
Dagsvik, J.K.

Working Paper

On the Structure of Behavioral Multistate Duration
Models

Memorandum, No. 11/1998

Provided in Cooperation with:
Department of Economics, University of Oslo

Suggested Citation: Dagsvik, J.K. (1998) : On the Structure of Behavioral Multistate Duration Models,
Memorandum, No. 11/1998, University of Oslo, Department of Economics, Oslo

This Version is available at:
https://hdl.handle.net/10419/90799

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/90799
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


1

On the Structure of Behavioral Multistate Duration Models

by

John K. Dagsvik

Statistics Norway

and

Department of Economics,

University of Oslo

Abstract
This paper proposes a particular behavioral assumption to characterize the stochastic

structure of intertemporal discrete choice models in the absence of state dependence. This
assumption extends Luce’s axiom; "Independence from Irrelevant Alternatives", to the
intertemporal context. Under certain regularity conditions the implication of this assumption is
that the individual choice process is a Markov chain with transition probabilities that have a
particularly simple structure. It is demonstrated that this structure is consistent with an
intertemporal and life cycle consistent random utility model where the utilities are independent
extremal processes in time. Finally, the framework is extended to allow for state dependence
and certain types of time-varying choice sets.
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1. Introduction
This paper discusses choice of functional form in structural models for duration analysis. In the

context of econometric modelling of duration data it is, for example, often convenient to apply

an econometric framework based on the proportional hazard rate formulation. Although the

proportional hazard rate formulation is mathematically convenient, it is nevertheless quite

insatisfactory because it is ad hoc from a theoretical point of view. A theoretical justification

supporting functional form and distributional assumptions is important for the issue of

identifying structural effects and for making inferences about the nature and significance of

such effects. To highlight the importance of this issue, consider the well-known problem of

separating structural state dependence effects from effects due to serially correlated tastes.

These effects may arise when unobservables are correlated over time; in which case current and

past choices will be correlated. This identification problem is crucial in a variety of contexts

and has been discussed most notably by Heckman (see Heckman, 1978, 1981a, 1981b, 1991,

and the references therein). For example, in analyses of unemployment it is often noted that

individuals who have experienced unemployment in the past are more likely to experience it in

the future than are individuals who have not been unemployed. There may be two explanations

for this empirical regularity. One explanation is that current and past choices are correlated due

to serially correlated unobservables that affect preferences (pure taste persistence) or

opportunities. In this case, past choices are proxies for unobserved variables that affect

preference evaluations or unobservable opportunity sets, and consequently the (aggregate)

transition rates will depend on past choices. The other explanation is that, as a result of choice

experience, preferences or opportunity sets have changed (structural state dependence). It is

well-known that this fundamental identification problem cannot be solved without imposing

theoretical restrictions on the model.

We start by proposing a theoretical characterization of intertemporal choice models

under pure taste persistence. Since models with pure taste persistence represent a reference

case it is important to characterize this case theoretically as a point of departure for specifying

models that allow for state dependence effects. Our characterization of choice behavior under

pure taste persistent preferences can be viewed as an intertemporal version of Luce's axiom

"Independence from Irrelevant Alternatives", (IIA). The IIA assumption states that the agent is

(on average) only concerned with the alternatives presently in his choice set, i.e., alternatives

outside his choice set are irrelevant.1 The intertemporal version of IIA can briefly be described

as follows: Consider the particular case in which the past choice sets are all the same but where

the choice set in the current period is expanded to include new alternatives that were never
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feasible before. Under pure taste persistence the probability of choosing an alternative among

the new alternatives that enter the choice set is independent from any choice in the past. Note

that this does not immediately imply that the model has the Markov property, since we also

must consider situations when the current choices also were feasible in the past. Under suitable

regularity conditions we demonstrate that the intertemporal version of IIA implies a random

utility representation where the utilities associated with each alternative are independent

extremal processes. By drawing on results obtained by Dagsvik (1983 and 1988) it follows that

when the choice sets are constant over time, the extremal utility processes yield a choice model

which is a Markov chain (in continuous time) where the transition probabilities have a

particular structure as a function of the choice set and the parameters of the utility processes.

In Section 5 we demonstrate that the structure of this model is incompatible with the

proportional hazard rate formulation. This result suggests that the proportional hazard rate

formulation may be inappropriate for analyzing duration data which are generated from

intertemporal choice behavior.

In many applications, it is of fundamental interest to allow choice sets to vary over

time. For example, in labor market analyses it is important to be able to account for time

varying sets of job opportunities and the fact that people are laid off. In Section 6 the model is

extended to allow for particular cases of time varying choice sets. It turns out that the

Markovian structure still holds as long as choice sets are not shrinking, but breaks down when

alternatives are removed from the choice set. Unfortunately, only special cases are considered

here; it is still an unsolved problem to derive the mathematical structure of the model in the

general case.

In Section 7 we discuss how the framework can be extended to allow for structural

state dependence effects. It turns out that the intertemporal version of IIA allows one to

separate state dependence effects from spurious effects due to unobservables that affect

preferences.2

An interesting question is whether the modelling framework developed here allows for

an interpretation that is consistent with dynamic programming. It is well known that in the

standard life cycle setting, the notion of two stage budgeting applies. This is also the case when

some of the commodities are discrete, such as in labor supply models. (See for example,

Blundell and Walker, 1986.) The notion of two stage budgeting means that the total

expenditure in the current period is chosen in the first stage, while the within-period allocation

of consumption is chosen in the second stage conditional on the current prices and total

(chosen) expenditure. Thus the second stage decision is, theoretically, reduced to a static one

(conditional on total expenditure and past choices). Unfortunately, the corresponding inference
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problem may in general be more complex. If unobservables affect utilities, then the period-

specific total expenditure may be endogeneous. However, we are able to demonstrate that in the

present setting where the utilities are extremal processes the chosen expenditure path can, in the

second stage allocation, be treated as if it were exogenous. Thus, the present framework can be

applied to specify a model for the second stage discrete choices, conditional on the chosen

expenditure path. However, to estimate all the parameters of the model it is usually necessary

also to solve a dynamic programming problem to determine the first stage allocation of

expenditures.

The recent advances in dynamic programming, (see for example Rust (1994)), allows

the researcher, in principle, to formulate and estimate quite general discrete choice models in a

dynamic programming setting. Although the dynamic programming framework, as developed

by Rust and others, is a very powerful methodology, it seems so far unable to handle models

with preferences that are correlated over time, due to computational difficulties. However, a

more fundamental problem from a theoretical point of view is the fact that the Bellman

principle of optimality implies no testable restrictions, cf. Rust (1994), p.p. 3125-3130.

Specifically, without additional theoretical restrictions the dynamic programming setting cannot

resolve the type of identification problem discussed above. Thus, from a structural point of

view predictions from dynamic programming models may be totally misleading, due for

example to unidentified heterogeneity or state dependence effects.

Reduced form or myopic models choice

The present framework offers a structural alternative to the reduced form estimation implied by

the proportional hazard rate framework. It offers new possibilities in this context that enables

the analyst to attack previously unresolved identification problems.

The framework discussed in this paper also applies to analyze panel data on discrete

choices. Maddala (1987), Fischer and Nijkamp (1987), Bolduc (1992), and Reader (1993)

provide examples of such analyses. From a behavioral point of view some of these applications

can be interpreted as analyses of myopic choice settings which are structural at each given

point in time. As discussed above, they may, however, represent inappropriate formulations of

myopic choice behavior over time if the purpose is to assess the significance of structural state

dependence.

A particular myopic choice setting which is becoming increasingly popular is repeated

or panel stated preference surveys. In stated preference surveys respondents are asked to

express preferences for hypothetical products characterized by specific attributes. Such surveys

enable the analyst to assess the potential demand for new products that are not available in the
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market. When each individual in a selected sample is presented with a series of stated

preference experiments the problem of memory effect and taste persistence arises. Specifically,

even if product attributes presented to the individuals vary across experiments, an individual's

utility of a particular product may be correlated over time. The framework discussed in this

paper explicitely models such taste persistence and has been applied by Dagsvik et al. (1996)

to analyze the potential demand for alternative fuel vehicles, based on data from a stated

preference survey.

Labor supply in a life cycle context

Consider a worker that faces the choice between the states "employed" and "not employed" in a

life cycle context under uncertainty, cf. Heckman (1981b), Blundell and Walker (1986), and

MaCurdy (1985). Provided the agent is boundedly rational in the sense that he does not take

into account that current behavior may affect future distributions of income possibilities, we

can formulate this as a two stage budgeting problem, as did Blundel and Walker (1986).

Conditional on the savings decisions determined in the first stage we demonstrate in Section 4

that we can analyze the transitions into and out of employment as if the path of total

expenditures were exogenous. The problem Heckman (1981b) was particularly concerned with

was whether or not women's tastes for work are affected by work experience. The model

extension presented in Section 7 allows one to identify structural state dependence effects of

this type provided one is willing to accept the intertemporal version of IIA proposed here.

The paper is organized as follows: In Section 2 the choice setting is formally described.

In Section 3 the main assumptions and results are discussed. In Section 4 we demonstrate that

our framework allows for an interpretation that is consistent with optimizing behavior in a life

cycle context where the (chosen) expenditure path can be treated as if it were exogenous when

analyzing the within period allocations. In Section 5 we briefly discuss the implied structure of

the choice process and interpretations in the context of econometric specification of hazard

functions and transition intensities. In Section 6, we analyze the case with time varying choice

sets, and in Section 7 we consider the extension of the framework to allow for state

dependence.

2. The choice setting
The individual decision-maker (agent) is supposed to have preferences over a finite set of

alternatives. Future preferences are assumed random (to the agent himself) in the sense that

they vary from one moment in time to the next in a way that cannot fully be predicted by the
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agent. Alternatively, one may interpret the utilities as deterministic to the agent but random to

the observer due to variables that are perfectly foreseeable to the agent but unobserved by the

analyst.

Let S be the index set of m alternatives, a1, a2,..., am, and let ℑ  be the index set that

corresponds to the collection of all non-empty subsets from S. To each alternative, aj, there is

associated a stochastic process, { }U t tj ( ), ,≥ 0  where Uj(t) is the agent's (conditional indirect)

utility of aj given the information and choice history at time t. Moreover, U t v t tj j j( ) ( ) ( ),= + ε

where vj(t) is a deterministic component that may depend on alternative-specific attributes, and

εj(t) is a stochastic term. The agent chooses aj at age t if Uj(t) is the highest utility at t. Here age

(time) is continuous. Let ( ){ }J t B t, ( )  denote the choice process, i.e.,

( )J t B t j if U t U tj
k j k B t

k, ( ) ( ) max ( )
, ( )

= >
≠ ∈

where { }B t t B t( ), , ( )> ∈ℑ0  denotes the choice set process. We define the choice set process to

be increasing at time t if B t B t( ) \ ( )−  is non-empty, and decreasing if B t B t( ) \ ( )−  is non-

empty.3 If B t B s( ) ( )=  for all s and t the choice set process is constant. Let

( ){ }h t J s B s s t( ) , ( ) ,= <  denote the choice history and define ( )U( ) ( ), ( ), ... , ( ) ,t U t U t U tm= 1 2

( )εε( ) ( ), ( ), ... , ( )t t t tm= ε ε ε1 2  and ( )v j mt v t v t v t( ) ( ), ( ), ... , ( ) .= 1 2  We assume that {U(t)} is

separable and continuous in probability.4 Moreover, we assume that the cumulative distribution

function (c.d.f.) of U(t) is absolutely continuous for any t R∈ + . This implies that there are no

ties, that is

( )P U t U ti j( ) ( ) .= = 0

3. Characterization of pure-taste-persistent preferences and choice 
probabilities

When the finite dimensional distributions of the utility process { }U( ),t t > 0  have been

specified it is in principle possible to derive joint choice probabilities for a sequence of choices.

However, since the class of intertemporal random utility models is quite large it is desirable to

restrict this class on the basis of behavioral arguments. A related problem is that it seems to be

rather difficult to find stochastic processes that are convenient candidates for utility processes

in the sense that they imply tractable expressions for the choice probabilities in the

intertemporal context.
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In the present section we propose a behavioral assumption that enable us to

characterize preferences and the choice probabilities in the "reference case", where there are no

effects from past experiences on future preferences nor on future choice opportunities. In this

reference case we say that the agents have "pure-taste-persistent preferences" (PTPP). Once

we have obtained a theoretical characterization of the model in the case with pure taste

persistence, then we may use this reference model as a point of departure for extending the

model to allow for state dependence. The extension of the model to allow for state dependence

will, however, be deferred to Section 7.

One way of introducing structural restrictions into the model is to apply probabilistic

versions of the assumption of rational behavior. A famous example of this type of assumption

is Luce Choice Axiom; "Independence from irrelevant alternatives", (IIA) (cf. Luce, 1959). A

first attempt to extend IIA to the intertemporal setting was made by Dagsvik (1983).
5
 Below

we shall discuss the implications from another version of IIA, which is stated below.6

Assumption A1

Let B(s) B ,1=  for all s t< ,  B1 ∈ ℑ  and let B2 ∈ ℑ  be such that B \ B2 1 ≠ ∅ .  Then

for j B \ B ,2 1∈

( )( ) ( )P J(t, B ) j J s, B s t P J(t, B ) j .2 1 2= < = =,∀ (3.1)

It is important to stress that (3.1) does not mean that ( ){ }J t B t t, ( ) , > 0  is a Markov chain, nor

is it a Bernoulli process.7 This is so because (3.1) is assumed to hold only when j B∉ 1  and is

silent about the relationship between the choices at different points in time when j B∈ 1 .

Assumption A1 states that when j B B∈ 2 1\  the event, "aj is the preferred alternative in B2", is

stochastically independent of the preference orderings in B(s), for s t< .  It is therefore natural

to interpret Assumption A1 as an extension of the IIA property. The intuition is that even if

previous choices provide information about the preferences over the alternatives in the "old"

choice set, these choices provide no information about the utilities of the "new" alternatives,

since they were not feasible in the past.

Remark 1
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Assumption A1 can in fact be interpreted as our formalized notion of PTPP.

Assumption A2

At each point in time the distribution of the random term, εε(t) does not depend on

νν(t).

Assumption A3

For any t 0, j S> ∈ ,  and any real number x there exists a value of vj(t) such that

v t xj ( ) .=

Assumption A4

Apart from a location shift the finite dimensional probability laws of the indirect

utility process, { }max U (t), t 0k k ≥ , are the same as the finite dimensional laws of

{ }U (t), t 01 ≥ .

Assumption A2 states that at each moment in time the random term of the utility

function is independent of the structural term. Assumption A3 states that the structural term of

the utility function can vary over the whole real line when attributes vary freely.

Assumption A4 means that the utility processes are max-stable processes (see de Haan,

1984). The finite dimensional distributions of a max-stable process belong to the class of

multivariate extreme value distributions.

Dagsvik (1995) has demonstrated that there is no loss of generality in assuming A4

since, in the absence of structural state dependence effects, any intertemporal random utility

model can, under suitable regularity conditions, be approximated arbitrarily closely by choice

probabilities generated from max-stable utilities.

Proposition 1

Assume that A2 and A3 hold. Then for any B∈ℑ ,  Assumption A1 implies that

( )P J t B j( , ) = =
∑

e

e

v (t)

v (t)

k B

j

k

∈

(3.2)

where v (t) EU (t)j j=α  and α>0 is an arbitrary constant.
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Proof:

Recall that { }U( ),t t > 0  is continuous in probability. Recall also that since the utilities

are independent of the choice set process, we are allowed to specify any sequence of choice sets

which is useful for deriving implications about the preferences. To this end, let B t B( ) =  and

B t B j( ) \ { }.− =  Then A1 implies that

(3.3)

{ } { }
P U t U t U t U t P U t U t P U t U tj

k B
k i

k B j
k j

k B
k i

k B j
k( ) max ( ), ( ) max ( ) ( ) max ( ) ( ) max ( ) .

\ \
= − = −





= =



 =



∈ ∈ ∈ ∈

By Theorem 50, p. 354, in Luce and Suppes (1965), (3.3) implies that (3.2) is a Luce model.

Finally, Strauss (1979), p.p. 42-43, has demonstrated that the parameters { }v tj ( )  of the choice

model are related to the utility function by v t EU tj j( ) ( ),= α  apart from an additive constant.

Q.E.D.

Remark 2

Without loss of generality we shall in the following put α=1. Note also that A4 is not

needed to prove Theorem 1.

Let us now proceed by investigating the intertemporal structure of the random utilities

that follows from A1.8

Above we postulated the existence of random utility processes such that A1 to A3

hold. It remains, however, to demonstrate that such processes really exist. In the one-period

case Yellott (1977) and Strauss (1979) have, under different sets of conditions, demonstrated

the equivalence between IIA and extreme value distributed utilities in a random utility model

with independent utilities. We state a version of this result in the next theorem.

Proposition 2

Assume that A1 to A4 hold. Then the utility processes, { }U (t), t 0j ≥ ,  j=1,2,...,m, are

independent at each point in time and have type III extreme value distributed marginals.9

Proof:
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It follows from A4 that the joint distribution of ( )U t U t U tm1 2( ), ( ), ... , ( )  belongs to

the class of c.d.f. considered in Theorem 6 of Strauss (1979) with ϕ( ) .x e x= −  The result now

follows from Strauss, Theorem 6.10

Q.E.D.

Assumption A5

The utility processes { }U (t), t 0 , j 1,2,..., m,j ≥ =  are stochastically independent.

Remark 3

Recall that two stochastic processes { }U t ti ( ), ≥ 0  and { }U t tj ( ), ≥ 0  may be

stochastically dependent even if Ui(t) and Uj(t) are stochastically independent at each point in

time. For example, Ui(t) and Uj(s) may be interdependent for s t≠ , even if Ui(t) and Uj(t) are

independent. However, it seems plausible that in many applications the correlation between

Ui(t) and Uj(s) is less than the correlation between Ui(t) and Uj(t), which implies that the utility

processes are independent when the utilities at each point in time are independent.

The next result is the main result of this paper.

Theorem 1

Assume A1 to A5. Then the utilities are extremal processes with type III extreme

value marginal distribution.

The proof of Theorem 1 is given in the appendix.

The class of extremal processes was introduced in statistics by Dwass (1964, 1966,

1974) and Tiago de Oliveira (1968, 1973). An extension to inhomogeneous extremal processes

has been made by Weissman (1975). For our purpose it will be convenient to work with a

modified inhomogeneous extremal process. The modified extremal process differs from the

(standard) inhomogeneous extremal process by a deterministic time trend. More precisely, a

modified inhomogeneous extremal utility function will be defined as processes

{ }U t t j mj ( ), , , , . . . , ,> =0 1 2  given by

( )( )U t U s t s W s tj j j( ) max ( ) , ( , ) ,= − − θ (3.4)
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s t< ,  where U j ( ) ,0 = − ∞  and where Wj(s,t) is independent of Uj(s) and has cumulative

distribution function

( ) ( )( )P W s t y e e ej
v t v s t s yj j( , ) exp ( ) ( ) ( )≤ = − − − − − −θ γ (3.5)

for y R∈ ,  where γ = 0 5772. ...  (Euler's constant), θ > 0  is a constant and { }v tj ( )  are

deterministic functions of t such that v t tj ( ) + θ  is nondecreasing for all j. Moreover, W(s,t)

and W(s',t') are independent when ( ) ( )s t s t, , .∩ ′ ′ = ∅  It follows readily that vj(t) has the

interpretation

v t E U tj j( ) ( ).= (3.6)

Tiago de Oliveira (1973) has demonstrated that when vj(t) is time constant then Uj(t) becomes

(strictly) stationary. As demonstrated by Resnick and Roy (1990) we can express a particularly

version of the autocorrelation function of the utility process (3.4) as

( ) ( )( ) ( )corr U s U t v s v t t sj j j jexp ( ) , exp ( ) exp ( ) ( ) ( ) .− − = − − − θ (3.7)

Eq. (3.7) shows that when vj(t) varies slowly over time then the autocorrelation function is

close to ( )exp ( ) .− −t s θ  In other words, the parameter θ characterizes the strength of time

persistence in the preferences. Note that from a theoretical point of view it does not matter

whether we use a modified extremal process or a (standard) extremal process since the time

trend (θt) cancels in utility comparisons. However, the modified extremal process formulation

allows a convenient interpretation due to (3.6) and (3.7).

Recall that v t tj ( ) + θ  must be nondecreasing for all j. This is inconvenient in practical

empirical analysis. We shall therefore introduce a reparametrization given by

w t v t
v t

j j
j

( ) ( ) log
( )

= +
+ ′








θ

θ
(3.8)

where we now have assumed that vj(t) is differentiable. From (3.8) it follows that

( ) ( ) ( )exp ( ) exp ( ) exp ( ) ( ) .E U t v t w t dj j

t

j= = − −∫θ τ τ θ τ
0

(3.9)

This particular reparametrization implies that v t tj ( ) + θ  is increasing for any { }w t tj ( ), > 0 .

However, the main motivation behind (3.8) is that the reparametrization above is interesting for
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theoretical reasons. To realize this note first that when ∆t is small we get from (3.5) and (3.9)

that

( )( ) ( )P W t t t y t e o( tj
w t yj− ≤ = − +− −∆ ∆, exp )

( )θ∆ γ
(3.10)

which shows that wj(t) has, apart form an additive term, the interpretation as the mean of

"instantaneous" utility increments, ( ){ }W t t tj − ∆ , .  When wj(t) is independent of time (3.9)

reduces to

( ) ( )exp ( ) .E U t e ej
w tj= − −1 θ (3.11)

Thus for large t, a constant mean utility level corresponds to constant { }w tj ( ) . Also from (3.9)

we realize that θ is analogous to a rate of preference parameter because by (3.9), the mean

utility at time t can be expressed as an integral of past weighted "instantaneous" mean utilities.

Specifically, the contribution from the period s-specific systematic utility component to the

current mean utility is evaluated by multiplying ( )exp ( )w s dsj  by the "depreciation" factor

( )( )exp .− −t s θ 11 This depreciation factor accounts for the loss of memory and/or decrease in

taste persistence as the time lag increases.

To clarify the interpretation further, consider the autocorrelation function (3.7) with

constant { }w tj ( ) .  Then (3.7) reduces to

( ) ( )( ) ( )corr EU s EU t
e

e
ej j

s

t
t sexp ( ) , exp ( ) .− − =

−
−

⋅
−

−
− −1

1

θ

θ
θ (3.12)

Thus when s and t are large the mean utility in this case equals wj, (apart from an additive

constant) and the autocorrelation function becomes exponential.

Remark 4

It is important to emphasize that in the discussion of the extremal process above we

have made no assumptions that restricts the class of inhomogeneous extremal processes with

extreme value marginals.

In the following we shall use the concept of modified extremal process, to mean a

stochastic process which satisfies (3.4) and (3.5) with U (0)j = − ∞ , and with vj(t)

differentiable in t for all j.
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Theorem 2

Assume that the random utilities are independent modified extremal processes.

Assume that the choice set process is constant ocer time. Then the indirect utility,

max ( ),k B kU t∈  is independent of { }J B t( , ),τ τ ≤  for any B∈ℑ.  Moreover, the choice

process { }J t B t( , ), > 0  is a Markov chain.

A proof of this result has been given by Resnick and Roy (1990). The fact that

{ }J t B t( , ), > 0  is a Markov chain was originally proved by Dagsvik (1983).

Dagsvik (1988) and Resnick and Roy (1990) extend the result of Theorem 4 to the

case where { }U( ),t t ≥ 0  is a multivariate extremal process. Dagsvik considers the case where

U(t) — at each t —has a type III multivariate extreme value distribution that is absolutely

continuous. The resulting (marginal) choice probabilities at a given point in time in this case

become generalized extreme value probabilities. Resnick and Roy (1990) allow U(t) to have a

multivariate c.d.f. that is not necessarily absolutely continuous.

Recall that by (3.4) the utility processes are Markov processes. However, utility

processes with the Markov property do not usually imply that the corresponding choice process

{J(t,B)} is Markovian. For example, Gaussian utility processes with the Markovian property

do not imply that the choice process is Markovian. In fact, there exist no Gaussian utility

processes in continuous time that can generate Markovian choice models.

4. Life cycle consistent choice behavior
The purpose of this section is to demonstrate that by a suitable extension of the model it

follows that the results obtained above are consistent with choice behavior in a life cycle

context. We consider the following setting: The agent's problem is to choose the level of

consumption of an infinitely divisible composite good and a discrete alternative (state) from a

set of mutually exclusive alternatives in each period (time is discrete). Let αjt be the period

specific cost of choosing the discrete alternative aj, and ct the consumption in period t with

price index pt. There are no transaction costs and the expectation of future uncertain events are

not affected by current and past behavior. Let yt denote total expenditure in period t and let rt

be the interest rate in period t. Furthermore, let ωt be the income in period t and Yt the wealth at

the beginning of period t. The horizon is assumed finite. To the agent, future preferences are

assumed known with perfect certainty, so the random components of the utilities are entirely

due to the econometrician's lack of information about variables that affect the decision-making

process. Future income, prices, interest rates and costs are uncertain. For simplicity we assume
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that incomes, interests, expenditures and wage rates are discrete variables (for example, with

NOK as unit).

Let ( )J t y t
* ,  denote the index of the chosen alternative in period t given total

expenditure yt in period t. The budget constraints in period t are given by

( )y Y
Y

r
T Yt t t

t

t
t t= + −

+
−+

+

ω ω1

11
, (4.1)

and

( ){ }y c pt it J t y i t
i

t
t

= +
=∑ α 1 * ,

(4.2)

where T(·) is the tax function.12  Let Uj(t,c) denote the instantaneous utility of ( )a cj , , as of

period t. We assume that ( ) ( ) ( ) ( )( )U( ) , , , , . . . , , , , , . ..t U t U t U t U tm≡ 1 2 11 1 1 2  is a multivariate

modified extremal process with joint distribution in period t equal to

( ) ( )P t v t c u c
c j

m

j jU u( ) exp exp ( , ) ( )≤ = − −






































≥ =

∑ ∑
1 1

1 σ σ

(4.3)

where v t c E U t cj j( , ) ( , ) . ,= − 0 5772  and 0 1< ≤σ  is a parameter that has the interpretation

( )corr U t c U t cj j( , ), ( , )′ = −1 2σ (4.4)

for c c≠ ′ . Moreover, (4.3) implies that for j k≠ ,  and all c and c',

( )corr U t c U t cj k( , ), ( , ) .′ = 0 (4.5)

(For a general description of multivariate extremal processes, see Dagsvik, 1988.) Thus, the

utility structure (4.3) is compatible with a particular nested generalized extreme value structure

where the utilities are independent, given a particular consumption level, but where the utilities

of ( )a cj ,  and ( )a cj , ′  are correlated. Also it follows that for a given c, { }U t c tj ( , ), > 0 ,

j m= 1 2, , ..., ,  are independent modified extremal processes (cf. McFadden, 1981, p.p. 228-

230, for a more detailed discussion of this type of GEV models). Let ( )V t Yj t,  denote the

value function as of period t given that ( )J t y jt
* , =  and given Yt, i.e., ( )V t Yj t,  is the highest

expected utility attainable, conditional on current wealth Yt and current choice of the discrete
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alternative. Under the assumption of additive intertemporal separability, the Bellman equation

that corresponds to dynamic choice behavior under uncertainty is given by

( ) ( ) ( ) ( )( )V t Y U t y E V t Y J t y jj t j t jt t k k t t, , max , ,*= − + + =+α ρ 1 1 (4.6)

where ρ <1,  is the time-preference discounting factor and Et denotes the subjective expectation

operator given the agent's information at time t.

As is well-known, the decision problem above can be viewed as a two stage process in

which the agent determines the expenditure path in the first stage and the choice of state in each

period is determined conditional on the expenditure path. In particular, the second stage

allocation is a pure static choice problem that is solved by maximizing ( )U t yj t jt, − α  when

total expenditure, yt, has been determined. As is also well-known, the application of two stage

budgeting to undertake life cycle consistent empirical analyses may be difficult in the presence

of unobservables because the optimal expenditure path may in general be correlated with the

random terms of ( ){ }U t y j m tj t jt, , , , . . . , , , , . .. .− = =α 1 2 1 2  However, due to the properties of

the extremal processes we shall see in a moment that this will not be the case here.

Let

( )~
( , ) max ,U t y U t yk k kt≡ − α

and

V t Y V t Yk k( , ) max ( , ).≡

Since we assume that preferences are exogenous it follows from (4.6) that yt is determined by

( ) ( )( )( )( )y U t y E V t r Y T Y yt
y

t t t t t t= + + + + − −+arg max
~

( , ) , ,ρ ω ω1 1 1 (4.7)

and

( ) ( ) ( )V t Y U t y E V t Yt t t t,
~

, , .= + + +ρ 1 1 (4.8)

From (4.3) and the assumption that U(t) is a multivariate modified extremal process it follows

that

( )~
( )

~
( , ),

~
( , ), ...U t U t U t= 1 2
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is a modified multivariate extremal process. Recall that the extremal process has the markov

property. The term

( ) ( )( )( )E V t r Y T Y yt t t t t t+ + + − −+1 1 1, ,ω ω

will therefore depend on 
~

( )U t and random terms that are associated with future preferences and

therefore are independent of U(t). Consequently, we can write

( )y f t tt t= ηη ξξ( ), ( )

for some function ft(⋅), where ηη(t) denote the random elements of 
~

( )U t  and ξξ(t) is a vector of

random variables that are independent of η(t) and also independent of U(t). From Lemma 2,

which is proved in the appendix, it follows that ηη(t) and J*(t,y) are stochastically independent

for each given y. But then it follows that

( )( ) ( )( ) ( )P J t y j y y P J t y j f t t y P J t y jt t t
* * *, ( , ) ( ), ( ) ( , ) .= = = = = = =η ξ

We can thus analyze the choice process ( ){ }J t y tt
* , , > 0 , conditional on { }y tt , > 0 , as if

{ }y tt , > 0  were exogenous. From the results in Section 7 it follows that the results in this

section continue to hold in the presence of state dependence, as long as the anticipation of

future uncertain events is not affected by current and past choices.

5. Some implications for econometric specifications of transition
intensities under pure taste persistence

The results obtained above are useful for justifying the choice of functional form of the

likelihood function of observations on { }J B t( , ),τ τ ≤  for a particular agent under PTPP. The

first step in specifying an empirical model is to specify the structural parts of the model.

Recall that according to (3.10) it is possible to express the structural term of the

current utility as a "depreciated" sum of the structural parts of the past increments. This allows

us to interpret wj(t), or equivalently ( )exp ( )w tj , as the representative instantaneous utility of

alternative aj at time t. In empirical applications one would typically specify wj(t) as

( )w t w tj j( ) ( )= X (5.1)
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where Xj(t) is a vector of observable attributes specific to alternative aj and w(·) is a suitably

chosen functional form that is known apart from an unknown vector of parameters. If we apply

the results in Dagsvik (1988) we get the next result.

Theorem 3

Assume that the utilities are independent modified extremal processes and the choice

sets process is constant over time. Then for B ∈ ℑ

( )P J t B j

e d

e d

w t
t

w t
t

k B

j

k

( , ) ,

( ) ( )

( ) ( )

= =

− −

− −

∈

∫

∫∑

τ τ θ

τ τ θ

τ

τ

0

0

(5.2)

and

( )P J t B j J s, B i

e d

e d

w t

s

t

w t
t

k B

j

k

( , ) ( ) ,

( ) ( )

( ) ( )

= = =

− −

− −

∈

∫

∫∑

τ τ θ

τ τ θ

τ

τ
0

(5.3)

for i j≠  and ( )P J(t, B) i J(s, B) i= =  is determined by the adding-up condition. Moreover

( ) ( )Corr U s U t

e d

e d

e
k B

k
k B

k

w s
s

k B

w t
t

k B

t s

k

k

exp max ( ) , exp max ( ) .

( ) ( )

( ) ( )

( )− −



 =

∈ ∈

− −

∈

− −

∈

− −
∫∑

∫∑

τ τ θ

τ τ θ

θ

τ

τ

0

0

(5.4)

Proof:

The results (5.2) and (5.3) follow from Dagsvik (1988) by inserting (3.9). Eq. (5.4)

follows from Resnick and Roy (1990).13

Q.E.D.

Before we proceed we shall recall the formal definition of transition intensities. We

give the definition in the general case where the choice process may depend on past choices.

This is of relevance for the discussion in Sections 6 and 7. Provided the choice sets do not

change over time the transition intensities of { }J t B t( , ), > 0  are given by
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( ) ( )
q t h t

P J t B j J s B i h s

t sij
s t

, ( ) lim
( , ) ( , ) , ( )

≡
= =

−→
(5.5)

for i j≠ ,  and

( )
( )( )

q t h t
P J t B i J s B i h s

t sii
s t

, ( ) lim
( , ) ( , ) , ( )

.≡
= = −

−→

1
(5.6)

The transition probabilities given that a transition occurs are defined by

( )
( )

( )
( )
( )

π ij
s t

k B

ij

ii

t h t
P J t B j J s B i h s

P J t B k J s B i h s

q t h t

q t h t
, ( ) lim

( , ) ( , ) , ( )

( , ) ( , ) , ( )

, ( )

, ( )
.≡

= =

= =
=

→

∈
∑

(5.7)

The interpretation of (5.7) is as the transition probability of going to alternative aj at time t

given that alternative ai is left and given the choice history prior to t. The next result is

immediate.

Corollary 1

Under the assumptions of Theorem 5 it follows that

( )q t h t q t
e

e d
ij ij

w t

w t
t

k B

j

k

, ( ) ( ) ,
( )

( ) ( )

= =
− −

∈
∫∑ τ τ θ τ
0

(5.8)

( )
{ }

π πij ij

w t

k B i

w t
t h t t

e

e

j

k
, ( ) ( )

( )

\

( )
= =

∈
∑

(5.9)

for i j≠ ,  and

( )
{ }

q t h t q t q tii ii
k B i

ik, ( ) ( ) ( ).
\

= = −
∈
∑ (5.10)

Let us next consider the particular case where { }w t j mj ( ) , , ,. . . , ,= 1 2  are constant over

time i.e., w t wj j( ) .=  Then (5.8) reduces to

( )q t
e

e e

P

e
ij

w

t w

k B

j

t

j

k
( ) ,=

−
≡

−−

∈

−∑
θ θ

θ θ1 1
(5.11)
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for i j≠  where Pj is the probability of being in state j. Recall that by (3.7) and (3.12) the

degree of taste persistence in the indirect utility can be measured by θ. Specifically, when θ is

large there is little taste persistence (provided t is large) while when θ is close to zero tastes are

strongly correlated over time. Moreover, (5.11) shows that the transition intensities are

stationary when t is large. However, when t is small then the transition intensities given by

(5.11) depend on time. This is due to the fact that in the beginning of a choice process the

length of the choice history (age) will influence the strength of the taste persistence effect.

Observe that the structure of (5.11) can be viewed as a special case of the model in

Olsen et al. (1986). However, as the utilities in their model are not serially correlated, θ in their

model seems at first glance to yield a different interpretation. In their framework the utilities

are viewed as independent draws that occur according to a Poisson process with intensity θ.

But this means in fact that also in their setting θ allows the interpretation as a measure of taste

persistence because when θ is small the random draws occur rarely and therefore preferences

are rather stable over time. In contrast, when θ is large preferences are likely to change

frequently. There is, however, an important and testable difference between the model in Olsen

et al. and the present framework. While θ in their model may depend on the state occupied, the

assumptions above imply that θ cannot depend on the state occupied in our model.

Let us finally compare the structure of the hazard rate with the proportional hazard

rate framework which has been used extensively in empirical analyses, cf. Heckman and Singer

(1985). Unfortunately, in this literature the motivation for the proportional hazard rate

framework is totally ad hoc. To illustrate this, consider the following labor market example: A

female worker has the choice between the two states "employed" (state 1) and "not employed"

(state 2). For simplicity we assume a stationary setting, i.e., w wj j( )τ =  where w1 is a function

of the wage rate the agent faces in the labor market, while w2 depends on non-labor income,

age and the number of small children in the household. When t is large it follows from (5.10)

and (5.11) that the hazard rates have the structure

− = −
+







q

e

e e
ii

w

w w

i

θ 1
1 2

, (5.12)

for i = 1 2, .  In contrast, within the proportional hazard rate framework one would typically

specify qii as

( )− = +q Xii i iexp β β0 (5.13)
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where X is a vector consisting of explanatory variables and ( )β β0i i,  is a vector of state-

specific parameters. Thus the functional form in (5.12) that follows from utility maximizing

behavior is different from the specification in (5.13). At best (5.13) can be interpreted as a

reduced form model. In (5.12) the key parameters w1, w2 and θ  have a clear interpretation, and

θ and w w1 2−  can also be separately identified. This point is even more dramatic in the

multistate case: In this case some authors (see for example Andersen et al. (1991)) have

specified transition intensities { }~ ( )q tij  on the form

( )( )~ ( ) ( ) exp , ;q t t f X X bij ij i j= λ (5.14)

where f(·) is some specified function, Xi is a time invariant vector of covariates that

characterize alternative ai, and b is a vector of parameters. Let us now compare the structure

(5.14) with (5.8). We realize that (5.8) is essentially different from (5.14) in that (5.8) depends

on all the covariates while (5.14) only depends on the covariates related to alternatives ai and

aj. Also these covariates enter the model in a particular way. Finally, (5.8) depends on the

choice set in a particular way. Therefore, the standard proportional hazard specification (5.14),

which is often applied in duration analysis, is inconsistent with the present random utility

formulation when the number of states is larger than two.

6. Allowing for time varying choice sets
In many applications it is of interest to allow for time varying choice sets. For example, in the

analysis of labor market dynamics, workers' choice sets may change over time and result in

periods of unemployment. We shall now discuss the extension of the model to allow for time

varying choice sets.

Unfortunately, we are presently unable to provide an exhaustive discussion of the

model in this case due to the complexity of the problem. For example, when the choice sets

decrease over time the corresponding choice model will in general not have the Markov

property. Below we shall therefore only discuss a few particular cases.

Let us start by considering the choice model at two points in time. The choice model in

this case was obtained by Dagsvik (1983). For the sake of completeness and with the particular

representation of the modified extremal process introduced in Section 3 we give the result

below.
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Theorem 4

Assume that the utilities are modified extremal processes. Then for s t< , we have

( ) ( )( )

( )( ) ( )

( )( ) ( )( )

P J s, B s i J t B t j

P J s, B s i e d B s e d

e d e d

P J t B t j B s e d

e

t
w t

j

s
w t

k B t

t
w t

k B s B t

s
w t

i

s
w t

k B t

t
w

j j

k k

i

k

( ) , , ( )

( ) ( )

, ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

( )\ ( )

( ) ( )

( ) ( )

( )

( )

= =

=

= −

+

+

= −

∫ ∫

∑ ∫ ∑ ∫

∫

∑ ∫

− − − −

∈

− −

∈

− −

− −

∈

0 0

0 0

0

0

1

τ τ θ τ τ θ

τ τ θ τ τ θ

τ τ θ

τ

τ δ τ

τ τ

δ τ

− −

∈

− −+ ∑ ∫( )

( )\ ( )

( ) ( )t

k B s B t

s
w td e dkτ θ τ τ θτ τ

0

(6.1)

where δ i B if i B( ) ,= ∈1  and zero otherwise, and

( )( )P J t, B(t) j

e d

e d

.0

t
w ( ) (t )

k B(t) 0

t
w ( ) (t )

j

k

= =
∫

∑ ∫

− −

∈

− −

τ τ θ

τ τ θ

τ

τ

(6.2)

Proof:

The results follow from (3.9) and Dagsvik (1983), pp. 32-33.

Q.E.D.

Theorem 5

Assume that the utilities are modified extremal processes. Assume moreover that the

choice set process is nondecreasing. Then the choice process { }J t B t t( , ( )), > 0  is a Markov

chain. The transition probabilities are given by

( ) ( )( ) ( )( ) ( ) ( )( ) ( )P J t B t j J s, B s i P J t B t j s, t B s B t P J s, B s i B ti, ( ) ( ) , ( ) , ( ), ( ) ( ) ( )= = = = − =ζ δ (6.3)

for i j, i B(t), j B(t),≠ ∈ ∈  where

( )ζ

τ

τ

τ τ θ

τ τ θ

θs, t B s B t

e d

e d

ek B s

s
w t

k B t

t
w t

t s

k

k

, ( ), ( ) ,( )

( ) ( )

( )

( ) ( )

( )= ⋅∈

− −

∈

− −

− −
∑ ∫

∑ ∫
0

0

(6.4)
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and ( )δ i B t if i B t( ) ( ),= ∈1  and zero otherwise, and the state probabilities are given by

(6.2).

Proof:

Resnick and Roy (1990), have proved that the choice process is Markovian in this

case. The structure of (6.3) follows from (6.1).

Q.E.D.

Remark 5

Similarly to (5.4) it can be demonstrated that ( )ζ s t B s B t, , ( ), ( )  can be interpreted as a

measure of autocorrelation.

7. Extending the model to allow for state dependence
So far we have only discussed the functional form of the choice probabilities of

( ){ }J t B t, ( ) under PTPP. The question now arises how the particular functional form that

follows from PTPP should be modified in the presence of state dependence. Notice first that

when the utility processes are altered by the choice history a simultaneous equation bias

problem arises. This is so because the structural terms of the utility processes become

dependent on past choices, and consequently they will depend on past realizations of the utility

processes.

For simplicity we shall consider the discrete time case. Accordingly, we will assume

that the utility processes are independent modified experience-dependent extremal processes

defined by

( )( )U t U t W t h tj j j( ) max ( ) , , ( )= − −1 θ (7.1)

where ( )W t h tj , ( )  is a random variable with distribution

( )( ) ( )( )( )P W t h t w t g t h t wj j, ( ) ( ) exp exp , ( )≤ − = − −U 1 (7.2)

and where ( )g t h tj , ( )  is a parametric function of the attributes of alternative j and past choice

experience. Define ( )v t h tj , ( )  recursively by

( )( ) ( ) ( )( ) ( )( )exp , ( ) exp , ( ) exp , ( ) .v t h t t v t h t t g t h tj j j+ = − − + − +θ θ1 1 1 (7.3)
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Note that when gj does not depend on h(t) then ( )v t h tj , ( )  reduces to v t EU tj j( ) ( ) ,=  and (7.1)

reduces to (3.4).

The following result extends Theorem 5 to the case with state dependence.

Theorem 6

Assume that the choice set process is non-decreasing and

{ }U t t j m,j ( ), , , ,... ,≥ =0 1 2  are independent and experience-dependent utility processes

defined by (7.1) to (7.3). Then the (one step) transition probabilities, conditional on the

choice history, are given by

( ) ( )( )( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( ) ( )

P J t, B(t) j J t 1, B t 1 i, h(t) R t h t 1 exp v t 1 h t 1 v t h t

R t h t t 1 t B(t 1), B(t), h t R t 1 h t 1 B(t)

j j j

j j i

= − − = = − − − − −

≡ − − − − −

, ( ) , ( ) , ( )

, ( ) , , ( ) , ( )

θ

ζ δ

(7.4)

for i j≠ ,  j B t i B t∈ ∈ −( ), ( ),1  and

( ) ( )( )( )
( ) ( ) ( )( ) ( )

P J t, B(t) i J t 1, B t 1 i, h(t)

R t, h(t) t 1, t, B(t 1), B(t),h(t) 1 R t 1,h(t 1) B(t)i i i

= − − =

= + − − − − −ζ δ
(7.5)

where

( )
( )

( )R t h t
e

e
j

v t h t

k B t

v t h t

j

k
, ( ) ,

, ( )

( )

, ( )
=

∈
∑

(7.6)

( )

( )

( )ζ

θ

t 1, t, B(t 1),B(t),h(t)

e

e

k B(t 1)

v t 1,h(t 1)

k B(t)

v t,h(t)

k

k
− − = ∈ −

− − −

∈

∑

∑
, (7.7)

and ( )v t h tj , ( )  is defined by (7.3)

A proof of Theorem 6 is given in the appendix.

Corollary 2
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Under the assumptions of Theorem 6 the c.d.f. of the indirect utility, max ( ),( )k B t kU t∈

depends on ( ){ }J B t tτ τ, ( ) , ≤  solely through

( )( )
k B t

kv t h t
∈
∑

( )

exp , ( ) .

Proof:

The result of Corollary 2 follows directly from Theorem 2, (7.1) and (7.2).

Q.E.D.

Corollary 2 implies that the life cycle consistent property discussed in Section 4 also

holds in the case with utilities that are experience-dependent extremal processes, provided the

agent does not take into account that current behavior may alter future preferences and future

choice constraints.

It is important to notice that in contrast to (6.2), ( )R t h tj , ( )  can of course not be

interpreted as the marginal choice probability at time t since it depends on the choice history. It

can, however, be interpreted as the conditional choice probability at time t for an agent

equipped with preferences that have been altered by experience.

We may, analogous to Section 5 model state dependence effects in the reparameterized

version in which ( ){ }v t h tj , ( )  is substituted by ( ){ }w t h tj , ( )  defined by

( ) ( ) ( )e e e
w t h t v t h t v t t h tj j j, ( ) , ( ) , , ( )= − − − −1 1 θ

(7.8)

which implies that

( ) ( )e e
v t h t

t
w h tj j, ( ) , ( ) ( )

.=
=

+ −∑
τ

τ τ τ θ

1

(7.9)

For notational simplicity, let ( )Q t t h tij − 1, , ( )  denote the one step transition probability of

going from i at time t-1 to j at time t, given the history h(t). From (7.9), (7.4) and (7.6) it

follows that ( )Q t t h tij − 1, , ( )  can be expressed as

( )
( )

( )
Q t t h t

e

e
ij

w t h t

k B t

t
w h t

j

k

− =

∈ =

− −∑ ∑
1

1

, , ( )
, ( )

( )

, ( ) ( )

τ

τ τ τ θ

(7.10)
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for i j≠ .  The transition probability given a transition has a structure that is completely

analogous to (5.9), i.e.,

( )
( )

{ }

( )π ij

w t h t

k B t i

w t h t
t t h t

e

e

j

k
− =

∈
∑

1, , ( ) .
, ( )

( ) \

, ( )
(7.11)

We realize now that both ( ){ }w t h tj , ( )  as well as the taste persistent parameter θ are

separately identified. From (7.10) we get that

( )
( )

( ) ( )log
, , ( )

, , ( )
, ( ) , ( ) .

Q t t h t

Q t t h t
w t h t w t h tij

j

−

−








 = −

1

121
1 (7.12)

Eq. (7.12) implies that ( ) ( )w t h t w t h tj , ( ) , ( )− 1  is non-parametrically identified. For example,

if ( )w t h tj , ( )  has the structure

( ) ( ) ( )( )w t h t f X t f X t h tj
r

s

r r j r r j, ( ) ( ) ( ), ( )= +
=

∑
1

1 1 2 2β β (7.13)

where { }fkr  are known functions and { }β kr  are unknown parameters, k r s= =1 2 1 2, , , , .. . , ,

then { }β kr  are identified under rather general conditions on { }fkr ( ) .⋅

Finally, when ( )w t h tj , ( )  has been detemined, θ is identified because (7.10) implies

that

( )
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ij k B t

w t h t
w t h t

ij

j

k
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, ( )
, ( )

, , ( ) , , ( )−
− = ⋅

− − −∈

−
− −

∑1 2 1 1

1 1
θ (7.14)

for i j≠ .

Example (Heckman, 1981b)

Consider the labor supply example analyzed by Heckman (1981b). Let U2(t) be the

utility of working and U1(t) the utility of not working. If we assume that the transition

probabilities given by (7.10) are specified as

( )w t h t w t X t1 1 1 1, ( ) ( ) ( )= = α (7.15)

and
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( ) ( )w t h t X t D t2 2 2 1, ( ) ( ) ,= + −α δ (7.16)

where X t1 ( )  is a vector that may consist of age, length of schooling and number of small

children, X2(t) may be some function of the marginal wage rate (or instruments for the

marginal wage rate), D(τ) is equal to one if the agent has worked in period τ and zero

otherwise, α1, α2 and δ are parameters to be estimated. In the formulation above δ = 0  implies

PTPP, otherwise there is state dependence in that the agent's utility for work is affected by

work experience.

Clearly, this model is identified and the specification (7.15) and (7.16) can be exploited

to form the likelihood for a sample of individual work histories to estimate α1, α2, the taste

persistence parameter θ and the state dependence parameter δ.14

8. Conclusions
In this paper we have considered the problem of obtaining a theoretical foundation for the

choice of functional form and stochastic structure in intertemporal discrete choice models.

It is demonstrated that a particular extension of Luce IIA axiom implies a random

utility model where the utilities are extremal processes. When the choice set process is non-

decreasing this model has the Markov property with a particular structure of the transition

probabilities. It is also demonstrated that this model is, under specific assumptions, consistent

with optimizing behavior in a life cycle context where the (chosen) expenditure path can be

treated as if it were an exogenous process in the probabilities that correspond to the within-

period discrete choices.

Finally, we discuss how the choice model can be extended to allow for increasing and

decreasing choice sets and structural state dependence. In the case with time varying choice

sets the choice model does not in general have the Markov property. At present we are only

able to derive the choice probabilities in a few particular cases. A general treatment of the case

with time varying choice sets is left for future research.

The framework developed in this paper is analytically tractable and it therefore appears

convenient for empirical applications.


