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Abstract 
 
This paper explores how a principal with time-inconsistent preferences invests optimally in 
technology or capital. If the current principal prefers her future self to save more, she can 
increase current investments complementary to future savings and decrease investments in the 
strategic substitutes, for example. To characterize the principal’s choices they are compared to 
a market equilibrium where the investors are private agents. Each investing agent applies the 
same discount factors as do the principal and he obtains full property rights to the future 
returns. With geometric discounting, there would be no need to regulate (subsidize/tax) these 
agents. With time-inconsistent preferences, however, the current principal benefits from 
subsidizing investments in “green” capital (complementary to future savings) and tax 
investments in substitute capital such as “brown” technology and even adaptation technology. 
The paper can thus compare policies for different types of investments at the same level in the 
production hierarchy, but investments at different levels are also compared. With quasi-
hyperbolic discounting, the optimal subsidy is unrelated to this level. With discount rates that 
are strictly decreasing in relative time, however, upstream investments (needed for 
downstream investments) will optimally be subsidized at a higher rate. When applied to 
environmental policy, the paper provides a new rationale for subsidizing green (and taxing 
brown) technology unrelated to the traditional motivation emphasizing public good aspects. 
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1. Introduction

Many projects generate costs and benefits for future years and generations: Reducing

emission today generates a cleaner environment in the future; conserving nature now

makes it available for future users; extracting resources today reduces the amount available

later; investments in public infrastructure creates future benefits; and research is costly

today but builds knowledge we can later learn from.

When evaluating whether such projects are worthwhile, we are faced with the funda-

mental question of how to compare costs and benefits that occur at different points in

time. This question is a deep and diffi cult one, and scholars have struggled with it both

in the past and in recent times.

Over the last decades, economists have settled on employing "geometric" or "exponen-

tial" discounting - not because of its normative or positive justifications - but due to its

elegance, tractability, and its resemblance of private investors’present-discounted value

formula. Furthermore, exponential discounting leads to stationary or time-consistent

preferences. Thus, assuming exponential discounting often leads to laissez-faire as the

normative result, since there is no desire to distort current of future choices as a way of

pre-committing to paths that seem optimal today but not later on.

However, besides the tractability of geometric discounting, there are few reasons to

impose it as a reasonable model of individual or political behavior. The next section

reviews the literature by discussing the lack of empirical and theoretical foundation for

geometric/exponential discounting. Based on this, I conclude that "the collective evi-

dence outlined above seems overwhelmingly to support hyperbolic discounting," as also

concluded by earlier reviewers (Frederick et al 2002: 361).

The rest of the paper is deriving the implications of time-inconsistent preferences for

investments and investment policies. Any action today, whether it regards investments in

capital, technology or knowledge, will inevitably affect future choices. The current prin-

cipal will thus have an incentive to distort current investments in order to influence the

choices made by the future decision-makers. The optimal distortion, which can be imple-

mented by a subsidy or a tax on investments, will depend on the type of capital/technology
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to be invested in as well as how "upstream" the technology is: i.e., whether the technology

is used as an input to another type of investment. The more upstream the technology is,

the larger is the optimal subsidy level. For investments in "green" technology (comple-

mentary to future abatement or savings), the optimal subsidy is positive but it is optimal

to instead tax investments in "brown" technology (i.e., technology which are strategic

substitutes to future abatement or savings).

2. Discounting: Background and Foundation

In the nineteenth century, the debate regarding how to evaluate future costs and benefits

included a large number of factors, some psychological and some of them were conflicting

(e.g., one may have a pleasure from anticipating future benefits or derive utility from being

rich today relative to the past: these early philosophers included Rae, Jevons, Senior and

Bohm-Bawerk).

It was Ramsey (1928) who first suggested that one may want to maximize a weighted

sum of future utilities:

vt =
∞∑
τ=t

dτ−tuτ ,

where the discount factor dτ measures how important utility τ periods ahead is relative to

utility right now (by this definition, d0 = 1). The discount factor dτ was not specified by

Ramsey (although he argued that, normatively, dτ ought to be a constant independent of

τ , implying dτ = 1 when d0 = 1). Note that the corresponding discount factor for utility

in period t relative to utility a period before is,

δt =
dt
dt−1

⇔ dt =

t∏
τ=1

δτ . (2.1)

Theoretical foundation. The "breakthrough" first came when Paul Samuelson (1937)

suggested the now so familiar formula for dt:

dt = δt =

(
1

1 + r

)t
≈ e−rt,

where δ is the corresponding constant discount factor between subsequent periods and r

is the associated constant discount rate. Later, Koopman (1960) provided an axiomatic
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foundation for this formulae, and this firmly established geometric discounting as the

standard way of evaluating future gains and losses in economics.

Critique. To many, the appeal of geometric discounting is that it is simplifying a diffi -

cult problem rather than it being a reasonable assumptions regarding individual behavior.

Paul Samuelson was himself full of reservations when suggesting the geometric formula-

tion, both as a representation of an individual’s preference ("It is completely arbitrary to

assume that the individual behaves so as to maximize an integral of [this] form," Samuel-

son, 1937: 159), or as an advice for a public planner ("any connection between utility

as discussed here and any welfare concept is disavowed," p. 161). Nevertheless, "despite

Samuelson’s manifest reservations, the simplicity and elegance of this formulation was

irresistible" (Frederick et al 2002: 355-6) and the criterion became "dominant... largely

due to its simplicity and resemblance to the familiar compound interest formula and not

as a result of empirical research demonstrating its validity" (Frederick et al, 2002: 352-3).

For intergenerational settings, one can easily make the case that stationary as an axiom

must be violated: If the future self represents the next generation, it may be reasonable

to assume that parents are "thoughtful," as in, for example, Barro (1974): If each genera-

tion’s welfare is a weighted sum of its own utility as well as the next generation’s welfare,

then one can write this generation’s welfare recursively as a weighted sum of all future

utilities, where the discount factor is constant over time (leading to geometric discount-

ing). However, if today’s parents also care about the welfare of its grandchildren, then

stationarity must be violated and the effective discount rate declines in time (Harstad,

1999, Saez-Marti and Weibull, 2005). There are also evolutionary arguments suggesting

that humans may evolve and survive better if they have so-called hyperbolic discounting

functions; see Dasgupta and Maskin (2005).1

Empirical evidence. There is now a vast literature showing that individual preferences

1Christian Gollier and Martin Weitzman have shown that if the growth rate
.
c of consumption is

uncertain, then one it is optimal to discount future consumption at a rate which is decreasing in time

to reflect risk aversion and the accelerating level of risk (see for instance Gollier and Weitzman, 2010,

Weitzman 2001). This paper abstracts from such uncertainty and discusses a complementary but more

fundamental reason for why discount rates ought to be a decreasing function of time, which is that the

pure time preference discount rate does decrease in time.
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do not satisfy stationarity. That is, individuals may be impatient in the short-run, but

the difference between time t and time t+1 tends to vanish as t becomes large, implying

a discount rate between the two periods to approach zero as t grows (see Eisenhauer and

Ventura (2006), Frederick et al (2002), Angeletos et al (2001)). To be specific, Paser-

man (2008) obtains identification from heterogeneity in unemployment durations and

reservation-wages to find estimates of the short-run annualized discount rate that range

from 11% to 91% and a long-run discount rate of only 0.1%. Based on this, he rejects

the exponential discounting null hypothesis. Also, based on individual’s participation in

retirement accounts (IRAs), O’Donoghue and Rabin (1999) find that hyperbolic individ-

uals would imply exactly the low IRA participation which we actually observe in reality.

In another study, Laibson et al (2007) find that the short-term discount rate is 15% and

the long-term discount rate is 3.8%.

Experimental evidence. There is also a large experimental literature suggesting that

individuals discount less between period t and t+1 if t is far into the future (see, for

example, Viscusi and Huber (2006), Kirby and Marakovic (1995), Benhabib, Bisin and

Schollter (2010), Ainslie (1992), Kirby and Herrnstein (1995), Thaler (1981)). The tra-

ditional experiment offers the choice between a benefit ("one apple") today or a larger

benefit tomorrow ("two apples"). While individuals may prefer today’s benefit to tomor-

row’s, the ranking is reversed if the choice instead is between a benefit in period t, where

t is further into the future. After reviewing the literature, Frederick et al (2002: 361)

conclude that "the collective evidence outlined above seems overwhelmingly to support

hyperbolic discounting."

Hyperbolic discounting. It may be quite natural to think that, although there may

be a big difference between a gain realized today and a gain realized in ten years, the

difference between year 100 and year 110 is smaller (this intuition is better explained by

Strotz, 1956). In other words, of importance may be only the relative difference (the

difference in time divided by the length from today’s point of view). Our basic human

senses are developed to care about relative differences: The closest sound is easiest to

hear when two sources are both located nearby, but when they are both further away,

it is easiest to hear the sound that is in fact the loudest. From a distance, the largest
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mountain does indeed look like it is larger than the smaller one, but when they are both

near, the mountain that is located closest tend to look the biggest. If our sense for time

follows the same path, as experimental evidence suggest that it does, then the discount

factor must be "hyperbolic" so that utility at time t will be weighted by the discount

factor:

dt =
1

1 + αt
, (2.2)

where α > 0 is a constant measuring impatience or the scale of time. By inserting in (2.1)

we find the discount factor between period t and t− 1:

δt = 1− α

1 + αt
= 1− αdt,

which is approaching one as t grows.

Quasi-hyperbolic discounting. David Laibson (1997) adopted a simpler approximation

of (2.2) often referred to as quasi-hyperbolic discounting:

dt = βδt if t > 0,

where both β < 1 and δ < 1. With such discount factors, the objective at time t is to

maximize:

vt = ut + β
∞∑

τ=t+1

δτ−tuτ .

This formula was first presented by Phelps and Pollak (1968) who argued that it

may represent "imperfect altruism" between generations. Other names for the same dis-

count rate function are (β, δ)-discounting, quasi-geometric discounting, quasi-exponential

discounting, and sometimes misleadingly but simply hyperbolic discounting.

Governments and normative justification. Although individuals apparently apply dis-

count rates that decline in time, is it clear that governments ought to do the same?

Normatively, it seems hard to justify giving future utilities less weight than present utili-

ties. Utilitarianism states that the normative objective is to sum the utility of all agents

with equal weight. With this criterion, then individuals living at different times will still

be counted equally, implying a discount rate of zero. Ramsey strongly advocated the use

of zero discount rate from a normative point of view. The Stern review (2007) applied a
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discount rate of 0.001, i.e., 0.1%, reflecting the slim chance that the future may cease to

exist if a catastrophe occurs.

While there may be no normative justification for a positive discount rate, such an

"ethical" government will fail to be reelected at the next election stage, if the voters

do not share such a perfect altruistic preference. To be reelected, the government will

inevitably apply the same discount rates as the voters. Furthermore, the government is,

of course, consisting of individual policy-makers, sharing these preferences regarding the

future. For both reasons, the individual’s preference for a positive discount rate which

decline in time will and must be applied also by the government (although, the citizens

may prefer that the government apply a lower discount rate than the citizens themselves;

Caplin and Leahy 2004).

Rather than insisting that the government use normative criteria or apply a zero

discount rate, this paper takes as given that a democratic government will and must

apply the same discount rates as the citizens, and, when these rates decline in time, we

need to look at the consequences for investment policy.

The benefit of committing. There is some evidence that individuals fear they will retire

too early (Diamond and Koszegi 2003) and that hyperbolic discounting is a reason for

obesity (Scharff 2009). Some scholars have, based on such reasoning, suggested that there

is a role for governments in regulating individual behavior. For example, since hyperbolic

discounters save too little, the government can help the decision-makers to commit by

subsidizing saving.2 Or, since hyperbolic discounters find it hard to quit smoking, one may

tax tobacco more (Gruber and Koszegi 2001). There is also evidence in that individuals

try to commit their future self’s by signing up to saving plans which makes it costly to

quit (Thaler and Benartzi (2004)), or one may subsidize the future self by paying now the

future cost of good behavior, like attending the gym (DellaVigna and Malmendier 2006).

For climate change, see Karp (2005), or Gerlagh and Liski (2013) who derive optimal

carbon tariffs in a setting with quasi-hyperbolic discounting.

2Krusell et al. (2003, 2009, and 2010). See also Laibson and Harris (2001).
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3. Investments in Capital

3.1. A model

The principal, planner, or person P making investments at time t ≥ 0 is referred to as

Pt. Her momentary utility is ut and objective is to maximize vt =
∑∞

τ=t dt−τuτ , where

dt−τ ∈ (0, 1) measures the discount factor on utilities realized t− τ periods ahead. Thus,

utilities at time t relative to utilities at t−1 are then discounted by the factor δt ≡ dt/dt−1.

I will assume that δt is strictly increasing in t unless otherwise stated (for example, δt = δ

is constant when considering geometric discounting).

The following subsections describe the investments that can be taken, how these affect

payoffs, and characterize the optimal investment level. To provide an intuitive description

of P’s investment decision, and to characterize it in terms of policy, it is useful to compare

the planner’s choice to the "market equilibrium" benchmark. In reality, the government

may not make the investments directly. Instead the investments into capital or technology

stock are made by private firms or agents. Thus, as a benchmark, we may consider an

agent At making the investment decision at t.

The agent ("he") applies the same discount factors as the principal ("she") so there is

no disagreement over how to evaluate future gains and losses. Further, the investment cost

faced by the agent is identical to the investment cost faced by the principal. Finally, it is

assumed that the agent obtains perfect property rights over the returns to the investments,

so that At can sell or lease the returns at the later stages. Thus, in most traditional

settings, and in my own benchmark examples, At makes the correct decision from Pt’s

point of view and there is no need for the principal to regulate the agent.

Nevertheless, in the following section I do allow the principal to subsidize the agent

by paying a fraction s of his investment cost (or taxing such investments, if s < 0). The

principal considers subsidies simply as transfers within the society with no real cost, but

the subsidy does affect the agent’s decision. The agent invests up to the point where the

marginal investment cost, multiplied with (1− s), equals the marginal return, appropri-

ately discounted. Alternatively, if the principal could set a subsidy s (or tax −s) on the

agent’s revenues from the investment, then the agent would invest up to the point where
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the marginal investment cost would equal the discounted marginal return multiplied with

(1 + s). The two alternative investment-policies are obviously equivalent if

1− s =
1

1 + s
⇔ s = 1− 1

1 + s
.

In the analysis below it will be most convenient to represent the subsidy by s (which

is a tax if s < 0) even if the principal Pt actually implements s by subsidizing the cost of

investments at time t by s = 1− 1/ (1 + s).

3.2. A simple investment

Consider an action a ∈ < to be made at time ta. The level of a affects the utility at time

ta and also the utility ∆a periods later, i.e. at time ta + ∆a ≥ ta. In general, one needs

to trade off current utility with future utility when choosing a. Without much loss of

generality, let a higher level of action a be costly at time ta but beneficial at time ta + ∆a,

so that increasing a can indeed be considered as an investment. The investment can be

in health, education, infrastructure or pollution abatement. In order to introduce some

intuitive notation, define uta (a; k) ≡ −C (a; k) and uta+∆a (a; k) ≡ B (a; k) so that C (·)

is the investment cost and B (·) is the benefit or the returns of the investment. For now,

k is an exogenously or historically given capital stock.

The principal would like to maximize vta = −C (a; k) + d∆aB (a; k), giving:

Ca = d∆aBa (3.1)

To get interior solutions and satisfy second-order conditions, let C (·) be increasing and

convex in a while B (·) is increasing and concave in a: Ca > 0, Caa ≥ 0, Ba > 0, Baa ≤ 0.

If the agent makes the investment, he pays the cost (1− sa)C (a; k) at time ta where

sa is an investment subsidy (or tax if sa < 0) set by the principal. After investing, the

agent sells the returns and receives B (a; k)−B (0; k) at time ta + ∆a. Thus, the agent’s

problem is:

max
a
− (1− sa)C (a; k) + d∆a [B (a; k)−B (0; k)]

⇒ Ca
1 + sa

= d∆aBa,
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where 1 + sa ≡ 1/ (1− sa). The following benchmark-result follows straightforwardly.

Proposition 0. At time ta the principal invests according to (3.1) either directly or

indirectly by setting sa = 0.

Of course, the desired subsidy sa = 0 corresponds to, and can be implemented by, a

subsidy on the current investment cost equal to sa ≡ 1− 1/ (1 + sa) = 0.

3.3. Investments in capital

The payoffs above are depending not only on action a but also on the capital stock k ∈ <.

Let tk ≤ ta be the time at which the decision k is taken, so that ∆k ≡ ta − tk ≥ 0 is the

time it takes for the capital to mature or be built.

As with action a, the choice of k is considered to be an investment and it is thus

costly at time tk. Define utk (k) ≡ −D (k) so that D (·) measures the cost or disutility of

investing in capital k. Let Dk > 0 and Dkk ≥ 0. To capture the benefit of the investment,

let either duta/dk = −Ck ≥ 0 or duta+∆a/dk = Bk ≥ 0 or both.

In the market, the agent makes the investment at cost D (·) and he sells the return at

times ta and ta+∆a. If sk represents the subsidy on investments in k, it is straightforward

to see that the agent invests so that the following first-order condition is satisfied:

Dk

1 + sk
= −d∆k

Ck + d∆k+∆aBk. (3.2)

Just as before, the principal can induce the same decision by subsidizing the cost of

investing at time tk by sk ≡ 1− 1/ (1 + sk).

It is straightforward to show that the principal prefers sk = 0 if she agrees with how

a is chosen at time ta: to see this, we can simply apply the Envelope theorem when

maximizing vtk with respect to k to get Dk = −d∆k
Ck + d∆k+∆aBk.

In general, however, the principal may not agree with how a is chosen. A larger a is an

investment for the future and Ptk may disagree with Pta regarding how future benefits at

time ta+∆a compare to the cost at time ta. When Ptk prefers that Pta pays more attention

to future benefits, Ptk would like Pta to invest more. If k and a are complementary, it is

indeed possible to encourage a larger future investment a by increasing k above the level
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that would have been optimal otherwise. If k and a are strategic substitutes, the benefit

of a is reduced by k, and to encourage a the principal has to reduce (or tax) investments

in k. To see how k affects a we can simply differentiate (3.1) to get:

da

dk
=

d∆aBak − Cak
Caa − d∆aBaa

⇒ (3.3)

sign
(
da

dk

)
= sign (d∆aBak − Cak) .

To appreciate the problems of the principal, consider the following important applica-

tion of the model: Let the level of a measure pollution abatement while k represents one

of (at least) three different types of capital:

Green capital is assumed to be complementary to pollution abatement. Such tech-

nology can be cleaning technology or alternative energy sources: in either case, a larger

stock of green technology is a strategic complement to reducing pollution, and the mar-

ginal cost of abating. So, Ca (a; k) decreases in k: Cak < 0. The green capital does not

(by assumption) affect the cost of pollution directly, so Bak = Bk = 0. Substituted into

(3.3), we see that da/dk > 0.

Brown capital refers to drilling technologies or investments in industries that pollute.

Such capital may be beneficial in the sense that duta/dk = −Ck > 0, but a larger level of

k is also making it costly to cut back on pollution. Thus, Cak > 0, meaning that a and k

are strategic substitutes. The brown capital does not (by assumption) affect the cost of

pollution directly, so again Bk = 0. Consequently, da/dk < 0.

Adaptation capital refers to investments that enhance the possibility to deal with

pollution at time ta + ∆a. For example, one can invest in agricultural products that can

cope with pollution or climate change, or one can build infrastructure that is robust to

pollution, climate change, or sea-level rises. Such investments are not only increasing the

benefit at time ta+∆a but they also reduce the marginal cost of pollution: in other words,

a larger level of k reduces the value of a so that Bak < 0 < Bk. Such adaptation capital

does not (by assumption) affect the cost of abating at time ta, so Cak = 0. Substituted into

(3.3), da/dk < 0. (As a fourth special case, one could of course consider the possibility

Bak > 0 while Cak = 0).
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Proposition 1. At time tk the principal ensures that k satisfies (3.2) with:

sk =

(
d∆k+∆a

d∆a

− d∆k

)
d∆aBa

d∆k+∆aBk − d∆k
Ck
· da
dk
,

where the second-order is:

Ω ≡ −Dkk + d∆k+∆a

(
Bkk +Bka

da

dk

)
− d∆k

(
Ckk + Cka

da

dk

)
(3.4)

+ [d∆k+∆aBa − d∆k
Ca]

d2a

dk2

+

[
d∆k+∆a

(
Bak +Baa

da

dk

)
− d∆k

(
Cak + Caa

da

dk

)]
da

dk
≤ 0.

Proof. The problem of Ptk is to maximize vtk ,

−D (k)− d∆k
C (a; k) + d∆k+∆aB (a; k) ,

giving the f.o.c.

Dk = −d∆k

[
Ca
da

dk
+ Ck

]
+ d∆k+∆a

[
Ba

da

dk
+Bk

]
= −d∆k

Ck + d∆k+∆aBk + [d∆k+∆aBa − d∆k
Ca]

da

dk

= −d∆k
Ck + d∆k+∆aBk + [d∆k+∆a − d∆k

d∆a ]Ba
da

dk
,

when inserting (3.1). Since Atk invests according to (3.2), incentives are aligned if

sk =
[d∆k+∆a − d∆k

d∆a ]Ba

−d∆k
Ck + d∆k+∆aBk

da

dk
.

QED

I will now discuss and explain the proposition by making a number of corollaries.

Corollary 1. With exponential discounting, sk = 0.

In traditional settings where the decision-makers have time-consistent preferences,

there is no need for the principal today to distort the choices of her future self. So, since

an investor captures the full future return to his effort, his decision will be optimal and

there is no need to regulate him. This confirms the presumption at the beginning as well

as Proposition 0 where the principal would never like to regulate investments in a.
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Corollary 2. If either ∆k = 0 or ∆a = 0, then sk = 0.

If ∆k = 0, it takes no time to build the capital to be used at time ta. The principal

making decision k and a have the same preference and there is thus no need to distort the

decision on k. Alternatively, if ∆a = 0, the principal deciding on k is immediately getting

the benefit herself and there is no future utility which the two self’s evaluate differently.

From now I will assume ∆k∆a > 0 unless otherwise stated. Although Corollary 2 is

not a limit result, it does suggest that if the time to develop capital or the pollution lag

is quite short, then the optimal subsidy on capital is small. This may change when the

lags are long, as we will now discuss.

Corollary 3. With quasi-linear discounting,

sk = (1− β)
δ∆aBa

δ∆aBk − Ck
· da
dk
.

With time-inconsistent preferences, the principal is not satisfied with the future choice

of a. So, if k and a are complementary, for example, Ptk has the point of view that Pta

invests too little and is willing to pay too little for k. Investors are then not suffi ciently

motivated to invest, so Ptk prefers them to invest more. A larger k, after all, will induce

Pta to increase a. It is for this reason Ptk finds it necessary to regulate investors and

subsidize investments in k when a and k are strategic complements. If a and k are

strategic substitutes, however, the same logic implies that it is optimal to tax investments

in k.

Corollary 4. With strictly increasing discount factors,

sign (sk) = sign

(
da

dk

)
= sign (d∆aBak − Cak) .

This corollary can be exemplified by referring to the three types of capital discussed

above.

Corollary 5.

(i) It is optimal to subsidize investments in green capital.

(ii) It is optimal to tax investments in brown capital.
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(iii) It is optimal to tax investments in adaptation capital.

The third part of the corollary may seem provocative. Adaptation may certainly be a

good thing, in that Bk > 0, but note that the investor will himself capture this value so

this creates no reason to subsidize k. On the contrary, more investments in adaptation

technology will reduce the cost of polluting at time ta and the level of abatement will thus

be reduced as well. The principal at time tk, however, is instead preferring a larger a and

this can be achieved by reducing the level of abatement capital k.

4. Investments in Technology

The previous subsection made a "horizontal" distinction between different types of capital

at the same level in the production hierarchy: while some technologies were complementary

to the abatement decision, others were strategic substitutes.

One may also distinguish technologies "vertically" by their level in the production

hierarchy. For example, while the number of windmills will make it cheaper to reduce

pollution, the production cost of each windmill will depend on the level of technology,

knowledge, or basic research. The fact that distinguishing between the levels may be

important is evident when comparing the decision on sk to the downstream decision

sa = 0. This section is taking us another step upstream by analyzing investments in

technology.

Let now the cost of investing in k be given byD (k; r), where r is the level of technology

that exists at time tk. Introducing r into the formulae does not change anything in the

analysis above since r must be taken as exogenously given in the stages studied so far.

While the capital k can, as before, be of any type (complementary or a substitute to a),

I seek a clean comparison between these cases by keeping fixed one type of technology

investment: r and k are assumed to be complementary, in that more technology reduces

the cost of building capital: Dr < 0 and Dkr < 0. It is also assumed that, for any given

level of k and a, the technology level r does not influence directly the costs or benefits of

action a. Thus, C and B are not functions of r directly.
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Let the time at which r is chosen by tr ≤ tk. Thus, ∆r ≡ tk − tr ≥ 0 is the time

required for the technology to mature or be developed after the process has been initiated.

An agent investing in r will be able to capture the full value of reducing the cost D. If

utr (r) ≡ −E (r), so that an increasing and convex E (r) represents the cost of investing

in technology, then the agent invests up to the point where the marginal investment cost

equals the marginal benefit:
Er

1 + sr
= d∆r (−Dr) , (4.1)

where sr represents the subsidy on technology. Just as before, the principal can induce

the same decision by subsidizing the cost of investing in r by sr ≡ 1− 1/ (1 + sr).

It is, as before, straightforward to show that if the principal’s time preferences are

time consistent, such that she finds optimal her own later choices on k and a, then there

is again no need to regulate the current investor. By the Envelope theorem, the principal

sets Er = −d∆rDr or sr = 0.

With time-inconsistent preferences, however, the principal is not satisfied with the

future choices of k and a and, in order to influence these choices, it may be optimal to

distort today’s investments in r. To see how r influences k we can simply differentiate

the first-order condition for k to get:

dk

dr
=
−Dkr

(−Ω)
> 0,

where Ω < 0 is the expression for the second-order condition when vtk is maximized with

respect to k, see Equation (3.4).

Despite the apparent analogy to the situation where k could influence a, there might

be quite different forces at work when setting r and sr than when setting k and sk. This

is evident from the following result and the explanation that follows it.

Proposition 2. At time tr the principal ensures that r satisfies (4.1) with:

sr = skr + sar , where

skr =
Dk

−Dr

[
d∆r+∆k

d∆rd∆k

− 1

]
dk

dr
> 0 and

sar =
Dk

−Dr

[
d∆r+∆k+∆ad∆k

− d∆r+∆k
d∆k+∆a

d∆k
d∆r (d∆k+∆a − d∆k

d∆a)

](
Bk +Ba

da

dk

)
dk

dr
.
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Proof. The principal Ptr prefers to maximize vtr with respect to r, giving the f.o.c.:

Er = −d∆r

(
Dr +Dk

dk

dr

)
− d∆r+∆k

(
Ck
dk

dr
+ Ca

da

dk

dk

dr

)
+d∆r+∆k+∆a

(
Bk
dk

dr
+Ba

da

dk

dk

dr

)
.

When substituting in for the first-order conditions for a and k, one can compare the

expression to (4.1) and derive sr. QED

In the following I will explain and discuss Proposition 2 step-wise by making a number

of corollaries referring to special cases.

Corollary 6. With exponential discounting, sr = skr = sar = 0.

It is easy to check that with exponential discounting, the brackets in both skr and s
a
r

are zero. Intuitively, when the principal is time consistent, she is perfectly satisfied with

her own future choices of k and a. She has no desire to distort these choices and thus (by

the Envelope theorem) she prefers a level of technology which takes into account only the

saved cost when investing in capital. The perfect agent invests optimally and there is no

need to regulate him.

Corollary 7. (i) If ∆r = 0, then sr = skr = sar = 0. (ii) If ∆k = 0, then skr = 0 so

sr = sar . (iii) If ∆a = 0, then sar = 0 so sr = skr .

Part (i) is saying that if technology takes no time to invest, it needs no subsidy. The

reason is, of course, that when time preferences are not any different today as when the

decision on k is to be taken, there is no reason to distort the future decision on k. I will

return to parts (ii) and (iii) below. In the following I will assume that ∆r∆k∆a > 0 unless

stated otherwise.

With time-inconsistent preferences, Pta may disagree with the future choices of k and

a and thus r may be chosen, or distorted, in order to influence the future choices. With

quasi-hyperbolic discounting, the bracket in the expression for sar is zero so sr simplifies.

Corollary 8. With quasi-hyperbolic discounting, sar = 0 and

sr = skr =
Dk

−Dr

(
1

β
− 1

)
dk

dr
> 0.
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It is optimal to always subsidize investments in technology since this will induce more

investments in k at time tk. The optimal investment is larger if the current principal

disagrees strongly with the future principal (β is small) and if increasing r is an effi cient

way of increasing k (in that dk/dr is large). Note the similarity between skr and sk for the

special case of "green" or complementary capital: it is exactly the same forces at work.

Technology r is by assumption complementary to k and thus r requires a subsidy just as

k did when k were complementary to a. In special symmetric settings, skr = sk.3

When deriving skr and sr for the case with quasi-hyperbolic discounting, it is irrelevant

whether the capital k is itself green or brown: investments in r are optimal to subsidize

regardless.

The explanation for the irrelevance of the capital type is the following. Although Ptr

disagrees with Ptk regarding the appropriate level of investments k at time tk, these two

self’s agree perfectly when trading offutilities between two future dates. With quasi-linear

discounting, the discount factor of utility at time t + τ relative to time t is δτ for every

decision-maker Pt′ whenever t′ < t. Thus, given that Ptk distorts k in order to influence

the future choice of a, Pta cannot improve on this decision.

When discount factor δt is strictly increasing in t, however, the conclusions are quite

different. Then, sar is strictly positive if and only if dB (a (k) , k) /dk > 0. That is, when a

larger k at time ta increases utility also at time ta+∆a.While k may affect B directly when

Bk 6= 0, k also affects B through the choice of a. When k represents green technology,

more k leads to more abatement and thus a larger benefit B. The subsidy sr is thus the

sum of two positive terms.

Corollary 9. For green technology, skr > 0 and sar > 0 so the optimal subsidy is positive.

For brown technology, however, we know that a decreases when the level of brown

capital increases since this lead to more pollution. Thus, the second term of sr is negative.

3To see this, substitute in for the first-order condition for a, set Bk = 0 and rewrite sk to

sk =
[d∆k+∆a

/d∆a
d∆k
− 1]Ca

−Ck
da

dk
.

If C (x; y) = D (x; y), da/dk = dk/dr and ∆r = ∆k = ∆a, then the expression for skr coincides with the

expression for sk. The next section is making the analogy clearer.
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It is certainly possible that sr < 0 if the second term dominates the first, positive term.

This will be the case when the degree of substitutability between k and a is large (in that

Cak and thus da/dk is large). In this case, the results from Corollary 8 would be reversed.

Corollary 10. For brown technology, skr > 0 but sar < 0 so the optimal subsidy sr can be

positive or negative: if ∆k = 0, sr < 0 but if ∆a = 0, sr > 0.

For both green and brown technology, the second term of sr, sar , has the same sign as

sk since Bk = 0. For adaptation technology, however, we know that Bk > 0 at the same

time as da/dk < 0. It is thus unclear whether the second term is positive or negative

when it comes to adaptation technology. As shown, the answer hinges on the sign of

dB (a (k) , k) /dk.4 This is quite intuitive.

Corollary 11. For adaptation technology, skr > 0 but sar can be either positive or negative,

and so can the optimal subsidy. If ∆a = 0, sr > 0.

4.1. A Hierarchy of Technologies

The analysis above suggests that for setting investment policy it is crucial to determine the

level of the technology in the production hierarchy. While the final investment step before

consumption (a) did not need any regulation, investments in complementary capital or

technology are subsidized. Furthermore, the investment in technology will be subsidized

at a rate which consisted of two positive terms rather than just one as for the investment in

capital (where the first term corresponds to the optimal subsidy on investments in capital).

This does not prove, but it does suggest, that the optimal subsidy at investments further

upstream is higher.

4Note that B (a (k) ; k) increases in k if the direct effect Bk > 0 is large enough:

dB (a (k) , k)

dk
= Bk

(
1− Ba

Bk

d∆a (−Bak)

Caa − d∆a
Baa

)
,

which is positive indeed if, for example, Ba/Bk decreases in a: i.e., if the demand (willingness to pay) for

abatement (relative to the willingness to pay for adaptation capital) decreases in the level of abatement.

To see this statement, note that the derivative of Ba/Bk with respect to a is (BaaBk −BkBak) / (Bk)
2,

and when this is negative then (−Baa)Bk > Bk (−Bak). Substituted into the above formula we get that

the parenthesis is positive if Caa ≥ 0.
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To illustrate this argument, consider the following simplification of the above model.

At time T−∆, say, the principal (or the agent) can make an investment a1 which increases

utility at time T with b > 0 units. The cost of investing in a1 is quadratic and given by

c1 (a1 − a2)2 /2, where c1 > 0 is a constant and a2 is the complementary capital when

making the investment a1. The level of a2 is determined ∆ periods earlier and, then, the

investment cost of a2 is similarly given by c2 (a2 − a3)2 /2, where c2 > 0 is a constant and

a3 is now the complementary technology when making the investment in capital a2.

This model is a special case of the "green capital" model above (where I instead used

the labels a for a1, k for a2, r for a3, and now I am further assuming ∆r = ∆k = ∆a = ∆).

Given this simplification, however, it is now straightforward to both derive explicit

intuitive formulae and generalize by allowing for many stages or levels of upstream tech-

nology: simply let the investment cost at stage τ , as counted from downstream, be given

by −cτ (aτ − aτ−1)2 /2, where cτ > 0 is a constant and the current principal must take

aτ−1 as exogenously given. Each stage of investment takes ∆ periods, so aτ is the invest-

ment level at time T −τ∆. Investments in more basic research is characterized by a larger

τ , but such investments will contribute to increased consumption only τ∆ periods later.

Just as before, each investment choice might be taken by the market or an investing

agent. The principal can then subsidize the different (vertically organized) types of invest-

ments. Let sτ measure principal PT−τ∆’s subsidy on the cost of investing in technology

τ stages upstream. Equivalently, sτ ≡ 1/ (1− sτ ) − 1 could measure the corresponding

subsidy on revenues. The question, then, is how sτ , or equivalently sτ , depends on the

stage τ in the production technology.

Proposition 3. The optimal subsidy on investments at stage τ is:

sτ =
dτ∆

d∆d(τ−1)∆

− 1.

Proof. The proof permits the lag ∆τ to vary in τ . For technology 1 the principal at

invests such that

a1 − a2 = d∆1

b

c1

.

Note that the investment cost becomes (d∆1b)
2 /2c1, independent of a2. This makes the

principal at stage 1 willing to pay bd∆1 for another unit of a2. Thus, when investing in a2
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the principal realizes that a higher level of a2 is (only) affecting utility ∆1 + ∆2 periods

later. She therefore invests up to the point where

aτ − aτ+1 = (d∆1+...+∆τ )
b

cτ
,

where τ = 2. The same condition holds for any τ > 2.

If investments is made by an agent, he invests in a1 such that

a1 − a2

1 + s1

= d∆1

b

c1

,

which coincides with the principal’s preferred investment when s1 = 0. This agent is thus

willing to pay d∆1 for another unit of a2. This, in turn, implies that the agent investing

in a2 invests such that

aτ − aτ+1 =
b

cτ
(1 + s2) d∆τd∆1+...+∆τ−1 ,

where τ = 2. The same condition holds for any τ > 2. Thus, the principal sets sτ =

d∆1+...+∆τ/d∆τd∆1+...+∆τ−1 − 1 to induce the optimal choice. Parts (i)-(iii) follow directly.

For hyperbolic discounting, we can write

sτ =
(1 + α∆τ ) (1 + α (∆1 + ...+ ∆τ−1))

1 + α (∆1 + ...+ ∆τ )
− 1

= α∆τ

[
1− 1 + α∆τ

1 + α (∆1 + ...+ ∆τ )

]
,

giving (iv) as a special case. To see (v), set ∆τ = ∆ and write

sτ =

τ∆∏
i=1

δi(
∆∏
i=1

δi

)∆(τ−1)∏
i=1

δi

 − 1 =

∆τ∏
i=∆(τ−1)+1

δi(
∆∏
i=1

δi

) − 1,

where the numerator is a product of ∆ factors, δ∆(τ−1)+1, δ∆(τ−1)+2, ... δ∆(τ−1)+∆, etc,

each of which is increasing in τ . QED
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The following corollaries follow straightforwardly:

Corollary 12.

(i) The final investment-stage does not require a subsidy: s1 = 0.

(ii) With geometric discounting, sτ = 0 for all τ ≥ 1.

(iii) With quasi-hyperbolic discounting, sτ = 1/β − 1 > 0 is constant for all τ > 1.

(iv) With hyperbolic discounting,

sτ = α∆

[
1− 1 + α∆

1 + α∆τ

]
so this subsidy is strictly increasing in τ .

(v) With strictly decreasing discount rates, sτ is always strictly increasing in τ .

This confirms the previous findings and the intuition discussed already.

4.2. Conclusions

There is large amount of evidence indicating that decision-makers have time-inconsistent

preferences and behave as if they are more patient regarding long-run decisions than

for short-term decisions. With this motivation there is also a literature studying how

decision-makers can benefit by committing themselves to certain actions in the future.

This paper reports on the preliminary findings of an ongoing project in this line of

research. I consider a principal (decision-maker or government) that would like to stick

to a certain plan but her future self is going to be impatient and deviate from the plan.

To influence the future principal, the current principal has an incentive to subsidize or

invest more in capital or technologies which are complementary to future savings, but

to tax or invest less in technologies that are strategic substitutes to future savings. In a

relatively general model, I derive optimal subsidies/taxes as a function of both the type

of technology and the technology’s level in the production hierarchy. A finding is that it

is optimal to subsidize more upstream technologies at a higher rate.

Although parts of the model are very general, the implications for environmental pol-

icy are noteworthy. Even when abstracting from externalities or public good aspects, I

find that it is optimal to subsidize investments in "green capital" (like alternative energy
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sources) while it is optimal to tax investments in "brown capital" (like drilling technol-

ogy). Investing in adaptation or adapting to climate change is a strategic substitute to

pollution abatement and, therefore, the current decision-makers benefit from taxing such

investments.

Needless to say, the above analysis is only a start and the preliminary findings are

suggestive. While the model of investments in capital permitted a relatively general

production- or utility function, one may learn more about the exact subsidy- or tax-rate

by specifying the functional forms. More importantly, the analysis of multiple investment

levels (where some types of technologies could be used as inputs when making downstream

investments) was based on a particular example and it is important to analyze the extent

to which the results generalize.
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