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Abstract 
 
We assess the contribution of “undue optimism” (Pigou) to short-run fluctuations. In our 
analysis, optimism pertains to total factor productivity which determines economic activity in 
the long run, but is not contemporaneously observed by market participants. In order to 
recover optimism shocks - autonomous, but fundamentally unwarranted changes in the 
assessment of productivity - from actual time series, we rely on an informational advantage 
over market participants. Specifically, we compute the nowcast error regarding current output 
growth drawing on the Survey of Professional Forecasters. Including nowcast errors in a 
vector autoregression model makes it possible to identify optimism shocks. Optimism shocks, 
in line with theory, induce a negative nowcast error but raise economic activity in the short 
run. They account for up to 30 percent of short-run fluctuations. 
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1 Introduction

Economic outcomes depend on expectations and vice versa. In this paper, we ask to what

extent changes of expectations are an autonomous source of business cycle fluctuations. This

question dates back to Pigou (1927) who discusses the possibility that “errors of undue opti-

mism or undue pessimism” are a genuine cause of “industrial fluctuations.” Keynes’ notion

of “animal spirits” is a related, but distinct concept.1 More recently, Beaudry and Portier

(2004) explore the possibility of “Pigou cycles” in a quantitative business cycle model fea-

turing possibly undue expectations regarding future productivity. Lorenzoni (2009), in turn,

puts forward a model in which misperceptions regarding the current state of productivity

turn out to be an important source of business cycle fluctuations.

In this paper, we take up the issue empirically and investigate the contribution of undue

optimism and pessimism to business cycles fluctuations. Estimating a vector autoregression

(VAR) on U.S. time-series data, we seek to identify “optimism shocks”, that is, changes in

expectations due to a perceived change in total factor productivity which does not actually

materialize. Blanchard et al. (2012) show that this constitutes a formidable challenge, because

optimism shocks or, quite generally, misperceptions are mistakes of market participants. As

such they cannot be uncovered on the basis of standard time-series techniques. Instead, one

may resort to estimating fully specified general equilibrium models (Barsky and Sims 2012)

or exploit information not available to market participants in real time.

Our analysis is based on this insight. Specifically, our identification strategy relies on an ex-

post measure of agents’ misperceptions, namely the nowcast error regarding current output

growth. Drawing on the Survey of Professional Forecasters (SPF), we compute it as the

difference between actual output growth in a given quarter and the median of the predicted

values in real time. A positive realization of the nowcast error thus implies that nowcasts have

been too pessimistic. Yet it is important to keep in mind that, as a reduced-form measure,

nowcast errors may be the result not only of optimism shocks, but of various structural

innovations.

The SPF is a widely recognized measure of private sector expectations regarding the current

state and prospects of the U.S. economy. It is also a frequently used benchmark to assess

forecasting models. Nevertheless, as we show in the first step of our analysis, nowcast errors

can be sizable. Depending on whether we consider the first or the final release of data for ac-

tual output growth, the largest nowcast error exceeds 1 or 1.75 percentage points of quarterly

1Keynes’ animal spirits are “a spontaneous urge to action rather than inaction”, which drive economic
decisions beyond considerations based “on nothing but a mathematical expectation” (Keynes 1936, pp. 161
and 162).
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output growth respectively. We also document that nowcast errors are positively correlated

with economic activity and investigate the effect of well-known measures of structural inno-

vations on nowcast errors. We find that innovations which are publicly observable, such as

monetary and fiscal policy shocks or uncertainty shocks, do not cause nowcast errors. In

contrast, productivity shocks have a significant effect on nowcast errors, presumably because

they impact current output growth, but are not observable in real time.

Nowcast errors play a key role in our analysis as they allow us to recover optimism shocks

from actual time series data. We establish this result within a business cycle model which

mimics, in a stylized way, the informational friction which gives rise to nowcast errors. The

model is a version of the dispersed-information model of Lorenzoni (2009), for which we

are able to obtain closed-form solutions. Using the model, we also derive the identification

restrictions on which we rely in the main part of our analysis. Specifically, drawing on

earlier work by Gaĺı (1999) and others, we estimate a VAR model on time-series data for

labor productivity, employment, and the nowcast error. In order to identify the distinct

contributions of optimism and productivity shocks to short-run fluctuations, we assume, in

line with our theoretical results, that nowcast errors may emerge only as a result of optimism

or productivity shocks. Yet optimism shocks, in contrast to productivity shocks, have no

bearing on labor productivity in the long run.

According to the estimated VAR model, optimism shocks—as predicted by theory—induce a

negative nowcast error, yet significantly boost economic activity at the same time. This result

is noteworthy, because we do not restrict the response of the nowcast error to optimism shocks.

Moreover, as the unconditional correlation between nowcast errors and economic activity is

positive, the change of the correlation conditional on optimism shocks lends additional support

to our identification strategy. Instead, productivity shocks induce a positive nowcast error

while also stimulating economic activity. These results are robust across a range of alternative

specifications, including alternative measures of the nowcast error. Finally, computing a

forecast error variance decomposition, we find that optimism shocks account for up to 30

percent of output fluctuations.

Conceptually, our analysis relates to a number of recent studies on the role of exogenous

shifts in expectations as a source of business cycle fluctuations. Angeletos and La’O (2012)

develop a model where “sentiment shocks” arise, as market participants are unduly but simul-

taneously optimistic about their terms of trade. These shocks trigger aggregate fluctuations

even if productivity is known to be constant. A number of contributions have focused on the

distinction between current and anticipated productivity shocks. Evidence by Beaudry and

Portier (2006) suggests that business cycles are largely driven by expected future changes in
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productivity (see also Beaudry et al. 2011, Schmitt-Grohé and Uribe 2012, and Leduc and Sill

2013), while Barsky and Sims (2011) find the role of expected productivity innovations to be

limited. In any case, to the extent that anticipated shocks do not materialize as expected, a

recession might ensue, which is thus caused by undue optimism (Jaimovic and Rebelo 2009).

In our analysis, we allow misperceptions to pertain also to current, instead of only to future

productivity.

We also stress that there are few attempts to identify optimism shocks empirically without

imposing a fully structural model on the data. Blanchard (1993) provides an animal-spirits

account of the 1990–91 recession focusing on consumption. Caroll et al. (1994) show that

consumer sentiment forecasts consumption spending—aside from the information contained

in other available indicators. Yet in concluding they suggest a “fundamental explanation”

based on habits and precautionary saving motives. Oh and Waldman (1990) show that “false

macroeconomic announcements”, identified as measurement error in early releases of leading

indicators, cause future economic activity. They refrain from a structural interpretation, how-

ever. Mora and Schulstad (2007) show that once announcements regarding current growth

are taken into account, the actual growth rate has no predictive power in determining fu-

ture growth. Finally, Bachmann and Sims (2012) explore the importance of confidence for

the transmission of fiscal shocks, but do not analyze the effect of exogenous variations in

confidence.

The remainder of the paper is organized as follows: The next section introduces our measure

of nowcast errors and provides a number of statistics illustrating their properties. Section

3 puts forward a simple model which allows us to clarify issues pertaining to the notion of

optimism shocks and their identification. Section 4 presents our VAR model and results. A

final section concludes.

2 A reduced-form measure of misperceptions

We eventually aim to uncover the effects of optimism shocks, that is, a perceived change in

productivity which does not actually materialize. In this section, as a step towards this end,

we consider a reduced-form measure of misperceptions by computing nowcast errors regarding

current U.S. output growth. Nowcast errors can be the result of optimism shocks, but they

may also be due to other structural innovations. Still, nowcast errors will play a key role

in our identification strategy in Section 4 below. In what follows, we therefore describe the

construction of nowcast errors and compute a number of statistics in order to illustrate their

scope, possible causes, and their relation to economic activity.
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2.1 Data

Our main data source is the SPF, initiated by the American Statistical Association and the

NBER in 1968Q4, now maintained at the Federal Reserve Bank of Philadelphia.2 The survey

is conducted at quarterly frequency. Panelists receive the questionnaires at the end of the

first month of the quarter and have to submit their answers by the 2nd to 3rd week of the

following month. The results of the survey are released immediately afterwards. At this stage,

no information regarding current output is available from the Bureau of Economic Analysis

(BEA). At most, in order to nowcast output growth for the current quarter, forecasters may

draw on the NIPA advance report regarding output in the previous quarter.

Predicted quarterly output growth is annualized and measured in real terms. Note that

initially, within the SPF, output is measured by GNP, later by GDP. We compute nowcast

errors by subtracting the survey’s median forecast from the actual value reported later by the

BEA.3 We compute two measures of nowcast errors by distinguishing between the first and

the final data release for actual output growth.4 For the latter, we use the latest available

data vintage. We thereby address concerns that the assessment of nowcasts or, more generally,

forecasts depends on what is being used as the “actual” or realization (see, e.g., Stark and

Croushore 2002).5

2.2 Nowcast errors

We compute nowcast errors as the difference between actual output growth in a given quarter

and the median value of the predicted value. They are shown in the left panel of Figure 1,

measured in annualized percentage points. The solid (dashed) line represents results based

on first-release (final-release) data. Although the two series co-move strongly (correlation:

0.55), there are perceptible differences. For instance, there are sizable negative errors in the

2Professional forecasters are mostly private, financial-sector firms. The number of participating institutions
declined from 50 to fewer than 20 in 1988. After the Philadelphia Fed took over in 1990, participation rose
again; see Croushore (1993). Regarding our latest observation in 2012Q4, 39 forecasters participated in the
survey.

3For the SPF forecasts of GNP/GDP we use the series DRGDP2, which we obtain from the Real-time Data
Research Center of the Philadelphia Fed. This series corresponds to the median forecast of the quarterly growth
rate of real output, seasonally adjusted at annual rate (real GNP prior to 1992 and real GDP afterwards).
Also note that prior to 1981Q3 the SPF asks for nominal GNP only. In this case, the forecast for the price
index of GNP is applied to obtain the implied forecast for real GNP.

4Data are obtained from BEA and the Philadelphia Fed’s Real-time Data Set for Macroeconomists. First-
release data: BEA’s first (advance) estimate of the quarterly growth rate of real GNP/GDP (seasonally
adjusted at annual rate, with real GNP prior to 1992 and real GDP for 1992-present): ROUTPUT. Final-
release data: series GNPC96 and GDPC96 which are quarterly Gross National/Domestic Product, seasonally
adjusted at annual rates, chained 2005 Dollars.

5In fact, the authors consider a set of alternative definitions of actuals and find statistically significant
differences of forecast evaluations for real output. We show below, however, that our results hold independently
of the choice of first- or final-release data.
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Figure 1: Nowcast error. Left panel: series based on first-release data (solid) and final-release data (dashed).
Errors are measured in annualized percentage points (vertical axis). Right panel: cumulative impulse response
of output growth to nowcast error based on local projections. Horizontal axis measures quarters, vertical
axis measures percentage deviation of output from the average-growth path. Dashed lines indicate 90 percent
confidence bounds implied by Newey-West standard errors.

second half of 2008 only for the measure based on final-release data. Presumably, at the

beginning of the great recession the actual growth slowdown was larger not only relative

to what professional forecasters predicted in real time, but also relative to what initial data

suggested. Moreover, errors based on first-release data are shifted downwards relative to those

based on final-release data, notably in the first half of the sample.

This is confirmed by the summary statistics reported in Table 1: the mean of the nowcast

errors is significantly positive if we consider final-release data, but not significantly different

from zero in the case of first-release data. The standard error and the largest realizations of

the nowcast error are also considerably larger in the case of final-release data.6 The difference

is likely due to the revision process of the statistical office and particularly to benchmark

revisions. We therefore rely on first-release data in our baseline VAR model in section 4, and

consider final-release data in our sensitivity analysis. Finally, the last two columns of Table 1

report results of a Ljung–Box test, suggesting that there is no serial correlation in both series.

What causes nowcast errors? Assuming that the average forecaster has a correct understand-

ing of the economy, structural innovations that are public information should not induce

systematic forecast errors. On the other hand, structural innovations that are not directly

observable may generate nowcast errors. To assess this hypothesis, we run regressions of

6This finding is consistent with evidence provided by Faust et al. (2005) regarding GDP announcements.
For G7 countries it turns out that revisions of initial announcements are significantly positive on average in
their sample period. Note, however, that the mean of final-release nowcast errors becomes insignificant once
we control for productivity shocks below.
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Table 1: Summary statistics nowcast errors

Ljung–Box test

N Mean SD Min Max Q-stat. p-value

Final-release based 177 .35** 2.36 -6.38 7.49 2.59 .96

First-release based 177 .04 1.86 -5.31 5.43 8.68 .37

Notes: Nowcast errors computed on the basis of final-release (top row) and first-release (bottom row) data,
measured in annualized percentage points; sample: 1968Q4 - 2012Q4. Means are tested against zero based
on a standard t-test. ‘**’ indicates significance at the 5% level. The last two columns report Q-statistics and
p-values for a Ljung-Box test assessing the null hypothesis of zero autocorrelations up to 8 lags.

nowcast errors on popular (and relatively uncontroversial) series of structural innovations.

Specifically, we consider monetary policy shocks identified by Romer and Romer (2004), tax

shocks identified by Romer and Romer (2010), uncertainty shocks identified by Bloom (2009),

and productivity shocks provided by Fernald (2012).7

In each instance, we regress nowcast errors on the contemporaneous realization of the struc-

tural shock, while also including four lags of the nowcast error in the regression model. The

sample varies across regressions, since we use the longest overlapping sample in each case. Re-

sults for the impact effect are reported in Table 2. Newey-West standard errors are reported

in parentheses. The top row reports results based on the final-release data, the bottom row

is based on the first-release data. We find that for monetary and fiscal policy innovations, as

well as for uncertainty shocks, there is indeed no significant impact on nowcast errors, in line

with the hypothesis that the effect of observable innovations is relatively well understood by

forecasters. Instead, it is productivity innovations that have a significant impact. Specifically,

positive productivity innovations tend to raise the nowcast error contemporaneously, that is,

they tend to raise the growth of economic activity beyond the expected level.

7Following Basu et al. (2006), Fernald constructs a utilization-adjusted series of TFP at quarterly fre-
quency. In terms of actual series we use the “utilization-adjusted TFP in producing non-equipment output”
(dtfp C util) of Fernald (2012). For the uncertainty shocks we rely on the quarterly average of the monthly
series of stock-market volatility shocks identified in the baseline VAR of Bloom (2009). In the case of monetary
and tax shocks we use the quarterly average of the monthly shock series (RESID) and the “sum of Deficit-
Driven and Long-Run Tax Changes” (EXOGENRRATIO) of Romer and Romer (2004) and Romer and Romer
(2010) respectively.

6



Table 2: Nowcast errors and structural innovations to...

Monetary Policy Taxes Uncertainty Productivity

1969:1 - 1996:4 1968:4 - 2007:4 1963:3 - 2008:2 1968:4 - 2009:3

Final-release based 1.678 -.002 .451 .480***

(1.044) (1.144) (.435) (.049)

First-release based 1.611 -.730 .088 .140***

(.978) (.963) (.260) (.045)

Notes: Impact effect on nowcast error obtained from regressing the nowcast error on the time series for the
structural innovations to monetary policy, fiscal policy (taxes), uncertainty, and productivity. The regression
includes four lags of the nowcast error. Newey-West standard errors robust for autocorrelation up to four lags
are reported in parentheses; time series of structural innovations to monetary policy, taxes, uncertainty, and
productivity provided by Romer and Romer (2004), Romer and Romer (2010), Bloom (2009), and Fernald
(2012) respectively.

2.3 Nowcast errors and economic activity

Nowcast errors are positive surprises regarding current activity. They are also positively

correlated with output growth.8 To explore systematically how current nowcast errors relate

to economic activity, we estimate the dynamic relationship on the basis of local projections

(see Jordà 2005). In particular, we relate current and future output growth to current nowcast

errors.9

The right panel of Figure 1 shows the cumulative impulse response of output growth to a

nowcast error. The horizontal axis measures quarters, the vertical axis percentage deviation

of output from the constant-growth path. Dashed lines indicate 90 percent confidence bounds

implied by Newey-West standard errors. We find that nowcast errors predict a strong, mildly

hump-shaped increase of economic activity. The effect is stronger for our measure based on

the final-release data, yet differences are moderate relative to the one based on first-release

data. The finding that (reduced-form) nowcast errors predict future activity is noteworthy

in light of the results regarding effects of optimism shocks documented in Section 4 below.

Before discussing this evidence, we provide a theoretical rationale for our empirical framework

in the following section.

8The correlation between GDP growth (final-release data) and the nowcast error is .73 and .47 for the
final-release and first-release measure respectively.

9To capture potential serial correlation, we apply Newey-West standard errors. The error structure is
assumed to be possibly heteroskedastic and autocorrelated up to lag 4. We also include four lags of GDP
growth in the regression.
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3 The model

In this section we put forward a model which allows us to formally define optimism shocks,

discuss conditions under which they may affect economic activity and, importantly, clarify

issues pertaining to identification. Coibion and Gorodnichenko (2012) find that models of

information rigidities in general, and of noisy information in particular, are successful in

predicting empirical regularities of survey data on expectations. Our model thus builds on

the noisy and dispersed information model of Lorenzoni (2009), a key feature of which is that

agents do not observe current output. As our goal is to derive robust qualitative predictions,

we simplify the original model, notably by assuming predetermined rather than staggered

prices. As a result, it is possible to solve an approximate model in closed form.

3.1 Setup and timing

There is a continuum of islands (or locations), indexed by l ∈ [0, 1], each populated by a

representative household and a unit mass of producers, indexed by j ∈ [0, 1]. Each household

buys from a subset of all islands, chosen randomly in each period. Specifically, it buys from

all producers on n islands included in the set Bl,t, with 1 < n < ∞.10 Households have an

infinite planning horizon. Producers produce differentiated products on the basis of an island-

specific productivity, which is determined by a permanent, economy-wide component and a

temporary, idiosyncratic component. Both components are stochastic. Financial markets

are complete such that, assuming identical initial positions, wealth levels of households are

equalized at the beginning of each period.

The timing of events is as follows: Each period consists of three stages. During stage one

of period t, information about all variables of period t−1 is released. Subsequently, nominal

wages are determined. Finally, the central bank sets the interest rate based on expected

inflation.

Shocks realize during the second stage. We distinguish between shocks which are directly

observable and shocks which are not. Optimism and productivity shocks fall in the latter

category. In particular, information about idiosyncratic productivity is private to each pro-

ducer. Additionally, all agents observe a signal about average productivity. While the signal

is unbiased, it contains an i.i.d. zero-mean component: the optimism shock.11 In terms of

observable shocks, we allow for monetary policy shocks. Yet, rather than being interested in

the effects of monetary policy shocks per se, we merely aim at contrasting the effects of ob-

10This setup ensures that households cannot infer aggregate productivity exactly from observed prices. At
the same time, individual producers have no impact on the price of households’ consumption baskets.

11We refer to this signal component throughout as an “optimism shock” with the understanding that real-
izations may be positive (optimism shock) or negative (pessimism shocks).
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servable shocks on nowcast errors to those of non-observable shocks. Given these information

sets, producers set prices.

During the third and final stage, households split up. Workers work for all firms on their

island, while consumers allocate their expenditures across differentiated goods based on public

information, including the signal, and information contained in the prices of the goods in

their consumption bundle. Because the common productivity component is permanent and

households’ wealth and information is equalized in the next period, agents expect the economy

to settle on a new steady state from period t+1 onwards.

3.2 Households

A representative household on island l maximizes lifetime utility given by

Ul,t = El,t

∞∑
k=t

βk−t lnCl,t −
L1+ϕ
l,t

1 + ϕ
ϕ ≥ 0, 0 < β < 1,

with El,t being the expectation operator based on household l’s information set at the time

of its consumption decision (see below). Cl,t denotes the consumption basket of household l,

while Ll,t is its labor supply. The flow budget constraint is given by

Et(%l,t,t+1Al,t)+Bl,t+
∑
m∈Bl,t

∫ 1

0
Pj,m,l,tCj,m,l,tdj ≤

∫ 1

0
Πj,l,tdj+Wl,tLl,t+Al,t−1+(1+rt−1)Bl,t−1,

where Cj,m,l,t denotes the amount bought by household l from producer j on island m and

Pj,m,l,t is the price for one unit of Cj,m,l,t. Πj,l,t are profits of firm j on island l and %l,t,t+1 is

household l’s stochastic discount factor between t and t+1. At the beginning of the period, the

household receives a payoff Al,t−1 from its portfolio of state-contingent securities, purchased

in the previous period. Bl,t are state non-contingent bonds paying an interest rate of rt. A

complete set of state-contingent securities is traded at the beginning of the period, while state

non-contingent bonds can be traded via the central bank throughout the entire period.12 The

interest rate of the non-contingent bond is set by the central bank. All financial assets are in

zero net supply. The bundle Cl,t of goods purchased by household l consists of goods sold in

a subset of all islands in the economy

Cl,t =

 1

n

∑
m∈Bl,t

∫ 1

0
C

γ−1

γ

j,m,l,tdj


γ

γ−1

γ > 1.

12As a result, households cannot extract additional information about aggregate variables from the prices of
the securities.
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While each household purchases a different random set of goods, we assume that the amount

n of goods is the same for all households. The price index of household l is

Pl,t =

 1

n

∑
m∈Bl,t

∫ 1

0
P 1−γ
j,m,l,tdj

 1

1−γ

.

3.3 Producers and monetary policy

The central bank follows a standard Taylor rule but sets the net interest rate rt before

observing prices, that is during stage one of period t:

rt = ψEcb,tπt + θt ψ > 1,

where πt is economy-wide net inflation, calculated on the basis of all goods sold in the economy.

The expectation operator Ecb,t conditions on the information set of the central bank, which

consists of information from period t− 1 only.13

θt is a monetary policy shock that is observable by producers and households alike. Producer

j on island l produces according to the following production function

Yj,l,t = Aj,l,tL
α
j,l,t 0 < α < 1,

featuring labor supplied by the local household as the sole input. Aj,l,t = Al,t denotes the

productivity level of producer j, which is the same for all producers on island l. During stage

two, the producer sets her optimal price for the current period based on a combination of

private and public information (see below). Given prices, the level of production is determined

by demand during stage three.

3.4 Productivity and signal

Log-productivity on each island, denoted by small-case letters, is the sum of an aggregate

and an island-specific idiosyncratic component

al,t = xt + ηl,t,

where ηl,t is an i.i.d. shock with variance σ2
η and mean zero. It aggregates to zero across all

islands. The aggregate component xt follows a random walk

∆xt = εt.

13Pre-set prices and interest rates allow us to discard the noisy signals about quantities and inflation observed
by producers and the central bank in Lorenzoni (2009), simplifying the signal-extraction setup without changing
its qualitative predictions. Pre-set wages, on the other hand, guarantee determinacy of the price level. They
do not affect output dynamics after optimism and productivity shocks, because good prices may still adjust.
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The i.i.d. productivity shock εt has variance σ2
ε and mean zero. During stage two of each

period, agents observe a public signal about xt. This signal takes the form

st = εt + et,

where et is an i.i.d. optimism shock with variance σ2
e and mean zero. Producers also observe

their own productivity. Hence, their expectations of ∆xt are

Ej,l,t∆xt = ρpxst + δpx(aj,l,t − xt−1),

with Ej,l,t being the expectation of producer j on island l when setting prices (stage two).

The coefficients ρpx and δpx are the same for all producers, where these and the following ρ

and δ-coefficients are functions of the structural parameters which capture the informational

friction. They are non-negative and smaller than unity (see Appendix A). Finally, while

shopping during stage three consumers observe a set of prices. Given that they have also

observed the signal, they can infer the productivity level of each producer in their sample

from her price. Consumers’ expectations are thus given by

El,t∆xt = ρhxst + δhx ãl,t,

where ãl,t is the average over the realizations of am,t − xt−1 for each island m in household

l’s sample. ρhx and δhx are equal across households and depend on n, σ2
e , σ

2
ε , and σ2

η. The

model nests the case of complete information about all relevant variables for households and

producers if σ2
e = 0. If σ2

e > 0, producers will set prices based on potentially overly optimistic

or pessimistic expectations of productivity. Consumers also have complete information if

n→∞.

3.5 Market clearing

Good and labor markets clear in each period:∫ 1

0
Cj,m,l,tdl = Yj,m,t ∀j,m Ll,t =

∫ 1

0
Lj,l,tdj ∀l,

where Cj,m,l,t = 0 if households l does not visit island m. The asset market clears by Walras’

law.

3.6 Results

We derive a solution of the model based on a linear approximation to the equilibrium condi-

tions around the symmetric steady state, see Appendix A for details. We obtain the following

propositions, for which we provide proofs in Appendix B.
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Proposition 1 A positive optimism shock (et > 0), a positive productivity shock (εt > 0),

and a negative monetary policy shock (θt < 0) raise output. Formally, we have

yt = xt−1 + ρhx(1− Ω)︸ ︷︷ ︸
>0

et +
[
(δhx + ρhx)(1− Ω) + Ω

]
︸ ︷︷ ︸

>0

εt−
α

α+ ψ(1− α)︸ ︷︷ ︸
<0

θ,

with 0 < Ω = n−δhx(1−α)[(n−1)δpx+1]
nα+(1−α){(1−δhx)[1+δpx(n−1)]+(n−1)γ(1−δpx)} < 1.

Proposition 2 A positive optimism shock induces a negative nowcast error, while a positive

productivity shock induces a positive nowcast error. This holds for nowcast errors of producers

and households alike. Formally,

yt − Ek,tyt = −ρkx
[
δhx(1− Ω) + Ω

]
︸ ︷︷ ︸

<0

et +
[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx)︸ ︷︷ ︸

>0

εt,

with Ek,t standing for either Ej,l,t or El,t, and ρ
k, δk correspondingly for ρp, δp or ρh, δh.

Hence, productivity and optimism shocks raise actual output, but also lead to output misper-

ceptions. Consider first the optimism shock. Producers expect aggregate productivity to be

high—resulting in higher demand—but also observe that their own productivity is unchanged,

which they attribute to a negative realization of the idiosyncratic productivity component.

Consequently, they raise prices above what they expect the average price level to be. However,

due to strategic complementarities in price stetting, the deviation from the expected average

price level is subdued. Consumers, in turn, observe higher prices. They too attribute this in-

crease to adverse productivity shocks suffered by those particular firms from which they buy.

This allows households to entertain the notion of higher aggregate productivity and future

income. Because the observed price increase relative to the expected long-run price level is

muted, expenditure and, consequently, economic activity expand. Yet as each producer and

each household considers itself unlucky relative to its peers, current output is actually lower

than expected: a negative nowcast error obtains.14

After a productivity shock, on the other hand, producers do not fully trust the signal about

the aggregate component and attribute some of the increased productivity to idiosyncratic

factors. They lower prices below what they expect the average price level to be. Consumers

expect higher income and raise consumption. However, both producers and their customers

expect other producers to set higher prices and consequently underestimate actual output. A

positive nowcast error obtains.

14As pointed out by Lorenzoni (2009), the optimism shock provides a possible microfoundation for the
traditional concept of a demand shock: agents are too optimistic about economic fundamentals, resulting in
unusually high demand.
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Furthermore, observe that monetary policy shocks have no impact on nowcast errors. More

generally, any other shock that enters the information set of households and producers will not

generate nowcast errors, as both are aware of the economic environment and hence the effect

of shocks. Misperceptions about economic activity thus arise only after imperfectly observed

shocks, such as innovations to productivity, or incorrect signals regarding productivity.

3.7 Identification

In addition to clarifying the nature of optimism shocks, the model allows us to address con-

cerns about whether optimism shocks can be uncovered at all on the basis of an estimated

VAR model. In this regard, the set of actual time series used in the estimation is crucial.

Noting that we estimate our VAR in Section 4 on time series for nowcast errors, labor pro-

ductivity, and hours worked, that is, on the following vector

Ỹ ′t =
[

∆yt − Ek,t∆yt ∆(yt − lt) lt

]
,

we obtain the following proposition.

Proposition 3 Given Ỹt, the dynamics of the model can be represented by a VAR(1):

Ỹt = AỸt−1 +BṼt,

where

Ṽ ′t =
[
εt et θt

]
,

and the matrices A and B are given in the proof.

Intuitively, we are able to cast the model dynamics in VAR form because we rely on variables

that are not contemporaneously observed in the model. If, instead, one were to restrict the

VAR to contain variables observed by agents in real time, the model would generally not

be invertible. Proposition 3 is thus consistent with the result of Blanchard et al. (2012),

according to which optimism shocks cannot be recovered from actual time-series data by

an econometrician who has no informational advantage over market participants. Yet as

documented in Section 2, actual nowcast errors regarding output growth can be sizeable. To

the extent that they can be measured ex post, they allow us to identify optimism shocks.

Finally, the model also provides us with specific identification restrictions, which we impose

on the VAR model below. Given matrices A and B, we obtain the following corollary.

Corollary 1 Monetary policy shocks have no impact on the nowcast error, neither in the

short nor the long run. Furthermore, optimism shocks do not alter labor productivity in the

long run.
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4 The effects of optimism shocks

We are now in a position to identify the effects of optimism shocks in actual time-series

data and to quantify their contribution to U.S. short-run fluctuations. We do so within an

estimated VAR model, combining long-run restrictions (see, for instance, Gaĺı 1999) and

short-run restrictions, which we impose on nowcast errors. Including a time series of nowcast

errors in the VAR model is key to our identification strategy. It represents an informational

advantage over market participants and allows us to isolate optimism and productivity shocks.

In the following, we discuss our VAR specification and identification strategy before turning

to the results.

4.1 VAR specification

Our VAR model includes three variables. Under the baseline specification we include the

nowcast error computed on the basis of first-release data, the growth rate of labor productivity,

and hours worked in the vector of endogenous variables.15 Formally, as Ỹt is the vector

containing these variables in the given order, the VAR model in reduced form reads as

Ỹt =

L∑
i=1

AiỸt−i + νt, (4.1)

where L is the number of lags. νt is a vector of potentially mutually correlated innovations

of which Ω = Eνν ′ is the covariance matrix. We also include a constant in the VAR model.16

We estimate the model under our baseline specification on quarterly data covering the pe-

riod 1980Q1–2012Q4. While our measure of nowcast errors is available since the late 1960s

(see Section 2), we disregard observations prior to 1980 since the conduct of monetary pol-

icy arguably changed considerably after this time (Clarida et al. 2000).17 Below, we also

report results of a sensitivity analysis exploring the robustness of our results with respect to

estimating the model on the full sample.

Regarding the number of lags L, we account for concerns about a lag-truncation bias. Ar-

guably, it is particularly severe in the case that long-run restrictions are imposed on the

VAR model to achieve identification (Chari et al. 2008). De Graeve and Westermark (2013)

15Labor productivity is measured by (the first difference of the natural logarithm of) output per hour of all
persons in the nonfarm business sector and hours worked is the natural logarithm of the corresponding hours.
Both series are obtained from the Bureau of Economic Analysis. Results are robust, however, once we measure
labor productivity as output per person and hours as employment, both obtained from the Bureau of Labor
Statistics.

16Below, we additionally consider alternative trend specifications to address the potential non-stationarity
of the time series for hours worked.

17Alternatively, one might consider a later starting date for the sample in order to account for the decline in
business cycle volatility after 1983 (McConnell and Perez-Quiros 2000). We find that results are not sensitive
in this respect.
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perform Monte Carlo experiments and find that raising the number of lags may be a viable

strategy to reduce the severity of the problem. Hence, for our baseline specification we set

L = 8. We document below that the results are robust with respect to using a smaller number

of lags.

We aim to identify structural shocks contained in the vector, εt, with νt = Bεt and Eεε′ = I.

Given estimates for Ω and the Ai matrices, we identify B by simultaneously imposing short

and long-run restrictions. Without loss of generality, we assume that εt contains from top

to bottom the productivity shock, the optimism shock, and a third shock to which we do

not attach any structural interpretation. Key to our identification strategy is the insight

that nowcast errors can only be the result of the first two shocks—both in the short and the

long run. To tell productivity and optimism shocks apart, we impose as a third restriction

that optimism shocks do not impact labor productivity in the long run. All restrictions are

consistent with the model developed in the previous section (see Corollary 1). Formally, our

identification assumptions impose the following restrictions on the matrices B and A0, which

determine the contemporaneous and the long-run impact, respectively:

B =


∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗

 , A0 ≡

(
I −

L∑
i=1

Ai

)−1

B =


∗ ∗ 0

∗ 0 ∗
∗ ∗ ∗

 . (4.2)

4.2 Results

We compute impulse response functions on the basis of the estimated model and display

results in Figure 2. The columns (from left to right) display the responses to a productivity

shock, an optimism shock, and the third shock. Solid lines represent the point estimate, while

dashed lines indicate 90 percent confidence bounds obtained by boostrap sampling. The rows

display the responses of the nowcast error, output (implied by those of labor productivity

and hours), labor productivity, and hours respectively. In each case, horizontal axes measure

time in quarters, while vertical axes measure percentage points in the case of the nowcast

error and percentage deviations from steady state otherwise. To facilitate the comparison

of productivity and optimism shocks, we consider in each case an expansionary shock which

triggers an increase of output and normalize its size such that it induces a nowcast error equal

to 1 percentage point (annualized) in absolute value.

A first noteworthy result is the joint responses of the nowcast error and output to both

structural shocks. While output rises in each instant, we find that productivity shocks induce

a positive response of the nowcast error and optimism shocks induce a negative response.

This finding is in line with the prediction of the model developed in Section 3 above, even
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Figure 2: Impulse responses to identified shocks. Notes: baseline VAR model; solid lines indicate
point estimates, dashed lines 90 percent confidence bounds obtained by bootstrap sampling (1000 repetitions).
Horizontal axes measure quarters. Vertical axes: percentage points in the case of the nowcast error, percent
otherwise.

though the response of the nowcast error to both shocks has been left unrestricted. More

generally, the finding that optimism shocks induce a negative co-movement of the nowcast

error and output is remarkable because the unconditional co-movement of both series is

positive, as established in Section 2. In our view, the result that the co-movement changes

from unconditionally positive to negative conditional on optimism shocks lends additional

support to our identification strategy.

The response of the nowcast error is short-lived, while the response of output to both shocks

is quite persistent and displays hump-shaped adjustment dynamics. In fact, the short-run

dynamics are fairly similar in both instances. The impact increase is approximately 0.5

percent and the peak response is reached after about 6 quarters. While the peak response is
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Figure 3: Impulse responses to identified shocks. Notes: each row displays the response of an
additional variable replacing hours in the baseline VAR model (see Figure 2).

somewhat stronger in the case of an optimism shock, the response is more persistent in the

case of a productivity shock, even though we still find the output response to an optimism

shock marginally significant after 20 quarters. The third row shows the response of labor

productivity. It increases in response to a productivity shock on impact, but also in the long

run. In line with theory, productivity declines in response to an optimism shock, but the

effect is only marginally significant. Note that optimism shocks are not allowed to impact

labor productivity in the long run under our identification scheme.

The responses of hours are shown in the last row. In the short run the responses mimic that

of output. It is somewhat weaker in the case of productivity shocks and somewhat stronger

in the case of optimism shocks, reflecting the differential effect of these shocks on labor

productivity. In the long run hours are back to the pre-shock level. In order to contrast the
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transmission of optimism shocks to those of productivity shocks it is of interest to investigate

their effects on variables other than those included in the baseline model. To estimate the

impulse responses of these variables while economizing on the degrees of freedom, we rotate

additional variables into our baseline VAR model, replacing the time series for hours worked.

Figure 3 displays results for four additional variables of particular interest. The first two

rows show the responses of consumption and investment respectively.18 Applying the same

normalization as above, we find that productivity and optimism shocks raise consumption

and investment, although the effect is somewhat stronger and more persistent in the case of

productivity shocks.

The third row of Figure 3 shows the response of core CPI inflation. We find that productivity

shocks tend to be deflationary, although the response is not significant. Instead, inflation rises

immediately and strongly in response to the optimism shock. Optimism shocks accordingly

have the flavor of what has been traditionally referred to as a demand shock (Lorenzoni 2009).

Finally, in the last row, we show the response of a direct measure of total factor productivity.

Investigating its response to productivity shocks helps to assess the plausibility of our identi-

fication scheme, which relies on the absence of a long-run impact of optimism shocks on labor

productivity. The time series for total factor productivity is obtained from Fernald (2012),

as in Section 2 above.19 Since it ends in 2009Q3, we estimate the VAR model on the longest

available data series (1968Q4–2009Q3). The impulse responses show a strong increase of TFP

to the productivity shock identified on the basis of long-run restrictions, but no reaction to

optimism shocks—in line with the assumptions underlying our identification strategy.

Overall, we find plausible results regarding the effects of optimism shocks and thus turn to

the question that motivates our analysis: namely, to what extent are optimism shocks an

autonomous source of business cycle fluctuations? In order to gauge their contribution to

economic fluctuations we compute a forecast error variance decomposition. Table 3 reports

the results. We find that productivity and optimism shocks are responsible for two thirds and

one third of the variation in the nowcast error respectively. This finding holds irrespective

of the forecast horizon. Recall that in the short and long run nowcast errors are restricted

to be driven only by these two shocks. Regarding output, productivity shocks account for

the bulk of fluctuations, yet optimism shocks also contribute substantially. In the short run

their contribution rises from 17 percent to almost one third after about three years, declining

thereafter.

18Consumption is measured by real personal consumption expenditures and investment by real gross private
domestic investment, both from the Bureau of Economic Analysis.

19Inflation is based on the consumer price index for all urban consumers for all items less food and energy
from the Bureau of Labor Statistics, and TFP is utilization-adjusted TFP in producing non-equipment output
of Fernald (2012).
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Table 3: Forecast error variance decomposition

Productivity Optimism Rest

Nowcast Error 1 69.83 30.16 0.00
4 66.57 30.38 3.05

12 61.27 29.94 8.79
40 60.78 30.02 9.20

Output 1 64.77 17.07 18.16
4 55.29 27.82 16.89

12 55.09 32.77 12.14
40 53.67 25.79 20.54

Labor Productivity 1 23.41 0.75 75.84
4 14.06 0.44 85.50

12 9.63 8.77 81.61
40 20.78 6.50 72.72

Hours 1 42.10 31.29 26.61
4 50.29 45.76 3.94

12 42.31 55.90 1.79
40 35.26 62.88 1.85

Notes: Results are presented for the baseline VAR model. Each panel reports
the decomposition of the forecast error variance for the variable of interest, con-
sidering a forecast horizon of 1, 4, 12 and 40 quarters. The contribution of the
three shocks is reported in the appropriately labeled columns.

These findings are in a similar order of magnitude than those reported by Blanchard et al.

(2012). They estimate a medium-scale DSGE model featuring “noise shocks”. These shocks

are structurally identical to optimism shocks as defined in the present paper and account

for about 20 percent of output volatility.20 Instead, Barsky and Sims (2012), estimating a

fully specified DSGE model through indirect inference methods, find that “animal spirit”

shocks account for almost none of the volatility of output. While their animal spirit shock

is conceptually closely related to optimism shocks, it is restricted to pertain to future pro-

ductivity (growth) only. Moreover, their analysis is centered around innovations to consumer

confidence, which they find to reflect news rather than animal spirits. Once we rotate their

time series of confidence innovations as a third variable into our VAR model, we find it to be

20In a similar exercise, Hürtgen (2013) obtains a value of 14 percent.
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mostly driven by the “rest” shock.21 This finding is consistent with the results of Barsky and

Sims (2012) insofar as the rest shock will pick up anticipated productivity shocks under our

identification scheme.

4.3 Sensitivity analysis

We conduct a number of experiments to explore the robustness of our results. First, we

consider alternative measures of the nowcast error, which is key to our identification strat-

egy. Our baseline VAR is estimated on nowcast errors computed on the basis of first-release

data. Results in Section 2 suggest that nowcast errors based on final-release data may differ

somewhat. We therefore estimate our VAR model while replacing the first-release nowcast

error with the final-release nowcast error. The estimated impulse responses to productivity

and optimism shocks obtained under this specification are shown in the left panel of Figure

4, confirming our findings for the baseline VAR model reported in Figure 2. In what follows

we explore to what extent results are robust once we consider a different sampling frequency,

as our identification strategy relies on assumptions regarding the available information at

the time forecasters are asked to predict current output growth. Specifically, forecasters are

assumed to have no information regarding current innovations to productivity. Due to the

frequency of releases of GDP data, our baseline VAR model is estimated on quarterly ob-

servations. In order to construct an alternative monthly measure of the nowcast error, we

use data for industrial production and an appropriate survey of professional forecasters by

Bloomberg.22 Results are shown in the right panel of Figure 4. From a qualitative point of

view, they are in line with those obtained for the baseline VAR model, despite considerable

differences in the sample (1996M10–2012M12), data frequency, and the measure of economic

activity.

Next, we are turning to alternative assumptions regarding our sample and the number of lags

included in the VAR model. Results are shown in Figure 5. The left panel shows results for

the longest possible sample given data availability: 1968Q4–2012Q4. They are very similar

21Specifically, we consider the series for confidence innovations of Barsky and Sims (2012), which is based
on the Michigan Survey of Consumers. Confidence innovations are computed on the basis of their VAR model
and their orthogonalization with confidence ordered first. We include confidence innovations in our baseline
VAR model (using the longest overlapping sample), replacing the time series for hours worked. Computing a
forecast error variance decomposition, we find that about two thirds of the short-run variance of confidence
innovations is due to the rest shock, while the optimism shock accounts for less than 5 percent. Moreover, we
find that only the rest shock has a significant impact on confidence innovations. It is positive and short-lived.

22The Bloomberg survey forecasts are available since 1996M10. We consider data up to 2012M12. The series
on monthly hours is the index of aggregate weekly hours of production for workers in manufacturing from the
Bureau of Labor Statistics, while the corresponding growth rate of labor productivity is the difference in the
growth rates of the volume index of industrial production, obtained from the Federal Reserve, and hours. We
estimate the VAR with 24 lags, that is, we include two years as in the baseline model estimated on quarterly
data.
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SPF final release data Bloomberg survey on industrial production
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Figure 4: Impulse responses to productivity and optimism shock: Sensitivity analysis I. Notes:
left panel shows results for nowcast error based on final-release data; right panel shows results for nowcast
error based on monthly data for industrial production (sample: 1996M10–2012M12); horizontal axis measures
months.

to those of the baseline specification (see Figure 2). An exception is the response of labor

productivity to the productivity shock which turns insignificantly negative after about six

quarters. However, in the long run (not shown), the response is positive as in the baseline

VAR. The right panel of Figure 5 shows results for the model estimated on four lags only.

Again, results are fairly similar to those obtained under the baseline specification. Finally,

we explore the robustness of our results with respect to alternative assumptions regarding

potential trends in the time series for hours worked. This issue has received considerable

attention in the literature, as some studies found the trend specification to be crucial for the

sign of the response of hours worked to a productivity shock. This is not the case in our

setup. Recall that we do not allow for a trend in hours in our baseline specification. Figure

6 shows results for a specification where hours enter in first differences (left panel) and for

a specification where a linear-quadratic trend has been removed from hours worked prior to

estimation (right panel).23

23Hours entering the VAR model either in levels, first differences or detrended with a linear-quadratic trend
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Figure 5: Impulse responses to productivity and optimism shock: Sensitivity analysis II. Notes:
left panel shows results for baseline VAR model estimated on sample starting in 1968Q4, see Figure 2; right
panel shows results for VAR model with four lags.

Our results may therefore also shed some light on the so-called “hours puzzle” (see Gaĺı

1999, Francis and Ramey 2005, and Chari et al. 2008, among others). Given that hours

unambiguously rise after (unexpected) productivity shocks under our identification scheme,

a decline in hours documented elsewhere is likely due to productivity innovations which have

no effect on nowcast errors. This, in turn, may be the result of innovations to productivity

that have been anticipated.

5 Conclusion

To what extent are changes of expectations an autonomous source of business cycle fluctua-

tions? In this paper, we pursue a new approach to address this question. Barsky and Sims

(2012) and Blanchard et al. (2012) estimate fully-specified DSGE models to quantify the im-

portance of “noise” or “undue optimism”, reaching quite different conclusions. We employ a

are commonly considered to be the most plausible specifications, see Gaĺı and Rabanal (2005). Our results are
also robust to detrending hours with a one-sided HP-filter.
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Hours in first differences Hours w/o linear-quadratic trend
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Figure 6: Impulse responses to productivity and optimism shock: Sensitivity analysis III.
Notes: left panel shows results for hours in first differences, right panel for hours after a linear quadratic trend
has been removed.

structural VAR model instead, thereby imposing less structure on the data. Yet, as shown by

Blanchard et al. (2012), identifying the effects of optimism shocks within VARs constitutes a

formidable challenge.

Our empirical strategy is based on an ex-post informational advantage over market partici-

pants. Namely, we compute nowcast errors regarding current output growth as the difference

between actual output growth and the median forecast in the Survey of Professional Forecast-

ers. Nowcast errors are a reduced-form measure of misperceptions, which we show to respond

systematically to innovations in total factor productivity. However, we find them not to be

significantly affected by policy innovations or uncertainty shocks which are, in some sense,

observable.

Drawing on Lorenzoni (2009), we put forward a stylized business cycle model which gives

rise to nowcast errors due to productivity and optimism shocks, as agents do not observe

output contemporaneously. Shocks which are common information do not generate a nowcast

error. Importantly, we use this model to show that optimism shocks can be recovered from
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time-series data on nowcast errors.

Given these results, we estimate a VAR model on U.S. time series including the nowcast

error, labor productivity, and hours worked for the period 1980Q1–2012Q4. We identify

unanticipated shocks to total factor productivity and optimism shocks by combining short

and long-run restrictions. Specifically, we assume that optimism shocks and productivity

shocks can trigger nowcast errors, but that optimism shocks do not affect labor productivity

in the long run. We find that both shocks have a sizable and persistent effect on output,

yet their effect on the nowcast error differs fundamentally. We find that productivity shocks

induce a positive nowcast error, that is, growth is higher than expected. Optimism shocks,

on the other hand, induce a negative nowcast error, that is, growth is lower than expected.

While this result is quite intuitive, it is remarkable because it implies that the correlation of

nowcast errors and economic activity conditional on optimism shocks changes sign relative to

the unconditional correlation.

According to the forecast error variance decomposition, the contribution of optimism shocks

rises to some 30 percent of output fluctuations at a 3-year horizon and declines thereafter.

In the very short run our result is close to 20 percent, the value reported by Blanchard et al.

(2012) for a 1-year horizon. Differences relative to Barsky and Sims (2012) are likely to reflect

differences in the informational content of the nowcast error of current output growth on the

one hand and of consumer sentiment data on the other.
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Clarida, R., Gaĺı, J., and Gertler, M. (2000). Monetary policy rules and macroeconomic

stability: Evidence and some theory. Quarterly Journal of Economics, 115:147–180.

Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about informa-

tion rigidities? Journal of Political Economy, 120(1):116–159.

Croushore, D. (1993). Introducing: the survey of professional forecasters. Business Review,

6.

De Graeve, F. and Westermark, A. (2013). Un-truncating VARs. Mimeo.

Faust, J., Rogers, J. H., and Wright, J. H. (2005). News and noise in G-7 GDP announcements.

Journal of Money, Credit and Banking, 37(3):403–419.

Fernald, J. (2012). A quarterly, utilization-adjusted series on total factor productivity.

Manuscript, Federal Reserve Bank of San Francisco.

Fernández-Villaverde, J., Rubio-Ramı́rez, J. F., Sargent, T., and Watson, M. W. (2007).

ABCs (and Ds) of understanding VARs. American Economic Review, 97(3):1021 – 1026.

25



Francis, N. and Ramey, V. A. (2005). Is the technology-driven real business cycle hypoth-

esis dead? Shocks and aggregate fluctuations revisited. Journal of Monetary Economics,

52(8):1379 – 1399.
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Appendix

In Appendix B, we provide the proofs for Propositions 1-3 in Section 3. In a preliminary step,

we outline the model solution and key equilibrium relationships in Appendix A. Throughout,

we consider a log-linear approximation to the equilibrium conditions of the model. Small-scale

letters indicate percentage deviations from steady state.

A Model solution

We solve the model by backward induction. That is, we start by deriving inflation expectations

regarding period t + 1. Using the result in the Euler equation of the third stage of period

t allows us to determine price-setting decision during stage two. Eventually, we obtain the

short-run responses of aggregate variables to unexpected changes in productivity or optimism

shocks.

Expectations regarding period t + 1. Below, Ek,t stands for either Ej,l,t, referring to

the information set of producer j on island l at the time of her pricing decisions, or for El,t,

referring to the information set of the household on island l at the time of its consumption

decision. Variables with only time subscripts refer to economy-wide values. The wage in

period t+ 1 is set according to the expected aggregate labor supply

Ek,tϕlt+1 = Ek,t(wt+1 − pt+1 − ct+1).

This equation is combined with the aggregated production function

Ek,tyt+1 = Ek,t(xt+1 + αlt+1),

the expected aggregate labor demand

Ek,t(wt+1 − pt+1) = Ek,t[xt+1 + (1− α)lt+1],
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and market clearing yt+1 = ct+1 to obtain Ek,txt+1 = Ek,tyt+1 = Ek,tct+1. Furthermore, the

expected Euler equation, together with the Taylor rule, is

Ek,tct+1 = Ek,t(ct+2 + πt+2 − ψπt+1).

Agents expect the economy to be in a new steady state tomorrow (Ek,tct+1 = Ek,tct+2) given

the absence of state variables other than technology, which follows a unit root process. Ruling

out explosive paths yields

Ek,tπt+2 = Ek,tπt+1 = 0.

Stage three of period t. After prices are set, each household observes n prices in the

economy. Since the productivity signal is public, the productivity level aj,l,t = al,t—which

is the same for all producers j ∈ [0, 1] on island l—can be inferred from each price pj,l,t of

the good from producer j on island l. Hence, household l forms its expectations about the

change in aggregate productivity according to

El,t∆xt = ρhxst + δhx âl,t,

where âl,t is the average over the realizations of am,t − xt−1 for each location m in household

l’s sample. The coefficients ρhx and δhx are equal across households and depend on n, σ2
e , σ

2
ε ,

and σ2
η in the following way:

ρhx =
σ2
η/n

σ2
e + σ2

η/n+
σ2
eσ

2
η/n

σ2
ε︸ ︷︷ ︸

→0 if n→∞

, δhx =
σ2
e

σ2
e + σ2

η/n+
σ2
eσ

2
η/n

σ2
ε︸ ︷︷ ︸

→1 if n→∞

. (A.1)

Producers, on the other hand, only observe the signal and their own productivity. They thus

form expectations according to

Ej,l,t∆xt = ρpxst + δpx(al,t − xt−1),

with

ρpx =
σ2
η

σ2
e + σ2

η +
σ2
ησ

2
e

σ2
ε

δpx =
σ2
e

σ2
e + σ2

η +
σ2
ησ

2
e

σ2
ε

,

such that δhx > δpx because of the higher information content of households’ observations.

Consumption follows an Euler equation with household-specific inflation, as only a subset

of goods is bought. Agents expect no differences between households for t + 1, such that

expected aggregate productivity and the overall price level impact today’s consumption. Using

additionally El,tpt+1 = El,tpt and El,txt+1 = El,txt gives

cl,t = El,txt + El,tpt − pl,t − rt. (A.2)
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Similar to the updating formula for technology, households use their available information to

form an estimate about the aggregate price level pt according to

El,tpt = ρhpst + δhp âl,t + κhpwt + τhp xt−1 − ηhp rt. (A.3)

Combining the above this gives

cl,t = (1 + τhp )xt−1 + ρhxpst + δhxpâl,t + κhpwt − (1 + ηhp )rt − pl,t, (A.4)

where ρhx = ρhx + ρhp and δhxp = δhx + δhp . We will solve for the undetermined coefficients below.

Stage two of period t. During the second stage, firms obtain idiosyncratic signals about

their productivity. Below, the index p̃l,t is the average price index of customers visiting island

l. If customers bought on all (that is, infinitely many) islands in the economy, it would

correspond to the overall price level. Since consumers only buy on a subset of islands, the

price of their own island has a non-zero weight in their price index, which is taken into account

further below. Firms set prices according to

pj,l,t = wt +
1− α
α

Ej,l,tyj,l,t −
1

α
al,t

≡ k′ + k′1Ej,l,tp̃l,t + k′2Ej,l,tyt − k′3al,t,

with

k′ =
α

α+ γ(1− α)
wt k′1 =

γ(1− α)

α+ γ(1− α)
k′2 =

1− α
α+ γ(1− α)

k′3 =
1

α+ γ(1− α)
.

(A.5)

Evaluating the expectation of firm j about aggregate output in period t, using equation (A.4),

results in

Ej,l,tyt =κh + ρhxpst + δhxpEj,l,t

(
1

n
al,t +

n− 1

n
Ej,l,txt − xt−1

)
−
(

1

n
pj,l,t +

n− 1

n
Ej,l,tpt

)
,

where κh = (1 + τhp )xt−1 − (1 + ηhp )rt + κhpwt is publicly available information. Furthermore,

it is taken into account that productivity of island l has a non-zero weight in the sample of

productivity levels observed by consumers visiting island l. Note that producers still take

the price index of the consumers as given, since they buy infinitely many goods on the same

island. Inserting this in the above pricing equation yields (here, pt is the average of the prices

charged by producers of all other islands, which is the overall price index as there are infinitely

many locations)

pj,l,t ≡k + k1Ej,l,tpt + k̃st − k3al,t,
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with

Ξ = 1− 1

n
(k′1 − k′2) k =

1

Ξ

{
k′ + k′2κ

h +
k′2δ

h
xp

n
[(n− 1)(1− δpx)− 1]xt−1

}
(A.6)

k1 =
n− 1

nΞ

(
k′1 − k′2

)
k̃ =

k′2
Ξ

(
ρhxp + δhxpρ

p
x

n− 1

n

)
k3 =

1

Ξ

{
k′3 +

k′2δ
h
xp

n
[(n− 1)δpx − 1]

}
.

Aggregating over all producers gives the aggregate price index

pt = k + k1Etpt + k̃st − k3xt,

where
∫
al,tdl = xt and Etpt =

∫∫
Ej,l,tpt djdl is the average expectation of the price level.

The expectation of firm j of this aggregate is therefore

Ej,l,tpt = k + k̃st − k3Ej,l,txt + k1Ej,l,tEtpt

= k +
(
k̃ − k3ρ

p
x

)
st − k3δ

p
xal,t − k3(1− δpx)xt−1 + k1Ej,l,tEtpt. (A.7)

Inserting the last equation into (A.6) gives

pj,l,t = k + k1k − k1k3(1− δpx)xt−1 +
[
k̃ + k1

(
k̃ − k3δ

p
x

)]
st − (k3 + k1k3δ

p
x) ajt + k2

1Ej,l,tEtpt.

To find Ej,l,tEtpt, note that firm j’s expectations of the average of (A.7) are

Ej,l,tEtpt = k − k3(1− δpx)(1 + δpx)xt−1 +
(
k̃ − k3ρ

p
x − k3δ

p
xρ
p
x

)
st − k3δ

p
x

2al,t + k1Ej,l,tE
(2)
t pt,

where E
(2)

is the average expectation of the average expectation. The price of firm j is found

by plugging the last equation into the second-to-last:

pj,l,t =
(
k + k1k + k2

1k
)
−
[
k1k3(1− δpx) + k2

1k3(1− δpx)(1 + δpx)
]
xt−1

+
[
k̃ + k1

(
k̃ − k3ρ

p
x

)
+ k2

1

(
k̃ − k3ρ
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x − k3δ

p
xρ
p
x

)]
st
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(
k3 + k1k3δ
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1k3δ
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2
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al,t + k3

1Ej,l,tE
(2)
pt.

Continuing like this results in some infinite sums

pj,l,t =k
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1 + k1 + k2

1 + k3
1 . . .

)
− k1k3(1− δpx)

[
1 + k1(1 + δpx) + k2
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1δ
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1δ
p
x
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For the terms in the third line (see below for the proof that |k1| < 1) we have
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(
δpx

2k3
1k3ρ

p
x + δpx

2k4
1k3ρ

p
x + δpx

3k5
1k3ρ

p
x . . .

)
. . .

=k̃(1 + k1 + k2
1 + k3

1 . . .)− k1k3

(
ρpx

1− k1
+
ρpxδ

p
xk1

1− k1
+
ρpxδ

p
x

2
k2

1

1− k1
. . .

)

=
k̃

1− k1
− k1k3ρ

p
x

1− k1

(
1 + δpxk1 + δpx

2k2
1 . . .

)
=

k̃

1− k1
− k1k3ρ

p
x

(1− k1)(1− δpxk1)
.

Proceeding similarly with the terms in the second line results in

pj,l,t =
k

1− k1
−k1(1− δpx)

1− k1

k3

1− k1δ
p
x
xt−1+

1

1− k1

(
k̃ − ρpx

k1k3

1− k1δ
p
x

)
st−

k3

1− k1δ
p
x
al,t+k

∞
1 E

(∞)
t︸ ︷︷ ︸

→0

pt.

Setting idiosyncratic technology shocks equal to zero in order to track the effects of aggregate

shocks and observing that all firms then set the same price gives

pt ≡ k̄1 + k̄2st + k̄3xt,

with

k̄1 =
1

1− k1

[
k − (1− δpx)

k1k3

1− k1δ
p
x
xt−1

]
k̄2 =

1

1− k1

(
k̃ − ρpx

k1k3

1− k1δ
p
x

)
k̄3 = − k3

1− k1δ
p
x
.

(A.8)

To arrive at qualitative predictions for output growth and the nowcast error after the struc-

tural shocks εt and et, we need to determine the sign and the size of k̄3. Note that according

to (A.5), 0 < k′1 − k′2 < 1 because 0 < α < 1 and γ > 1. According to the definition of k1 in

(A.6), this implies (observe that n > 1)

0 < k1 < 1.

Turning to k3, note that, according to (A.6)

−k3 =δhxp
k′2 − nk′3/δhxp + k′2(n− 1)δpx

n− (k′1 − k′2)
.

The first nominator in the bracket is, observing (A.5),

k′2 − nk′3/δhxp =
1− n/δhxp − α
α+ γ(1− α)

.
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Using (A.5) and (A.6) yields

−k3 = δhxp
(1− α)[(n− 1)δpx + 1]− n/δhxp

(n− 1)[α+ γ(1− α)] + 1
.

Plugging this into the definition of k3 in (A.8) gives

k3 = δhxp

(1−α)[(n−1)δpx+1]−n/δhxp
(n−1)[α+γ(1−α)]+1

1− δpx (n−1)(γ−1)(1−α)
(n−1)[α+γ(1−α)]+1

.

To obtain δhxp = δhx + δhp , we need to find the undetermined coefficients of equation (A.3).

Start by comparing this equation with household l’s expectation of equation (A.8):

El,tpt = k1 + k3xt−1︸ ︷︷ ︸
κhpwt+τ

h
p xt−1−ηhp rt

+
(
k2 + k3ρ

h
x

)
︸ ︷︷ ︸

ρhp

st + k3δ
h
x︸︷︷︸

δhp

âl,t. (A.9)

Hence, δhxp = δhx(1 + k3). Inserting this into the above expression for k3 yields

k3 ≡−
n/Υ− δhxΨ

Φ− δhxΨ
, (A.10)

with

Υ = (n− 1)[α+ γ(1− α)] + 1 > 0 Ψ =(1− α)[(n− 1)δpx + 1]/Υ > 0

Φ = 1− δpx(n− 1)(γ − 1)(1− α)/Υ.

The signs obtain because n > 1, 0 < α < 1, δpx > 0, and γ > 1. Observe that ΨΥ < n because

δpx ≤ 1. Hence,
n/Υ− δhxΨ > 0

n− δhx︸︷︷︸
>0,<1

ΨΥ︸︷︷︸
<n

> 0,

implying that the nominator of (A.10) is positive. Turning to the denominator Φ − δhxΨ,

observe that Φ − Ψ > 0. Hence, the denominator of (A.10) is positive as well, and we have

k3 < 0. Next, consider that n/Υ < Φ and we obtain

−1 < k3 < 0.

This is a key result for the derivation of Propositions 1-3, see Appendix B. Multiplying the

nominator and the denominator of the fraction in equation (A.10) by Υ and rewriting gives

the expression used in Proposition 1.
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Stage one of period t As information sets of agents are perfectly aligned during stage

one, we use the expectation operator Et to denote stage-one expectations in what follows.

Combining the results regarding expectations about inflation in period t + 1 with the Euler

equation, the Taylor rule, and the random walk assumption for xt gives

Etyt = Etxt − ψEtπt.

Remember that the monetary policy shock realizes after wages are set. Its expected value

before wage-setting is zero. Using Etxt = Etyt (which results from combining labor supply

and demand with the production function), we obtain

Etπt = 0,

used in the derivations above. Nominal wages are set in line with these expectations. We

thus have determinacy of the price level. The central bank, setting the interest rate after

wages are determined, also expects zero inflation in the absence of monetary policy shocks.

To find the effects of monetary policy shocks on the interest rate, including feedback effects

via changes in expected inflation, note that according to equation (A.9)

k1 + k3xt−1 = κhpwt + τhp xt−1 − ηhp rt,

where, observing equations (A.5), (A.6), and (A.8),

k1 =
1

(1− k1)Ξ

[
α

α+ γ(1− α)
+ k′2κ

h
p

]
wt −

k′2(1 + ηhp )

(1− k1)Ξ
rt

+
1

(1− k1)Ξ

{
k′2(1 + τhp ) + k′2δ

h
xp

[
n− 1

n
(1− δpx)− 1

]
− (1− δpx)k1k3Ξ

1− k1δ
p
x

}
xt−1.

Hence,

−ηhp =
k′2(1 + ηhp )

(1− k1)Ξ
=
α− 1

α
,

which is the impact of rt on the price level. To finally determine the response of rt, use this

insight in the Taylor rule, resulting in

rt = ψ
α− 1

α
rt + θt =

α

α+ ψ(1− α)
θt. (A.11)
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B Proofs

Proof of Proposition 1 Aggregating individual Euler equations (A.2) over all individuals,

using (A.8), (A.9), and (A.11), gives

yt =El,txt + El,tpt − pt − rt

=xt−1 + ρhx(1 + k3)st +
[
δhx + k3(δhx − 1)

]
εt −

α

α+ ψ(1− α)
θt

=xt−1 + ρhx(1 + k3)︸ ︷︷ ︸
>0

et +
[
δhx + ρhx − k3(1− δhx − ρhx)

]
︸ ︷︷ ︸

>0

εt−
α

α+ ψ(1− α)︸ ︷︷ ︸
<0

θt,

where 1−δhx−ρhx > 0 because of (A.1). Note that if households have full information (n→∞),

we get ρhx → 0 and δhx → 1. Defining Ω ≡ −k3, we can write

yt = xt−1 + ρhx(1− Ω)et +
[
(δhx + ρhx)(1− Ω) + Ω

]
εt −

α

α+ ψ(1− α)
θt. (B.12)

The signs indicated above result from 0 < Ω = −k3 < 1 (derived in Appendix A), completing

the proof. �

Proof of Proposition 2 Now consider the nowcast error, where expectations are either

those of households or producers, that is, Ek,t substitutes for either Ej,l,t or El,t, and ρk, δk

correspondingly for ρp, δp or ρh, δh.

Ek,tyt =xt−1 + ρhx
(
1 + k3

)
st +

[
δhx + k3(δhx − 1)

]
Ek,txt − rt

=xt−1 +
{
ρhx(1 + k3) + [δhx + k3(δhx − 1)]ρkx

}
st +

[
δhx + k3(δhx − 1)

]
δkxεt − rt.

yt − Ek,tyt =− ρkx
[
δhx + k3(δhx − 1)

]
st +

[
δhx + k3(δhx − 1)

]
(1− δkx)εt

=−ρkx
[
δhx + k3(δhx − 1)

]
︸ ︷︷ ︸

<0

et +
[
δhx + k3(δhx − 1)

]
︸ ︷︷ ︸

>0

(1− δkx − ρkx)︸ ︷︷ ︸
>0

εt,

or

yt − Ek,tyt = −ρkx
[
δhx(1− Ω) + Ω

]
et +

[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx)εt. (B.13)

The fact that 0 < Ω < 1 (see Appendix A) allows us to determine the signs of the effects of

the shocks on the nowcast error. �
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Proof of Proposition 3 The model can be written in the following state space system:

X̃t+1 = CX̃t +DṼt

Ỹt = FX̃t +GṼt,

with Ỹt and Ṽt defined in the main text, C = 0, D = I3, and

F =


0 0 0

Ω−1
α (1− α)(1− ρhx − δhx) 1−Ω

α ρhx(1− α) α−1
α+ψ(1−α)

0 0 0



G =


[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx) −ρkx

[
δhx(1− Ω) + Ω

]
0

Ω + 1−Ω
α

[
1− (1− α)(ρhx + δhx)

]
α−1
α ρhx(1− Ω) 1−α

α+ψ(1−α)
(Ω−1)
α (1− δhx − ρhx) 1−Ω

α ρhx
−1

α+ψ(1−α)

 .
The dynamics of the model can then be represented by the following VAR (see Fernández-

Villaverde et al. (2007) for details):

Ỹt+1 = F

∞∑
j=0

(C −DG−1F )jDG−1Ỹt−j +GṼt+1 = F

∞∑
j=0

(−G−1F )jG−1Ỹt−j +GṼt+1.

The matrix FG−1 results as

FG−1 =


0 0 0

0 0 1− α
0 0 0

 ,
such that

FG−1FG−1 = 0

and we obtain the final VAR(1) representation24

Ỹt+1 = FG−1︸ ︷︷ ︸
≡A

Ỹt + G︸︷︷︸
≡B

Ṽt+1.

�
24Note that the “poor man’s invertibility condition” of Fernández-Villaverde et al. (2007) is satisfied as the

matrix −G−1F has rank one and therefore at most one non-zero eigenvalue. The trace equals zero, such that
all eigenvalues are zero and hence strictly less than unity.
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Proof of Corollary 1 Using the equations derived in the proof of Proposition 3, the long-

run impact matrix can be calculated as
(
I3 − FG−1

)−1
G, that is

1 0 0

0 1 1− α
0 0 1



[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx) −ρkx

[
δhx(1− Ω) + Ω

]
0

Ω + 1−Ω
α

[
1− (1− α)(ρhx + δhx)

]
α−1
α ρhx(1− Ω) 1−α

α+ψ(1−α)
(Ω−1)
α (1− δhx − ρhx) 1−Ω

α ρhx
−1

α+ψ(1−α)



=


∗ ∗ 0

1 0 0

∗ ∗ ∗

 ,
where asterisks represent non-zero elements. The middle row captures the long-run impact

of the shocks on the level of labor productivity. The short-run impact of θt on the nowcast

error equals the upper-right entry of G; it is zero. �
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