bandwidth selection: a simple data-driven method

It is well known that the choice of the bandwidth is important in nonparametric smooth-

ing. We propose in this paper a very simple and easy to compute rule based on a k-Nearest

Neighbor (k-NN) method.

The idea is that the smoothing in computing our Z-conditional efficiency estimators

(3.3) and (3.10), comes from the smoothing in the estimation of the conditional distribution

function F̂X,n(x | y, z) (see equation (3.2)). This is due to the continuity of the variable Z.

Hence, we suggest in a first step to select a bandwidth h which optimizes in a certain sense

the estimation of the density of Z. We propose to use the likelihood cross validation criterion

(see Silverman, 1986 for details), using a k-NN method: this allows to obtain bandwidths

which are localized, insuring we have always the same number of observations Zi in the local

neighbor of the point of interest z when estimating the density of Z.

11



So, for a grid of values of k, we evaluate the leave-one-out kernel density estimate of Z,

f̂
(−i)
k (Zi) for i = 1, . . . , n and find the value of k which maximizes the score function:

CV (k) = n−1
n∑

i=1

log
(
f̂

(−i)
k (Zi)

)
,

where

f̂
(−i)
k (Zi) =

1

(n− 1)hZi

n∑

j=1,j 6=i
K

(
Zj − Zi
hZi

)
,

and hZi is the local bandwidth chosen such that there exist k points Zj verifying |Zj−Zi| ≤
hZi.

Afterwards, in a second step, in order to compute F̂X,n(x | y, z), we have to take into

account for the dimensionality of x and y, and the sparsity of points in larger dimensional

spaces. Consequently, we expand the local bandwidth hZi by a factor 1+n−1/(p+q), increasing

with (p+ q) but decreasing with n.

Stressing the influence of Z on the production process

The comparison of θ̂n(x, y | z) with θ̂n(x, y) is certainly of interest for analyzing the

global influence of Z on the production process. When Z is univariate, a scatter plot of

the ratios3 θ̂n(x, y | z)/θ̂n(x, y) against Z and its smoothed nonparametric regression line

would be helpful to describe the influence of Z on efficiency. If this regression is increasing,

it indicates that Z is detrimental (unfavorable) to efficiency and when this regression is

decreasing, it specifies a Z factor conducive (favorable) to efficiency.

We recall indeed that here we are in an input oriented framework. In the first case

(unfavorable Z) the environmental variable acts like an “extra” undesired output to be

produced asking for the use of more inputs in production activity, hence Z has a “negative”

effect on the production process. In this case θ̂n(x, y | z), the efficiency computed taking Z

into account, will be much larger than the unconditional efficiency θ̂n(x, y) for large values

of Z then for small value of Z. Consequently, the ratios θ̂n(x, y | z)/θ̂n(x, y) will increase,

on average, with Z.

In the second case (favorable Z), the environmental variable plays a role of a “substitu-

tive” input in the production process, giving the opportunity to “save” inputs in the activity

of production; in this case, Z has a “positive” effect on the production process. It follows that

the conditional efficiency θ̂n(x, y | z) will be much larger than θ̂n(x, y) for small values of Z

(less substitutive inputs) than for large values of Z. Therefore, the ratios θ̂n(x, y | z)/θ̂n(x, y)

will, on average, decrease when Z increases.

3We can do the same with the differences θ̂n(x, y | z)− θ̂n(x, y), but since efficiency scores are proportions,
ratios seem very natural.
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Since we know that full-frontier estimates, and the derived estimated efficiency scores, are

very sensitive to outliers and extreme values, we do also the same analysis for the more robust

order-m efficiency scores. Thus we present also the nonparametric smoothed regression of

the ratios θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z. This could be done for some values of m, knowing

that when m increases, this converges to the preceding case (full-frontier). As pointed in

CFS, m can also be viewed as a trimming parameter and several values of m could be used

to provide a sensitivity analysis. This allows to detect potential outliers, i.e., points such

that their order-m efficiency scores are still larger than 1, even when m increases, see Simar

(2003).

Mutatis mutandis, the same could be done in the output oriented case, with similar

conclusions to detect the influence of Z on efficiency. In this case, the influence of Z goes in

the opposite direction: an increasing regression corresponds to favorable environmental factor

and a decreasing regression indicates an unfavorable factor. In an output oriented framework,

a favorable Z means that the environmental variable operates as a sort of “extra” input

freely available: for this reason the environment is “favorable” to the production process.

Consequently, the value of λ̂n(x, y | z) will be much smaller (greater efficiency) than λ̂n(x, y)

for small values of Z than for large values of Z: the ratios λ̂n(x, y | z)/λ̂n(x, y) will increase

with Z, on average.

In the case of unfavorable Z, the environmental variable works as a “compulsory” or

unavoidable output to be produced to face the negative environmental condition. Z in a

certain sense penalizes the production of the outputs of interest. In this situation, λ̂n(x, y|z)
will be much smaller than λ̂n(x, y) for large values of Z. As a result, the regression line of

λ̂n(x, y | z)/λ̂n(x, y) over Z will be decreasing.

Of course, we do not propose any inference here, but only an easy and useful descriptive

diagnostic tool.

5 Empirical illustrations

5.1 Classroom simulated data sets

We begin with some very simple simulations where all the units produce the same quantity

of output by using a single input X. Now suppose that Z is unfavorable to the production

process (suppose each unit has to produce 1 liter of ice from water at 20 degrees centigrade:

X is the required energy and Z is the environmental temperature: if Z is large, the process,

even efficient will require more input). We simulated a sample size n = 100 from Z ∼
Uniform(1, 10) and compare 3 different scenarios for generating X.
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• Case 1: X = Z3/2 + ε, here Z is unfavorable to X for all values of its range and ε is

the random true inefficiency ε ∼ Exp(3), i.e. an exponential r.v. with mean 3.

• Case 2: X = 53/2 + ε, here Z is independent of X and ε is as above.

• Case 3: X = 53/2 1I(Z ≤ 5) + Z3/2 1I(Z > 5) + ε, i.e., the unfavorable effect of Z on X

starts only after the value of Z larger than 5, with the same inefficiency term ε.

We computed the FDH, conditional to Z-FDH, the order-m and conditional Z-order-m

input efficiency scores of all the 100 units. For the illustration, we have chosen here m = 25.

For larger values of m the results converge very quickly to the full-frontier results. We

present the results for a triangle kernel (we obtain very similar results with other kernels

with compact support).

The 3 following pictures (Figures 1 to 3) illustrate how the nonparametric regression of

the ratios between the conditional and the unconditional efficiency measures on Z is able to

capture the real effect of Z on the production process. We recover exactly what we expected

through the 3 different simulation scenarios. So it seems that our estimation procedure works

pretty well.
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Figure 1: Classroom example, case 1, “unfavorable” effect of Z on production efficiency
(input oriented framework). Scatterplot and smoothed regression of θ̂n(x, y | z)/θ̂n(x, y) on
Z (top) and of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z, with m = 25 (bottom). Here k-NN=19.

Table 1 gives the average values of the 4 different input efficiency measures for the 3 cases.

Again we obtain the expected results under the 3 different scenarios. For instance, in case

2, the true mean efficiency score is about 53/2/(53/2 + 3) ≈ 0.79. Note that the full detailed
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Figure 2: Classroom example, case 2, no effect of Z on production efficiency (input oriented
framework). Scatterplot and smoothed regression of θ̂n(x, y | z)/θ̂n(x, y) on Z (top) and of
θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z, with m = 25 (bottom). Here k-NN=19.
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Figure 3: Classroom example, case 3, “unfavorable” effect of Z on production efficiency,
only after Z > 5 (input oriented framework). Scatterplot and smoothed regression of θ̂n(x, y |
z)/θ̂n(x, y) on Z (top) and of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z, with m = 25 (bottom). Here
k-NN=19.
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table of results for the 100 units (not reproduced here to save place) provides two interesting

information: for each unit (Xi, Yi), the number of dominating units N , i.e., the number of

points j 6= i such that Xj ≤ Xi and Yj ≥ Yi. The same is done for the Z-conditional measure

where Nz is the number of points dominating (Xi, Yi), with in addition |Zj−Zi| ≤ hZi . The

summary Table 1 gives the average values of N and Nz over the n = 100 observations.

Case N θ̂n(x, y) θ̂n,m(x, y) h Nz θ̂n(x, y|z) θ̂n,m(x, y|z)
1 49.5 0.1616 0.2774 0.9384 9.4 0.6990 0.7482
2 49.5 0.8302 0.8356 0.9384 9.7 0.8381 0.8424
3 49.5 0.6209 0.6367 0.9384 9.5 0.8249 0.8462

Table 1: Average efficiency scores over the 100 observations, for the classroom example.
N is the average number of observations dominating (x, y) and Nz the average number of
dominating points given Z = z. h is the average of the selected local bandwidths (with
k-NN=19).

5.2 Multivariate simulated data sets

In this simulated example, we simulate a multi-input (p = 2) and multi-output (q = 2) data

set. We follow the ideas proposed by Park, Simar and Weiner (2000) and by Simar (2003)

to simulate the data set and then we introduce some dependency to an environmental factor

Z.

In this set-up, the function describing the efficient frontier is given by:

y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1)

where y(j), (x(j)), denotes the jth component of y, (of x), for j = 1, 2. We draw X
(j)
i

independent uniforms on (1, 2) and Ỹ
(j)
i independent uniform on (0.2, 5). Then the generated

random rays in the output space are characterized by the slopes Si = Ỹ
(2)
i /Ỹ

(1)
i . Finally, the

generated random points on the frontier are defined by:

Y
(1)
i,eff =

1.0845(X
(1)
i )0.3(X

(2)
i )0.4

Si + 1

Y
(2)
i,eff = 1.0845(X

(1)
i )0.3(X

(2)
i )0.4 − Y (1)

i,eff .

We chose, as above, the efficiencies generated by exp(−Ui) where Ui are drawn from an ex-

ponential with mean µ = 1/3. Finally, in a standard setup (without environmental factors),

we define Yi = Yi,eff ∗ exp(−Ui).
Now we introduce the dependency on Z in the latter expression as follows: Z ∼ Uniform(1, 4)

16



• Case 1, Z is favorable to output production but differently for Y (1) than for Y (2). We

define V = Z and set

Y
(1)
i = V 2 ∗ Y (1)

i,eff ∗ exp(−Ui)
Y

(2)
i = V 1/2 ∗ Y (2)

i,eff ∗ exp(−Ui).

• Case 2, Z is independent of Y . We define V = 2.5, the mean of Z and use the same

latter expressions to generate Y .

We computed the FDH, conditional to Z-FDH, the order-m and conditional Z-order-m

output efficiency scores of all the units. We have chosen again m = 25, for larger values

of m, say m ≥ 100, the results are very similar to the full-frontier (FDH) results. We

present the results for a triangle kernel: here again the results are very stable with respect

to other choice of the kernel with compact support. Figure 4 and 5 indicate very clearly the

differences between the two scenarios even with a small sample size of n = 100 (remember

that we are in a space of dimension 5). For a larger sample size (n = 500) the effect of Z on

the efficiency appears still more clearly as in Figure 6. Here also, the difference between the

full frontier and the order-25 frontier is more visible.
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Figure 4: Multivariate example, case 1, n = 100: “positive” effect of Z on production
efficiency (output oriented framework). Scatterplot and smoothed regression of λ̂n(x, y |
z)/λ̂n(x, y) on Z (top) and of λ̂m,n(x, y | z)/λ̂m,n(x, y) on Z, with m = 25 (bottom). Here
k-NN=17.

Table 2 presents again a summary of the results, as in the preceding classroom example.

We see here, by looking at the average values of N and Nz, that in this 4 (or 5) dimensional
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Figure 5: Multivariate example, case 2, n = 100: no effect of Z on production efficiency
(output oriented framework). Scatterplot and smoothed regression of λ̂n(x, y | z)/λ̂n(x, y) on
Z (top) and of λ̂m,n(x, y | z)/λ̂m,n(x, y) on Z, with m = 25 (bottom). Here k-NN=19.
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Figure 6: Multivariate example, case 1, n = 500: “positive” effect of Z on production
efficiency (output oriented framework). Scatterplot and smoothed regression of λ̂n(x, y |
z)/λ̂n(x, y) on Z (top) and of λ̂m,n(x, y | z)/λ̂m,n(x, y) on Z, with m = 25 (bottom). Here
k-NN=40.
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space, it is better to rely on more observations than n = 100 to get more sensible results,

at least for the full-frontier estimates (this is the curse of dimensionality of the FDH and

Z-FDH estimators). However, even when n = 100, the Figures 4 and 5 allows to detect the

effect of Z on the production process.

Case N θ̂n(x, y) θ̂n,m(x, y) h Nz θ̂n(x, y|z) θ̂n,m(x, y|z)
case 1, n = 100 4.8 1.5819 1.4788 0.3864 0.7 1.1679 1.1679
case 2, n = 100 2.9 1.1988 1.1393 0.3236 0.6 1.0965 1.0965
case 1, n = 500 26.9 2.0453 1.7350 0.1467 1.6 1.1760 1.1760

Table 2: Multivariate example, Average efficiency scores: N is the average number of obser-
vations dominating (x, y) and Nz the average number of dominating points given Z = z. h
is the average of the selected local bandwidths.

5.3 Mutual funds data

We illustrate our methodology analyzing US Mutual Funds data. We use a cross-section data

set, collected by the reputed Morningstar, which consists of the US Mutual Funds universe

updated at 05-31-2002. Among this universe we select the Aggressive-Growth (AG) category

of Mutual Funds. These are funds that seek rapid growth of capital and that may invest in

emerging market growth companies.

From a first data set of 247 observations, we end up, for this illustration, with a sample

of 129 mutual funds, after dropping 103 observations for missing values and 15 observations

detected by the Simar’s (2003) procedure as being outliers.

The selection of variables has been done by taking the same variables chosen in ear-

lier studies (Murthy, Choi and Desai, 1997; Sengupta, 2000) that used a (deterministic)

nonparametric approach.

Following these previous studies, we apply an input oriented framework in order to evalu-

ate the performance of mutual funds in terms of their risk (as expressed by standard deviation

of return) and transaction costs (including expense ratio, loads and turnover) management.

Murthy, Choi and Desai (1997) used as inputs: risk (standard deviation, or volatility of the

return), expense ratio (the percentage of fund assets paid for operating expenses, manage-

ment fees, administrative fees, and all other asset-based costs), loads (percentage for the

front-end and back-end sales charges of each fund) and turnover ratio (a measure of the

fund’s trading activity). The 3 latter inputs are considered as a measure of the transaction

costs.

The traditional output in this framework is the total return of funds (the annual return at

the 05-31-2002, expressed in percentage terms). Most returns where negative in this period,
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hence we shift them to get all positive returns by adding 100. This does not change our

input oriented analysis. Sengupta (2000) uses market risks of mutual funds (the percentage

of fund’s movements that can be explained by movements in its benchmark index) as an

input in his analysis, underlying that the effect of market risks is conducive for mutual

funds performance. In our illustration we use this variable (market risks) as environmental

variable, to investigate its effect on our data, i.e. if it is detrimental or favorable to the

performance of mutual funds in the period under consideration.

In our illustration we decided to eliminate one of the inputs previously considered, the

loads, for the following reasons: the curse of dimensionality (6 variables, with only 129

observations); loads in the data set is typically a discrete variable with not many different

values (round to the percentage), with a majority of funds having loads equal to zero; and

finally, the correlation of this variable with any of the 5 others (X, Y and Z) is smaller than

0.07, which might indicate an orthogonal aspect of the activity. So, we end up with 3 inputs,

1 output, 1 environmental factor and 129 observations.

Table 3 displays some summary statistics of the chosen variables.

Variable mean std min max iqr

Y= return 81.8329 9.8416 40.1200 103.7600 13.4825
X(1)= volatility 34.9777 8.8845 14.7300 81.0500 9.8875
X(2)= turnover 155.1938 99.1631 15.0000 642.0000 129.7500
X(3)= exp. ratio 1.6815 1.2859 0.4800 14.7000 0.8400
Z= market risk 0.4721 0.1571 0.0584 1.0000 0.1362

Table 3: Summary statistics for the n = 129 Aggressive-Growth US Mutual Funds. Average,
standard deviation, minimum, maximum and interquartile range.

Table 4 presents the results coming from our Matlab code. In order to save place, we

present only 15 funds chosen at random from the full table (presented at length in the

Appendix). We have chosen a triangle kernel for the smoothing and the likelihood cross-

validation procedure provided k = 21 as the optimal choice for the k-NN method. We select

again the value of m = 25, although we did the computations for several values of m. If

10 ≤ m ≤ 50 we obtain very similar results and when m is larger than, say, 100 we obtain

very similar results as for the full-frontier efficiency scores.

Looking at the last row of Table 4, we see that the global effect of the market risk factor Z

on the full efficiency measures is an increase from 0.6083 to 0.8825. For the order-m frontier

we have a similar mean effect going from 0.8149 to 0.9215. The effect is more important

for the full FDH frontier, as expected, since these measures are more sensitive to extreme

points.
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Fund N θ̂n(x, y) θ̂n,m(x, y) h Nz θ̂n(x, y|z) θ̂n,m(x, y|z)
1 20 0.4200 0.6923 0.2589 4 0.8056 0.9355
2 7 0.4956 0.6113 0.1449 1 0.8722 0.9997
3 0 1.0000 1.0005 0.2208 0 1.0000 1.0000
6 3 0.5138 0.8777 0.0524 0 1.0000 1.0001

15 9 0.4396 0.6925 0.0226 0 1.0000 1.0013
33 0 1.0000 1.0576 0.0238 0 1.0000 1.0000
36 7 0.4860 0.7144 0.0155 1 0.8855 0.8961
37 15 0.4910 0.6179 0.0149 4 0.7457 0.7578
40 3 0.8323 0.8449 0.0193 0 1.0000 1.0000
74 8 0.4831 0.8772 0.1762 2 0.4831 0.5835

111 1 0.9182 0.9300 0.0188 0 1.0000 1.0000
112 5 0.7976 0.8571 0.0220 1 0.9587 0.9593
124 19 0.4790 0.7182 0.1710 5 0.8487 0.8998
127 47 0.3098 0.5472 0.0160 6 0.5707 0.6008
129 5 0.4453 0.7846 0.0296 2 0.9062 0.9312

mean 9.2 0.6083 0.8149 0.0823 1.8 0.8825 0.9215

Table 4: Results from 15 selected funds from the Aggressive-Growth US Mutual Funds. N is
the number of observations dominating (x, y) and Nz the number of dominating points given
Z = z. h is the selected local bandwidth (k-NN=21). Last row is the average over all the
129 observations

We propose here some descriptive comments on the figures of Table 4: a few funds have

a huge increase of their efficiencies when Z-conditional measures are considered (funds like

#1,#2,#3,. . . , even some like fund #6 becomes efficient). Some other funds have a very

poor performance, even if we take the environmental factor into account: these are funds like

#37, #74, #127, . . . . In practical applications, these funds should deserve more attention.

To have a global idea of the effect of the risk factor Z on mutual funds performance,

we regress nonparametrically the ratios between the conditional efficiency measures and the

unconditional efficiency measures on Z: we obtain the picture displayed in Figure 7.

Looking at this picture, we can see a global positive effect of the market risk factor Z on

the performance of mutual funds. When looking at the full conditional efficiency measures

(top panel of Figure 7), this effect seems to be more important when Z ≥ 0.5. Note that

for low values of Z, the regression line in this case is attracted to low values of isolated

points on the left of the picture. This global effect is confirmed on the bottom panel of the

same picture, where the effect seems to start around Z = 0.2. These pictures confirm that

with our data market risk acts as a “ substitutive input” in the mutual funds management

process.
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Figure 7: Aggressive-Growth US Mutual Funds. Scatterplot and smoothed regression of the
ratios θ̂n(x, y | z)/θ̂n(x, y) on Z (top) and of θ̂m,n(x, y | z)/θ̂m,n(x, y) on Z, with m = 25
(bottom). Here k-NN=21.

6 Conclusion

In this paper, developing ideas proposed by Cazals, Florens and Simar (2002), we provide

a full probabilistic formulation of a nonparametric frontier model and of a nonparametric

frontier model of order-m. This formulation allows the introduction in both models (full

frontier and order-m frontier) of environmental factors which may influence the production

process but that are neither inputs nor outputs under the control of the producer.

The presentation allows general multi-input/ multi-output situations and provides a prac-

tical way for evaluating the nonparametric estimators. A data-driven procedure for choosing

the bandwidth, based on a k-nearest neighbor method is suggested. Furthermore, we pro-

pose a useful graphical tool for highlighting the eventual influence of Z on the production

process. Our method will tell us if the environmental factor is conducive or detrimental to

the production activity.

The approach is illustrated by some simulated data set and with a real data set on US

mutual funds, where the risk of the market shows a positive influence on the performance

(management process) of mutual funds.

Some interesting theoretical issues are still open in this framework. For instance, what are

the statistical properties of the conditional full frontier efficiency estimator? Or, how could

we select optimal bandwidth in the estimation procedure? We propose a very simple sensible

technique, based on likelihood cross-validation for the density of Z, but other criterion could
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be investigated.

Appendix

Full Table of Results for the Mutual Funds Example

Units N θ̂n(x, y) θ̂n,m(x, y) h Nz θ̂n(x, y|z) θ̂n,m(x, y|z)
1 20 0.4200 0.6923 0.2589 4 0.8056 0.9355
2 7 0.4956 0.6113 0.1449 1 0.8722 0.9997
3 0 1.0000 1.0005 0.2208 0 1.0000 1.0000
4 4 0.6138 0.6314 0.2214 4 0.6138 0.8526
5 3 0.6138 0.6266 0.2256 3 0.6138 0.8162
6 3 0.5138 0.8777 0.0524 0 1.0000 1.0001
7 4 0.5407 0.8224 0.0604 0 1.0000 1.0010
8 6 0.5446 0.7112 0.0631 0 1.0000 1.0003
9 6 0.5456 0.7145 0.0651 0 1.0000 1.0001

10 5 0.5147 0.6686 0.0146 0 1.0000 1.0000
11 4 0.5129 0.7198 0.0145 0 1.0000 1.0000
12 7 0.5185 0.6170 0.0141 1 1.0000 1.0000
13 6 0.5185 0.6155 0.0157 0 1.0000 1.0000
14 7 0.4750 0.7152 0.0162 0 1.0000 1.0007
15 9 0.4396 0.6925 0.0226 0 1.0000 1.0013
16 17 0.4560 0.6231 0.2166 6 0.8080 0.8755
17 2 0.6000 0.8299 0.2207 0 1.0000 1.0148
18 6 0.5552 0.7223 0.2166 1 1.0000 1.0004
19 18 0.5095 0.6737 0.0173 3 0.7938 0.8330
20 34 0.3497 0.5334 0.0513 10 0.6318 0.6468
21 5 0.5278 0.8996 0.0322 1 1.0000 1.0023
22 29 0.3735 0.6700 0.0296 4 0.6304 0.6976
23 2 0.6333 1.0038 0.0300 0 1.0000 1.0296
24 6 0.7931 0.8088 0.0838 2 0.8080 0.8118
25 13 0.4317 0.6622 0.0157 4 0.8102 0.8167
26 3 0.5093 0.8681 0.0393 0 1.0000 1.0002
27 7 0.5107 0.7876 0.0399 2 0.8952 0.9332
28 5 0.4648 0.8013 0.0385 1 0.9275 0.9572
29 0 1.0000 1.0427 0.0171 0 1.0000 1.0003
30 0 1.0000 1.0101 0.0199 0 1.0000 1.0000
31 0 1.0000 1.0056 0.0205 0 1.0000 1.0000
32 2 0.6537 0.7565 0.0178 1 1.0000 1.0000
33 0 1.0000 1.0576 0.0238 0 1.0000 1.0000
34 4 0.4500 0.8576 0.0224 0 1.0000 1.0085
35 6 0.4855 0.7255 0.0200 1 0.9667 0.9682
36 7 0.4860 0.7144 0.0155 1 0.8855 0.8961
37 15 0.4910 0.6179 0.0149 4 0.7457 0.7578
38 15 0.4904 0.6218 0.0145 4 0.7447 0.7566
39 8 0.4896 0.7161 0.0256 1 0.8406 0.9143
40 3 0.8323 0.8449 0.0193 0 1.0000 1.0000
41 3 0.6418 0.7141 0.0148 0 1.0000 1.0000
42 4 0.6416 0.7139 0.0155 1 1.0000 1.0000
43 1 1.0000 1.0140 0.0155 0 1.0000 1.0000
44 6 0.4790 0.6746 0.0169 0 1.0000 1.0002
45 13 0.4825 0.5918 0.0167 1 0.8010 0.9064
46 13 0.4823 0.5894 0.0184 0 1.0000 1.0007
47 3 0.5700 0.7466 0.0189 0 1.0000 1.0042
48 5 0.5429 0.8070 0.0318 1 0.9987 0.9998
49 19 0.4042 0.5872 0.0298 3 0.6444 0.6890
50 20 0.4041 0.5907 0.0365 4 0.6444 0.7412
51 2 0.7125 0.9431 0.0302 0 1.0000 1.0041
52 5 0.6196 0.9513 0.0856 1 0.9674 0.9999
53 0 1.0000 1.1030 0.1429 0 1.0000 1.0000
54 0 1.0000 1.0095 0.0429 0 1.0000 1.0000
55 0 1.0000 1.5839 0.2497 0 1.0000 1.0026
56 0 1.0000 1.3897 0.3282 0 1.0000 1.0000
57 0 1.0000 1.4835 0.3352 0 1.0000 1.0000
58 0 1.0000 1.0000 0.0359 0 1.0000 1.0000
59 0 1.0000 1.0000 0.0375 0 1.0000 1.0000
60 1 1.0000 1.0000 0.0376 1 1.0000 1.0000
61 5 0.5212 0.7692 0.0250 0 1.0000 1.0022
62 10 0.5226 0.6932 0.0266 1 1.0000 1.0000
63 7 0.5226 0.7019 0.0213 0 1.0000 1.0003
64 1 0.5700 1.0591 0.0387 0 1.0000 1.0322
65 21 0.3913 0.6888 0.0855 2 0.9710 1.0083
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Units N θ̂n(x, y) θ̂n,m(x, y) h Nz θ̂n(x, y|z) θ̂n,m(x, y|z)
66 1 0.8507 1.2603 0.0186 0 1.0000 1.0426
67 1 0.8636 1.2598 0.0216 0 1.0000 1.0513
68 1 0.6404 0.9775 0.0415 0 1.0000 1.0116
69 5 0.5098 0.7110 0.0678 1 0.8227 0.9608
70 5 0.6000 0.9246 0.0265 0 1.0000 1.0114
71 1 0.8385 0.9198 0.0701 0 1.0000 1.0000
72 2 0.6872 0.7803 0.0790 0 1.0000 1.0000
73 2 0.8327 0.9902 0.2674 2 0.8327 0.8336
74 8 0.4831 0.8772 0.1762 2 0.4831 0.5835
75 23 0.4458 0.6961 0.1735 8 0.4458 0.5637
76 22 0.4458 0.6948 0.1758 7 0.4458 0.5462
77 2 0.6129 0.9795 0.1743 1 0.6129 0.6787
78 3 0.6163 0.6963 0.0390 0 1.0000 1.0000
79 6 0.6193 0.6857 0.1254 0 1.0000 1.0020
80 0 1.0000 1.0009 0.3742 0 1.0000 1.0000
81 24 0.4191 0.6900 0.0413 7 0.6896 0.7046
82 54 0.3301 0.5468 0.0393 14 0.6948 0.7027
83 12 0.6793 0.7154 0.0347 4 0.7769 0.7967
84 6 0.6793 0.7502 0.0354 1 0.8783 0.8869
85 19 0.3335 0.4509 0.0390 3 0.5659 0.6721
86 19 0.3333 0.4484 0.0390 3 0.5659 0.6619
87 1 0.6793 0.8402 0.0337 0 1.0000 1.0005
88 0 1.0000 1.0061 0.0268 0 1.0000 1.0000
89 0 1.0000 1.0001 0.0237 0 1.0000 1.0000
90 22 0.4711 0.6990 0.0211 8 0.8264 0.8704
91 61 0.3777 0.5585 0.0198 10 0.5918 0.6749
92 61 0.3777 0.5585 0.0164 8 0.7885 0.7905
93 6 0.5279 0.8069 0.0213 1 0.9792 0.9845
94 1 0.6404 1.0990 0.1199 0 1.0000 1.0091
95 8 0.4172 0.8174 0.1249 2 0.4172 0.8835
96 6 0.4166 0.8385 0.1240 2 0.4166 0.8828
97 4 0.5182 0.8847 0.0848 1 0.9909 1.0042
98 15 0.3884 0.6541 0.0863 5 0.7701 0.7883
99 14 0.3885 0.6526 0.0810 4 0.7703 0.7842

100 12 0.3873 0.6994 0.0840 4 0.8125 0.8235
101 6 0.6991 0.7352 0.4055 2 0.9075 0.9456
102 2 0.7207 0.7356 0.2030 0 1.0000 1.0000
103 5 0.6706 0.8301 0.5469 3 0.6706 0.6853
104 3 0.6674 0.9093 0.5449 2 0.6674 0.7029
105 2 0.6136 1.0064 0.0150 0 1.0000 1.0196
106 2 0.5403 0.8998 0.0154 0 1.0000 1.0040
107 2 0.5115 0.8889 0.0133 0 1.0000 1.0028
108 1 0.5625 0.8641 0.0170 0 1.0000 1.0000
109 2 0.5625 0.7694 0.0272 0 1.0000 1.0000
110 5 0.5649 0.6556 0.0539 2 0.8000 0.9354
111 1 0.9182 0.9300 0.0188 0 1.0000 1.0000
112 5 0.7976 0.8571 0.0220 1 0.9587 0.9593
113 14 0.4464 0.4979 0.0386 0 1.0000 1.0001
114 1 0.8189 0.8228 0.0295 1 0.8189 0.8197
115 10 0.4457 0.5857 0.0271 0 1.0000 1.0003
116 16 0.4486 0.5459 0.0266 0 1.0000 1.0003
117 16 0.4482 0.5421 0.0259 1 0.6680 0.9412
118 0 1.0000 2.3707 0.0332 0 1.0000 1.2449
119 8 0.4128 0.7950 0.0176 2 0.8929 0.9684
120 6 0.4125 0.8183 0.0158 1 0.8922 0.9812
121 10 0.4142 0.7648 0.0163 3 0.8959 0.9350
122 0 1.0000 1.1304 0.4276 0 1.0000 1.0000
123 0 1.0000 1.0217 0.0437 0 1.0000 1.0010
124 19 0.4790 0.7182 0.1710 5 0.8487 0.8998
125 65 0.3461 0.5564 0.1705 15 0.5800 0.7427
126 64 0.3463 0.5557 0.1716 14 0.5800 0.7378
127 47 0.3098 0.5472 0.0160 6 0.5707 0.6008
128 7 0.5848 0.8348 0.1361 2 0.5848 0.6938
129 5 0.4453 0.7846 0.0296 2 0.9062 0.9312
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