~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Blundell, Richard; Bond, Steve; Windmeijer, Frank

Working Paper
Estimation in dynamic panel data models: improving
on the performance of the standard GMM estimator

IFS Working Papers, No. W00/12

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Blundell, Richard; Bond, Steve; Windmeijer, Frank (2000) : Estimation in dynamic
panel data models: improving on the performance of the standard GMM estimator, IFS Working
Papers, No. W00/12, Institute for Fiscal Studies (IFS), London,
https://doi.org/10.1920/wp.ifs.2000.0012

This Version is available at:
https://hdl.handle.net/10419/90837

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.ifs.2000.0012%0A
https://hdl.handle.net/10419/90837
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ESTIMATION IN DYNAMIC PANEL DATA MODELS:
|MPROVING ON THE PERFORMANCE OF THE STANDARD
GMM ESTIMATORS

Richard Blundell
Sephen Bond
Frank Windmelijer

THE INSTITUTE FOR FISCAL STUDIES
WP 00/12




Estimation in Dynamic Panel Data Models:

Improving on the Performance of the Standard
GMM Estimator

Richard Blundell
Institute for Fiscal Studies and University College London

Stephen Bond
Institute for Fiscal Studies and Nuffield College, Oxford

Frank Windmeijer
Institute for Fiscal Studies



Summary

This chapter reviews developments to improve on the poor performance of the
standard GMM estimator for highly autoregressive panel series. It considers the
use of the “system” GMM estimator that relies on relatively mild restrictions
on the initial condition process. This system GMM estimator encompasses the
GMM estimator based on the non-linear moment conditions available in the dy-
namic error components model and has substantial asymptotic efficiency gains.
Simulations, that include weakly exogenous covariates, find large finite sample
biases and very low precision for the standard first differenced estimator. The use
of the system GMM estimator not only greatly improves the precision but also
greatly reduces the finite sample bias. An application to panel production func-
tion data for the US is provided and confirms these theoretical and experimental

findings.



1. Introduction

Much of the recent literature on dynamic panel data estimation has focussed
on providing optimal linear Generalised Methods of Moments (GMM) estimators
under relatively weak auxiliary assumptions about the exogeneity of the covariate
processes and the properties of the heterogeneity and error term processes. A stan-
dard approach is to first-difference the equation to remove permanent unobserved
heterogeneity, and to use lagged levels of the series as instruments for the prede-
termined and endogenous variables in first-differences (see Anderson and Hsiao
(1981), Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991)).
However, in dynamic panel data models where the series are highly autoregres-
sive and the number of time series observations is moderately small, this standard
GMM estimator has been found to have large finite sample bias and poor precision
in simulation studies (see the experimental evidence and theoretical discussions in
Ahn and Schmidt (1995) and Alonso-Borrego and Arellano (1999), for example).

The poor performance of the standard GMM panel data estimator is also
reflected in empirical experience with estimation on relatively short panels with
highly persistent data. To quote from the extensive review of production function
estimation by Griliches and Mairesse (1998) - one of the original applications for
panel data estimation - “In empirical practice, the application of panel methods
to micro-data produced rather unsatisfactory results: low and often insignificant
capital coefficients and unreasonably low estimates of returns to scale.” One
simple explanation of these findings in the production function context is that
lagged levels of the series provide weak instruments for first-differenced variables
in this case (see Blundell and Bond (1999)).

One response to these findings has been to consider the use of further mo-

ment conditions that have improved properties for the estimates of the parame-



ters of interest. For example, Ahn and Schmidt (1995) consider the non-linear
moment conditions implied by the standard error components formulation and
show that asymptotic variance ratios can be considerably improved. Blundell and
Bond (1998) consider alternative estimators that require further restrictions on
the initial conditions process, designed to improve the properties of the standard
first-differenced instrumental variables estimator.

This also provides the motivation for the discussion in this chapter. The idea is
to consider the performance of a “system” GMM estimator that relies on relatively
mild restrictions on the initial condition process to improve the performance of
the GMM estimator in the dynamic panel data context. The material presented
draws extensively from the existing literature. For example, Arellano and Bover
(1995) and Blundell and Bond (1998) show that mean stationarity in an AR(1)
panel data model is sufficient to justify the use of lagged differences of the depen-
dent variable as instruments for equations in levels, in addition to lagged levels
as instruments for equations in first-differences. This result naturally extends
to models with weakly exogenous covariates. The Monte Carlo simulations and
asymptotic variance calculations reported in this paper show that this extended
GMM estimator can offer considerable efficiency gains in the situations where the
standard first-differenced GMM estimator performs poorly. Given this restriction
on the initial conditions, the system GMM estimator is also shown to encompass
the GMM estimator based on the non-linear moment conditions available in the
dynamic error components model (see Ahn and Schmidt (1995)). The system
GMM estimator has substantial asymptotic efficiency gains relative to this non-
linear GMM estimator, and these are reflected in their finite sample properties.

The chapter is organised in the following way. The next section reviews the
standard error components structure for a linear dynamic panel data model and

lays out the underlying assumptions. Recalling that Within Groups, GLS and



OLS on the levels and first-differenced models all suffer from bias even when the
cross-section dimension is large, this section also briefly considers the biases that
occur for standard panel data estimators in dynamic models. Section 3 then
presents the linear GMM estimator for this model that uses lagged information
to instrument current differences in a first-differenced specification. The following
section then outlines the problem of weak instruments in this case. Following
the discussion in Ahn and Schmidt (1995), Section 5 considers the use of further
non-linear moment conditions that are implied by the model outlined in section
2. Section 6 derives a linear moment restriction for the levels model using initial
condition restrictions and this is then incorporated into the full system GMM es-
timator. Asymptotic variance comparisons among these various GMM estimators
are given in section 8. The detailed discussion in these earlier sections uses an
AR(1) model and the extension to a multivariate setting is presented in section
9. Finally, before moving to the Monte Carlo results and empirical application,
overidentification tests are reviewed.

The Monte Carlo results presented in section 11 are the first in the literature to
consider the properties of these GMM estimators in dynamic models with weakly
exogenous regressors. As this is perhaps the most common case in empirical ap-
plications, these results have important bearing on applied work. The analysis
finds both a large bias and very low precision for the standard first-differenced
estimator when the individual series are highly autoregressive. The use of the
system GMM estimator not only greatly improves the precision but also greatly
reduces the finite sample bias. Exploiting the non-linear moment conditions also
provides significant gains compared to the standard first-differenced GMM esti-
mator, but these gains are much less dramatic than those provided by the system
GMM estimator when the initial conditions restriction is valid.

The empirical application returns to the Griliches and Mairesse discussion.



The application uses production function data for the US and confirms the Griliches
and Mairesse findings for the capital and labor coefficients in a Cobb-Douglas
model. Using the standard first-differenced GMM estimator, the estimated co-
efficient on capital is very low and all coefficient estimates have poor precision.
Constant returns to scale is easily rejected. Moreover, an examination of the in-
dividual series suggests that they are highly autoregressive thus hinting at a weak
instruments problem for standard GMM on this data. These production function
results are improved by using the system estimator. The capital coefficient is now
more precise and takes a reasonable value and constant returns to scale is not
rejected. These Monte Carlo and empirical results indicate that a careful exami-
nation of the original series and use of the system GMM estimator can overcome
many of the disappointing features of the standard GMM estimator in the context

of highly persistent series.

2. Dynamic Models and the Biases from Standard Panel
Data Estimators

To analyse the properties of estimators of the parameters in linear dynamic

panel data models we consider an autoregressive panel data model of the form

Yie = Qi1+ B'Tis + wi (2.1)

Ui = 1+ Vi (2'2)
fort =1,...,N and t = 2,...,T, where 7; + v; is the usual ‘error components’
decomposition of the error term; N is large, T is fixed and |a| < 1.! This model
specification is sufficient to cover most of the standard cases encountered in linear
dynamic panel applications. Allowing the inclusion of x;_; provides the autore-
gressive panel data model

Yit = Qir—1 + B1Za + BoTi—1 + i + vit
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which has the corresponding ‘common factor’ restricted (8, = —a/;) form
Yit = Bz + fi + Cits

with (; = a1 + vy and 7, = (1 — ) fi.

In our Monte Carlo study and application to panel data production function
equations presented in Sections 11 and 12 we allow for the inclusion of x;; regres-
sors, but for the evaluation of the various estimators we use an AR(1) model with

unobserved individual-specific effects

Yie = QYit—1+ Us (2.3)

Uy = N+ Vit

fori =1,...,N and t = 2,...,T.2 At the outset we will assume that 7; and v;; have

the familiar error components structure in which
E(’fh) =0 > E(Uit) = O, E(’Uzﬂ]z) =0 fori= ]_, cery N and t = 2, ,T (24)

and

E(vivis) =0fori=1,...,N and V t # s. (2.5)

In addition there is the standard assumption concerning the initial conditions

yi1(see Ahn and Schmidt (1995), for example)
E(ypvyg) =0fori=1,...,Nand t=2,..,T. (2.6)

These ‘standard assumptions’ (2.4), (2.5) and (2.6) imply moment restrictions
that are sufficient to (identify and) estimate « for T > 3.3

Further restrictions on the initial conditions define a mean stationary process
as

Yi1 = L + & for i = ]_, ceey N (27)
1l—«a



and
E(eq)=FE(men)=0 fori=1,.., N, (2.8)
and a covariance stationary process by further specifying
E (Uft) = o2 fori=1,..,Nandt=2..T
E (5?1) = 3 jﬁoﬂ fori=1,...,N.

For completeness and to conclude this brief outline of the dynamic error com-

ponents model, we consider the biases from the standard panel data estimators in
this model. We consider here the biases found under covariance stationarity (for
more detail see Baltagi (1995) and Hsiao (1986)).

The asymptotic bias of the simple OLS estimator for o in model (2.3), is given

by

o?/c? 1

#, with k= —<&
o2fos+k 1+a

2

where o, = E (n?), and therefore the OLS estimator is biased upwards, with

phm (aOLS — Oé) = (1 — Oé)

a < plim (Qprs) < 1.

The asymptotic bias of the Within Groups estimator for a has been docu-
mented by Nickell (1981) and is given by

1ta (| _ 11-a
L T—1 T (1—a)
pllm(awg—a):—
et (1 #0%5)
T

N

Q

(1—a)

and so, when a > 0, plim (awq) < a.
When the model is transformed into first-differences to eliminate the unob-

served individual heterogeneity component 7;,
Ayt = aAyy 1 + Aug,

the bias of the OLS estimator is given by

l1+a
2 )

plim (aOLSd — Oé) = —

and so plim (Gorsa) = 45+ < 0.



3. A First-Differenced GMM Estimator

3.1. The standard moment conditions

In the absence of any further restrictions on the process generating the initial
conditions, the autoregressive error components model (2.3) - (2.6) implies the
following mg = 0.5(T — 1)(T" — 2) orthogonality conditions which are linear in the

o parameter
E(yit—sAuy) =0; fort =3,...,Tand2<s<t—1, (3.1)

where Au;; = u; — u;¢—1. These depend only on the assumed absence of serial
correlation in the time varying disturbances vy, together with the restriction (2.6).

The moment restrictions in (3.1) can be expressed more compactly as
E(Z),Au;) =0,

where Zgy; is the (T — 2) x my matrix given by

yi O 0 ... 0 .. 0
Zdz _ 0 Yi1r Yo ... 0 ... 0 :
0 0 0 cee Yi1 - YiT—2

and Au; is the (T — 2) vector (Au Auyy, ..., Aur)'.

The Generalised Method of Moments (GMM) estimator based on these mo-
ment conditions minimises the quadratic distance Au'Z;W ~Z!,Au for some met-
ric Wy, where Z/, is the my x N(T — 2) matrix (Z},,Z/, ..., Z};)) and Au’ is the
N(T — 2) vector (Au}, Auj, ..., Au)y). This gives the GMM estimator for « as

Qg = (AylfldeNZ:jAy_l)71Ay/,1ZdWNZ:1Ay,

where Ay; is the (T'—2) vector (Ayis Ayia, ..., Ayir), Ay; _, is the (T'—2) vector
(Ayio, Ayis, ..., Ay;r—1), and Ay and Ay _; are stacked across individuals in the

same way as Au.



Alternative choices for the weights Wy give rise to a set of GMM estimators
based on the moment conditions in (3.1), all of which are consistent for large
N and finite T, but which differ in their asymptotic efficiency.* In general the

optimal weights are given by
1 N —_—
Wy = (5 ;‘ 7. A, Au,Zy) ! (3.2)

where ZTIZ are residuals from an initial consistent estimator. We refer to this as
the two-step GMM estimator.” In the absence of any additional knowledge about
the process for the initial conditions, this estimator is asymptotically efficient in

the class of estimators based on the linear moment conditions (3.1) (see Hansen

(1982) and Chamberlain (1987)).

3.2. Homoskedasticity

Ahn and Schmidt (1995) show that additional linear moment conditions are

available if the v; disturbances are homoskedastic through time, i.e. if
EWi) =02 fort=2,..,T. (3.3)
This implies T" — 3 orthogonality restrictions of the form
E(yit—oAuis—1 — yiz—1Auy) =0; for t =4,...,T (3.4)

and allows a further 7" — 3 columns to be added to the instrument matrix Zg;.

The additional columns Z;,; are

!/

Yie —y3 0 ... 0 0
Zhi _ 0 Yi3 —Yia ... 0 0
0 0 0 v Yir—2 —YiT—1

Calculation of the one-step and two-step GMM estimators then proceeds exactly

as described above.



4. Weak Instruments

The instruments used in the standard first-differenced GMM estimator become
less informative in two important cases. First, as the value of the autoregressive
parameter « increases towards unity; and second, as the variance of the individ-
ual effects 7; increases relative to the variance of v;. To examine this further
consider the case with T" = 3. In this case, the moment conditions corresponding
to the standard GMM estimator reduce to a single orthogonality condition. The
corresponding method of moments estimator reduces to a simple two stage least

squares (2SLS) estimator, with first stage (instrumental variable) regression
Ayz'g = TqYi1 + 7 for i = 1, ceeny N.

For sufficiently high autoregressive parameter « or for sufficiently high relative
variance of the individual effects, the least squares estimate of the reduced form
coefficient 74 can be made arbitrarily close to zero. In this case the instrument
y;1 is only weakly correlated with Ay;s. To see this notice that the model (2.3)
implies that

Ayio = (o — 1)y +m; + v fori =1,....,N. (4.1)

The least squares estimator of («—1) in (4.1) is generally biased upwards, towards

zero, since we expect F(y;;1m;) > 0. Assuming covariance stationarity and letting

0% = var (n;) and o} = var (vy), the plim of 7, is given by

11—«

k
plim7y = (@ — 1)5——; with k = (4.2)

U_g +k 1+ao
The bias term effectively scales the estimated coefficient on the instrumental vari-
able y;; toward zero. We find that plim7y; — 0 as & — 1 or as (0% /02) — o0,
which are the cases in which the first stage F-statistic is O,(1). A graph showing

both plim 7y and a — 1 against « is given in Figure 1, for o} = o7, T = 3.

9



FIGURE 1 ABOUT HERE

We are interested in inferences using this first-differenced instrumental variable
(IV) estimator when 7, is local to zero, that is where the instrument y;; is only
weakly correlated with Ay;s. Following Nelson and Startz (1990a,b) and Staiger
and Stock (1997) we characterise this problem of weak instruments using the
concentration parameter. First note that the F-statistic for the first stage instru-
mental variable regression converges to a noncentral chi-squared with one degree
of freedom. The concentration parameter is then the corresponding noncentrality
parameter which we label 7 in this case. The IV estimator performs poorly when
T approaches zero. Assuming covariance stationarity, 7 has the following simple

characterisation in terms of the parameters of the AR model

2]{32 1—
T:—(U ) ; with £ = ay
+ o2k 1+a

The performance of the standard GMM differenced estimator in this AR(1) spec-
ification can therefore be seen to deteriorate as a« — 1, as well as for decreasing
values of o2 and for increasing values of 0?7. To illustrate this further Figure 2

provides a plot of 7 against « for the case 02 =02 =1, T = 3.

2
n

FIGURE 2 ABOUT HERE

Blundell and Bond (1999) note that the finite sample bias of the first-differenced
GMM estimator for the AR(1) model with weak instruments is likely to be in
the direction of the Within Groups estimator. This is because the (one-step)
first-differenced GMM estimator coincides with a 2SLS estimator based on the

‘orthogonal deviations’ transformation of Arellano and Bover (1995), and 2SLS

10



estimators are biased in the direction of OLS in the presence of weak instruments
(see, for example, Bound, Jaeger and Baker (1995)). We explore the finite sample
behaviour of the first-differenced GMM estimator further in Section 11 below.

5. Non-linear Moment Conditions

5.1. Standard assumptions

The standard assumptions (2.4), (2.5) and (2.6) also imply non-linear moment
conditions which are not exploited by the standard linear first-differenced GMM
estimator described in Section 3.1. Ahn and Schmidt (1995) show that there are

a further T' — 3 non-linear moment conditions, which can be written as
E(uitAui,t—l) = 0, for t = 4, 5, ceey T (51)

and which could be expected to improve efficiency. These conditions relate directly
to the absence of serial correlation in v; and do not require homoskedasticity.
Thus, under the standard assumptions, the complete set of second-order moment
conditions available is (3.1) and (5.1). Asymptotic efficiency comparisons reported
in Ahn and Schmidt (1995) confirm that these non-linear moments are particularly

informative in cases where « is close to unity and/or where 0% /o? is high.
5.2. Homoskedasticity

Under the homoskedasticity through time restriction (3.3), there is one further
non-linear moment condition available, in addition to (3.1), (3.4) and (5.1) (see

Ahn and Schmidt (1995)). This can be written as
1 X

Thus, under the homoskedasticity assumption in addition to the standard as-
sumptions, the complete set of moment conditions available comprises the linear

conditions (3.1) and (3.4), and the non-linear conditions (5.1) and (5.2).

11



6. Initial Conditions and a Levels GMM Estimator

In addition to the standard assumptions set out in Section 2, we now consider

the additional assumption

Notice that, given (2.3) - (2.6) which specifies y;o given y;;, assumption (6.1) is a
restriction on the initial conditions process generating 1/;;.”

If this initial conditions restriction holds in addition to the standard assump-
tions (2.4), (2.5) and (2.6), the following 7' — 2 linear moment conditions are
valid

E(uitAyi7t_1) = O, fort = 3, 4, caey T. (62)

Moreover, given the standard assumptions, these linear moment conditions imply
the T" — 3 non-linear moment conditions given in (5.1), and render these non-
linear conditions redundant for estimation. Thus the complete set of second order
moment restrictions implied by (2.3)-(2.6) and (6.1) can be implemented as a
linear GMM estimator.

To consider when the first-differences Ay, are uncorrelated with the individual

effects, notice that for the AR(1) model (2.3)

-3
Ay = o' *Ayig + Z a*Auy

s=0
so that Ay;; will be uncorrelated with n; if and only if Ay;s is uncorrelated with

n;. This is precisely the assumption (6.1). To guarantee this, we require the initial

E[(%l—lm )Uz} =0,
— o

which is satisfied under mean stationarity of the y; process, as defined by (2.3)-

(2.8).

conditions restriction

12



To show that the moment conditions (6.2) remain informative when « ap-
proaches unity or a% /o2 becomes large, we again consider the case of T'= 3. Here
we can use one equation in levels

Yis = QY2 + 1 + Vi3
for which the instrument available is Ay;9, and the first stage regression is
Yio = mAYi +1i.
In this case, assuming covariance stationarity, the plim 7; is given by
o1
plim 7, = 5 (6.3)

and therefore this moment condition stays informative for high values of «, in
contrast to the moment condition available for the first-differenced model.

The 0.5(T" + 1) (T' — 2) linear moment conditions (3.1) and (6.2) comprise the
full set of second-order moment conditions under mean stationarity in conjunction
with the standard assumptions listed in Section 2, and form the basis for a system
GMM estimator which will be discussed in the next section. However, as this
system GMM estimator combines the moment conditions for the model in first-
differences with those for the model in levels, we also consider a simpler GMM

levels estimator, that is based on the m; = 0.5(7" — 1) (T' — 2) moment conditions
E(uyAy;—s) =0; fort =3,...,Tand 1 <s <t —2, (6.4)
that relate only to the equations in levels. These can be expressed as
E(Zju;) =0,

where Z;; is the (T' — 2) X m; matrix given by

Zli _ 0 Ayﬂ Ayz3 0 0 :
0 0 0 Ayzg Ayinl

13



and w; is the (T — 2) vector (s, Ui, ..., usr) . Calculation of the one-step and two-

step GMM estimators then proceeds in a similar way to that described above. In

2

, = 0, there is no one-step GMM estimator that is

this case though, unless o
asymptotically equivalent to the two-step estimator, even in the special case of

i.i.d. disturbances.?

7. A System GMM Estimator

7.1. The Optimal Combination of Differenced and Levels Estimators

Calculation of the GMM estimator using the full set of linear moment con-
ditions (3.1) and (6.2) can be based on a stacked system comprising all T" — 2
equations in first-differences and the T"— 2 equations in levels corresponding to
periods 3, ..., T, for which instruments are observed. The my, = 0.5(T' + 1) (T — 2)

moment conditions are'Y

E(yir sAuy) = 0; fort=3,.,Tand2<s<t—1 (7.1)

E (uyAyiy—1) = 0; fort=3,...,T. (7.2)

These can be expressed as

where
q; = w
Zys O 0 0
0 Ay 0 0
Zo=|2 001 0 0 Ay o |
O Zli 0
O 0 0 Ayz',T—l

with Zg; as defined in section 3, and Z7, is the non-redundant subset of Z;.

14



The calculation of the two-step GMM estimator is then analogous to that
described above. Again in this case, unless 05 = 0, there is no one-step GMM
estimator that is asymptotically equivalent to the two-step estimator, even in the
special case of i.i.d. disturbances.!

The system GMM estimator is clearly a combination of the GMM differenced
estimator and a GMM levels estimator that uses only (7.2). This combination is

linear for the system 2SLS estimator which is given by
3, = (a2 (Z2) ' Zas) o2 (2.2) " Za
Because
a2 (ZZ2) " Zha 1 = Ay Za(ZyZa) " ZyAy o +y 20 (Z)Z)) Zy
the system 2SLS estimator is equivalent to the linear combination
as =da + (1 —v)aj,

where & and @ are the 2SLS first-differenced and levels estimators respectively,
with the levels estimator utilising only the 7" — 2 moment conditions (7.2), and
Ay \Z4(ZyZs) " ZyAy
Ay \Z4(ZZ4) Zh Ay | +y  ZY (ZVZY) 2y
Tl 2Ty
72 Lawa+ WL LY

where 7y and 7; are the OLS estimates of the first stage regression coefficients

’}/:

underlying these 2SLS estimators. From (4.2) and (6.3) it follows that v — 0 if
a — 1 and/or (07 /0;) — oo, s0 all the weight for the system estimator will in

these cases be given to the informative levels moment conditions (7.2).
7.2. Homoskedasticity Restrictions

In the case where the initial conditions satisfy restriction (6.1) and the v

satisfy restriction (3.3), Ahn and Schmidt (1995, equation (12b)) show that the

15



T — 2 homoskedasticity restrictions (3.4) and (5.2) can be replaced by a set of

T — 2 moment conditions
E(yiuit — Yip—1uit—1) = 0; for t =3,...,T,

which are all linear in the parameter . The non-linear condition (5.2) is again
redundant for estimation given (6.1), and the complete set of second order moment
restrictions implied by (2.3)-(2.6), (3.3) and (6.1) can be implemented in a linear
GMM estimator.

8. Asymptotic Variance Comparisons

To quantify the gains in asymptotic efficiency that result from exploiting
the linear moment conditions (6.2), Table 1 reports the ratio of the asymptotic
variance of the standard first-differenced GMM estimator described in Section 3.1
to the asymptotic variance of the system GMM estimator described in Section
7.1. These asymptotic variance ratios are calculated assuming both covariance
stationarity and homoskedasticity. They are presented for T = 3 and T = 4,
for two fixed values of 0’3] /o2, and for a range of values of the autoregressive
parameter «. For comparison, we also reproduce from Ahn and Schmidt (1995)
the corresponding asymptotic variance ratios comparing first-differenced GMM
to the non-linear GMM estimator which uses the quadratic moment conditions
(5.1), but not the extra linear moment conditions (6.2). In the 7' = 3 case there
are no quadratic moment restrictions available. These calculations suggest that
exploiting conditions (6.2) can result in dramatic efficiency gains when T' = 3,
particularly at high values of a and high values of 0%] /o2, These are indeed the
cases where we find the instruments used to obtain the first-differenced estimator
to be weak.

In the T" = 4 case we still find dramatic efficiency gains at high values of a.

16



Comparison to the results for the non-linear GMM estimator also shows that the
gains from exploiting conditions (6.2) can be much larger than the gains from
simply exploiting the non-linear restrictions (5.1).

In the Monte Carlo simulations presented in Section 11 we investigate whether

similar improvements are found in finite samples.

TABLE 1 ABOUT HERE

9. Multivariate Dynamic Panel Data Models

In this section the dynamic panel data model with additional regressors is

considered.'? In particular, we focus on the model
Yit = Wir—1+ BT+ ui (9.1)
Ui = T + Vi

where x;; is a scalar. The error components 7; and v;; again satisfy the conditions
(2.4)-(2.6). The z;; process is correlated with the individual effects 7, and we
consider three possible correlation structures between the x;; process and the vy

error process that determine the instruments that can be used to estimate o and

3.

First, the x; process is strictly exogenous:
E (zisv4) =0; fors=1,...,T; t =2,....T. (9.2)
Secondly, the x;; process is weakly exogenous, or predetermined
E(zivy) = 0; fors=1,...¢tt=2..T (9.3)

E(xisvy) # 0; fors=t+1,..,T; t=2..T
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and thirdly, the x;; process is endogenously determined

E (zivi) = 0; fors=1,..,t—1;t=2,...T (9.4)

E (zisvi) # 0; fors=t,..T; t=2,..,T.
We are especially interested in the case when the x; process is endogenously
determined, which includes simultaneous processes, but also measurement error.

For the GMM first-differenced estimator, the 0.5 (7" — 1) (T' — 2) moment con-
ditions (3.1)
E(yi1—sAuy) =0; fort =3,...,Tand2<s<t—1

remain valid. When the z;; process is strictly exogenous, the following additional

T (T — 2) moment conditions are valid
E(riAuy) =0; fort=3,...,T and 1 < s <T. (9.5)

When z;; is predetermined there are only the 0.5 (7 + 1) (T — 2) additional mo-

ment conditions
E(z;-sAuy) =0; fort =3,...,Tand 1 < s <t—1, (9.6)

whereas when x;; is endogenously determined only the following 0.5 (7" — 1) (7" — 2)

additional moment conditions are valid
E(zi1-sAuy) =0; fort =3,...,Tand 2 < s<t—1. (9.7)

For the non-linear GMM estimator, moment conditions (5.1) remain valid, and
no further moment conditions result from the presence of z;; variables.

For the system GMM estimator, we first consider under what conditions both
Ay, and Az are uncorrelated with 7;. In order to illustrate this, we specify the

following process for the regressor
Tit = PTiz—1 + TN; + €.
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Thus 7 # 0 allows the level of x;; to be correlated with 7;, and the covariance
properties between v;; and e;, determine whether x;; is strictly exogenous, prede-

termined or endogenously determined. First notice that

t—3

Ay = p P Amp + Z p’Ae; s,

s=0
so that Ax;; will be correlated with »; if and only if Ax;s is correlated with 7;. To

guarantee E [Ax;n;] = 0 we require the initial conditions restriction

E [(zl - %) mz} ~ 0 (9.8)

which is satisfied under mean stationarity of the x; process.
Given this restriction, writing Ay, as

t—3

Ayy = o' Ayjo + Z a’ (BAT; 1—s + Aujg_s) (9.9)

s=0
shows that Ay; will be correlated with 7; if and only if Ay;, is correlated with
n;. To guarantee F [Aypn;] = 0 we then require the similar initial conditions

restriction
B() +n

E Yi1 — 1—o

ni| =0 (9.10)

which would again be satisfied under stationarity. Thus, there are additional
moment restrictions available for the equations in levels when the y; and z;
processes are both mean stationary.

Whilst jointly stationary means is sufficient to ensure that both Ay; and Axy
are uncorrelated with 7;, this condition is stronger than is necessary. For example,
if the conditional model (9.1) has generated the y;; series for sufficiently long
time prior to our sample period for any influence of the true initial conditions
to be negligible, then an expression analogous to (9.9) shows that Ay; will be

uncorrelated with 7; provided that Ax;; is uncorrelated with 7;, even if the mean
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of z;; (and hence y;;) is time-varying. Moreover we can note that it is perfectly
possible for Az;; to be uncorrelated with 7); in cases where Ay, is correlated with
n; (for example, when (9.8) holds or 7 = 0 but (9.10) is not satisfied). However,
given (9.9), it seems very unlikely that Ay;; will be uncorrelated with 7; in contexts
where Ax; is correlated with 7).

When both Ay;; and Ax; are uncorrelated with 7;, the extra moment condi-

tions for the GMM system estimator are, as before, (7.2),
E (uz’tAyi,t—l) = O, for t = 3, ceey T

and

E (ugAzy) =0; fort =2,...,T (9.11)

in the case where x;; is strictly exogenous or predetermined; or
E (ugAxy 1) =0; fort=3,...,T, (9.12)

when z;; is endogenously determined. Therefore, when for example z;; is endoge-
nous, the GMM system estimator is based on the moment conditions (7.1), (9.7),

(7.2) and (9.12).
10. Tests of Overidentifiying Restrictions

The standard test for testing the validity of the moment conditions used in
the GMM estimation procedure is the Sargan test of overidentifying restrictions
(see Sargan (1958) and the development for GMM in Hansen (1982)). For the
GMM estimator in the first-differenced model this test statistic is given by

1 — _
Sary = NAu'deNz;Au

where Wy is the optimal weight matrix as in (3.2) and Au are the two-step

residuals in the differenced model. In general, under the null that the moment
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conditions are valid, Sar, is asymptotically chi-squared distributed with mg — k
degrees of freedom, where my is the number of moment conditions and k is the
number of estimated parameters.

For the system estimator, the same test is readily defined. Call this test Sars.
A test for the validity of the level moment conditions that are utilised by the

system estimator is then obtained as the difference between Sar, and Sary:
Dif-Sar = Sar, — Sary (10.1)

and Dif-Sar is asymptotically chi-squared distributed with m,; — m, degrees of

freedom under the null that the level moment conditions are valid.

11. Monte Carlo Results

This section illustrates the performance of the various estimators, as discussed
above, for a dynamic multivariate panel data model. In particular, the effect
of weak instruments and the potential gains from exploiting initial conditions
restrictions are investigated.

The model specification is

Yit = QUi—1 + BTy + 1 + Vit (11.1)

Tig = prg1+ TN + 0y + ey (11.2)

with
i ~ N (0,0727) s Vg~ N (0,05) s ey~ N (O,Jg)
and the initial observations are drawn from the covariance stationary distribution.
Although these errors are homoskedastic, we do not consider any of the additional
moment conditions that require homoskedasticity in the simulated estimators.
We choose the error process parameters in such a way that the z;; process is

highly persistent for high values of p. Further, x; is positively correlated with
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n; and the value of  is negative to mimic the effects of measurement error. The
values of the parameters that are kept fixed in the various Monte Carlo simulations

presented below are

3 = 1,7=0250=-0.1,

oy = 1,00 =1,07=0.16.

The parameters that are varied in the simulations are the autoregressive coeffi-
cients a and p. We consider four designs with v and p both taking the values of 0.5
and 0.95. The case when o = 0.5 and p = 0.95 resembles the production function
data that will be analysed in the next section. The sample size is N = 500, and
the simulation results for the various estimators are presented in Tables 2 and 3
for T'= 4 and in Tables 4 and 5 for 7' = 8.

Means, standard deviations and root mean squared errors (RMSE) from 10,000
simulations are tabulated for the OLS levels estimator (OLS), Within Groups es-
timator (WG), the GMM first-differenced estimator (DIF), the non-linear GMM
estimator (AS),'® the levels GMM estimator (LEV), and the system GMM esti-
mator (SYS). Thus for the case of estimating the AR(1) model for z;;, DIF uses
the moment conditions (3.1); AS uses the moment conditions (3.1) and (5.1); LEV
uses the moment conditions (6.4); and SYS uses the moment conditions (3.1) and
(6.2). The reported results are for the two-step GMM estimators.

Tables 2 and 4 present results for p = 0.5. The row labelled ‘p’ presents the
results for the estimates of p in model (11.2), where the various GMM estimators
only utilise lagged information on z as instruments, and potential information
from the lagged values of y is not used. Our results for the DIF and SYS es-
timators can therefore be compared to those reported in, for example, Blundell
and Bond (1998) and Alonso-Borrego and Arellano (1999). As expected, the OLS

estimates are biased upward and the WG estimates are biased downwards. In

22



this experiment where x;; is not highly persistent and the instruments available
for the equations in first-differences are not weak, all four GMM estimators are
virtually unbiased. The AS, LEV and SYS estimators all provide an improvement
in precision compared to the standard DIF estimator. As we would expect from
the asymptotic variance ratios in Table 1, there is a greater gain in precision from
using SYS rather than AS at T = 4, although in Table 4 we can observe that this
difference becomes very small at T' = 8.

The next two rows in Tables 2 and 4 present the estimation results for o and
(3 in model (11.1) when o = 0.5 and p = 0.5. The OLS estimates for « are biased
upwards, whereas those for 3 are biased downwards. The WG estimates for o and
[ are both biased downwards. Again, as expected, since both the y and x series
have a low degree of persistence, the four GMM estimators perform quite well in
this experiment. The SYS estimator has the smallest RMSE for both parameters,
but the gains are not dramatic at T' = 8.

The final two rows in Tables 2 and 4 are for the model with @ = 0.95 and
p = 0.5. As this makes the y process highly persistent, the DIF estimator suffers
from a serious weak instrument bias, as well as being very imprecise. We can
notice that the DIF estimates of a and (8 are both biased downwards, in the
direction of the Within Groups estimates. The AS estimator is better behaved, as
a result of exploiting the non-linear moment conditions (5.1). However the LEV
and SYS estimators which exploit the initial conditions restrictions provide more
dramatic gains in precision, particularly for the estimation of o and particularly
in the case with T' = 4. With T'= 8, the LEV and SYS estimates of « are biased
upwards, in the direction of the OLS estimate, but still dominate on the RMSE

criterion.

TABLES 2-5 ABOUT HERE
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Tables 3 and 5 present the results for the cases where the x;; process is highly
persistent, with p = 0.95. The estimates for p show the familiar pattern: OLS
is upward biased, WG is downward biased, and DIF' is downward biased towards
WG as a result of weak instruments. The AS estimator provides a substantial
improvement in both bias and precision. However the LEV and SYS estimators
provide more dramatic gains, particularly when T = 4.

When a = 0.5, the DIF estimator estimates a quite well, but the DIF estimate
of ( is very imprecise, biased downwards and on average very similar to the WG
estimate of 3. The AS, LEV and SYS estimates of « are all close to the true
value. The AS estimates of § are much less biased than DIF but still imprecise,
particularly at 7' = 4. The LEV and SYS estimates of § show a little finite-
sample bias, but again dominate in terms of RMSE. This experiment is intended
to capture salient features of the production function data we consider in Section
12, notably a highly persistent explanatory variable that is measured with error,
and a significant autoregressive parameter that is not close to one. The simulation
results confirm that the system GMM estimator has reasonable properties in this
context.

When both a and p are equal to 0.95 the estimators display a similar pattern.
One surprise is that the LEV and SYS estimators actually estimate both parame-
ters better than in the experiments with a = 0.5, and the gain from using either
of these estimators compared to AS is rather more striking in this case. Also the
DIF estimator now estimates « quite well (though not (3); this may be because
by increasing o whilst keeping the variance of 7; and v; fixed, we have greatly
increased the variance of the y;; series.

To investigate the size properties of the Sargan test of overidentifying restric-
tions, we present in Figures 3-12 p-value plots (see Davidson and MacKinnon,

1996) for the Sargan test statistics for the DIF and SYS GMM estimators. We
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also present the p-value plots for the Dif-Sar statistic as defined in (10.1), test-
ing the validity of the additional levels moment conditions exploited by the SYS
estimator.

The x-axis of the p-value plots represents the nominal size using the asymptotic
critical values of the corresponding chi-squared distributions; the y-axis represents
the actual size of the test statistics in the experiments.

Figures 3-6 are the p-value plots for the Sargan tests for the GMM estima-
tors in the univariate model for x;, (11.2). When p = 0.5, the distributions of
the test statistics are all very close to the asymptotic distribution, with a slight
over-rejection when 7" = 8. When the series are persistent, p = 0.95, the tests
over-reject, especially for larger T, with the Dif-Sar test having the largest size

distortion when 7" = 4.
FIGURES 3-6 ABOUT HERE

Figures 7-14 present the p-value plots for the Sargan test statistics for the
multivariate dynamic panel data model (11.1). These appear to be well behaved
in the case with a = 0.5 and p = 0.5. In general, the Dif-Sar test is oversized
when either y or x or both are persistent. An interesting case is when o = 0.5,
p =0.95 and T' = 8. The Sar,; and Dif-Sar tests are considerably oversized in this

case, whereas the Sary test has the correct size.

FIGURES 7-14 ABOUT HERE

12. An Application: the Cobb-Douglas Production Func-
tion

As Griliches and Mairesse (1998) have argued, the estimation of production

functions has highlighted the poor performance of standard GMM estimators for
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short panels. Here we use the problem of estimating production function parame-
ters to evaluate the practical significance of the alternative estimators reviewed
in this chapter. In particular attention is focused on the estimation of the Cobb-

Douglas production function

Vit = Bnnit + Bekie + v + (0 + vie + myz) (12.1)
Vit = QUi 1 + et ’Oé’ <1

Cit, My ~ MA(O),

where y;, is log sales of firm i in year t, n; is log employment, k;; is log capital stock
and ; is a year-specific intercept reflecting, for example, a common technology
shock. Of the error components, n; is an unobserved time-invariant firm-specific
effect, vy is a possibly autoregressive (productivity) shock and m;; reflects serially
uncorrelated (measurement) errors. Constant returns to scale would imply 3, +
Br = 1, but this is not necessarily imposed.

Interest is in the consistent estimation of the parameters (3, Ok, @) when the
number of firms (N) is large and the number of years (7') is fixed. We maintain
that both employment (n;) and capital (k;;) are potentially correlated with the
firm-specific effects (7;), and with both productivity shocks (e;;) and measurement
errors (my).

The model has a dynamic (common factor) representation
Vit = Bulit — afpiz—1 + Bk — aBrki—1 + ayip—1 (12.2)
+(y —ay1) + (1 — @) + e + My — am;y 1)
or
Yit = TNt + Ton e 1 + Tk + Takie 1 + TsYir—1 + v + (0] + wir) (12.3)

subject to two non-linear (common factor) restrictions m = —m7s and w4 =

—msms. Given consistent estimates of the unrestricted parameter vector m =
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(71, ma, T3, T4, T5) and var(7), these restrictions can be (tested and) imposed using
minimum distance to obtain the restricted parameter vector (5, Bk, «). Notice
that wy = e;y ~ MA(0) if there are no measurement errors (var (m;) = 0), and

wi ~ MA(1) otherwise.
12.1. Data and Results

The data used is a balanced panel of 509 R&D-performing US manufacturing
companies observed for 8 years, 1982-89. These data were kindly made available
to us by Bronwyn Hall, and is similar to that used in Mairesse and Hall (1996),
although the sample of 509 firms used here is larger than the final sample of
442 firms used in Mairesse and Hall (1996). Capital stock and employment are
measured at the end of the firm’s accounting year, and sales is used as a proxy
for output. Further details of the data construction can be found in Mairesse and
Hall (1996).

Table 6 reports results for the basic production function, not imposing con-
stant returns to scale, for a range of estimators. We report results for both the
unrestricted model (12.3) and the restricted model (12.1), where the common
factor restrictions are tested and imposed using minimum distance.!* We report
results here for the one-step GMM estimators, for which inference based on the
asymptotic variance matrix has been found to be more reliable than for the (as-
ymptotically) more efficient two-step estimator. Simulations suggest that the loss
in precision that results from not using the optimal weight matrix is unlikely to
be large (cf. Blundell and Bond, 1998).

As expected in the presence of firm-specific effects, OLS levels appears to give
an upwards-biased estimate of the coefficient on the lagged dependent variable,
whilst Within Groups appears to give a downwards-biased estimate of this coef-

ficient. Note that even using OLS, we reject the hypothesis that @ = 1, and even
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using Within Groups we reject the hypothesis that o = 0. Although the pattern
of signs on current and lagged regressors in the unrestricted models are consistent
with the AR(1) error-component specification, the common factor restrictions are
rejected for both these estimators. They also reject constant returns to scale.'

The validity of lagged levels dated ¢ — 2 as instruments in the first-differenced
equations is clearly rejected by the Sargan test of overidentifying restrictions. This
is consistent with the presence of measurement errors. Instruments dated t-3 (and
earlier) are accepted, and the test of common factor restrictions is easily passed
in these first-differenced GMM results. However the estimated coefficient on the
lagged dependent variable is barely higher than the Within Groups estimate. We
expect this coefficient to be biased downwards if the instruments available are
weak, as the Monte Carlo results in the previous section indicated. Indeed the
differenced GMM parameter estimates are all very close to the Within Groups
results. The estimate of (; is low and statistically weak, and the constant returns
to scale restriction is rejected.

The validity of lagged levels dated ¢ — 3 (and earlier) as instruments in the
first-differenced equations, combined with lagged first-differences dated ¢ — 2 as
instruments in the levels equations, appears to be marginal in the system GMM

estimator. However we have seen that these tests do have some tendency to
TABLE 6 ABOUT HERE

overreject in samples of this size. Moreover the Dif-Sar statistic that specifically
tests the additional moment conditions used in the levels equations accepts their
validity at the 10% level. The system GMM parameter estimates appear to be
reasonable. The estimated coefficient on the lagged dependent variable is higher
than the Within Groups estimate, but well below the OLS levels estimate. The

common factor restrictions are easily accepted, and the estimate of (5 is both
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higher and better determined than the differenced GMM estimate. The constant
returns to scale restriction is easily accepted in the system GMM results.'6
Blundell and Bond (1999) explore this data in more detail and conclude that
the system GMM estimates in the final column of Table 6 are their preferred
results. In particular they find that the individual series used here are highly
persistent, and that the instruments available for the first-differenced equations
are only weakly correlated with the explanatory variables in first-differences. This
is consistent with the similarity between the first-differenced GMM and Within
Groups results. Blundell and Bond (1999) also find that when constant returns
to scale is imposed on the production function - it is not rejected in the preferred
system GMM results - then the results obtained using the first-differenced GMM

estimator become more similar to the system GMM estimates.

13. Summary and Conclusions

The aim of this chapter has been to review developments in the recent lit-
erature which have tried to improve on the poor performance of the standard
first-differenced GMM estimator for highly autoregressive panel series by using
additional moment conditions. In particular, we discuss the use of the “system”
GMM estimator that relies on relatively mild restrictions on the initial conditions
process. This system GMM estimator encompasses the GMM estimator based
on the non-linear moment conditions available in the dynamic error components
model and has substantial asymptotic efficiency gains relative to this non-linear
GMM estimator. The chapter systematically sets out the assumptions required
and moment conditions used by each estimator and provides a Monte Carlo sim-
ulation comparison as well as an application to production function estimation.

The simulation results are the first in the literature to consider the properties
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of these GMM estimators in dynamic models with endogenous regressors. Our
analysis suggests that similar issues arise in this case to those that have been found
in previous Monte Carlo studies for the AR(1) model. In particular, we find both a
large bias and very low precision for the standard first-differenced estimator when
the individual series are highly persistent. By exploiting instruments available
for the equations in levels, the system GMM estimator can both greatly improve
the precision and greatly reduce the finite sample bias when these additional
moment conditions are valid. Intermediate results are found for the non-linear
GMM estimator considered, which suggests that this estimator could also be useful
in applications with persistent series where the validity of the initial conditions
restrictions required for the system GMM estimator are rejected.

The empirical application uses company accounts data for the US to estimate
a simple Cobb-Douglas production function. For the standard GMM estimator
that uses moment conditions only for the first-differenced equations, we confirm
the problems noted by Griliches and Mairesse: the estimated coefficient on capital
is very low, all coefficient estimates are imprecise, and constant returns to scale
is easily rejected. We notice that the first-differenced GMM results are similar
to the Within Groups results, which suggests there may be a problem of weak
instruments. This suggestion is consistent with the persistence of the underlying
sales, employment and capital stock series. The additional moment conditions
used by the system GMM estimator are not rejected in this context, and lead to
a marked improvement in the empirical results.

Taken together, these Monte Carlo and empirical results suggest that careful
consideration of the underlying series and comparisons between different panel
data estimators can be useful in detecting situations where the standard first-
differenced GMM estimator is likely to be subject to serious weak instruments

biases. Where appropriate, the use of the system GMM estimator offers a simple
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and powerful alternative, that can overcome many of the disappointing features of
the standard first-differenced GMM estimator in the context of highly persistent

series.
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Endnotes

1. All of the estimators discussed and their properties extend in an obvious
fashion to higher order autoregressive models.

2. Extensions to dynamic models with additional regressors are considered in
Section 9.

3. With T' = 3, the absence of serial correlation in v; (2.5) and predetermined
initial conditions (2.6) are required to identify « (in the absence of any strictly
exogenous instruments). With 7" > 3, a can be identified in the presence of
suitably low order moving average autocorrelation in vy.

4. These estimators are all based on the normalisation (2.3). Alonso-Borrego
and Arellano (1999) consider a symmetrically normalised instrumental variable
estimator based on the normalisation invariance of the standard LIML estimator.

5. As a choice of Wy to yield the initial consistent estimator, Arellano and

Bond (1991) suggest

WN = Z Z HdZdz

where Hy is the (T' — 2) x (T — 2) matrix given by

2 -1 0 0
-1 2 -1 0
H,= 0 -1 2 0
o 0 0 .. 2

which can be calculated in one step. The use of this H; matrix accounts for
the first-order moving average structure in Awu; induced by the first-differencing
transformation. Note that when the v; are i.i.d., the one-step and two-step esti-
mators are asymptotically equivalent in this model. We follow this suggestion in

the Monte Carlo simulations in Section 11.
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6. As shown by Arellano and Bover (1995), OLS on the model transformed to
orthogonal deviations coincides with the Within Groups estimator.

7. In this section we focus only on moment conditions that are valid un-
der heteroskedasticity. The case with homoskedasticity and assumption (6.1) is
considered in Section 7.2.

8. This corrects the expression for plim 7; as given in Blundell and Bond (1998,
p.125).

9. As a choice of Wy to yield the initial consistent estimator, we use

Wy = ( Zz Zi)”

in the Monte Carlo simulations reported below.

10. The use of moment conditions F (u;:Ay;¢—s) = 0 for s > 1 can be shown to
be redundant, given (7.1) and (7.2). For balanced panels, the T'— 2 equations in
levels may be replaced by a single levels equation for period 7', with (7.2) replaced
by the equivalent moment conditions E (u;rAy;r—s) = 0 for s = 1,...,7 — 1.
However this approach does not extend easily to the case of unbalanced panels.

11. For an analysis of the potential loss in efficiency due to specific choices of
the initial weight matrix for these system estimators, see Windmeijer (2000). As

a choice of Wy to yield the initial consistent estimator, we use
Wy = Z 7 H,Z,)"
in our Monte Carlo simulations, where H, is the matrix
H, 0
0 Iy )’
I, is the (T — 2) identity matrix and Hy is defined in Section 3.

12. Here we only consider moment conditions that do not require any ho-

moskedasticity assumptions.
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13. Define s; = [wig — s, -y Ui — Uip—1, Wig (Wiz — Ws2) 5 ooy Ui (Wir—1 — Uir—2)]

and Z,; = [ (Z)di ?T ,

-1
as F[Z!,.s;] = 0. As an initial weight matrix we use W= (% Zf\il Z’nMani> ,

] , then the non-linear moment conditions can be written

nli

see Meghir and Windmeijer (1999).

14. The unrestricted results are computed using DPD98 for GAUSS (see
Arellano and Bond, 1998).

15. The table reports p-values from minimum distance tests of the common
factor restrictions and Wald tests of the constant returns to scale restrictions.

16. One puzzle is that we find little evidence of second-order serial correlation
in the first-differenced residuals (i.e. an M A(1) component in the error term in
levels), although the use of instruments dated ¢ — 2 is strongly rejected. It may be
that the e; productivity shocks are also M A(1), in a way that happens to offset
the appearance of serial correlation that would otherwise result from measurement

eIrrors.
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Table 1: Asymptotic Variance Ratios

o2 Jo2 = 1.00 o2 /o2 =0.25
a | SYS | NON-LINEAR | SYS | NON-LINEAR
T=3]0.0 1.33 n/a 1.33 n/a
0.3 2.15 1.89
0.5 4.00 291
0.8 28.00 13.10
0.9 | 121.33 47.91
T=4100 1.75 1.67 1.40 1.29
0.3 2.31 1.91 1.77 1.33
0.5 3.26 2.10 2.42 1.35
0.8 13.97 2.42 8.88 1.41
0.9 55.40 2.54 30.90 1.45

Source: Blundell and Bond (1998)
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Table 2. Monte-Carlo results, T'=4, p = 0.5, 3 =1, N = 500

OLS WG DIF AS LEV
Mean StD | Mean StD | Mean StD [Mean StD | Mean StD | M
rmse rmse rmse rmse rmse

p | 0.762 0.017 | -0.036 0.030 | 0.496 0.090 | 0.501 0.075 | 0.502 0.059 | 0.
0.263 0.538 0.091 0.075 0.059

a=05 |a| 0820 0.011 | 0.010 0.031| 0.469 0.131| 0.516 0.095 | 0.512 0.070 | 0.

0.320 0.491 0.135 0.096 0.070
B 1 0.775 0.053 | 0.318 0.080 | 0.915 0.420 | 1.006 0.351 | 1.029 0.336 | 1.
0.231 0.687 0.428 0.351 0.337

a=095]a| 099 0.001 | 0300 0.032 | 0.350 0.487 | 0.840 0.242 | 0.980 0.029 | 0.

0.040 0.651 0.773 0.266 0.042
B | 0.583 0.0563 | 0.194 0.075|-0.195 0.994 | 0.790 0.524 | 1.004 0.289 | 1.
0.420 0.809 1.554 0.565 0.289

Means and standard devations of 10,000 replications. DIF, AS, LEV and SYS are two-step estimator:
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Table 3. Monte-Carlo results, T'=4, p = 0.95, 6 =1, N = 500

OLS

WG

DIF

AS

LEV

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

p | 0.997

0.002
0.047

0.221

0.032
0.729

0.472

0.825
0.954

0.868

0.221
0.235

0.961

0.144
0.145

a=05 | a| 0.650

B | 0.830

a=0.95|a| 0.962

B | 0.904

0.014
0.151
0.034
0.174

0.001
0.012
0.026
0.100

0.089

0.551

0.661

0.465

0.031
0.412
0.090
0.458

0.026
0.290
0.089
0.543

0.466

0.517

0.907

0.233

0.103
0.109
1.438
1.522

0.104
0.112
1.769
1.928

0.500

1.021

0.936

0.863

0.065
0.065
0.461
0.461

0.072
0.074
0.853
0.864

0.518

1.078

0.957

1.020

0.053
0.056
0.160
0.178

0.008
0.010
0.091
0.093

1.C

Means and standard devations of 10,000 replications. DIF, AS, LEV and SYS are two-step estimator:
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Table 4. Monte Carlo results, T'=38, p = 0.5, 3 =1, N = 500

OLS

WG

DIF

AS

LEV

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

p | 0.762

0.012
0.262

0.265

0.018
0.236

0.494

0.034
0.035

0.495

0.025
0.026

0.503

0.029
0.029

a=0.5 | a| 0.820

B | 0.775

a=0.95]a| 0.990

B | 0.581

0.007
0.320
0.034
0.228

0.001
0.040
0.035
0.421

0.311

0.490

0.662

0.388

0.017
0.190
0.045
0.512

0.016
0.289
0.044
0.613

0.480

0.930

0.548

0.226

0.040
0.045
0.136
0.153

0.177
0.440
0.356
0.852

0.497

0.944

0.969

0.972

0.029
0.029
0.134
0.145

0.030
0.036
0.134
0.137

0.523

1.041

0.982

0.979

0.034
0.041
0.157
0.162

0.007
0.032
0.108
0.110

Means and standard devations of 10,000 replications. DIF, AS, LEV and SYS are two-step estimator:
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Table 5. Monte Carlo results, T'=38, p = 0.95, 6 =1, N = 500

OLS

WG

DIF

AS

LEV

Mean

St D

rmse

Mean

St D

rmse

Mean

St D

rmse

Mean

St D
rmse

Mean

St D

rmse

p | 0.997

0.001
0.047

0.591

0.017
0.359

0.676

0.222
0.350

0.903

0.061
0.077

0.973

0.022
0.032

a=05 | a| 0.650

B | 0.830

a=0.95|a| 0.962

B | 0.902

0.009
0.150
0.022
0.171

0.001
0.012
0.017
0.100

0.396

0.796

0.882

0.745

0.015
0.106
0.040
0.208

0.009
0.068
0.040
0.258

0.480

0.800

0.927

0.615

0.033
0.039
0.290
0.352

0.025
0.034
0.400
0.555

0.508

1.099

0.956

1.016

0.024
0.025
0.125
0.159

0.007
0.009
0.118
0.119

0.523

1.084

0.957

1.017

0.022
0.032
0.058
0.101

0.002
0.007
0.028
0.033

1.C

Means and standard devations of 10,000 replications. DIF, AS, LEV and SYS are two-step estimator:

42



Table 6. Production Function Estimates

OLS Within DIF DIF SYS SYS
Levels Groups t—2 t—-3 t—2 t—3
ny 0.479 0488  0.513 0.499 0.629  0.472
(0.029)  (0.030) (0.089) (0.101) (0.106) (0.112)
ng_1 -0.423 -0.023 0.073 -0.147 -0.092 -0.278
(0.031)  (0.034) (0.093) (0.113) (0.108) (0.120)
k; 0.235  0.177  0.132 0.194 0.361  0.398
(0.035) (0.034) (0.118) (0.154) (0.129) (0.152)
ki1 -0.212  -0.131 -0.207 -0.105 -0.326 -0.209
(0.035)  (0.025) (0.095) (0.110) (0.104) (0.119)
Yi—1 0.922 0404 0326 0.426  0.462 0.602
(0.011)  (0.029) (0.052) (0.079) (0.051) (0.098)
ml -2.60 -8.89 -6.21  -484 -814 -6.53
m2 -2.06 -1.09 -1.36 -0.69 -0.59  -0.35
Sar - - .001 073 .000 .032
Dif-Sar - - - - .001 .102
G 0.538 0.488 0.583 0.515 0.773  0.479
(0.025)  (0.030) (0.085) (0.099) (0.093) (0.098)
Ok 0.266  0.199 0.062 0.225 0.231  0.492
(0.032)  (0.033) (0.079) (0.126) (0.075) (0.074)
o 0.964 0.512  0.377 0.448 0.509  0.565
(0.006) (0.022) (0.049) (0.073) (0.048) (0.078)
Comfac | .000 .000 014 711 012 172
CRS .000 .000 .000 .006 922 .641

Asymptotic standard errors in parentheses. Year dummies included in all models.
ml and m2 are tests for first- and second-order serial correlation, asymptotically

N(0,1). We test the levels residuals for OLS levels, and the first-differenced

residuals in all other columns.

Comfac is a minimum distance test of the non-linear common factor restrictions
imposed in the restricted models. P-values are reported (also for Sar and Dif-Sar).
CRS is a Wald test of the constant resturns to scale hypothesis 3, + B = 1

in the restricted models. P-values are reported.
Source: Blundell and Bond (1999).

43



Figure 1: plim 71y and o — 1, U% =02, T =3.
Source: Blundell and Bond (1998)
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Figure 2: Concentration Parameter 7, 02 = 07 =1, T = 3.

Source: Blundell and Bond (1998)
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