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1 Introduction

Nonlinear price schedules are a common feature of many health insurance systems. Non-

linearities often arise due to deductibles or combinations of co-payments and maximum

out-of-pocket amounts. Economic theory predicts that these nonlinearities lead to het-

erogeneity in the effect of out-of-pocket expenditures on health care demand even among

individuals with identical preferences. In the presence of a nonlinear price schedule, hetero-

geneity could arise as the out-of-pocket price is not the relevant price for forward-looking

individuals. Instead, the relevant price depends on individuals’ expectations of their fu-

ture health care use. For example, in a price schedule in which costs drop to zero once

out-of-pocket expenditures exceed a certain amount, individuals who expect that their

out-of-pocket expenditures will exceed the maximum amount have little incentive to re-

duce current health care use. They expect to pay the same total amount independent of

their health care use today. Conversely, individuals who expect that their expenditures

will not exceed the maximum amount face the full copayment for their current health care

use. For forward-looking individuals, the sensitivity with respect to the current price of

care is thus predicted to depend on expected future health care use, which naturally varies

between individuals (Keeler et al., 1977; Ellis, 1986). An average measure of price sensitiv-

ity to copayments in a nonlinear price schedule might thus hide substantial heterogeneity.

A similar argument has been made by Bitler et al. (2006) concerning the effects of welfare

reforms on labor market outcomes.

In this paper, we develop a finite mixture model to analyze the changes in health

care demand induced by an introduction of a nonlinearity in the price schedule in the

German statutory health insurance (SHI). Our model adapts and extends the model of

Atella et al. (2004) to accommodate a bivariate binary outcome (indicators for visits to

general practitioners and specialists) and correlated error terms in a panel data setting.

The finite mixture model allows us to estimate the sensitivity to changes in copayments for

different classes of individuals without having to specify a priori which individual belongs

to which class. We determine the number of different classes according to the normalized

entropy criterion (NEC), a criterion which ensures that the classes are well-separated and

nonoverlapping. This criterion is rarely applied in economics although it provides a clear

clustering structure, which enhances interpretation. For each latent class and combination

of the bivariate binary outcomes, we calculate average marginal effects and their standard

errors. We further calculate posterior probabilities of class memberships, based on which

we assign individuals to latent classes. We then examine the composition of these classes
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to describe the sources of heterogeneity.

We employ this approach to analyze the effects of the introduction of a nonlinearity

in the price schedule of the German SHI. The SHI is the public health insurance system

in Germany that is mandatory for most employees and covers around 90% of the German

population. The specific reform that we analyze introduced a per-quarter fee for doctor

visits. Before 2004, the publicly insured in Germany did not have to copay for doctor

visits. Since 2004, they have to pay a fee of e 10 for the first visit to a doctor in each

calendar quarter. Additional visits in the same quarter are free of charge. The price an

individual pays thus drops from e 10 to e 0 after the first doctor visit in a quarter. Only

individuals who do not visit any doctor in a quarter can avoid paying the fee.

In order to detect whether the reform affected individual behavior, we focus on the

effect of the per-quarter fee on the probability of not visiting any doctor (henceforth, “no

doctor visit”) in a quarter. If individuals are forward looking, their reactions to the German

per-quarter fee should depend on their expected probability of having to visit a doctor.

For individuals who expect that they will likely have to visit a doctor within the next three

months, behavior should not change. Other individuals, however, might expect that they

can avoid going to the doctor through the entire quarter and thus avoid paying the fee. For

these individuals, the probability of no doctor visit should increase. We therefore expect

that there will be at least two groups with different reactions to the newly introduced

per-quarter fee. Standard approaches to the evaluation of health reforms which focus on

average effects (conditional on observable covariates) would combine these heterogeneous

effects and might yield misleading policy conclusions.1

Our analysis is based on administrative claims data from the largest German health

insurance plan for the year 2002 to 2005. These data allow us to reliably observe doctor

visits within quarters and are thus particularly suited for our purposes. However, they

only contain information on health through diagnosis codes or claims for prescribed drugs.

The latter two measures are, of course, only observed if individuals have visited a doctor.

If the introduction of the copayment affected the probability of doctor visits, it would also

1Earlier studies of this reform have abstracted from potentially heterogeneous treatment effects (Au-
gurzky et al., 2006; Schreyögg and Grabka, 2010). Farbmacher and Winter (2013) address specific mea-
surement problems and nonlinearities that arise when using survey data to study the effects of a quarterly
copayment, but restrict the analysis to homogeneous effects. Rückert et al. (2008) stratify their results
by observable characteristics and find that younger and healthier adults and individuals with low income
are more likely to report that they have delayed doctor visits. Winkelmann (2006) studies the effects of
a different reform of the German SHI using a quantile count data model; he documents heterogeneous
reactions of the number of doctor visits to the reform, a result that is in line with the findings we report
below.
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affect these health measures which are thus endogenous to the reform. But health itself

could be an important source of heterogeneity in the reform effects, for instance as current

health status might explain individuals’ expectations of their future health care use. Our

finite mixture approach allows us to omit the plausibly endogenous health measures from

our main analysis, while still allowing for health-related heterogeneity through the model’s

latent classes. We use the health measures in a post-estimation analysis later on.

With this paper, we add to the literature on the price sensitivity of health care demand.

Many studies in this literature have focused on the impact of the current out-of-pocket price

on health care demand without taking the possible impact of nonlinearities in the price

schedule into account (see Aron-Dine et al. (2012) for a discussion and Einav et al. (2013) for

a recent study that explicitly investigates incentives introduced by nonlinearities in health

insurance plans). A challenge in accounting for the impact of nonlinear price schedules on

the price sensitivity of demand is that individual expectations and thus the relevant prices

are typically unobservable to the researcher. Some studies have solved this problem by

constructing individuals’ relevant or expected prices based on observable sociodemographic

characteristics, prior use of health care services, or experiences of individuals in the same

health plan (Ellis, 1986; Contoyannis et al., 2005; Meyerhoefer and Zuvekas, 2010; Aron-

Dine et al., 2012). However, modeling individual expectations is difficult and in practice

requires strong and implausible assumptions, including homogeneity of the expectations

process (Manski, 2004). Our finite mixture approach has the advantage that in the spirit

of a reduced-form model, we can account for the nonlinearity in the price schedule, without

having to predict relevant prices and specify expectations. Furthermore, we do not need

to make assumptions on whether and to what extent individuals are forward looking. This

is important as evidence by Aron-Dine et al. (2012) suggests that individuals are neither

fully myopic nor fully forward looking.

The finite mixture model we develop also fits into a recent literature on modeling

heterogeneity in health care decisions and in the effects of reforms on individual behavior

more generally. Examples include Deb and Trivedi (1997), Deb and Trivedi (2002), Atella

et al. (2004), Bago d’Uva (2006), Deb et al. (2011) and Ayyagari et al. (2013) who use

finite mixture models to analyze heterogeneity in health-related decisions and outcomes,

Winkelmann (2006) who develops a quantile model for count data to analyze heterogeneity

in the effect of a different copayment in the SHI, and Djebbari and Smith (2008) who extend

and apply quantile treatment effects and random coefficient models to test for heterogeneity

of the effects of a Mexican welfare program.
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Our results indicate that the average probability of no doctor visit significantly increased

after the reform, by about 3.5 percentage points. This result suggests that the reform has

had an effect on the demand for doctor visits on average. However, the average effect only

delivers the correct price response under the assumption that individuals are completely

myopic and ignore the impact that their demand has on future prices. Results of our finite

mixture model show that there are heterogeneous reactions to the introduction of the new

copayment. We estimate models with two, three and four latent classes. According to the

NEC, the model with two latent classes is the most appropriate one. This model shows that

for 36% of individuals the probability of no doctor visit increased by around 7 percentage

points, while there was no significant change for the remaining individuals. Post-estimation

analyses show that the individuals who react to the reform are the relatively healthy. To

the extent that healthy individuals have lower expected future health care needs, these

results are in line with the theoretical predictions of Keeler et al. (1977). However, we

cannot fully exclude that the results reflect other sources of unobserved heterogeneity,

such as heterogeneity in price sensitivity with respect to health or income or heterogeneity

in the degree of myopia. We return to this issue in the concluding section.

The paper is structured as follows: The next section describes the health care reform

in more detail. Section 3 introduces the dataset and Section 4 explains our estimation

strategy. In Section 5 the results are presented and Section 6 concludes.

2 Incentive Effects of the Reform

The health care reform that we analyze became effective in January 2004. The reform

implemented various financial incentives in the SHI with the aim of increasing patients’

cost consciousness. Figure 1 shows the changes in Germany’s consumer price index for

medical care. The reform appears to have permanently increased the prices for medical

care. According to this index, it has been the largest health care reform in Germany

for more than a decade. The central and most radical element of the reform was the

introduction of a per-quarter fee for doctor visits. While patients did not have to copay for

doctor visits before the reform, since 2004 they pay e 10 for the first visit to a physician

in each quarter of the year. Further visits to the same doctor within a quarter are free

of charge. Visits in the same quarter to other doctors are also exempt from the fee if

patients get a referral by the doctor whom they visited first. Alternatively, patients can

visit other doctors without referral and pay the fee again. As paying the fee can only be

avoided by not visiting any physician within a quarter, we expect that the introduction of
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the per-quarter fee has increased the probability of no doctor visit in a quarter.

Figure 1: Germany’s Consumer Price Index for Medical Care

 

Source: German Federal Statistical Office, own visualization

The theoretical models of health care demand by Keeler et al. (1977) and Ellis (1986)

suggest that this effect might be heterogeneous across individuals as the per-quarter fee

has introduced a nonlinearity in the price schedule. The reason for this is its implicit

deductible. The fee has to be paid only at the first visit in a calendar quarter. Hence,

given a referral the patient’s price for doctor visits drops to zero after the first visit. This

nonlinearity generates varying incentives depending on individuals’ health status. Keeler

et al. (1977), for instance, show that under uncertainty a rational individual facing a

deductible will not base decisions on nominal prices. The authors instead argue that “the

greater the chance that future expenditures will exceed the deductible, the cheaper today’s

visit to the doctor”. A rational and forward-looking individual will thus anticipate that the

price drops to zero at a certain consumption level. In the German case, the intertemporal

effect on prices is relatively easy to assess. It only depends on individuals’ expectations

on their probability of visiting a physician in the next three months. In the extreme case,

their behavior is unaffected by the per-quarter fee once they know that they have to visit

a doctor in a certain calendar quarter (for example to get a new prescription for a drug for

a chronic disease). The effective price for doctor visits is thus lower for individuals with

chronic conditions. Hence, if demand for outpatient care depends on effective prices, we

expect a weaker reaction of demand among individuals with high risk of doctor visits than

among low-risk individuals.2

2In this argument we assume that individuals continue to visit doctors in case of major conditions and
take their drugs despite the increase in copayments. This assumption can be justified by the low copayment
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An additional effect of the per-quarter fee on individual behavior could be that indi-

viduals try to fit as many foreseeable doctor visits as possible into a quarter once they

have paid the fee. This would allow them to avoid having to pay the fee in a later quarter.

Since we are mainly interested in whether the per-quarter fee affected the demand for doc-

tor visits at all, and whether the effects are in line with theoretical predictions, we focus

on the effect on the probability of no doctor visit in this study. Consequently, our results

do not pertain to the reform’s effects on the overall number of doctor visits and on health

care costs.

3 Data

The analysis is based on insurance claims data from the largest German health insurance

plan in the years 2002 to 2005. The data contains information on a 18.75% random

subsample of all individuals in the German state of Hesse who are insured with this health

plan. At the beginning of each year, a refreshment sample is drawn in order to keep the

sample representative of the insured population.3

The data contains information on all doctor visits. Specifically, for all visits we observe

the type of doctor visited, the diagnoses made (classified at the ICD-10 level), and the

drugs prescribed. As we are interested in the reactions to the introduction of the per-

quarter fee, we aggregate the data from the level of the doctor visit to the quarterly level

(within individual). Furthermore, we group information on the different doctor visits into

those to general practitioners (GPs) and those to specialists. The dependent variables are

thus the number of GP visits per quarter and the number of specialist visits per quarter,

at the level of the insured individual.

The main advantage of using claims data is that doctor visits are reliably observed

(whereas in survey data they are based on respondent self-reports which are typically

rather noisy). A drawback of claims data, however, is that the only information on an

individual’s health is that contained in the diagnoses codes and the list of prescribed

drugs. This information is only available for individuals who have seen a doctor. Other

than that, only information on the age and sex of the individual is available. The claims

data thus comprise only very few variables that do not depend on whether an individual

level. Generally, individuals in Germany will not get into severe financial troubles due to out-of-pocket
expenditures.

3See http://www.pmvforschungsgruppe.de/content/02 forschung/02 b sekundaerd 1.htm for a short de-
scription of the data in German.
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has visited a doctor.

Another disadvantage of this claims dataset is that it consists only of publicly insured

individuals. It does not contain any adults who were not affected by the reform (primarily

the privately insured) who could serve as a control group. Within the SHI, individuals

younger than 18 are generally exempt from paying the per-quarter fee. These individ-

uals, however, are not suitable as a control group for the entire adult population.4 We

thus exclude all individuals younger than 19 from our analysis and revert to before-after

comparisons to identify the effects of the reform in the adult population. Our results there-

fore rely on the assumption that in the absence of the reform, no considerable changes in

health care use would have occurred. We shed light on the plausibility of this assumption

by comparing changes across the two years prior to the reform.

Our sample is further restricted to those individual-quarter observations for which the

entire quarter is covered. Individual-quarter observations are excluded, for example, if the

individual switches from or to a different insurer within the quarter. This sample restriction

ensures that the length of the period at risk is the same for each observation.

Table 1 shows descriptive statistics for the third quarter of each year.5 The average age

is almost unchanged over time, reflecting the inclusion of refreshment samples. The average

number of doctor visits in our sample is around 4.5 per quarter. On average, individuals

visit a GP a little less than once a month and a specialist 1.7 times per quarter. This level

of physician service use is high in international comparison, but it is in line with statistics

on doctor visits in Germany available from other sources (see Grobe et al., 2010).

While the average number of doctor visits per quarter does not show a clear change

after the reform, two possible effects of the increased copayments become evident in table

1. Between 2003 and 2004, the fraction of individuals with at least one GP visit and the

fraction with at least one specialist visit in the third quarter both decline, from 63% to

60% for GPs and from 46% to 42% for specialists. Individuals thus seem to reduce contacts

with either type of doctor after the reform.

As the copayment can only be avoided by seeing neither type of physician, we are

particularly interested in how the probability of no doctor visit within a quarter changed

after the reform. Descriptive statistics on these quantities are reported at the bottom of

table 1. While in the third quarter of 2002 and 2003, roughly 27% of the sample visit

neither a GP nor a specialist, this is the case for 33% of individuals in the years after the

4This feature of the reform suggests a natural division into treatment and control group among
teenagers. We will conduct a difference-in-difference analysis for teenagers in a follow-up study.

5The descriptive statistics are very similar for the other quarters of the year.
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Table 1: Descriptive Statistics

3Q 2002 3Q 2003 3Q 2004 3Q 2005

Variable Mean SD Mean SD Mean SD Mean SD

Age 51.87 18.71 52.16 18.75 52.31 18.81 52.17 18.88

19-39 0.31 0.46 0.30 0.46 0.29 0.46 0.29 0.46

40-59 0.31 0.46 0.31 0.46 0.32 0.47 0.33 0.47

60-79 0.31 0.46 0.31 0.46 0.31 0.46 0.30 0.46

≥ 80 0.07 0.26 0.08 0.27 0.08 0.27 0.08 0.27

Female 0.52 0.50 0.52 0.50 0.52 0.50 0.52 0.50

# GP visits 2.77 4.12 2.75 4.11 2.77 4.16 2.85 4.33

GP>0 0.63 0.48 0.63 0.48 0.60 0.49 0.59 0.49

# GP visits truncated at 0 4.43 4.45 4.40 4.45 4.65 4.51 4.83 4.72

# Specialist visits 1.75 3.65 1.70 3.49 1.63 3.57 1.71 3.73

Specialist>0 0.46 0.50 0.46 0.50 0.42 0.49 0.42 0.49

# Specialist visits truncated at 0 3.83 4.60 3.70 4.37 3.89 4.64 4.05 4.85

GP= 0 & Specialist = 0 0.27 0.44 0.27 0.44 0.33 0.47 0.33 0.47

N 256,071 249,851 246,379 248,328

reform. The average probability of no doctor visit per quarter thus increases by about 6

percentage points after the reform.

The change in the probability of no doctor visit in 2004 compared to 2003 is also

depicted in figure 2. This figure shows the changes in the third quarter of 2004 compared

to the third quarter of 2003 separately for men and women in different age groups and

with different health status. The health status is captured by the Charlson Index (Charlson

et al., 1987). This index is based on 17 diseases identified from the diagnoses codes available

in our dataset. Each disease is assigned a weight between 1 and 6, depending on its

severity.6 The Charlson Index is the sum of these weights, truncated at 2. A value of 0

thus indicates that an individual had no diagnosis of any of the Charlson conditions, and

a value of 1 or 2 indicates the presence of one or more severe co-morbidities.

As the Charlson Index is based on diagnoses codes which are only available if an in-

dividual has seen a doctor, the Charlson Index might itself have been affected by the

introduction of the copayment. In order to mitigate this problem, we construct the Charl-

son Index for individuals in the third quarter of each year based on their diagnoses in the

two prior quarters. For example, the “Charlson 0” group in 2003 contains all individuals

who had no diagnosis of any Charlson condition in the first two quarters of 2003. Since

individuals with conditions as severe as those counted in the Charlson Index will likely

6A list of the diseases and corresponding weights is displayed in Appendix A.
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Figure 2: Change in the Probability of No Doctor Visit in 2004 compared to 2003 by Age
and Charlson Index
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have to visit a doctor at some point during six months, we hope that the index based on

diagnoses in 6 months should be affected less by the reform than a measure based on one

quarter alone. Furthermore, by focusing on the quarters prior to the quarter for which

we describe the change in the probability to visit a doctor, we eliminate the direct link

between doctor visits in the quarter and our health measure.

Figure 2 presents first descriptive evidence of heterogeneous effects across the different

groups. The probability of no doctor visit generally increases after the reform with similar

magnitude for both genders. These increases are much smaller for individuals with a

Charlson Index of 2 than for the other groups. Sicker individuals thus seem to react less

to the reform than healthier ones. This is true for all age groups and both genders.

Overall, figure 2 indicates that the change in the probability of no doctor visit is stronger

for healthy individuals. These descriptive results, however, rely on an endogenous measure

of health. In order to test our hypothesis of heterogeneous reactions without having to

rely on the health information in the data, we use a finite mixture model. This model

allows us to estimate different effects for separate groups in the population without having

to explicitly stratify the data by observable characteristics a priori.

4 Econometric Framework

In this section we develop a finite mixture model that accommodates a bivariate binary

outcome and correlated error terms in a panel data setting. Our data consists of a panel of
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individuals observed over time and with outcomes related to two different medical special-

ties. Individuals can seek care from GPs (y1) and/or specialists (y2). Suppose there are J

types (or classes) of individuals (j = 1, 2, ..., J) who may react differently to the changing

financial incentives. The number of different types J is determined by the data according

to different selection criteria that are further explained at the end of this section. The

object of interest is the change over time in the probability of visiting a doctor,

Pr(yk|t = a, group = j)− Pr(yk|t = b, group = j) ≡ ζkj k = 1, 2 (1)

where j denotes the type, k refers to GP and specialists, respectively, and t is an indicator

for years before (b) and after (a) the reform. In our application heterogeneous reform

effects can, for instance, be caused by varying price sensitivities and/or differences in the

perception of the price change. The latter is particularly important as some individuals

may not react to the financial incentive at all since the deductible element of the reform

makes them consider the change as an increase in insurance premium. So even if their

price sensitivity is negative, we might not see changes in the demand for health care in this

group.

The overall change in the probability of visiting a doctor for the population can be

estimated from the group-specific reform effects as a weighted average across all groups

Pr(yk|t = a)− Pr(yk|t = b) =
J∑
j=1

Pr(group = j)ζkj. (2)

Reporting the overall effect is informative if the entire population is affected by the finan-

cial incentive. However, considering a case with a (possibly) large group that does not

react to the reform at all, reporting the overall effect may hide even strong reactions in

smaller groups. Equation (2) suggests the use of a finite mixture model to explore these

heterogeneities. In the following we give a formal description of the model and generalize

the basic idea to the bivariate case incorporating correlated error terms and also additional

control variables.

The dataset is an unbalanced panel, and each individual i is observed in Ti quarters.

Over time and across the two physician specialities, the dataset thus includes 2 · Ti obser-

vations for individual i. Suppose that individual i belongs to a latent class j for the entire

observational period. The probability of belonging to class j is πj. Within a latent class, we

use bivariate probits to jointly model the decision to visit a GP and/or a specialist. While

we are mostly interested in whether individuals visit any doctor within a quarter, indepen-

dent of the type of doctor visited, using information on two decisions (GP and specialist

10



visits) in the estimation of the model should improve the classification of individuals into

latent classes. The joint probability of the dependent variables over the observed period is

the product of Ti independent probabilities, given fixed class membership, i.e.,

Pr(y1i, y2i|xi, θj) =

Ti∏
t=1

Φ2[(2y1it − 1)xitβj, (2y2it − 1)xitγj, (2y1it − 1)(2y2it − 1)ρj] (3)

where xi denotes the vector of covariates that includes age, sex, seasonal fixed effects and

year fixed effects. Φ2(·) denotes the bivariate normal cdf and θj contains the vector of

parameters for GP visits (βj), the vector of parameters for specialist visits (γj), and the

parameter ρj which captures covariation of the errors in the underlying structural model.

The log-likelihood function that corresponds to this model is given by

ln(L) =
I∑
i=1

ln

(
J∑
j=1

πjPr(y1i, y2i|xi, θj)

)
(4)

where I is the number of individuals in the dataset and J is the number of latent classes.7

In order to obtain a dataset of manageable size, we use a 3% random subsample in this part

of our analysis. This gives us 120,521 observations from a little more that 7,500 individuals

per quarter.8

In order to facilitate the interpretation of our results, we calculate the average marginal

effects of the variables in xi on Pr(y1i = 1|xi, θj) and Pr(y2i = 1|xi, θj). Standard errors of

the marginal effects are calculated using the delta method. As the reform effect is captured

by changes in the probability of no doctor visit, we also calculate marginal effects on the

probability of no doctor visit, i.e. on Pr(y1i = 0, y2i = 0|xi, θj).9

Furthermore, using Bayes’ theorem we calculate posterior probabilities of membership

in the different latent classes for each individual i as

Pr(y1i, y2i ∈ h|y1i, y2i, xi, θ̂) =
π̂hPr(y1i, y2i|xi, θ̂h)∑J
j=1 π̂jPr(y1i, y2i|xi, θ̂j)

(5)

where Pr(y1i, y2i|xi, θ̂h) is defined as in equation (3). The posterior probabilities on the one

hand help to judge how well the different latent classes are separated by the estimation,

which is a basic objective of mixture models. On the other hand, one can assign individuals

7The likelihood function is maximized directly using the Newton-Raphson algorithm. First and second
derivatives are calculated numerically in Stata’s optimization package.

8A comparison of this subsample with the entire sample is available upon request.
9See appendix B for details.
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to a specific latent class based on their posterior probabilities and then characterize each

latent class using observable characteristics. In addition to the variables age and sex

that are included in xi, we use the health information contained in the data in this post-

estimation analysis. As this information is not included in xi, it is external to the estimation

and can therefore be used to verify the classification.

So far, we have not specified J , i.e. the number of latent classes in the finite mixture

model. For model selection, information criteria such as the well-known Akaike information

criterion (AIC) and the Bayesian information criterion (BIC) are often used. Both criteria

emphasize the goodness of model fit, but differ in their way how they take the parsimony

of the model into account. However, these criteria do not reflect the model’s ability to

generate well-separated clusters – an important objective of mixture models. We therefore

use a third criterion for model selection, the normalized entropy criterion (NEC). This

criterion was proposed by Celeux and Soromenho (1996) to assess the optimal number of

clusters in a mixture model. It determines the overlap of the mixture components; the

smaller the overlap between different components, the better the separation between the

latent classes. The NEC is defined as

NEC(J) =

∑J
j=1

∑I
i=1 tijln(tij)

L(J)− L(1)

where tij represents the posterior probability of class membership shown in equation (5),

and L(·) is the likelihood function displayed in equation (4), which depends on the number

of latent classes J . The entropy term in the numerator measures the overlap of the mixture

components. A low value of the NEC therefore points to a model with well-separated

clusters.

5 Results

Table 2 reports the NEC, AIC and BIC criteria for the finite mixture bivariate probit model

described in the last section with different number of latent classes (LC). In addition to

finite mixture models (FMM) with 2, 3, and 4 latent classes, we estimate a standard one-

component bivariate probit model.10 The AIC and BIC displayed in table 2 indicate that

the model with 4 latent classes fits the data best. The NEC criterion, on the other hand,

prefers the model with just 2 latent classes. As the criteria come up with conflicting results,

we need additional guidance to choose between the models. While NEC indicates that the

10Estimations with more than 4 latent classes failed to converge and are likely overparameterized.
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Figure 3: Posterior probabilities for different model specifications

(a) FMM with 2 latent classes (b) FMM with 4 latent classes

model with 2 latent classes results in the optimal number of clusters, figure 3 indicates

that both models seem to do reasonably well in separating the sample into classes based

on posterior probabilities. This figure plots the densities of the posterior probabilities

of class membership for the models with 2 and 4 latent classes. For both models, each

probability has large spikes at 0 and 1, indicating that individuals can be easily assigned

to latent classes based on these probabilities.

Another aspect that is typically considered in the choice of the number of latent classes

in finite mixture models is interpretability of the different groups. Cameron and Trivedi

(2005), p. 624, argue that “[t]he most desirable situation is one in which the components

have an interpretation.” Finite mixture models in health economics, therefore, often con-

tain only 2 latent classes, which are interpreted as the group of low or infrequent users and

the group of high users of health care (see, for instance Deb and Trivedi, 2002; Bago d’Uva,

2006). For the sake of interpretation, we therefore focus on the results of the model with 2

latent classes, which is also favored by NEC. The results from the model with 4 classes do

not differ qualitatively from the ones of the model with 2 latent classes and are presented

in appendix C.

Marginal effects and their standard errors based on the results of our finite mixture

bivariate probit model with 2 latent classes are reported in table 3. In addition to the

marginal effects in the different latent classes, table 3 displays overall effects. The latter

are derived as weighted averages of the effects in the 2 latent classes; the estimated prior

probabilities of class membership, π̂ and 1 − π̂, serve as weights. For comparison, the

13



Table 2: Model Selection

Model N LogL df AIC BIC NEC

Bivariate Probit 120,521 -148,116.6 25 296,283 296,526 –

2 LC FMM Bivariate Probit 120,521 -130,342.6 51 260,787 261,282 0.034

3 LC FMM Bivariate Probit 120,521 -122,594.1 77 245,342 246,089 0.050

4 LC FMM Bivariate Probit 120,521 -118,899.9 103 238,006 239,005 0.058

last column of table 3 reports marginal effects and standard errors based on the standard

bivariate probit model.

The overall marginal effects and the marginal effects of the standard bivariate probit

model have the same signs and are similar in magnitude. Women have a higher probability

of visiting a GP and of visiting a specialist at least once in a quarter than men. The

probability of visiting a GP or a specialist at least once increases with age, particularly so

for individuals aged 40 to 60. The probabilities of visiting either type of doctor at least

once are lower in the summer months (quarter 2 and 3) compared to the first quarter of a

year. Overall, the marginal effects thus show expected signs.

Of particular interest are the changes in the probabilities of doctor visits over the years.

The effects of the year dummies capture these changes, compared to the reference year 2002.

Overall, the results of the finite mixture bivariate probit model and the standard bivariate

probit concordantly show significant reductions in the probabilities in the years 2004 and

2005 compared to 2002. In 2003, however, there is no significant difference to 2002. As

2003 is a pre-reform year, the absence of an effect in 2003 supports the assumption that

there would have been no changes in the outcome variable in the absence of the reform.

The first two columns of table 3 present the reform effects for the two latent classes.

The prior probability of belonging to class 1 is estimated as 62.5%. In this relatively large

class, the changes in the probability of either doctor visit in the post-reform years are

much smaller than in the other class. The results in table 3 thus suggest that the reform

had an effect on the demand for doctor visits and that this effect might be heterogeneous

across individuals. However, recall that the per-quarter fee has to be paid at the first visit

to a doctor in a quarter, independent of the type of doctor visited, while all additional

visits to other doctors are free of charge. We thus present an analysis of the change in the

probability of not visiting any doctor. The marginal effects on Pr(y1i = 0, y2i = 0|xi, θj)
are displayed in figure 4.

The overall effect displayed in figure 4 is not significant in the pre-reform year 2003

14



Table 3: FMM Bivariate Probit – Marginal Effects

LC 1 LC 2 Overall BiProbit

GP

Female 0.011 0.013 0.012 0.067***
(0.009) (0.014) (0.010) (0.007)

Age Splines

Age 19-40 0.005*** -0.001 0.003*** 0.002***
(0.001) (0.002) (0.001) (0.001)

Age 40-60 0.003* 0.005 0.004** 0.007***

(0.001) (0.003) (0.001) (0.001)
Age 60-80 -0.002 -0.002 -0.002 0.000

(0.001) (0.003) (0.002) (0.001)

Age > 80 -0.001 0.005 0.002 -0.008*
(0.003) (0.006) (0.004) (0.003)

Quarter Dummies
Quarter 2 -0.006 -0.018*** -0.011*** -0.011***

(0.004) (0.005) (0.003) (0.003)

Quarter 3 -0.013*** -0.032*** -0.020*** -0.020***
(0.004) (0.006) (0.003) (0.003)

Quarter 4 0.018*** 0.003 0.012*** 0.010***

(0.004) (0.006) (0.003) (0.003)
Year Dummies

2003 0.011 -0.005 0.005 0.001

(0.004) (0.006) (0.003) (0.003)
2004 -0.005** -0.052*** -0.023*** -0.027***

(0.005) (0.008) (0.004) (0.004)

2005 -0.015** -0.027** -0.020*** -0.027***
(0.005) (0.009) (0.004) (0.004)

Specialist

Female 0.131*** 0.112*** 0.124*** 0.164***

(0.011) (0.023) (0.010) (0.007)
Age Splines

Age 19-40 -0.002 0.003* 0.000 -0.001*
(0.001) (0.001) (0.001) (0.001)

Age 40-60 0.007*** 0.000 0.004** 0.008***

(0.002) (0.002) (0.001) (0.001)
Age 60-80 -0.008*** 0.000 -0.005*** -0.006***

(0.002) (0.003) (0.001) (0.001)

Age > 80 -0.009* -0.014* -0.011*** -0.014***
(0.003) (0.006) (0.003) (0.003)

Quarter Dummies

Quarter 2 -0.004 -0.002 -0.003 -0.004
(0.004) (0.005) (0.003) (0.003)

Quarter 3 -0.009* -0.012* -0.010** -0.010**

(0.004) (0.005) (0.003) (0.003)
Quarter 4 -0.002 -0.003 -0.003 -0.003

(0.004) (0.005) (0.003) (0.003)
Year Dummies

2003 0.016*** -0.016** 0.004 0.002

(0.005) (0.006) (0.004) (0.004)
2004 -0.017** -0.063*** -0.034*** -0.037***

(0.006) (0.007) (0.004) (0.004)

2005 -0.010 -0.060*** -0.029*** -0.033***
(0.006) (0.007) (0.004) (0.004)

ρ 0.278*** 0.364*** 0.489***

(0.013) (0.015) (0.008)

πj 0.625

Notes: πj is the probability of class membership in latent class (LC) j. Standard errors for the

marginal effects in parentheses. They are calculated using the delta method. Standard errors of
the underlying coefficients are clustered at the individual level. *p<0.05; **p<0.01; ***p<0.001
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Figure 4: Changes in the Probability of No Doctor Visit
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compared to 2002, but large and highly significant in the post-reform years 2004 and 2005.

This indicates that the probability of no doctor visit increased by about 3.5 percentage

points after the reform. Furthermore, figure 4 presents evidence of heterogeneous reform

effects: While individuals in latent class 1 did not react to the reform, there are strong

reactions in latent class 2. In the latter class, the probability of no doctor visit already

increased by around 1 percentage point in 2003. The increases in the post-reform years

2004 and 2005, however, are a lot larger. They lie between 6 and 8 percentage points. The

results thus suggest that there is a group of individuals who changed their behavior after

the reform, while the behavior in the other group did not change.

Naturally, the question arises who the individuals are that belong to the different la-

tent classes. Given the parameter estimates, we derive the posterior probabilities for each

individual i and assign each individual to the latent class with the highest posterior prob-

ability. Table 4 reports averages of observed characteristics for the different latent classes.

Besides age and sex, table 4 includes information on current health, as summarized by the

Charlson Index, and on prescription drugs that individuals got from GPs and specialists.

The latter are measured in defined daily doses (DDDs).11 These give a rough measure of

11DDDs are defined by the World Health Organization, see
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Table 4: Comparison of Group Means
LC 1 LC 2

Age 54.88 47.82

Female 0.58 0.41

Charlson Index 0.94 0.20

DDD 182.46 22.41

Exempt from co-payments 0.15 0.02

% of individuals 63.70 36.30

Notes: Fractions of Charlson Index do not add

up to 1 because of missing observations.

DDD stands for defined daily dose.

drug consumption within the different classes, adjusted for the fact that different drugs are

of different potency. The DDDs do not take into account, however, which amount of the

drugs were actually prescribed.

The last row of table 4 shows that about 64% of individuals were assigned to latent class

1 and 36% to latent class 2. Comparing the different latent classes, it becomes evident that

latent class 1 is on average older than latent class 2 and has a larger share of women. In

addition, there are differences concerning the Charlson Index and the DDDs. Individuals

in latent class 1 have a higher average Charlson Index and higher average DDD. Individuals

in latent class 1 thus have more severe diagnoses and take more potent drugs on average,

indicating that these individuals are sicker than individuals in the other latent classes.

This supports the hypotheses that among the individuals who do not react to the reform

are the relatively sick.

Additionally, table 4 shows the fraction of observations in each latent class that is

exempt from copayments. Before and after the reform in 2004, individuals could apply for

an exemption from copayments if the amount of their copayments exceeded 2% of their

gross yearly income. Welfare recipients and chronically sick individuals could be entirely

exempt from copayments before the reform. Since 2004, however, the 2% rule also applies

to welfare recipients. The chronically sick can only be exempt from further payments

within a year once they have already copaid 1% of their gross yearly income. Individuals

can apply for these exemptions already at the beginning of each year. In order to do so,

they have to pay either 1% or 2% of their gross annual income up front. The information

on whether individuals are exempt from copayments is only available after the reform. The

results in table 4 thus only include observations in the post-reform period.12

http://www.whocc.no/ddd/definition and general considera/ for a definition.
12For all variables that are available before the reform, the results look almost identical in the pre-reform
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Given the exemption rules described above, one could argue that individuals who know

ex ante that they will be exempt from all copayments do not react to the introduction of

the per-quarter fee. In line with this argument, table 4 shows that latent class 1 includes

a larger fraction of observations that are exempt from copayments. However, 85% of

observations in latent class 1 are not exempt from copayments and still do not react to the

introduction of the per-quarter fee. The nonlinearity of the per-quarter fee thus results in

heterogeneous reactions not only through the general exemption rules.

Overall, the results from the finite mixture model confirm that the introduction of

the per-quarter fee in the SHI had heterogeneous effects: Around 64% of individuals are

assigned ex post to the class that does not react to the reform, while there are a strong

reactions among the rest. Consistent with the theory of Keeler et al. (1977), the results

indicate that among the individuals who do not react to the introduction of the per-quarter

fee are the ones who are sick and thus likely expect that they cannot avoid paying the fee.

6 Conclusion

In this paper, we present an empirical analysis of the heterogeneous effects of a nonlinear

price schedule that was introduced in the SHI. The nonlinearity takes the form of a co-

payment for doctor visits that only has to be paid for the first visit in each quarter of the

year. The price for doctor visits individuals face in the remainder of a quarter drops to

zero once the fee has been paid. Theoretical models of health care demand in the presence

of nonlinear price schedules suggest that the per-quarter fee changes the probability of no

doctor visit differently across individuals. In particular, individuals who expect that they

will need to visit a physician at some point within the quarter have a lower incentive to

change their demand for doctor visits than individuals who expect that no visit is nec-

essary. As the expectations with respect to the necessity of visits within a given quarter

likely depend on individuals’ health status, we expect that the reform effects vary between

individuals with good and bad health.

In a descriptive analysis, we find that individuals in worse health react less to the reform

than healthier individuals, independent of their age. Our measure of health, however,

depends on the outcome variable – namely, it is observed only if individuals visit a doctor.

We therefore omit this information from our econometric model and instead allow for

unobserved heterogeneity by using a finite mixture model. The results of this model show

period.
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that some individuals react to the reform while others do not. Characterizing the different

groups indicates that those individuals who do not react are in worse health. Our results

are thus in line with the theoretical predictions of how nonlinear price schedules affect the

demand for medical care.

The finite mixture model does not allow to determine the exact source of heterogeneity.

In addition to heterogeneity in the relevance of price changes that are due to forward-

looking behavior, differences in health care needs could be another source of heterogeneity,

as some individuals might not be able to avoid visiting a doctor due to their health status.

Furthermore, heterogeneity in the price sensitivity might also arise due to unobserved

variation in income or due to preference heterogeneity, such as differences in the degree of

myopia with some individuals taking future considerations into account in their decision

making and others not. As the intertemporal consequences of the German copayment

are salient and relatively easy to assess, however, it is likely that at least some of the

heterogeneity that we document reflects forward-looking behavior.

Our findings allow two conclusions. First, the per-quarter fee affects the demand for

doctor visits on average, indicating that this demand is sensitive to prices. Second, and

more importantly, the effect on demand is heterogeneous across individuals and varies

with individuals’ health status. Analyses of the average effect will miss these important

heterogeneities, making it impossible to asses the consequences of reforms for specific,

vulnerable groups.
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Appendices

A Charlson Index

Table 5: Charlson Score
Charlson Comorbidity Assigned Weights
1 Myocardial infarction 1
2 Congestive heart failure 1
3 Peripheral vascular disease 1
4 Cerebrovascular disease 1
5 Dementia 1
6 Chronic pulmonary disease 1
7 Rheumatic disease 1
8 Peptic ulcer disease 1
9 Mild liver disease 1
10 Diabetes without complications 1
11 Diabetes with chronic complications 2
12 Hemiplegia or paraplegia 2
13 Renal disease 2
14 Cancer 2
15 Moderate or severe liver disease 3
16 Metastatic carcinoma 6
17 AIDS/HIV 6
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B Marginal Effects

This appendix describes how the marginal effects on the probabilities of each type of

doctor visit and on the joint probability that neither type of visit occurs (Pr(y1i = 0, y2i =

0|xi, θj)) are calculated. Standard errors of the marginal effects are derived using the delta

method. Each marginal effect is calculated for each individual i and for each of the J latent

classes. We report the average marginal effects of each latent class j as the average over all

individual marginal effects in this class. Furthermore, the weighted average of the effects

in the different latent classes gives an overall effect. For continuous explanatory variables,

the marginal effects are calculated using the calculus method. Marginal effects of binary

variables are calculated with the finite difference method.

For a continuous variable x, the marginal effects on Pr(yki = 1|xi, θ̂j) with k ∈ {1, 2}
in latent class j for individual i are calculated as

MExiPr(y1i = 1|xi, θ̂j)j = β̂x,jφ(x′iβ̂j) (6)

MExiPr(y2i = 1|xi, θ̂j)j = γ̂x,jφ(x′iγ̂j) (7)

where φ() stands for the standard normal p.d.f. We report 1
I

∑I
i=1MExiPr(yki =

1|xi, θ̂j)j.
The marginal effects of a continuous variable x on the joint probability for y1i and y2i

in latent class j are calculated for individual i

MExiPr(y1i = 0, y2i = 0|xi, θ̂j)j =
∂Φ2(q1ix

′
iβ̂j, q2ix

′
itγ̂j, q1iq2iρ̂j)

∂xi
(8)

= q1iβ̂x,jφ(q1ix
′
itβ̂j)Φ

q2ix
′
itγ̂j − q2

1iq2iρ̂jx
′
itβ̂j√

1− ρ̂2
j


+ q2iγ̂x,jφ(q2ix

′
itγ̂j)Φ

q1ix
′
iβ̂j − q1iq

2
2iρ̂jx

′
iγ̂j√

1− ρ̂2
j


where Φ2() stands for the cumulative bivariate normal distribution function, Φ() indi-

cates the standard normal c.d.f., and qki = 2yki − 1, with k ∈ {1, 2}.
The calculation of marginal effects of discrete variables is illustrated for the year dum-

mies. The marginal effects of the years 2003, 2004 and 2005 with 2002 as reference in

latent class j for individual i are calculated as

MEyear,iPr(y1i = 1|xi, θ̂j)j = Φ(x′iβ̂j + β̂year,j)− Φ(x′iβ̂j) (9)

MEyear,iPr(y2i = 1|xi, θ̂j)j = Φ(x′iγ̂j + γ̂year,j)− Φ(x′iγ̂j) (10)
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for the marginal probabilities, and as

MEyear,iPr(y1i = 0, y2i = 0|xi, θ̂j)j = Φ2

(
q1i(x

′
iβ̂j + β̂year,j), q2i(x

′
iγ̂j + γ̂year,j), q1iq2itρ̂j

)
(11)

− Φ2(q1ix
′
iβ̂j, q2ix

′
iγ̂j, q1iq2iρ̂j)

for the joint probability of y1i and y2i. β̂j and γ̂j now stand for the vectors of parameter

estimates for all variables excluding the year indicators. Marginal effects for the variable

female and the quarter dummies are calculated analogously.

The overall marginal effect, i.e. the marginal effect averaged over the latent classes, for

any continuous or discrete variable x is then derived as weighted average of the marginal

effects across the different latent classes,

MExi =
J∑
j=1

πjMExi,j . (12)

Again, averages over all individuals are reported.

Standard errors for the average marginal effects are derived using the delta method

that delivers the variance for each average marginal effect as

V ar(ME) = ∇′
gV ar(θ)∇g , (13)

where θ is the vector of all parameters that are estimated (βj,γj,ρj, and pj, where

πj =
exp(pj)

1+
∑C

c=1 exp(pc)
with C = J − 1), and ∇g stands for the gradient of the marginal effect,

ME = g(θ), with respect to θ. In order to calculate the variance of the average marginal

effect, we set each element in the gradient to its sample average.
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Table 6: Assignment to Latent Classes

2 LCs \ 4 LCs LC 1 LC 2 LC 3 LC 4
LC 1 42.43 0.00 48.59 8.98
LC 2 0.00 65.98 14.1 19.93

C Results for 4 Latent Classes

Table 6 displays the overlap of class assignment based on posterior probabilities after

estimation of the models with 2 and 4 latent classes. Latent class 1 in the model with

2 latent classes is mostly split between latent classes 1 and 3 in the model with 4 latent

classes. Latent class 2 is split between latent classes 2, 3 and 4 in the model with 4 classes.

66% of individuals assigned to latent class 2 in the 2-class model remain in latent class 2

in the 4-class model. 14% are assigned to class 3 and 20 % to class 4. While there is thus

some overlap in assignment to classes between the different models, there is no reshuffling

of individuals between latent classes 1 and 2. Already the 2-class model identifies the 2

extreme groups of individuals; less extreme individuals however are assigned to either of

the 2 groups in the 2-class model and then separated into classes 3 and 4 in the 4-class

model.

The main results of the model with 4 latent classes are displayed in figure 5. As in the

model with 2 latent classes, latent class 1 contains individuals for whom the probability

of no doctor visits does not change after the reform, while for individuals in latent class 2

the probability of no doctor visit increases significantly after the reform. Qualitatively, the

results are thus similar to the ones in the 2-class model. The effects in the two additional

latent classes, however, are similar to the effects in latent class 2, even though many

individuals who are assigned ex post to latent class 3 are assigned to latent class 1 in the

2-class model. While the results of the 4-class model thus confirm the conclusion drawn

from the 2-class model that some individuals react to the reform while others don’t, there

are fewer individuals in the 4-class model who do not react. Table 7 indicates that again

the individuals who do not react to the reform are less healthy than the other individuals,

which supports the importance of forward-looking behavior in the reaction to nonlinearities

in health care price schedules.
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Figure 5: 4 Latent Classes - Changes in the Probability of No Doctor Visit
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Note: Error bars indicate 99%-confidence intervals.

Table 7: 4 Latent Classes - Comparison of Group Means

LC 1 LC 2 LC 3 LC 4
Age 57.43 44.03 56.72 44.64

Female 0.60 0.40 0.51 0.62

Charlson Index 0.98 0.17 0.85 0.47

DDD 201.26 13.07 156.22 79.73

Exempt from copayments 0.18 0.02 0.12 0.08

% of individuals 36.24 29.91 26.67 7.18
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