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ABSTRACT

This paper stresses the links that exist between concepts that are used in the theory of model

reduction and concepts that arise in the missing data literature. This connection motivates the

extension of the missing at random (MAR) and the missing completely at random (MCAR) concepts

from a static setting, as introduced by Rubin (1976), to the case of dynamic panel data models.

Using this extension of the MAR and MCAR definitions, we emphasize the limits of some tests and

procedures, proposed by Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and others,

to verify the ignorability of the missing data mechanism.



 

NON-TECHNICAL SUMMARY

The non-response problem is ignorable for a regression model of interest if we can make inference on

this model ignoring the process that causes missing data. In other words, ignorability requires that the

inference on the model of interest, neglecting the missing data generating mechanism (sample

selection process), be affected neither in terms of distortion nor efficiency. The conditions that allow

one to neglect the selection process are given in Rubin (1976) and Little and Rubin (1987) for the

cross-sectional case. In particular, these authors introduced the concepts of missing at random (MAR),

observed at random (OAR), missing completely at random (MCAR) and parameter distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are

independently and identically distributed across units and over time. However, while the data on

different units can generally be assumed to be independent, at least conditionally on some exogenous

variables, the repeated observations on the same unit are likely to be dependent. This is the reason for

the widespread use of dynamic regression models. In this paper, we derive the set of conditions under

which the selection process can be safely ignored when making inference on a dynamic regression

model. Our approach is triggered by ideas that arise in the theory of statistical models reduction (see

Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in

the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in

Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition

tests, presented in Verbeek and Nijman (1992).
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1. Introduction

The non-response problem is ignorable for a regression model of interest if we can make inference on this model

ignoring the process that causes missing data. In other words, ignorability requires that the inference on the

model of interest, neglecting the missing data generating mechanism, 1 be affected neither in terms of distortion

nor efficiency. The conditions that allow one to neglect the selection process are given in Rubin (1976) and

Little and Rubin (1987) for the cross-sectional case. In particular, these authors introduced the concepts of

missing at random (MAR), observed at random (OAR), missing completely at random (MCAR) and parameter

distinctness.

 The extension of MAR and MCAR to the panel data case is straightforward when the data are

independently and identically distributed across units and over time. However, while the data on different units

can generally be assumed to be independent, at least conditionally on some exogenous variables, the repeated

observations on the same unit are likely to be dependent. This is the reason for the widespread use of dynamic

regression models. In this paper, we derive the set of conditions under which the selection process can be safely

ignored when making inference on a dynamic regression model. Our approach is triggered by ideas that arise in

the theory of statistical models reduction (see Engle, Hendry and Richard 1983; Hendry 1995).

 Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in

the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in Little (1988),

Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition tests, presented in

Verbeek and Nijman (1992).

 The paper is organized as follows: in Section 2, we give the formal definitions of MAR and MCAR; in

Section 3, we emphasize the limits of some tests for MCAR and MAR for multivariate data; and in Section 4, we

give some conclusions.

 

2. Definitions of MAR and MCAR

In this section, after some preliminary definitions and general notation given in Section 2.1, we define the

conditions of MAR and MCAR. These conditions must be properly redefined for different types of models of

interest. For this reason, we dedicate separate sections to define MAR and MCAR for different types of model:

Section 2.2 for marginal models; Section 2.4, for conditional models; Section 2.5 for dynamic panel models with

general response patterns; Section 2.6 for dynamic panel models with attrition; and Section 2.7 for dynamic

panel models with explanatory variables.

 Furthermore, we emphasize the differences between our definitions and those given by other authors. In

particular, for the cross-sectional data case, we consider the definitions of Rubin (1976), Little and Rubin (1987)

and Heitjan and Rubin (1991) (see Section 2.3); whereas, for the multivariate data case, we examine the

definitions given by Robins and various co-authors (see Section 2.8).

                                                
1 Henceforth we will call the ‘missing data generating mechanism’ more briefly ‘missing data process’ or ‘selection process’ (or
‘mechanism’).
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 Finally, in Section 2.9, we conclude by describing some further possible extensions of the MAR and

MCAR concepts.

2.1 General statement and notation

 We begin by considering the cross-sectional data case and focus our attention on a model for the

variable y, {Y, f(y;θ), θ∈Θ}; where Y is the sample space, f(y;θ) is a family of probability distributions indexed

by θ, a vector of parameters of interest, and Θ is the parameter space. The variable, y, is missing if the dummy

variable r=0, and observable if r=1. Let us indicate with my  the missing variable associated with r=0 and oy ,

the observed variable associated with r=1. By analogy, let mY  and oY  be the subspaces of Y for the missing

and observed variables, respectively. Let {Y×X, f(r,y;ϕ) , ϕ∈Ψ} be the joint model for (r,y). Finally, let f(r|y;φ)

be the probability that r=1 or 0, conditional on the variable y, that is, the selection mechanism or the missing

data process, where φ is a vector of nuisance parameters.

 We define three different types of likelihood functions that we could use to make inference on the

model of interest in the presence of missing data. We write the likelihood function for a single observation, but

the extension to a random sample of N units is straightforward.

 The first likelihood,

 ( )ro
T yfL );( θ= , (1)

let’s say the truncated likelihood, does not take account of the missing data in the variables, as it considers only

the truncated sample of observable values.

 The second likelihood function,

 ( ) ∫∫ =
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(2)

let’s say the censored likelihood, considers both observed and unobserved variables, but not the missing data

process.

 Finally, for the third likelihood function,

∫=
mY

m
I dyyrfyfL );|();( φθ , (3)

let’s say the likelihood with informative missing data, the model of interest and the selection mechanism are

considered jointly and the missing variables are ‘integrated out’.

 In the following, we say that the selection mechanism is weakly ignorable if we can make a correct and

efficient inference based on the likelihood (1) or (2) disregarding the selection process. Whereas we say that the

selection mechanism is strongly ignorable if any type of inference can be made correctly and efficiently without

considering the selection process.2

 

                                                
2 The definition of strong ignorability used in this paper coincides with Verbeek and Nijman (1992)’s definition, whilst the definition of
(weak) ignorability is not equivalent to their definition.
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2.2 Definitions of MAR and MCAR for a marginal model of interest

Following Heitjan and Rubin (1991), likelihood-based inference on θ can be made ignoring the data mechanism

if:

1. f(y,r;ϕ) factorizes in f(y;θ) f(r|y;φ), where θ  e φ are variation free or, as Rubin (1976) says: […the

parameter φ is distinct from θ], that is […their joint parameter space factorizes into a θ-space and a

φ-space],

2. y is missing at random (MAR); that is );|( φmyrf takes the same value for any my  belonging to

the space of possible missing values, say, mY , that is a subspace or the entire sample space of y, Y.

 When conditions (1) and (2) are satisfied, we say that the missing data mechanism is weakly ignorable

or, more briefly, ignorable. Moreover, we say that the missing data mechanism is strongly ignorable if, besides

(1) and (2), the following condition is satisfied:

3. y is observed at random (OAR), that is );,|( φmo yyrf  takes the same value for any oy  belonging

to the space Y.

 

In accordance with the theory of model reduction, we call 1 the statistical cut assumption. When the conditions 2

and 3 are satisfied, then y and r are independent and we will denote this independence as ry⊥ . Conditions 2 and

3 together constitute MCAR. Obviously, it is implicitly assumed that the model of interest, f(y;θ), is the reduced

model resulting from an admissible reduction of the data generating process.

To give some indication as to whether weak ignorability indeed suffices for a correct likelihood-based inference

when the selection process is disregarded,3 we note that the likelihood ratio when disregarding the selection

process is equal to the likelihood ratio when taking it into account
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 The observed data allow the identification of the probability distribution )1( =ryf , which is not

equivalent to the marginal distribution of oy , ∫
m

mdyyf
Y

);( θ . To ensure that inferences based on )1( =ryf  and

∫
m

mdyyf
Y

);( θ  be equivalent, the data must be MCAR and the variation-free condition must be satisfied. Indeed,

under these conditions, the following equality is true:

 =∫
m

mdyyf
Y

);( θ ∫ ∫mY
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φθ
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.

 

                                                
3 For a more formal proof, see Rubin (1976).
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2.3 Differences among MAR definitions

 The definition of MAR given here differs slightly from the definition given in Little and Rubin (1987).

Whilst we require that the selection mechanism be constant only when my  belongs to the subspace of possible

missing values, YY ⊂m , Little and Rubin require that the probability of observing y be constant for any my

belonging to Y. Our definition of MAR is equivalent to the enlarged definition of coarsened at random given by

Heitjan and Rubin (1991), where the definition of MAR is extended to any type of coarsened data (censored,

heaped, grouped, rounded, etc.). We present this extension of the concept of MAR in Appendix A.

 Whilst Little and Rubin (1987) define MAR as the condition which ensures a correct inference based on

the truncated likelihood, we define MAR in the same way as Heitjan and Rubin (1991); i.e., as the condition

which allows a correct inference based on the censored likelihood. When the censored and truncated likelihood

functions are equal, the two definitions coincide. In particular, this is true when YY =m .

 

If the selection process is deterministic, that is if the dummy variable r conditioning on y is degenerate,

then we say that the data are MAR; in contrast, Little and Rubin (1987) say that the data are not MAR in this

case. This distinction may lead to confusion, the most notable example of which is the case of a censored

variable for which no values are observed when the variable belongs to a specific subset, YY ⊂m . This is

indeed an instance in which correct inference can be based on the censored likelihood, and the censored and

truncated likelihood functions are not equal. The latter observation is proved in Appendix B.

This observation holds more generally. Suppose we can divide the sample space into s disjoint

subspaces, sYYY ,...,, 21 , and suppose for every missing variable we know to which subspace it belongs;

moreover, assume that the selection process is such that jj cyr =∈= )|1Pr( Y , where jc  is constant within the

same subspace; then we can say that the data are MAR and that inference can be based on the censored

likelihood.

2.4 MAR and MCAR for a conditional model of interest

 As remarked by Shih (1992), some authors do not explicitly mention the variation-free condition (the

condition 1 in Section 2.2). This condition is often implicitly assumed to be valid in econometric literature; in

particular, econometricians usually implicitly assume that the conditional or marginal model of interest is the

result of an admissible reduction of the data generating process.

 In this section, to avoid any misunderstanding, we explicitly state all the conditions necessary to ignore

the selection mechanism when the model of interest is a conditional one.

 Let us assume that we are interested in the conditional model for the variable y, given a set of variables

x belonging to the space X, {Y, f(y|x;θ), θ∈Θ}, where Y is the sample space, f(y|x;θ) is a family of conditional

probability distributions indexed by the parameter θ, and Θ is the parameter space. Furthermore, let us assume

that the true data generating process is the joint model {YxXxR, f(y,x,r;ϕ), ϕ∈Φ}. Then, to make a likelihood-

based inference on the conditional model of interest neglecting the selection process, that is the model

{R, f(r|y,x;γ), γ∈Γ}, the following conditions must be satisfied:

1. the following two statistical cuts must be satisfied
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);();,();,,( φψϕ xfxryfrxyf = , and,

 );,();();,( 21 ψψψ xyrfxyfxryf = ;

2. the independence of r from y, given x, to ensure the MCAR condition; the independence of r from my  given

x to ensure the MAR condition.

Again, we say that the selection mechanism is weakly ignorable if condition 1 and MAR are satisfied, while we

say that the selection mechanism is strongly ignorable if condition 1 and the MCAR are satisfied.

2.5 MAR and MCAR for a dynamic panel data model

 Panel data are constituted by a sample of units followed over time and they are often used to estimate

dynamic models. Dynamic models are those in which the dependent variable is explained by its past and/or the

present and past of other variables. In the following, we will consider a generic panel composed of N units

followed for T consecutive waves.

 As already mentioned, in the case of a random sample of N units observed at a single occasion (T=1),

the definitions of MAR and MCAR stated in Section 2.2 apply. Indeed, ( )ii ry ,  are identically and independently

distributed (i.i.d.), and the joint likelihood factorizes into the product of N identical likelihood,

( ) ( )∏
=

=
N

I
iiNN ryfrryyf

1
11 ;,;,...,,,..., ϕϕ . This is no longer true when the variables observed at consecutive time

periods, for a specific unit, are not independent.

 The definition of weak and strong ignorability can be easily extended to the case of a panel, considering

a joint model for T
i 1,y . Condition 1 in Section 2.2 is substituted by a condition of initial cut:

 1’. ( ) ( ) ( ),;;;, 11,1,1,1, θφϕ T
i

T
i

T
i

T
i

T
i fff yyrry =

where T
i 1,y  is the vector of the variables tiy ,  for the i-th unit and for t=1,…,T, while T

i 1,r  is the vector associated

with the response pattern of the i-th unit, that is the vector of the dummies tir , , taking value 1 when the variable

tiy ,  is observed, and 0 otherwise.

 Conditions 2 and 3 are replaced by the equivalent assumptions:

 2’. ( )φ;,1,
m
i

o
i

T
if yyr ( )φ;1,

o
i

T
if yr= ,

 3’. ( )φ;,1,
m
i

o
i

T
if yyr ( )φ;1,

T
if r= ,

where tm
i

,
1,y  is the sub-vector of the missing variables and to

i
,
1,y  is the one of observable variables of the vector

t
i 1,y .

 The variables observed for a unit are likely to be dependent from their past; that is, the factorization

( )ϕ;, 1,1,
T
i

T
if ry ( )∏

=
=

T

t
titi ryf

1
,, ;, ϕ  is not valid and we have to use the sequential factorization
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( )ϕ;, 1,1,
T
i

T
if ry ( )∏

=

−−=
T

t

t
i

t
ititi ryf

1

1
1,

1
1,,, ;,, ϕry .4 In other words we assume that ( )1

1,
1

1,,, ,, −− t
i

t
ititi ry ry  be identically and

independently distributed across units and time. In this case, a more appropriate model of interest is a dynamic

one, which tries to explain y as a function of its past, ( )θ;1
1,,
−t

itiyf y . Then it is useful to restate the conditions 1’,

2’ and 3’ in terms of sequential models.

 

Condition 1’ requires that:

 a1. the sequential cut,

 ( ) ( ) ( ),;,;,;,, 1,
1

1,,
1

1,
1

1,,
1

1,
1

1,,, ∏∏∏ −−−−− =
t

t
i

t
iti

t

t
i

t
iti

t

t
i

t
ititi rfyfryf φθϕ yryrry

 must be applicable;

 a2. r does not Granger cause y, that is,

 ( ) ( )θθ ;;, 1
1,,

1
1,

1
1,,

−−− = t
iti

t
i

t
iti yfyf yyr .

 Further conditions that 2’ and 3’ require are:

 b. ( ) ( )φφ ;;, 1
1,,1,

1
1,,

−− = t
iti

t
i

t
iti rfrf ryr  or φ;1

1,1,,
−⊥ t

i
t
itir ry .

The condition b can be broken down into two parts:

 b1. φ;, ,
1,

1
1,

,
1,,

to
i

t
i

tm
itir yry −⊥ ,

 b2. φ;1
1,

,
1,,

−⊥ t
i

to
itir ry .

 

 In the case of dynamic panel data, b1 is the sequential MAR condition, b2 is the sequential OAR

condition, while b is the sequential MCAR assumption. The conditions a1, a2 and b1 ensure that the missing

data mechanism is weakly ignorable for the maximum likelihood estimation of ( )θ;1
1,,
−t

itiyf y , while the

conditions a1, a2, b1 and b2 ensure strong ignorability in any inference.

 If we consider a maximum likelihood that completely eliminates the units for which there is a wave non-

response, the weak ignorability is no longer a sufficient condition and we need the MCAR condition, as for any

other type of inference (such as the sampling distribution inference).

2.6 MAR and MCAR conditions in a dynamic panel model with attrition

 In this section, we present a proposition which gives a set of necessary and sufficient conditions for the

weak ignorability of the selection mechanism; that is, for the conditions 1’ and 2’, in the case of attrition.

 

                                                
4 To simplify notation in the sequential models, we implicitly condition on the set of initial conditions.
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Proposition Let ( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  be i.i.d. across units and time, and let ( )φ;, 1,1,

T
i

T
if ry ( )∏

=

−−=
T

t

t
i

t
ititi ryf

1

1
1,

1
1,,, ;,, φry

be the associated data generating process. Let tiy ,  be observed when tir ,  takes value 1,  and missing when

0, =tir . Further, whenever 0, =tir , let 0, =sir  for any s>t.

Then, if the condition a2 (r does not Granger cause y) is true, a set of necessary and sufficient conditions for the

weak ignorability of the selection mechanism is:

a1. it must be possible to operate a sequential cut

( ) ( ) ( ),;,;,;,, 1,
1

1,,
1

1,
1

1,,
1

1,
1

1,,, ∏∏∏ −−−−− =
t

t
i

t
iti

t

t
i

t
iti

t

t
i

t
ititi rfyfryf φθϕ yryrry

c1. 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr .

Proof

First, we prove that a1 and c1 are sufficient conditions to ensure 1’ and 2’, that is, weak ignorability.

Applying the condition of Granger non-causality to the factorization a1, we obtain:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) =∏ −−

t

t
i

t
ititi ryf ϕ;,, 1

1,
1

1,,, ry

( ) ( )∏∏ −−=
t

t
i

t
iti

t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry ( ) ( ),;; 1,1,1 φθ T

i
T
i

T
i ff yry=

so that a1 and a2 ensure the initial cut, 1’.

Let us assume that a unit, i, drops out at d-th wave, and let us rewrite the model as the product of three factors:

( ) =ϕ;, 1,1,
T
i

T
if ry 321 LLL ⋅⋅ ,

where

( ) ( )



= ∏∏

−

=

−
−

=

−
1

2

,
1,

1
1,,

1

1

1,
1,,1 ;,;

d

t

to
i

t
iti

d

t

to
i

o
ti rfyfL φθ yry ,

( ) ( )



= −−− φθ ;,,; ,

1,
1,

1
1,,

1,
1,,2

m
di

do
i

d
idi

do
i

m
di rfyfL yyry , ( ) ( )



= −−

+=

−−∏ φθ ;,,;, ,
,

1,
1,

1
1,,

1

1,
,

1,
1,,3

tm
di

do
i

t
iti

T

dt

tm
di

do
i

m
ti rfyfL yyryy .

In a likelihood-based inference on the parameter θ, we must eliminate the unobserved variables through the

integration from the likelihood, ( )ϕ;, 1,1,
T
i

T
if ry , in the following way:

( ) Tm
i

T
i

T
i df ,

1,1,1, ;, yry∫ ϕ  
Tm

i
dLLL

,

1,321∫ ⋅⋅= y .

The factor 1L  does not depend on unobserved variables, so it can be taken out of the integral sign.

Since we have assumed that ( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  are i.i.d., and that ( )φ;, 1,

1
1,,

t
i

t
itirf yr −  has the same distribution form

for each t, then the condition c1, 1
1,

1
1,,, , −−⊥ t

i
t
ititir yry ,  is equivalent to 1,

1,
1

1,,, , −−⊥ to
i

t
i

m
titir yry , so that the factor,

( ) ( )φφ ;,;,, 1,
1,

1
1,,,

1,
1,

1
1,,

−−−− = do
i

d
idi

m
di

do
i

d
idi rfyrf yryr , can be taken out of the integral sign too.



 8

For any t>d, ( )0,, =diti rr  is independent of any variable because if dir ,  = 0, then 1)00Pr( ,, === diti rr  and tir ,

becomes degenerate. If tir , =0, then ( ) 1;,, ,
,

1,
1,

1
1,, =−− φtm

di
do

i
t
itirf yyr , consequently the selection mechanism,

( )φ;,, ,
,

1,
1,

1
1,,

tm
di

do
i

t
itirf yyr −− , cancels out of the likelihood for any t>d.

The integrated likelihood becomes:

( ) Tm
i

T
i

T
i df ,

1,1,1, ;, yry∫ ϕ = ⋅1L ( ) ( ) Tm
di

T

dt

tm
di

do
i

m
ti

do
i

d
idi dyfrf ,

,
1,

,
1,

1,,
1,

1,
1

1,, ;,;, yyyyr ∫∏
=

−−−− ⋅ θφ .

Since ( ) 1;, ,
,

1,
,

1,
1,, =∫∏

=

−− Tm
di

T

dt

tm
di

do
i

m
ti dyf yyy θ , we can rewrite this as:

( ) ( )



⋅



 ∏∏

−

=

−
−

=

−
1

2

,
1,

1
1,,

1

1

1,
1,, ;,;

d

t

to
i

t
iti

d

t

to
i

o
ti rfyf φθ yry ( )φ;, 1,

1,
1

1,,
−− do

i
d
idirf yr .

Given that θ e φ are variation free, we can make inference on the parameter θ ignoring the selection

mechanism, that is considering the likelihood for the observable variables: ( )∏
−

=

−
1

1

1,
1,, ;

d

t

to
i

o
tiyf θy .

In this way, we have also proved that the condition 2’ is true:

( )φ;,1,
m
i

o
i

T
if yyr = ( ) ( )∏∏

=

−−

=

− =
T

t

t
i

t
iti

T

t

t
i

t
iti rfrf

1

1
1,

1
1,,

1
1,

1
1,, ;,;, φφ yryr ( )φ;1,

o
i

T
if yr=

In the following, we prove that a1 and c1 are necessary conditions to ensure 1’ and 2’. We begin by proving that

when the initial cut 1’ operates and condition a2 holds, then a1 is true.

Using condition 1’, we can state that:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) ( )=φθ ;; 1,1,1

T
i

T
i

T
i ff yry ( ) ( )∏∏ −−

t

T
i

t
iti

t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry .

Since condition a2 may be restated as t
i

t
i

T
titi yr 1,

1
1,1,, , yr −

+⊥ ,5 we can rewrite the joint likelihood as:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) ( )∏∏ −−

t

t
i

t
iti

t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry ,

so that ( )=φ;1,1,
T
i

T
if yr ( )∏ −

t

t
i

t
itirf φ;, 1,

1
1,, yr  and the sequential cut a1 operate.

The equality, ( )=φ;1,1,
T
i

T
if yr ( )∏ −

t

t
i

t
itirf φ;, 1,

1
1,, yr , and condition 2' imply that:

 ( )=φ;1,1,
T
i

T
if yr ( )∏ −

t

to
i

t
itirf φ,

1,
1

1,, ,yr .

( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  are i.i.d. across units and time; hence ( )φto

i
t
itirf ,

1,
1

1,, ,yr −  maintains a common form for any t.

Since for t>d, ( )0,, =diti rr  is a degenerate variable independent of the past value of y, and for t=d, the

sequential selection model does not depend on the value of y at time t, the last equality prove that c1 is satisfied.

                                                
5 For a proof of this last equivalence, see Florens and Mouchart (1982).
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 The theorem states that, in the case of dynamic panel data with attrition, the condition y does not

Granger cause, r, 1
1,

1
1,,

−−⊥ t
i

t
iti yr r , is neither necessary nor sufficient condition for the MAR assumption. This

Granger non-causality is instead a necessary but not sufficient condition for MCAR. The theorem also proves

that the sequential MAR condition is given by (c1) 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr , in the case of the problem of attrition. In

other words, in the case of attrition, the conditions (a1), (b1) and (c1) ensure a correct likelihood-based inference

on the dynamic model of interest, i.e. the weak ignorability.

 It is easy to prove that the strong ignorability for a dynamic panel model with attrition requires the

sequential MCAR condition, 1
1,1,,
−⊥ t

i
t
itir ry , instead of the sequential MAR one.

 

2.7 MAR and MCAR conditions in a dynamic panel model with explanatory variables

 The definitions of MAR and MCAR can be easily modified to cover conditional models of the

form, );,( 1
1,1,, θ−t

i
t
itiyf yx , where explanatory variables x are added to the dynamic panel model.

 Let );,( 1
1,1,, θ−t

i
t
itiyf yx  be the model of interest, let ( )ϕ;,, 1,1,1,

T
i

T
i

T
if xry = ( )∏ −−−

t

t
i

t
i

t
itititi xryf ϕ;,,,, 1

1,
1

1,
1

1,,,, xry

be the associated data generating process and let the missing data problem be narrowed down to the attrition

problem; then, it is easy to prove that weak ignorability requires the following conditions:

 d1. the weak exogeneity of x, that is

( )
( ) ( ),;,,;,,,

;,,,,

2
1

1,
1

1,
1

1,,11,
1

1,
1

1,1,,

1
1,

1
1,

1
1,,,,

∏∏

∏
−−−−−

−−−

=

=

t

t
i

t
i

t
iti

t

t
i

t
i

t
iiti

t

t
i

t
i

t
itititi

xfryf

xryf

ϕϕ

ϕ

yrxxyr

xry

 d2. the sequential cut

( )
( ) ( ),;,,;,,

;,,,

1,1,
1

1,,1,
1

1,
1

1,,

11,
1

1,
1

1,,,

∏∏

∏
−−−

−−

=

=

t

t
i

t
i

t
iti

t

t
i

t
i

t
iti

t

t
i

t
i

t
ititi

rfyf

ryf

φθ

ϕ

xyrxyr

xry

 d3. the Granger non-causality

 t
i

t
i

t
itiy 1,

1
1,

1
1,, ,xyr −−⊥ ,

 d4. the sequential MAR condition

 t
i

t
i

t
ititi yr 1,

1
1,

1
1,,, ,, xyr −−⊥ .

 In the case of a conditional dynamic panel model with general response patterns, the weak irrelevance is

more stringent: d4 must be replaced by the sequential MAR t
i

to
i

t
i

tm
itir 1,

,
1,

1
1,

,
1,, ,, xyry −⊥  and the following additional

condition is required:

 d5. 1,
1,

1
1,

1
1,

1,
1,, ,, −−−−⊥ to

i
t
i

t
i

tm
itix yxry .

 Strong ignorability for a conditional dynamic panel model requires the conditions d1-d3 and d5, and the

following additional conditions:

 d6. the sequential MCAR
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 t
i

t
i

t
itir 1,

1
1,1,, ,xry −⊥ , and

 d7.  1
1,

1
1,

1,
1,, , −−−⊥ t

i
t
i

to
itix xry .

 We emphasize that the weak and strong ignorability for the joint model, ( )θ;1,1,
T
i

T
if xy , is not equivalent

to the weak and strong ignorability for the sequential model, );,( 1
1,1,, θ−t

i
t
itiyf yx . In the former case the

ignorability requires the following conditions:

 D1. two initial cuts

 ( ) ( ) ( )2111,1,1,1,1,1, ;;,;,, ϕϕϕ T
i

T
i

T
i

T
i

T
i

T
i

T
i fff xxryrxy = ,

 ( ) ( ) ( )φθϕ ;,;;, 1,1,1,1,1,11,1,1,
T
i

T
i

T
i

T
i

T
i

T
i

T
i

T
i fff xyrxyxry = , and

 D2. the MAR condition ( )φ;,, 1,1,
T
i

m
i

o
i

T
if xyyr ( )φ;, 1,1,

T
i

o
i

T
if xyr=  to ensure weak ignorability, or

  D3.  the MCAR condition ( )φ;,, 1,1,
T
i

m
i

o
i

T
if xyyr ( )φ;1,1,

T
i

T
if xr=  to ensure strong ignorability.

 The equivalence between the ignorability defined for the joint model and for the sequential model is

true only if x is strongly exogenous for the parameters of the dynamic model of interest. We use the definition of

strong exogeneity introduced by Engle et al. (1983); that is, (y,r) does not Granger cause x, and x is weakly

exogenous for the parameter of interest. Therefore, the strong exogeneity of x includes the condition d1, d5 and

d7.

 We remark that if the model, );,( 1
1,1,, θ−t

i
t
itiyf yx , is used to forecast y given the value of x, then we need

the strong exogeneity of x. For example, this is the case in causal inference, when the counterfactual response

m
tiy ,  is forecasted conditioning on ),( 1

1,1,
−t

i
t
i yx  to assess the average effect of a treatment. In this case, tir ,  is equal

to 1 if a person is treated in the time period t, and 0 otherwise. In causal inference, we should be aware that any

conditioning variable, x, should be strongly exogenous. In other words, the Granger non-causality condition,

 )(),,( 1
1,,

1
1,

1
1,

1
1,,

−−−− = t
iti

t
i

t
i

t
iti xfxf xryx ,

must be satisfied.

2.8 The MAR condition according to Robins et al.

 Robins and several different co-authors (Robins, Rotnitzky and Zhao 1995, Gill and Robins 1997,

Robins and Gill 1997) have given definitions of MAR and MCAR for multivariate data in papers. In this section,

we present these definitions and outline their differences from ours.

 

 The definition of MAR for monotone response patterns in Robins and Gill (1997) and Robins,

Rotnitzky and Zhao (1995) are both equivalent to the sequential MAR definition given in Section 2.6 for the

attrition case, 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr . The k-sequential coarsening at random (denoted briefly by ‘k-sequential CAR’)

definition, given by Gill and Robins (1997) and adapted for the attrition case, is again equal to the sequential
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MAR. In Appendix C, we prove this claim and we present the definitions of a k-sequential coarsening and of k-

sequential CAR given by Gill and Robins (1997).

 We remark that these definitions are not sufficient to ensure a correct likelihood-based inference on the

parameters of the conditional model, ( )θ;1
1,,
−t

itiyf y . Two additional conditions are necessary: the sequential cut

(a1) and the Granger non-causality (a2), 1
1,

1
1,,

−−⊥ t
i

t
itiy yr .

 Moreover, we emphasize that the above MAR conditions defined for the sequential model

( )1
1,1,, , −t

i
t
itirf ry , which we call sequential MAR conditions, and the MAR condition for the multivariate model

( )T
i

T
if 1,1, yr , are not equivalent.  As a matter of fact, Robins and Gill find examples in which the sequential MAR

condition does not ensure the MAR one. In borrowing from model reduction theory, it is possible to define

conditions such that the sequential MAR condition is equivalent to the MAR condition for the joint model

defined for T consecutive periods. What is missing in the work of Robins et al. is that the MAR condition is not

enough to ensure the weak ignorability condition; indeed, the initial cut in 1’ must also be satisfied. In terms of

conditions on the sequential models, the initial cut is satisfied if and only if the sequential cut (a1) and the

Granger non-causality (a2) are satisfied (see Engle et al. 1983). This is the reason why the sequential MAR

definition does not ensure the MAR condition in any situation. Model reduction theory allows us to prove that

when the initial cut in 1’ is satisfied (or the sequential cut in a1) and the Granger non-causality in a2 are satisfied,

then the sequential MAR and the MAR concepts are equivalent.

 

 When the response pattern is not monotone, following the suggestion given in Robins, Rotnitzky and

Zhao (1995), we can decide to make inference using only the sub-vector of consecutive observed variables and

discharge all the observations after the first non-response. So, for example, if )1,0,1,0,1,1,1(7
1, =ir , then  we use

only the observations on the variable of interest, say y, for the first 3 waves. Let )( 1,, 1r == t
iti Is , where I(.) is a

dummy variable, taking value 1 if the event between brackets is true and 0 otherwise; then we can artificially

assume that tiy ,  is observed when 1, =tis , and missing otherwise. In this way, the response pattern is artificially

monotone and the above definition of sequential MAR applies. As remarked by Robins, Rotnitzky and Zhao

(1995), this a good expedient that allows us to make a correct likelihood-inference based on the sub-sample of

monotone response patterns when 1
1,

1
1,,, , −−⊥ t

i
t
ititi ys ys . In any case, this method does not use all the information

available, and is therefore inefficient.

 Robins, Rotnitzky and Zhao (1995) show that if we want to use all the information, we should impose

an additional condition to ensure MAR. This additional condition is:

 ( )T
ti

t
i

tm
i

to
iti yryyr 1,

1
1,

1,
1,

1,
1,, ,,,0Pr +

−−−= = ( )1
1,

1,
1,, ,0Pr −−= t

i
to

iti ryr .

We emphasize that the above additional condition can be rewritten as the following two conditions:

 (1) 1
1,

1
1,1,, , −−

+⊥ t
i

t
i

T
titir yry , or equivalently, 1

1,
1

1,,
−−⊥ t

i
t
itiy yr ;

 (2) 1
1,

1,
1,

1,
1,, , −−−⊥ t

i
to

i
tm

itir ryy .
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Condition (1) is the Granger non-causality condition (a2 in Section 2.5), which is a necessary condition to ensure

weak ignorability, even in the case of monotone response. Condition (2), together with 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr , is

equivalent to the sequential MAR condition given in Section 2.5.

 As proved in Appendix C, in the case of the non-monotone response pattern, the k-sequential CAR in

Gill and Robins (1997) is different from both our definition of MAR and the one given by Robins, Rotnitzky and

Zhao (1995).

 In conclusion, the definitions of sequential MAR are not equivalent in the different papers of Robins

and co-authors. Borrowing from reduction model theory we have clarified what is missing in the definitions by

Robins et al. for the special case of panel data, i.e. for the case in which there is a sequential order for the

observations on the same units.

2.9 Further extensions of the MAR and MCAR conditions

 The concepts of Granger causality, sequential cut, and strong and weak exogeneity are meaningful when

working with time series analysis. In the previous sections, we have shown that these concepts are very useful for

panel data too, which can be viewed as a set of time series. In particular, we have shown their usefulness in

extending the definitions of MAR and MCAR from cross-sectional data to panel data. By analogy, the same

extension applies to the definitions of coarsening at random given in Heitjan and Rubin (1991) and described in

Appendix A.

 The same type of extension can be useful in causal inference when the treatments or risk exposures, the

effects of which are to be evaluated, are time varying. In particular, this extension is helpful in disentangling

some of the misunderstandings between Holland and Granger (see Holland 1986). Holland’s (1986) attempt to

use the definition of Granger causality in causal inference is misleading because he considers the evaluation of

the effect of a treatment lasting in a single period. Granger causality is only meaningful when there are repeated

observations across time and when attention is focused on a sequential model conditioning to past information,

(see Granger 1986). I agree instead with Holland (1986) when, in his reply to Granger, he explains how the

application of Rubin’s model is not limited to cross-sectional data but may be extended to situations in which

there are time series data for each unit or the so-called panel or longitudinal data.

 As Holland (1986) remarks, in the 1980s, there were no applications of causal inference to longitudinal

data, but now there are numerous examples of such studies (see, for example Robins, Greenland and Hu 1999).

In these applications, the Granger causality concept is useful to help understand which conditions are necessary

to make a correct causal inference and to clarify the difference between the causal concepts developed by

Granger and Rubin.

3. Limits of Some Tests for MAR and MCAR in Longitudinal Data

 Both the MAR and MCAR conditions require that the selection mechanism does not depend on

unobserved variables. Clearly it is hard to verify dependence on unobserved variables whose values are

unknown. Tests for the MAR or the MCAR conditions that verify restrictions on the parameters of the model of

interest ignoring the selection mechanism, or, vice versa, on the parameters of the selection mechanism

disregarding the model of interest, fail the objective, at least partially.
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 In this section, we outline the limitations of the procedures proposed by Little (1988), Diggle (1989),

Park and Davis (1993) and Taris (1996, 1997) in detecting the selection problem. These procedures are only

able to detect the MCAR conditions in part, and they cannot check the MAR assumption. These procedures

investigate the dependence of the selection mechanism on the observed variables, but they cannot control for the

selectivity caused by the dependence of the selection mechanism on missing variables.

 

3.1 Limits of the Little and Park-Davis tests

 The Little (1988) and Park and Davis (1993) tests are based on a common idea: to divide units into

groups according to the missing (response) pattern, ( T
i 1,r ),6 and to estimate the model of interest for each group

separately, then to test the MCAR condition by verifying if the estimated parameters of the models, associated

with each missing pattern, are different. Little considers the normal probability distribution for a continuous

variable, y, subjected to non-response, and tests the MCAR assumption by a likelihood ratio test. Park and Davis

consider the distribution of a discrete variable, y, conditional on a set of explanatory variables, and use a Wald

test, instead of a likelihood ratio test, to verify the MCAR. Both tests verify a condition that is only necessary but

not sufficient to guarantee the MCAR assumption. Suppose that T different repeated values are observed for the

unit, i, for the variable, y, T
i 1,y , then the Little test verifies if 1)(

1,
.
1,1,1, , −

+⊥ to
i

t
i

T
ti

t
i yrry , while the Park and Davis test

verifies if t
i

to
i

t
i

T
ti

t
i 1.

1)(
1,

.
1,1,1, ,, xyrry −

+⊥ , where t
i 1.x  are variables that are always observed.

 The null hypothesis used in both tests is inadequate. The reason for this inadequacy is more evident

when the missing data problem is limited to the attrition problem. Let y be a variable that we observe on N units

repeatedly in time, up to the drop out of the unit from the panel or up to T, the last wave of the panel. Little

(1988) assumes that, under MCAR, T
i 1,y  is distributed as N(µ,Σ), no matter what the response pattern, T

i 1,r , is.

Then, Little (1988) tests MCAR verifying if the sub-vector of the observed variables is distributed as a

multivariate normal with mean equal to the corresponding sub-vector of µ and sub-matrix of Σ, of the

multivariate normal distribution for T
i 1,y . In the case of attrition, the sub-vector of observed variables for a

generic unit dropping out after t periods is t
i 1,y  and we denote with )(tµ  and )(tΣ  the mean vector and the

variance matrix corresponding to the sub-vector of first t elements of µ, and to the txt principal sub-matrix of Σ.

Let tm  be the number of units that drop out of the panel at period (t+1), let ∑
=

=
tm

j

t
j

t

t

m 1
1,

)( 1
yy , and let )(ˆ tµ  be

equal to the sub-vector of the first t elements of the maximum likelihood estimator of µ, then the Little test

statistic equals ∑
=

− −Σ′−=
T

t

ttttt
tL mT

1

)()(1)()()( )ˆ()ˆ( µµ yy . Little asserts that under the MCAR assumption, LT  is

distributed as a Chi-square, with 
2

)1(T-T ×
 degrees of freedom. This assertion is true; however, the same

distribution remains valid under the weaker assumption that t
i

t
i

T
titiy 1,

1
1,1,, ,ryr −

+⊥ .

                                                
6 For example, for a panel of T waves there are 2T possible response patterns and therefore 2T corresponding groups in which a unit may
belong.
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 Little’s test cannot verify if an observable variable, tiy , , given its past values, is independent from t
i 1,r ;

in fact, if tiy ,  is observable, t
i 1,r  is always equal to the vector of ones. In other words, Little’s test cannot verify

the MAR condition, 1
1,1,,
−⊥ t

i
t
itiy yr , but can only check the condition, t

i
t
i

T
titiy 1,

1
1,1,, ,ryr −

+⊥ . We can prove that the last

condition is equivalent to the hypothesis that y does not Granger cause r, 
1

1,

1
1,

−−⊥ t

i

t
iitr ry .7 In conclusion, the Little

test verifies a condition that is necessary but not sufficient for MCAR, and that is neither necessary nor sufficient

for the MAR assumption (see Section 2).

 The same comments apply to the Park and Davis test, if we change the above conditional independence

hypothesis by adding a set of explanatory variables, x, among the conditioning variables, and consider a discrete

distribution for the variable y.

 An equivalent reasoning is valid when the missing problem is more general than the attrition problem.

The true null hypothesis of the Little test is 1)(
1,

.
1,1,1, , −

+⊥ to
i

t
i

T
ti

t
i yrry  or equivalently 1

1,
1)(

1,,
−−⊥ t

i
to

itir ry ; again, this is a

condition that is necessary but not sufficient for MCAR.

3.2 Limits of the Diggle test

 Diggle (1989) has proposed a class of tests to verify if the attrition in a panel survey occurs at random.

Given a panel with T waves, the units can be observed for a number of consecutive periods ranging from 1 to T.

The tests proposed by Diggle verify if units that dropout at the (t+1)-th wave represent a random sample of units

that drop out after the (t+1) or more waves. He introduces a score function of the observed past variables t
i 1,y ,

h( t
i 1,y ), that should be linked to the probability of drop out, and tests if the score functions for the units dropping

out after (t+1) times are a random sample from the set of scores for units that drop out in the (t+1)th wave or

later. A possible test used to verify this is a Kolmogorov-Smirnov statistic test.

 In other words, Diggle (1989) verifies whether the distribution of  { }1=1,=|) h( 1,1,
t
i,1 +ti

t
i rry  is equal to

the distribution of { }0=1,=|) h( 1,1,
t
i,1 +ti

t
i rry ; that is, whether the condition { }1=|) h( 1,1,

t
i,1

t
itir ry +⊥  holds. Let us

assume that the function h is such that { }) h( 1,=| t
i,11,1,

t
i,1 yry t

itir +⊥ ; that is, h is, given the past information of r, a

balancing score, as defined by Rosenbaum and Rubin (1983). In this case, testing { }1=|) h( 1,1,
t
i,1

t
itir ry +⊥  is

equivalent to testing { }1=| 1,1,
t
i,1

t
itir ry +⊥ ; that is the condition that y does not Granger cause r, which is not the

MAR condition.

 Diggle suggests choosing a function h that reflects the probability that 1, +tir =1 as a function of t
i,1y ; that

is, he implicitly suggests using the propensity score, Pr( 1, +tir =1| t
i,1y , 1=1,

t
ir ).  As proven by Rosenbaum and

Rubin (1983), the propensity score is the coarsest balancing score; in other words, any other balancing score is a

function of the propensity score.

                                                
7 For a formal proof, see Florens and Mouchart (1982).
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 In conclusion, the Diggle test verifies the Granger non-causality condition, { }1=| 1,1,
t
i,1

t
itir ry +⊥ .

However, it is not able to verify if { }t
i

t
ititi yr 1,1,1,1, , y1r =⊥ ++ , and so it is not a test for the MAR or, as defined by

Diggle, for  random dropouts.

 

3.3 Limits of the Taris test

 Let Pr( 1, +tir =0| 1=1,
t
ir , t

i
t
i 1,1, ,yx ) be the probability to drop out at a specific wave, t, for a generic unit, i,

conditioning on its permanence in the panel until wave (t-1) and on a set of explanatory variables. Let τ  be the

time of permanence of a unit in the panel; then we can rewrite the above probability as:

Pr( iτ =t| iτ >t-1, t
i

t
i 1,1, ,yx ),

which is a discrete hazard function. If the data are MCAR, then the hazard function should depend neither on

observed variables nor on unobserved ones, and should be constant across waves; that is:

Pr( iτ =t| iτ >t-1, t
i

t
i 1,1, ,yx )=c.

 A very interesting result for the hazard function is stated by the “lemma” of movers and stayers, which

states that when the distribution of a duration T, conditional on a set of variables x, is exponential with a

parameter λ(x), a function of x, and x follows any distribution for which the first derivative exists, then the non-

conditional hazard function of T, marginalized with respect to x, is time decreasing (see Lancaster 1990). This

means that a negative time dependence of the hazard function may be caused by the omission of relevant

explanatory variables. Therefore it is necessary to distinguish between spurious and true time dependence.

 Under the assumption that there is no true time dependence, a decreasing hazard function implies that

data are not MCAR, while a constant hazard implies that we would not reject the MCAR condition.

 This is the idea developed by Taris (1996, 1997), who says that '…a decreasing non-response for every

successive wave indicates that non-response is selective to a degree.' Taris’s idea is very useful to verify the

MCAR condition. Taris also explains that it is possible to control for observed variables by trying to identify

different groups of the population for which the hazard function is constant.  In this case we would say that data

are MAR but not MCAR. Taris does not use the conditional duration model approach in which variables enter as

explanatories; rather he uses the Markov chains approach (the simple first order Markov chain, the mixed

Markov chain and the mover-stayer model).

 We think that the conditional duration model approach can be useful to detect the MAR condition. A

conditional duration model is more general then a Markov chain model because it allows for time non-

homogeneity, and it may be very useful in distinguishing between observed and unobserved heterogeneity

causing the spurious time dependence.

 If, after controlling for all observed variables in the hazard model, there is still a time dependence, then

we should conclude that the data are neither MAR nor MCAR; whereas in the absence of time dependence, we

cannot reject that data are MAR. If, without controlling for any explanatory variables, there is time

independence, then we cannot reject the MCAR assumption.

 Obviously we should not exclude a priori the assumption that the hazard function may be the result of a

mixture of different hazard functions for different populations, as in the mixed Markov chain.
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 In conclusion, the Taris idea of verifying the MCAR and MAR conditions by checking the time

dependence is very useful, but its validity is based on the assumption that the hazard function has no true time

dependence. This assumption may not be true.  Indeed, there may be a conditioning problem in the behavior of

the person. For example, if a person is always contacted by the same interviewer, it may be that the propensity to

drop out decreases from one wave to another. Furthermore, in testing the MAR condition, a misspecification of

the selection mechanism can distort the results.

3.4 Limits of the variable addition test

 Another type of test that has been suggested to verify the relevance of the selection mechanism is the

variable addition test. This is a simple test that verifies the influence of variables associated with the non-

response patterns on the regression model of interest. These variables are added to the regression model of

interest as explanatory variables. If these added variables are not significant, then the selection mechanism is

considered ignorable.

 One should be careful in choosing the additional variables. In the case of the attrition problem, it is

useless to add 1, −tir  to a regression equation at the time t containing also a constant; in fact, 1, −tir  always takes

value 1. If there are time effects in the regression, it is also inappropriate to use ∑
=

T

t
tir

1
, .

 The MAR condition 1
1,1,1,, , −⊥ t

i
t
i

t
itiy yxr  is impossible to verify, because we only have information on tiy ,

when 1r =t
i 1, . We are only able to verify if 1ryxr =⊥ −−

+
1

1,
1

1,1,1,, ,, t
i

t
i

t
i

T
titiy , that is, if 1ryxy =⊥ −−− 1

1,
1

1,1,
1

1,, ,, t
i

t
i

t
i

t
itir , which

is not sufficient to ensure the MCAR and MAR conditions.

 Verbeek and Nijman (1992) presented the results of a Monte-Carlo analysis of the properties of the

variable addition tests and found that in some cases, the variable addition tests have no power. In particular,

when they used the following model of interest and missing data mechanism for the simulation experiment:

 tiititi xy ,,, εαβ ++= , (1)

 )0Pr()0Pr()1Pr( ,,10
*
,, >+++=>== tiitititi xrr ηξγγ , (2)

where titi ,,   and ηε  are error terms i.i.d. with mean zero, 2
, )( εσε =tiV , 2

, )V( ηση =ti and ηεσηε ,,, ),( =titiCov ;

ii ξα   and  are random effects i.i.d. with mean zeros, 2)( ασα =iV , 2)V( ξσξ =i , ξασξα ,),( =iiCov  and

2
ξσ + 2

ησ =1; then, they found that each of the following variables, ∑ ∏
= =

−

T

t

T

t
tititi rrr

1 1
1,,,   ,  , , added to equation (1) were

not significant.

 In the following we prove that the additional variable tests proposed by Verbeek and Njiman (1992) are

adequate to check departure from MAR caused by a correlation between the random effects in the two equations,

while they are not adequate to check departure caused by the correlation between the error terms. Since Verbeek

and Nijman (1992) do not allow for a severe selection bias caused by the correlation between random effects, the

little power of the additional variable tests follows. In the reference experiment situation in Verbeek and Nijman

(1992), the correlation between ξ and η is 0.5, but the importance of the random effects in both equations is too
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low, the ratios 2
ασ /( 2

ασ + 2
εσ ) and 2

ξσ /( 2
ξσ + 2

ησ ) are 0.1, so that the resulting selection bias is not severe and the

power of the tests is small.

 To prove that the additional variable tests proposed in Verbeek and Nijman (1992) cannot be used to

verify departure from the MAR caused by correlation between error terms, we consider the case of a null

correlation between the random effects in the equations (1) and (2). If the correlation between random effects is

0, then the following independence conditions hold: 1
1,1,

1
1,, , −−⊥ t

i
t
i

t
itiy yxr  and 1

1,1,
1

1,, , −−⊥ t
i

t
i

t
itir rxy  (that is,

1
1,1,1,, , −

+⊥ t
i

t
i

T
titiy yxr ). By consequence, the equation (1) is not affected by 1

1,
−t

ir and T
ti 1, +r , but only by tir , . Obviously

the dependence between tiy ,  and tir ,  cannot be verified because we observe tiy ,  only when tir , =1.

 The above authors have carried out the same simulation exercise for the quasi-Hausman test (a test

which verifies if the model coefficients for the balanced and unbalanced panels are equal) and have found that

the power is better but non-satisfactory. This is again a consequence of the fact that, ignoring the random effects

because of their little importance, 1
1,1,

1
1,, , −−⊥ t

i
t
i

t
itiy yxr  and 1

1,1,1,, , −
+⊥ t

i
t
i

T
titiy yxr , so that

)1,,()1,,( ,
1

1,1,,1,
1

1,1,, === −−
ti

t
i

t
iti

T
i

t
i

t
iti ryfyf yxryx ,

and the balanced and unbalanced panels give the same results.

 When instead, the authors simulated the following model for the missing data mechanism:

)0Pr()0Pr()1Pr( ,0
*
,, >+++=>== tiiititi xrr ηξπγ , (3)

the power of the variable addition tests and of the quasi-Hausman tests increased. This is not surprising since in

this case, x is not strictly exogenous for the parameters of model (1) and 1
1,1,1,, , −

+⊥/ t
i

t
i

T
titiy yxr . This means that

variables that are linked to the future response path T
ti 1, +r  affect the model (1). The results of Verbeek and

Nijman (1992) support this claim; in fact, the power of the tests obtained by adding the variables ∑ ∏
= =

T

t

T

t
titi rr

1 1
,,   e

is good, while the power is very small when the variable 1, −tir  is added.

 The same type of reasoning implies that the quasi-Hausman tests are more powerful when model (3) is

used for simulation instead of model (2), and the results again support our conclusion.

 Finally, Verbeek and Nijman (1992) also computed the power for the Lagrange multiplier test and

found that it is good in both simulations. In fact, the Lagrange multiplier test is the only one of the three tests

used that correctly takes account of the joint specification of the model of interest and selection mechanism.

 It seems that the simulation results obtained by Verbeek and Nijman (1992) are in support of the

observation that tests trying to verify the ignorability of the selection mechanism without jointly specifying the

model of interest and selection mechanism can be misleading. As these tests under-reject the null hypothesis of

ignorability, their usefulness in the detection of the selection problem is questionable.

3. Conclusions

 Rubin (1986) proves that in order to make correct likelihood-based inference, we need two conditions:

the MAR condition and the variation-free condition for the parameters of the model of interest and the selection
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mechanism. In this paper, we have defined the weak ignorability of the selection mechanism as the set of

conditions necessary and sufficient to make correct and efficient inference based on the likelihood function.

Using the terminology of model reduction theory, we have shown that weak ignorability is satisfied if the model

of interest and selection mechanism operate a statistical cut, and if the MAR condition is true. In borrowing from

model reduction theory, we have extended the definitions of weak ignorability to the panel data case. Two

definitions of weak ignorability may be given: one in terms of a joint model of interest, defined for T consecutive

waves, and another in terms of a sequential model, corresponding to a dynamic model of interest and defined for

a single time period. We have proved that weak ignorability for a joint model of interest requires a MAR

condition and an initial cut, whereas weak ignorability for a dynamic model requires a sequential cut, a Granger

non-causality condition and a sequential MAR condition. Moreover, we have shown that, if the model of interest

is conditional on a set of explanatory variables, then some additional conditions are necessary. Substituting

MAR with MCAR in the definition of weak ignorability, we have obtained the strong ignorability definition,

which is the condition ensuring a correct inference for any type of inference methodology.

 The extension of weak and strong ignorability to the case of dynamic panel models has allowed us to

emphasize the failure of some tests proposed in the literature to verify the MAR and/or the MCAR conditions.

Indeed, we have proved that the null hypothesis of some tests is given by an assumption that is not necessary for

MAR and which is necessary but not sufficient for MCAR.

 Furthermore, the formal definition of weak and strong ignorability has helped us to emphasize some of

the limitations of the MAR and MCAR definitions given by Robins and co-authors, and to disentangle some of

the misunderstandings that occurred between Holland and Granger concerning the concept of causality in the

causal inference.
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Appendix A: Definition of CAR following Heitjan and Rubin (1991)

 Heitjan and Rubin (1991) consider a general coarsening mechanism f(r|y;φ), in which r is a variable

indicating the level of coarsening. For example, if there is only a level of coarsening r, is a dummy variable and

we assume that y is coarsened if r=0 and perfectly observable if r=1. When r=0 we have a piece of information

about y that is not precise. For example, in the case of missing data, y is not observable; in grouped data, y is

known to belong to a sub-space of its domain; in right censored duration data, y belong to ),( ∞c  where c is the

censor value. In general coarsened data occur when we do not know the exact value of y, but we know that y

belongs to a sub-space of Y. Let y~  be the coarse variable, which defines the sub-space to which y belong, then

y~ =y when r=1 and YB ⊂∈y~ if r=0. In the case of missing data mYB =  and it is often equal to the entire

space Y .

 More generally, r may be a continuous variable, with a sample space given by R, that determines the

coarsening mechanism, so that y~  can be expressed as a function of y and the variable r, ),(
~~ ryYy = . The

distribution function of r given y, f(r|y;φ), is the process that determines the level of precision in measuring y. In

the case of missing data the coarsening mechanism is a selection process or missing data mechanism, in the

grouped data it is a grouping mechanism, in the causal inference it is an assignment process, and so on.

 The definition of coarsening at random (CAR) given by Heitjan and Rubin (1991), that generalizes the

missing at random (MAR) given by Rubin (1976), is the following one: y is coarsened at random if, for each

fixed value y~ , f(r|y;φ) takes the same value for all y∈ ),(
~~ ryYy = .

 The MAR definition (1) given in Section 2 is equal to the MAR given in Heitjan and Rubin (1991). In

fact when y is observed, y~  is not an interval but a point, so the requirement that f(r|y;φ) takes the same value for

all y∈ ),(
~~ ryYy =  is always satisfied. Therefore the Heitjan and Rubin (1991) MAR definition reduces to require

that f(r|y;φ) takes the same value for all mmy Y∈ , that is the definition of MAR in Section 2.

 The CAR condition together to the variation free condition ensure that the censored likelihood, cL , and

the likelihood with informative missing data, IL , are equal. Indeed the two likelihood functions are respectively

given by the following expressions:

 ( )
r

mmro

y
c

m

dyyfyfdyyfL

−







== ∫∫

1

~
);();();(

Y

θθθ ,
 

 (1)

and

 dydryrfryyfyfdydrryyfryfL
yy

I ∫ ∫∫ ∫ ==
~~

);|(),|~();(),|~(),;,( φθφθ =

 = ∫
y

dyyyfyf
~

);|~();( φθ ,

 

 (2)

where the integration is respect to the underlying dominating measure, a Lebesgue measure or a counting

measure, and ),|~( ryyf  is the conditional degenerate distribution of y~  given y and r
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≠
==

),(
~~ if  0
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~~ if  1

),|~(
ryYy

ryYy
ryyf .

 Under CAR f(r|y;φ) takes the same value for any y∈ ),(
~~ ryYy =  so

);|~();|(),|~( φφ yyfdryrfryyf =∫  is a constant, say α, for any y∈ y~  and we can rewrite (2)

as 









∫ dyyf
y~

);( θα , that is proportional to the likelihood (1). The proportionality between (1) and (2) under CAR

ensures that inference on θ based on the censored likelihood or on the likelihood with informative missing data is

equal.

 Sometimes r is unknown. An example is given by the case of a survey in which some units give a

rounded response and some other give the exact value, but we cannot distinguish between the two types of units.

When r is unknown, the definition of coarsened at random is: y is coarsened at random if, for each fixed value

y~ , dryrfryyfyyf ∫= );|(),|~();|~( φφ  takes the same value for all y∈ ),(
~~ ryYy = .

 For a formal proof of the equivalence between inference based on likelihood (1) and (2) see Heitjan and

Rubin (1991), for detailed examples see Heitjan (1993).

Appendix B: The case of a deterministically censored variable

 In this section we present a very simple example of a censored variable to show that MAR condition

does not require that the selection mechanism is constant for any y but only for any mYy ∈ .

 Let y be a continuous variable with support ),( +∞−∞=Y  and let us assume that we observe y only

when its value is lower than or equal to a constant c, then YY ⊂∞= ),(cm  and y is MAR because for any value

greater than c the probability to observe y is equal to 0.

 In this specific example the likelihood (1) in appendix A becomes

 ( ) ( ) ( ) rro

r

mmro

y

cFyfdyyfyfdyyf
m

−

−

−=





= ∫∫ 1

1

~
);(1);();();();( θθθθθ

Y

.

The selection mechanism f(r|y;φ) is deterministic, in fact

 




>
≤

=
1y probabiltiwith  if   0

1y probabiltiwith  if   1

cy

cy
r .

 When y is missing 1);|(),|();|~(
1

0
∑

=
==

r

mmmm yrfryfyyf φφ Y  for any mmy Y∈ , when y is observable

∑
=

=
1

0

);|(),|();|~(
r

oooo yrfryyfyyf φφ  is also equal to 1. This allows us to write the informative likelihood (1)

as

 ∫
y

dyyyfyf
~

);|~();( φθ = ( ) ( ) rro cFyf −− 1);(1);( θθ ,

which is equal to the likelihood with informative missing data (2).
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 This equality proves that the weak ignorability of selection mechanism does not require that the

selection mechanism be constant for any Yy ∈ , but only for any mYy ∈ .

Appendix C: The sequential CAR condition in Gill and Robins

(1997) and our sequential MAR condition

 A variable X is said to be coarsened if we cannot observe its exact value, but we know the subset of the

sample space to which it belongs. In other words we observe a coarse variable χ, instead of X, which defines the

subset to which X belongs.

 Following Gill and Robins (1997) we assume that “… χ is a coarsening of an underlying random

variable X. We suppose that X takes values in a finite space E. Its power set (the set of all subset of E) is denoted

by {. So χ takes values in {\{} and X5χ with probability one.”

 

Definition of a k-sequential coarsening: (Gill and Robins 1997) “We say that the random sets  χχχ ,,...,1 k

with each mχ  and χ5{\{} form a k-sequential coarsening of a random variable X if for m=0,…, k+1,

1+⊆ mm χχ  with probability 1 where { }Xo ≡χ  and χχ ≡+1k .”

Definition of a k-sequential CAR: (Gill and Robins 1997) “A k-sequential coarsening is a k-sequential CAR if,

for m=1,…, k, the conditional distribution of mχ  given 1−mχ  does not depend on the particular realization of

1−mχ  except through the fact that is compatible with mχ . In the discrete case, this means ( )BA mm == −1Pr χχ

is the same for all B in the support of 1−mχ  such that B⊆A.”

When the coarsening is due to the attrition problem, we prove that the k-sequential CAR definition of Gill and

Robins (1997) is equivalent to the sequential MAR definition given in this work.

 Let us consider a random sample of N units, for each unit i we observe repeatedly in time a variable y,

which takes values in the sample space Y, and we denote this multivariate variable T
iy 1, , where T is the number

of repeated observations. If tiy ,  is missing, then the successive variables, Titi yy ,1, ,...,+ , are also unknown (this is

the case of the attrition problem). Each missing variable, y, takes value in Y, so that the corresponding coarse

variable, y~ , which defines the sub-space to which y belongs, is equal to the entire sample space Y.  Let

T
iTii yyyX 1,,1, ],...,[ == ; then the coarsened multivariate variable associated to a unit i, for which the last k

variables are not observed, is denoted by ],...,,,...,[]~,...,~,,...,[ 1,1,21,1, YY+−+−+− == kTiiTKTkTii yyyyyyχ .

 If we define χχχ ,,...,0 k  in the following way:

],,...,,,...,[ 12,1,1,0 TTkTikTii yyyyy −+−+−=χ ,

],,...,,,...,[]~,,...,,,...,[ 12,1,1,12,1,1,1 Y−+−+−−+−+− == TkTikTiiTTkTikTii yyyyyyyyyχ ,

…
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],...,,,...,[]~,...,~,,...,[ 1,1,21,1, YY+−+−+− === kTiiTKTkTiik yyyyyyχχ ;

then mm χχ ⊆−1  for any m=0,…,k and χ  can be viewed as the result of a k-sequential coarsening.

 To prove that χ  is a k-sequential CAR, we have to show that ( )BA mm == −1Pr χχ =c, where c is a

constant, for all B in the support of 1−mχ  such that B⊆A (see the above definition of k-sequential CAR).

 If the first (T-1) elements of 1χ  are not equal to the corresponding observed elements of 0χ , then

( )BA == 01Pr χχ =0; so that verifying

 ( )BA == 01Pr χχ =c

is equivalent to verify that

 ( )1,,,...,~Pr 1
1,,1,1, == −

−
T

iTiTiiT ryyyy Y =c ∀ Y∈Tiy , ,

that is, using the fact that )0()~( ,, === titi ry Y ,

  ( )1== −
−

1
1,,1,1,, ,,,...,0Pr T

iTiTiiTi ryyyr = ( )1== −
−

1
1,1,1,. ,,...,0Pr T

iTiiTi ryyr ,

where r is the dummy indicator of response.

 By analogy ( )BA mm == −1Pr χχ =c for all B in the support of 1−mχ  such that B⊆A is true if and only if

 ( )01 === +
−

−
T
ti

t
ititiiti rryyyr 1,

1
1,,1,1,, ,,,,...,0Pr =

 ( )01 === +
−

−
T
ti

t
itititi rryyr 1,

1
1,1,,. ,,,...,0Pr

 where t=T-m+1. Since ( ) 0,,,,...,0Pr 1,
1

1,,1,1,, =≠== +
−

− 01 T
ti

t
ititiiti rryyyr  in the case of attrition, we can rewrite the

last equality as

 ( )1== −
−

1
1,,1,1,, ,,,...,0Pr t

ititiiti ryyyr = ( )1== −
−

1
1,1,,. ,,...,0Pr t

itititi ryyr ,

that is the sequential MAR condition given in Section 2.6, 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr .

If we consider a more general response pattern, possibly non-monotone, then the definition of k-sequential CAR

given in Gill and Robins (1997) does not correspond to our definition of sequential MAR.

 Indeed, the k-sequential CAR condition for non-monotone response patterns is equivalent to the

following condition,

 ( )T
ti

t
iti

oT
iti rryyr 1,

1
1,,1,, ,,,0Pr +
−= = ( )T

ti
t

i
oT
iti rryr 1,

1
1,1,, ,,0Pr +
−= ;

while our sequential MAR definition is

 ( )1
1,,1,, ,,0Pr −= t

iti
ot
iti ryyr = ( )1

1,1,, ,0Pr −= t
i

ot
iti ryr .



 23

References

Diggle P. (1989), Testing  for random dropouts in repeated measurement data, Biometrics, vol. 45, pp 1255-

1258

Engle R.F., Hendry D.F., Richard J.-F. (1983), Exogeneity, Econometrica, vol. 51, n. 2, pp 277-304

Florens J.P., Mouchart M. (1982), A note on non causality, Econometrica, vol. 50, no. 3, pp 583-591

Gill R.D., Robins J.M. (1997), Sequential models for coarsening and missingness, in Lin D.Y., Fleming T.R.,

Eds., “Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis. Lecture Notes in

Statistics.”, New York, Springer-Verlag, pp 295-305

Gill R.D., van der Laan M.J., Robins J.M. (1997), Coarsening at random: characterizations, conjectures,

counter-examples, in Lin D.Y., Fleming T.R., Eds. “Proceedings of the First Seattle Symposium in

Biostatistics: Survival Analysis. Lecture Notes in Statistics.”, New York, Springer-Verlag, pp 255-294

Granger C.W.J. (1969), Investigating causal relations by econometric models and cross-spectral methods,

Econometrica, vol. 37, pp 424-438

Heitjan D.F., Rubin D. (1991), Ignorability and coarse data, Annals of Statistics, vol. 19,n. 4, pp 2244 –2253

Heitjan D.F. (1993), Ignorability and coarse data: some biomedical examples, Biometrics, vol. 4, pp 1099-1109

Hendry D.F. (1995), Dynamic Econometrics, Advanced texts in econometrics, Oxford University Press

Holland P.W. (1986), Statistics and causal inference, Journal of American Statistical Association, vol. 81, no.

396, pp 945-970

Lancaster T. (1990), The Econometric Analysis of Transition Data, Cambridge University Press, Cambridge,

MA

Little J.A. (1988), A test of missing completely at random for multivariate incomplete data, Journal of the

American Statistical Association, vol.77, pp 237-250

Little J.A., Rubin D.B. (1987), Statistical Analysis with Missing Data, John Wiley and Sons, New York

Park T., Davis C.S. (1993), A test of the missing data mechanism for repeated categorical data, Biometrics, vol.

49, pp 631-638

Rosenbaum P., Rubin B. D. (1983), The central role of the propensity score in observational studies for causal

effects, Biometrika, vol. 70. no. 1, pp 41-55

Robins J.M. (1997), Causal inference from complex longitudinal data, in Berkane M., Ed. “Latent Variable

Modeling and Applications to Causality. Lectures Notes in Statistics”, Springer Verlag, New York,

pp 69-117

Robins J.M., Gill R.D. (1997), Non-response models for the analysis of non-monotone ignorable missing data,

Statistics in Medicine, vol. 16, pp 39-56

Robins J.M., Greenland S., Hu F.-C. (1999), Estimation of the causal effect of a time-varying exposure on the

marginal mean of a repeated binary outcome, Journal of American Statistical Association, vol. 94, no.

447, pp 687-712

Robins J.M., Rotnitzky A., Zhao L.P. (1995), Analysis of semiparametric regression models for repeated

outcomes in the presence of missing data, Journal of the American Statistical Association, vol. 90, no.

429, pp 106-121



 24

Rubin D.B. (1976), Inference and missing data, Biometrika, vol. 63, pp 581-592

Shih W.J. (1992), On informative and random dropouts in longitudinal studies, (Letter to the Editor), Biometrics,

vol. 48, pp 971-972

Taris T.W. (1996), Modeling nonresponse in multiwave panel studies using discrete-time Markov models,

Quality & Quantity, vol. 30, pp 189-203

Taris T.W. (1997), On selectivity of nonresponse in discrete-time multi-wave panel studies, Quality & Quantity,

vol. 31, pp 79-94

Verbeek M., Nijman T. (1992), Testing for selectivity bias in panel data models, International Economic

Review, vol. 33, no. 3, pp 681-704

Verbeek M., Nijman T. (1992), “Incomplete Panel and Selection Bias”, in Matyas L. and P. Sevestre, Eds., “The

Econometrics of Panel Data: Handbook of Theory and Applications”, Kluwer Accademic Publishers,

Dordrecht



NON-RESPONSE IN DYNAMIC PANEL DATA MODELS

Cheti Nicoletti

ISER Working Papers
Number 2002-31



Institute for Social and Economic Research

The Institute for Social and Economic Research (ISER) specialises in the production and analysis of
longitudinal data.  ISER incorporates the following centres:

• ESRC Research Centre on Micro-social Change.  Established in 1989 to identify, explain, model
and forecast social change in Britain at the individual and household level, the Centre specialises in
research using longitudinal data.

• ESRC UK Longitudinal Centre.  This national resource centre was established in October 1999 to
promote the use of longitudinal data and to develop a strategy for the future of large-scale
longitudinal surveys.  It was responsible for the British Household Panel Survey (BHPS) and for the
ESRC’s interest in the National Child Development Study and the 1970 British Cohort Study

• European Centre for Analysis in the Social Sciences.  ECASS is an interdisciplinary research
centre which hosts major research programmes and helps researchers from the EU gain access to
longitudinal data and cross-national datasets from all over Europe.

The British Household Panel Survey is one of the main instruments for measuring social change in
Britain.  The BHPS comprises a nationally representative sample of around 5,500 households and over
10,000 individuals who are reinterviewed each year.  The questionnaire includes a constant core of
items accompanied by a variable component in order to provide for the collection of initial conditions
data and to allow for the subsequent inclusion of emerging research and policy concerns.

Among the main projects in ISER’s research programme are: the labour market and the division of
domestic responsibilities; changes in families and households; modelling households’ labour force
behaviour; wealth, well-being and socio-economic structure; resource distribution in the household; and
modelling techniques and survey methodology.

BHPS data provide the academic community, policymakers and private sector with a unique national
resource and allow for comparative research with similar studies in Europe, the United States and
Canada.

BHPS data are available from the Data Archive at the University of Essex
http://www.data-archive.ac.uk

Further information about the BHPS and other longitudinal surveys can be obtained by telephoning
+44 (0) 1206 873543.

The support of both the Economic and Social Research Council (ESRC) and the University of Essex is
gratefully acknowledged.  The work reported in this paper is part of the scientific programme of the
Institute for Social and Economic Research.



Acknowledgement: Part of this paper is based on work carried out during a visit to the European
Centre for Analysis in the Social Sciences (ECASS) at the Institute for Social and Economic Research,
University of Essex supported by the Access to Research Infrastructure action under the EU Improving
Human Potential Programme. Special thanks are given to Pierre Hoonhout, Franco Peracchi and
seminar participants at the ISER for their comments on this paper.

Readers wishing to cite this document are asked to use the following form of words:

Familyname, Firstname (December 2002) ‘Title of Working Paper’, Working Papers of the
Institute for Social and Economic Research, paper 2002-xx.  Colchester: University of
Essex.

For an on-line version of this working paper and others in the series, please visit the Institute’s website
at: http://www.iser.essex.ac.uk/pubs/workpaps/

Institute for Social and Economic Research
University of Essex
Wivenhoe Park
Colchester
Essex
CO4 3SQ UK
Telephone: +44 (0) 1206 872957
Fax: +44 (0) 1206 873151
E-mail: iser@essex.ac.uk
Website: http://www.iser.essex.ac.uk

� December 2002
All rights reserved.  No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, mechanical, photocopying, recording or otherwise, without
the prior permission of the Communications Manager, Institute for Social and Economic Research.



ABSTRACT

This paper stresses the links that exist between concepts that are used in the theory of model reduction
and concepts that arise in the missing data literature. This connection motivates the extension of the
missing at random (MAR) and the missing completely at random (MCAR) concepts from a static
setting, as introduced by Rubin (1976), to the case of dynamic panel data models.

Using this extension of the MAR and MCAR definitions, we emphasize the limits of some tests and
procedures, proposed by Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and others,
to verify the ignorability of the missing data mechanism.
.



 

NON-TECHNICAL SUMMARY

The non-response problem is ignorable for a regression model of interest if we can make inference on
this model ignoring the process that causes missing data. In other words, ignorability requires that the
inference on the model of interest, neglecting the missing data generating mechanism (sample
selection process), be affected neither in terms of distortion nor efficiency. The conditions that allow one
to neglect the selection process are given in Rubin (1976) and Little and Rubin (1987) for the cross-
sectional case. In particular, these authors introduced the concepts of missing at random (MAR),
observed at random (OAR), missing completely at random (MCAR) and parameter distinctness.

The extension of MAR and MCAR to the panel data case is straightforward when the data are
independently and identically distributed across units and over time. However, while the data on
different units can generally be assumed to be independent, at least conditionally on some exogenous
variables, the repeated observations on the same unit are likely to be dependent. This is the reason for
the widespread use of dynamic regression models. In this paper, we derive the set of conditions under
which the selection process can be safely ignored when making inference on a dynamic regression
model. Our approach is triggered by ideas that arise in the theory of statistical models reduction (see
Engle, Hendry and Richard 1983; Hendry 1995).

Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed in
the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in
Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition
tests, presented in Verbeek and Nijman (1992).
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1. Introduction

The non-response problem is ignorable for a regression model of interest if we can make inference on this

model ignoring the process that causes missing data. In other words, ignorability requires that the inference on

the model of interest, neglecting the missing data generating mechanism, 1 be affected neither in terms of

distortion nor efficiency. The conditions that allow one to neglect the selection process are given in Rubin

(1976) and Little and Rubin (1987) for the cross-sectional case. In particular, these authors introduced the

concepts of missing at random (MAR), observed at random (OAR), missing completely at random (MCAR)

and parameter distinctness.

 The extension of MAR and MCAR to the panel data case is straightforward when the data are

independently and identically distributed across units and over time. However, while the data on different units

can generally be assumed to be independent, at least conditionally on some exogenous variables, the repeated

observations on the same unit are likely to be dependent. This is the reason for the widespread use of dynamic

regression models. In this paper, we derive the set of conditions under which the selection process can be safely

ignored when making inference on a dynamic regression model. Our approach is triggered by ideas that arise

in the theory of statistical models reduction (see Engle, Hendry and Richard 1983; Hendry 1995).

 Using the definition of MAR and MCAR for panel data, we outline the limits of some tests proposed

in the literature to verify the MCAR in multivariate data, as the tests and the procedures presented in

Little (1988), Diggle (1989), Park and Davis (1993), Taris (1996) and some of the variable addition tests,

presented in Verbeek and Nijman (1992).

 The paper is organized as follows: in Section 2, we give the formal definitions of MAR and MCAR; in

Section 3, we emphasize the limits of some tests for MCAR and MAR for multivariate data; and in Section 4,

we give some conclusions.

 

2. Definitions of MAR and MCAR

In this section, after some preliminary definitions and general notation given in Section 2.1, we define the

conditions of MAR and MCAR. These conditions must be properly redefined for different types of models of

interest. For this reason, we dedicate separate sections to define MAR and MCAR for different types of model:

Section 2.2 for marginal models; Section 2.4, for conditional models; Section 2.5 for dynamic panel models

with general response patterns; Section 2.6 for dynamic panel models with attrition; and Section 2.7 for

dynamic panel models with explanatory variables.

 Furthermore, we emphasize the differences between our definitions and those given by other authors.

In particular, for the cross-sectional data case, we consider the definitions of Rubin (1976), Little and Rubin

(1987) and Heitjan and Rubin (1991) (see Section 2.3); whereas, for the multivariate data case, we examine the

definitions given by Robins and various co-authors (see Section 2.8).

                                               
1 Henceforth we will call the ‘missing data generating mechanism’ more briefly ‘missing data process’ or ‘selection process’ (or ‘mechanism’).
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 Finally, in Section 2.9, we conclude by describing some further possible extensions of the MAR and

MCAR concepts.

2.1 General statement and notation

 We begin by considering the cross-sectional data case and focus our attention on a model for the

variable y, {Y, f(y;θ), θ∈Θ}; where Y is the sample space, f(y;θ) is a family of probability distributions

indexed by θ, a vector of parameters of interest, and Θ is the parameter space. The variable, y, is missing if the

dummy variable r=0, and observable if r=1. Let us indicate with my  the missing variable associated with r=0

and oy , the observed variable associated with r=1. By analogy, let mY  and oY  be the subspaces of Y for the

missing and observed variables, respectively. Let {Y×X, f(r,y;ϕ) , ϕ∈Ψ} be the joint model for (r,y). Finally,

let f(r|y;φ) be the probability that r=1 or 0, conditional on the variable y, that is, the selection mechanism or the

missing data process, where φ is a vector of nuisance parameters.

 We define three different types of likelihood functions that we could use to make inference on the

model of interest in the presence of missing data. We write the likelihood function for a single observation, but

the extension to a random sample of N units is straightforward.

 The first likelihood,

 ( )ro
T yfL );( θ= , (1)

let’s say the truncated likelihood, does not take account of the missing data in the variables, as it considers only

the truncated sample of observable values.

 The second likelihood function,

 ( ) �� =�
�
�

�
�
�
�

�
=

−

mm

m

r

mmro
c dyyfdyyfyfL

YY

);();();(

1

θθθ ,
(2)

let’s say the censored likelihood, considers both observed and unobserved variables, but not the missing data

process.

 Finally, for the third likelihood function,

�=
mY

m
I dyyrfyfL );|();( φθ , (3)

let’s say the likelihood with informative missing data, the model of interest and the selection mechanism are

considered jointly and the missing variables are ‘integrated out’.

 In the following, we say that the selection mechanism is weakly ignorable if we can make a correct

and efficient inference based on the likelihood (1) or (2) disregarding the selection process. Whereas we say

that the selection mechanism is strongly ignorable if any type of inference can be made correctly and

efficiently without considering the selection process.2

 

                                               
2 The definition of strong ignorability used in this paper coincides with Verbeek and Nijman (1992)’s definition, whilst the definition of (weak)
ignorability is not equivalent to their definition.
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2.2 Definitions of MAR and MCAR for a marginal model of interest

Following Heitjan and Rubin (1991), likelihood-based inference on θ can be made ignoring the data

mechanism if:

1. f(y,r;ϕ) factorizes in f(y;θ) f(r|y;φ), where θ  e φ are variation free or, as Rubin (1976) says: […the

parameter φ is distinct from θ], that is […their joint parameter space factorizes into a θ-space and

a φ-space],

2. y is missing at random (MAR); that is );|( φmyrf takes the same value for any my  belonging to

the space of possible missing values, say, mY , that is a subspace or the entire sample space of y,

Y.

 When conditions (1) and (2) are satisfied, we say that the missing data mechanism is weakly ignorable

or, more briefly, ignorable. Moreover, we say that the missing data mechanism is strongly ignorable if, besides

(1) and (2), the following condition is satisfied:

3. y is observed at random (OAR), that is );,|( φmo yyrf  takes the same value for any oy  belonging

to the space Y.

 

In accordance with the theory of model reduction, we call 1 the statistical cut assumption. When the conditions

2 and 3 are satisfied, then y and r are independent and we will denote this independence as ry⊥ . Conditions 2

and 3 together constitute MCAR. Obviously, it is implicitly assumed that the model of interest, f(y;θ), is the

reduced model resulting from an admissible reduction of the data generating process.

To give some indication as to whether weak ignorability indeed suffices for a correct likelihood-based inference

when the selection process is disregarded,3 we note that the likelihood ratio when disregarding the selection

process is equal to the likelihood ratio when taking it into account
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 The observed data allow the identification of the probability distribution )1( =ryf , which is not

equivalent to the marginal distribution of oy , �
m

mdyyf
Y

);( θ . To ensure that inferences based on )1( =ryf

and �
m

mdyyf
Y

);( θ  be equivalent, the data must be MCAR and the variation-free condition must be satisfied.

Indeed, under these conditions, the following equality is true:

 =�
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φθ
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.

 

                                               
3 For a more formal proof, see Rubin (1976).



 4

2.3 Differences among MAR definitions

 The definition of MAR given here differs slightly from the definition given in Little and Rubin

(1987). Whilst we require that the selection mechanism be constant only when my  belongs to the subspace of

possible missing values, YY ⊂m , Little and Rubin require that the probability of observing y be constant for

any my  belonging to Y. Our definition of MAR is equivalent to the enlarged definition of coarsened at random

given by Heitjan and Rubin (1991), where the definition of MAR is extended to any type of coarsened data

(censored, heaped, grouped, rounded, etc.). We present this extension of the concept of MAR in Appendix A.

 Whilst Little and Rubin (1987) define MAR as the condition which ensures a correct inference based

on the truncated likelihood, we define MAR in the same way as Heitjan and Rubin (1991); i.e., as the condition

which allows a correct inference based on the censored likelihood. When the censored and truncated likelihood

functions are equal, the two definitions coincide. In particular, this is true when YY =m .

 

If the selection process is deterministic, that is if the dummy variable r conditioning on y is

degenerate, then we say that the data are MAR; in contrast, Little and Rubin (1987) say that the data are not

MAR in this case. This distinction may lead to confusion, the most notable example of which is the case of a

censored variable for which no values are observed when the variable belongs to a specific subset, YY ⊂m .

This is indeed an instance in which correct inference can be based on the censored likelihood, and the censored

and truncated likelihood functions are not equal. The latter observation is proved in Appendix B.

This observation holds more generally. Suppose we can divide the sample space into s disjoint

subspaces, sYYY ,...,, 21 , and suppose for every missing variable we know to which subspace it belongs;

moreover, assume that the selection process is such that jj cyr =∈= )|1Pr( Y , where jc  is constant within the

same subspace; then we can say that the data are MAR and that inference can be based on the censored

likelihood.

2.4 MAR and MCAR for a conditional model of interest

 As remarked by Shih (1992), some authors do not explicitly mention the variation-free condition (the

condition 1 in Section 2.2). This condition is often implicitly assumed to be valid in econometric literature; in

particular, econometricians usually implicitly assume that the conditional or marginal model of interest is the

result of an admissible reduction of the data generating process.

 In this section, to avoid any misunderstanding, we explicitly state all the conditions necessary to

ignore the selection mechanism when the model of interest is a conditional one.

 Let us assume that we are interested in the conditional model for the variable y, given a set of

variables x belonging to the space X, {Y, f(y|x;θ), θ∈Θ}, where Y is the sample space, f(y|x;θ) is a family of

conditional probability distributions indexed by the parameter θ, and Θ is the parameter space. Furthermore,

let us assume that the true data generating process is the joint model {YxXxR, f(y,x,r;ϕ), ϕ∈Φ}. Then, to

make a likelihood-based inference on the conditional model of interest neglecting the selection process, that is

the model {R, f(r|y,x;γ), γ∈Γ}, the following conditions must be satisfied:
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1. the following two statistical cuts must be satisfied

);();,();,,( φψϕ xfxryfrxyf = , and,

 );,();();,( 21 ψψψ xyrfxyfxryf = ;

2. the independence of r from y, given x, to ensure the MCAR condition; the independence of r from my

given x to ensure the MAR condition.

Again, we say that the selection mechanism is weakly ignorable if condition 1 and MAR are satisfied, while we

say that the selection mechanism is strongly ignorable if condition 1 and the MCAR are satisfied.

2.5 MAR and MCAR for a dynamic panel data model

 Panel data are constituted by a sample of units followed over time and they are often used to estimate

dynamic models. Dynamic models are those in which the dependent variable is explained by its past and/or the

present and past of other variables. In the following, we will consider a generic panel composed of N units

followed for T consecutive waves.

 As already mentioned, in the case of a random sample of N units observed at a single occasion (T=1),

the definitions of MAR and MCAR stated in Section 2.2 apply. Indeed, ( )ii ry ,  are identically and

independently distributed (i.i.d.), and the joint likelihood factorizes into the product of N identical likelihood,

( ) ( )∏
=

=
N

I
iiNN ryfrryyf

1
11 ;,;,...,,,..., ϕϕ . This is no longer true when the variables observed at consecutive time

periods, for a specific unit, are not independent.

 The definition of weak and strong ignorability can be easily extended to the case of a panel,

considering a joint model for T
i 1,y . Condition 1 in Section 2.2 is substituted by a condition of initial cut:

 1'. ( ) ( ) ( ),;;;, 11,1,1,1, θφϕ T
i

T
i

T
i

T
i

T
i fff yyrry =

where T
i 1,y  is the vector of the variables tiy ,  for the i-th unit and for t=1,…,T, while T

i 1,r  is the vector associated

with the response pattern of the i-th unit, that is the vector of the dummies tir , , taking value 1 when the

variable tiy ,  is observed, and 0 otherwise.

 Conditions 2 and 3 are replaced by the equivalent assumptions:

 2'. ( )φ;,1,
m
i

o
i

T
if yyr ( )φ;1,

o
i

T
if yr= ,

 3'. ( )φ;,1,
m
i

o
i

T
if yyr ( )φ;1,

T
if r= ,

where tm
i

,
1,y  is the sub-vector of the missing variables and to

i
,
1,y  is the one of observable variables of the vector

t
i 1,y .

 The variables observed for a unit are likely to be dependent from their past; that is, the factorization

( )ϕ;, 1,1,
T
i

T
if ry ( )∏

=
=

T

t
titi ryf

1
,, ;, ϕ  is not valid and we have to use the sequential factorization
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( )ϕ;, 1,1,
T
i

T
if ry ( )∏

=

−−=
T

t

t
i

t
ititi ryf

1

1
1,

1
1,,, ;,, ϕry .4 In other words we assume that ( )1

1,
1

1,,, ,, −− t
i

t
ititi ry ry  be identically and

independently distributed across units and time. In this case, a more appropriate model of interest is a dynamic

one, which tries to explain y as a function of its past, ( )θ;1
1,,
−t

itiyf y . Then it is useful to restate the conditions

1', 2' and 3' in terms of sequential models.

 

Condition 1' requires that:

 a1. the sequential cut,

 ( ) ( ) ( ),;,;,;,, 1,
1

1,,
1

1,
1

1,,
1

1,
1

1,,, ∏∏∏ −−−−− =
t

t
i

t
iti

t

t
i

t
iti

t

t
i

t
ititi rfyfryf φθϕ yryrry

 must be applicable;

 a2. r does not Granger cause y, that is,

 ( ) ( )θθ ;;, 1
1,,

1
1,

1
1,,

−−− = t
iti

t
i

t
iti yfyf yyr .

 Further conditions that 2' and 3' require are:

 b. ( ) ( )φφ ;;, 1
1,,1,

1
1,,

−− = t
iti

t
i

t
iti rfrf ryr  or φ;1

1,1,,
−⊥ t

i
t
itir ry .

The condition b can be broken down into two parts:

 b1. φ;, ,
1,

1
1,

,
1,,

to
i

t
i

tm
itir yry −⊥ ,

 b2. φ;1
1,

,
1,,

−⊥ t
i

to
itir ry .

 

 In the case of dynamic panel data, b1 is the sequential MAR condition, b2 is the sequential OAR

condition, while b is the sequential MCAR assumption. The conditions a1, a2 and b1 ensure that the missing

data mechanism is weakly ignorable for the maximum likelihood estimation of ( )θ;1
1,,
−t

itiyf y , while the

conditions a1, a2, b1 and b2 ensure strong ignorability in any inference.

 If we consider a maximum likelihood that completely eliminates the units for which there is a wave

non-response, the weak ignorability is no longer a sufficient condition and we need the MCAR condition, as

for any other type of inference (such as the sampling distribution inference).

2.6 MAR and MCAR conditions in a dynamic panel model with attrition

 In this section, we present a proposition which gives a set of necessary and sufficient conditions for

the weak ignorability of the selection mechanism; that is, for the conditions 1' and 2', in the case of attrition.

 

                                               
4 To simplify notation in the sequential models, we implicitly condition on the set of initial conditions.
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Proposition Let ( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  be i.i.d. across units and time, and let ( )φ;, 1,1,

T
i

T
if ry ( )∏

=

−−=
T

t

t
i

t
ititi ryf

1

1
1,

1
1,,, ;,, φry

be the associated data generating process. Let tiy ,  be observed when tir ,  takes value 1,  and missing when

0, =tir . Further, whenever 0, =tir , let 0, =sir  for any s>t.

Then, if the condition a2 (r does not Granger cause y) is true, a set of necessary and sufficient conditions for

the weak ignorability of the selection mechanism is:

a1. it must be possible to operate a sequential cut

( ) ( ) ( ),;,;,;,, 1,
1

1,,
1

1,
1

1,,
1

1,
1

1,,, ∏∏∏ −−−−− =
t

t
i

t
iti

t

t
i

t
iti

t

t
i

t
ititi rfyfryf φθϕ yryrry

c1. 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr .

Proof

First, we prove that a1 and c1 are sufficient conditions to ensure 1' and 2', that is, weak ignorability.

Applying the condition of Granger non-causality to the factorization a1, we obtain:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) =∏ −−

t

t
i

t
ititi ryf ϕ;,, 1

1,
1

1,,, ry

( ) ( )∏∏ −−=
t

t
i

t
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t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry ( ) ( ),;; 1,1,1 φθ T

i
T
i

T
i ff yry=

so that a1 and a2 ensure the initial cut, 1'.

Let us assume that a unit, i, drops out at d-th wave, and let us rewrite the model as the product of three

factors:

( ) =ϕ;, 1,1,
T
i

T
if ry 321 LLL ⋅⋅ ,

where
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�
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( ) ( )�
�

�
�
�

�= −−− φθ ;,,; ,
1,
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1

1,,
1,

1,,2
m

di
do

i
d
idi

do
i

m
di rfyfL yyry , ( ) ( )�

�

�
�
�

�= −−

+=

−−∏ φθ ;,,;, ,
,

1,
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1
1,,

1

1,
,
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1,,3

tm
di

do
i

t
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T

dt

tm
di

do
i

m
ti rfyfL yyryy .

In a likelihood-based inference on the parameter θ, we must eliminate the unobserved variables through the

integration from the likelihood, ( )ϕ;, 1,1,
T
i

T
if ry , in the following way:

( ) Tm
i

T
i

T
i df ,

1,1,1, ;, yry� ϕ  
Tm

i
dLLL

,

1,321� ⋅⋅= y .

The factor 1L  does not depend on unobserved variables, so it can be taken out of the integral sign.

Since we have assumed that ( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  are i.i.d., and that ( )φ;, 1,

1
1,,

t
i

t
itirf yr −  has the same distribution

form for each t, then the condition c1, 1
1,

1
1,,, , −−⊥ t

i
t
ititir yry ,  is equivalent to 1,

1,
1

1,,, , −−⊥ to
i

t
i

m
titir yry , so that the factor,

( ) ( )φφ ;,;,, 1,
1,

1
1,,,

1,
1,

1
1,,

−−−− = do
i

d
idi

m
di

do
i

d
idi rfyrf yryr , can be taken out of the integral sign too.
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For any t>d, ( )0,, =diti rr  is independent of any variable because if dir ,  = 0, then 1)00Pr( ,, === diti rr  and tir ,

becomes degenerate. If tir , =0, then ( ) 1;,, ,
,

1,
1,

1
1,, =−− φtm

di
do

i
t
itirf yyr , consequently the selection mechanism,

( )φ;,, ,
,

1,
1,

1
1,,

tm
di

do
i

t
itirf yyr −− , cancels out of the likelihood for any t>d.

The integrated likelihood becomes:

( ) Tm
i

T
i

T
i df ,

1,1,1, ;, yry� ϕ = ⋅1L ( ) ( ) Tm
di

T

dt

tm
di

do
i

m
ti

do
i

d
idi dyfrf ,

,
1,

,
1,

1,,
1,

1,
1

1,, ;,;, yyyyr �∏
=

−−−− ⋅ θφ .

Since ( ) 1;, ,
,

1,
,

1,
1,, =�∏

=

−− Tm
di

T

dt

tm
di

do
i

m
ti dyf yyy θ , we can rewrite this as:
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−
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,
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1,
1,, ;,;

d
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t
iti
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t

to
i

o
ti rfyf φθ yry ( )φ;, 1,

1,
1

1,,
−− do

i
d
idirf yr .

Given that θ e φ are variation free, we can make inference on the parameter θ ignoring the selection

mechanism, that is considering the likelihood for the observable variables: ( )∏
−

=

−
1

1

1,
1,, ;

d

t

to
i

o
tiyf θy .

In this way, we have also proved that the condition 2' is true:

( )φ;,1,
m
i

o
i

T
if yyr = ( ) ( )∏∏

=

−−

=

− =
T
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1
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1
1,

1
1,, ;,;, φφ yryr ( )φ;1,

o
i

T
if yr=

In the following, we prove that a1 and c1 are necessary conditions to ensure 1' and 2'. We begin by proving

that when the initial cut 1' operates and condition a2 holds, then a1 is true.

Using condition 1’, we can state that:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) ( )=φθ ;; 1,1,1

T
i

T
i

T
i ff yry ( ) ( )∏∏ −−

t

T
i

t
iti

t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry .

Since condition a2 may be restated as t
i

t
i

T
titi yr 1,

1
1,1,, , yr −

+⊥ ,5 we can rewrite the joint likelihood as:

( ) =ϕ;, 1,1,
T
i

T
if ry ( ) ( )∏∏ −−

t

t
i

t
iti

t

t
iti rfyf φθ ;,; 1,

1
1,,

1
1,, yry ,

so that ( ) =φ;1,1,
T
i

T
if yr ( )∏ −

t

t
i

t
itirf φ;, 1,

1
1,, yr  and the sequential cut a1 operate.

The equality, ( ) =φ;1,1,
T
i

T
if yr ( )∏ −

t

t
i

t
itirf φ;, 1,

1
1,, yr , and condition 2' imply that:

 ( ) =φ;1,1,
T
i

T
if yr ( )∏ −

t

to
i

t
itirf φ,

1,
1

1,, ,yr .

( )1
1,

1
1,,, ,, −− t

i
t
ititi ry ry  are i.i.d. across units and time; hence ( )φto

i
t
itirf ,

1,
1

1,, ,yr −  maintains a common form for any t.

Since for t>d, ( )0,, =diti rr  is a degenerate variable independent of the past value of y, and for t=d, the

sequential selection model does not depend on the value of y at time t, the last equality prove that c1 is

satisfied.
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 The theorem states that, in the case of dynamic panel data with attrition, the condition y does not

Granger cause, r, 1
1,

1
1,,

−−⊥ t
i

t
iti yr r , is neither necessary nor sufficient condition for the MAR assumption. This

Granger non-causality is instead a necessary but not sufficient condition for MCAR. The theorem also proves

that the sequential MAR condition is given by (c1) 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr , in the case of the problem of attrition. In

other words, in the case of attrition, the conditions (a1), (b1) and (c1) ensure a correct likelihood-based

inference on the dynamic model of interest, i.e. the weak ignorability.

 It is easy to prove that the strong ignorability for a dynamic panel model with attrition requires the

sequential MCAR condition, 1
1,1,,
−⊥ t

i
t
itir ry , instead of the sequential MAR one.

 

2.7 MAR and MCAR conditions in a dynamic panel model with explanatory variables

 The definitions of MAR and MCAR can be easily modified to cover conditional models of the

form, );,( 1
1,1,, θ−t

i
t
itiyf yx , where explanatory variables x are added to the dynamic panel model.

 Let );,( 1
1,1,, θ−t

i
t
itiyf yx  be the model of interest, let ( )ϕ;,, 1,1,1,

T
i

T
i

T
if xry = ( )∏ −−−

t

t
i

t
i

t
itititi xryf ϕ;,,,, 1

1,
1

1,
1

1,,,, xry

be the associated data generating process and let the missing data problem be narrowed down to the attrition

problem; then, it is easy to prove that weak ignorability requires the following conditions:

 d1. the weak exogeneity of x, that is

( )
( ) ( ),;,,;,,,

;,,,,

2
1

1,
1

1,
1

1,,11,
1

1,
1

1,1,,

1
1,

1
1,

1
1,,,,

∏∏

∏
−−−−−

−−−

=

=

t

t
i

t
i

t
iti

t

t
i

t
i

t
iiti

t

t
i

t
i

t
itititi

xfryf

xryf

ϕϕ

ϕ

yrxxyr

xry

 d2. the sequential cut

( )
( ) ( ),;,,;,,

;,,,

1,1,
1

1,,1,
1

1,
1

1,,

11,
1

1,
1

1,,,

∏∏

∏
−−−

−−

=

=

t

t
i

t
i

t
iti

t

t
i

t
i

t
iti

t

t
i

t
i

t
ititi

rfyf

ryf

φθ

ϕ

xyrxyr

xry

 d3. the Granger non-causality

 t
i

t
i

t
itiy 1,

1
1,

1
1,, ,xyr −−⊥ ,

 d4. the sequential MAR condition

 t
i

t
i

t
ititi yr 1,

1
1,

1
1,,, ,, xyr −−⊥ .

 In the case of a conditional dynamic panel model with general response patterns, the weak irrelevance

is more stringent: d4 must be replaced by the sequential MAR t
i

to
i

t
i

tm
itir 1,

,
1,

1
1,

,
1,, ,, xyry −⊥  and the following

additional condition is required:

 d5. 1,
1,

1
1,

1
1,

1,
1,, ,, −−−−⊥ to

i
t
i

t
i

tm
itix yxry .

                                                                                                                                                 
5 For a proof of this last equivalence, see Florens and Mouchart (1982).
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 Strong ignorability for a conditional dynamic panel model requires the conditions d1-d3 and d5, and

the following additional conditions:

 d6. the sequential MCAR

 t
i

t
i

t
itir 1,

1
1,1,, ,xry −⊥ , and

 d7.  1
1,

1
1,

1,
1,, , −−−⊥ t

i
t
i

to
itix xry .

 We emphasize that the weak and strong ignorability for the joint model, ( )θ;1,1,
T
i

T
if xy , is not

equivalent to the weak and strong ignorability for the sequential model, );,( 1
1,1,, θ−t

i
t
itiyf yx . In the former case

the ignorability requires the following conditions:

 D1. two initial cuts

 ( ) ( ) ( )2111,1,1,1,1,1, ;;,;,, ϕϕϕ T
i

T
i

T
i

T
i

T
i

T
i

T
i fff xxryrxy = ,

 ( ) ( ) ( )φθϕ ;,;;, 1,1,1,1,1,11,1,1,
T
i

T
i

T
i

T
i

T
i

T
i

T
i

T
i fff xyrxyxry = , and

 D2. the MAR condition ( )φ;,, 1,1,
T
i

m
i

o
i

T
if xyyr ( )φ;, 1,1,

T
i

o
i

T
if xyr=  to ensure weak ignorability, or

  D3.  the MCAR condition ( )φ;,, 1,1,
T
i

m
i

o
i

T
if xyyr ( )φ;1,1,

T
i

T
if xr=  to ensure strong ignorability.

 The equivalence between the ignorability defined for the joint model and for the sequential model is

true only if x is strongly exogenous for the parameters of the dynamic model of interest. We use the definition

of strong exogeneity introduced by Engle et al. (1983); that is, (y,r) does not Granger cause x, and x is weakly

exogenous for the parameter of interest. Therefore, the strong exogeneity of x includes the condition d1, d5 and

d7.

 We remark that if the model, );,( 1
1,1,, θ−t

i
t
itiyf yx , is used to forecast y given the value of x, then we

need the strong exogeneity of x. For example, this is the case in causal inference, when the counterfactual

response m
tiy ,  is forecasted conditioning on ),( 1

1,1,
−t

i
t
i yx  to assess the average effect of a treatment. In this case,

tir ,  is equal to 1 if a person is treated in the time period t, and 0 otherwise. In causal inference, we should be

aware that any conditioning variable, x, should be strongly exogenous. In other words, the Granger non-

causality condition,

 )(),,( 1
1,,

1
1,

1
1,

1
1,,

−−−− = t
iti

t
i

t
i

t
iti xfxf xryx ,

must be satisfied.

2.8 The MAR condition according to Robins et al.

 Robins and several different co-authors (Robins, Rotnitzky and Zhao 1995, Gill and Robins 1997,

Robins and Gill 1997) have given definitions of MAR and MCAR for multivariate data in papers. In this

section, we present these definitions and outline their differences from ours.
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 The definition of MAR for monotone response patterns in Robins and Gill (1997) and Robins,

Rotnitzky and Zhao (1995) are both equivalent to the sequential MAR definition given in Section 2.6 for the

attrition case, 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr . The k-sequential coarsening at random (denoted briefly by ‘k-sequential CAR’)

definition, given by Gill and Robins (1997) and adapted for the attrition case, is again equal to the sequential

MAR. In Appendix C, we prove this claim and we present the definitions of a k-sequential coarsening and of

k-sequential CAR given by Gill and Robins (1997).

 We remark that these definitions are not sufficient to ensure a correct likelihood-based inference on

the parameters of the conditional model, ( )θ;1
1,,
−t

itiyf y . Two additional conditions are necessary: the sequential

cut (a1) and the Granger non-causality (a2), 1
1,

1
1,,

−−⊥ t
i

t
itiy yr .

 Moreover, we emphasize that the above MAR conditions defined for the sequential model

( )1
1,1,, , −t

i
t
itirf ry , which we call sequential MAR conditions, and the MAR condition for the multivariate model

( )T
i

T
if 1,1, yr , are not equivalent.  As a matter of fact, Robins and Gill find examples in which the sequential

MAR condition does not ensure the MAR one. In borrowing from model reduction theory, it is possible to

define conditions such that the sequential MAR condition is equivalent to the MAR condition for the joint

model defined for T consecutive periods. What is missing in the work of Robins et al. is that the MAR

condition is not enough to ensure the weak ignorability condition; indeed, the initial cut in 1' must also be

satisfied. In terms of conditions on the sequential models, the initial cut is satisfied if and only if the sequential

cut (a1) and the Granger non-causality (a2) are satisfied (see Engle et al. 1983). This is the reason why the

sequential MAR definition does not ensure the MAR condition in any situation. Model reduction theory allows

us to prove that when the initial cut in 1' is satisfied (or the sequential cut in a1) and the Granger non-causality

in a2 are satisfied, then the sequential MAR and the MAR concepts are equivalent.

 

 When the response pattern is not monotone, following the suggestion given in Robins, Rotnitzky and

Zhao (1995), we can decide to make inference using only the sub-vector of consecutive observed variables and

discharge all the observations after the first non-response. So, for example, if )1,0,1,0,1,1,1(7
1, =ir , then  we use

only the observations on the variable of interest, say y, for the first 3 waves. Let )( 1,, 1r == t
iti Is , where I(.) is a

dummy variable, taking value 1 if the event between brackets is true and 0 otherwise; then we can artificially

assume that tiy ,  is observed when 1, =tis , and missing otherwise. In this way, the response pattern is

artificially monotone and the above definition of sequential MAR applies. As remarked by Robins, Rotnitzky

and Zhao (1995), this a good expedient that allows us to make a correct likelihood-inference based on the sub-

sample of monotone response patterns when 1
1,

1
1,,, , −−⊥ t

i
t
ititi ys ys . In any case, this method does not use all the

information available, and is therefore inefficient.

 Robins, Rotnitzky and Zhao (1995) show that if we want to use all the information, we should impose

an additional condition to ensure MAR. This additional condition is:
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 ( )T
ti

t
i

tm
i

to
iti yryyr 1,

1
1,

1,
1,

1,
1,, ,,,0Pr +

−−−= = ( )1
1,

1,
1,, ,0Pr −−= t

i
to

iti ryr .

We emphasize that the above additional condition can be rewritten as the following two conditions:

 (1) 1
1,

1
1,1,, , −−

+⊥ t
i

t
i

T
titir yry , or equivalently, 1

1,
1

1,,
−−⊥ t

i
t
itiy yr ;

 (2) 1
1,

1,
1,

1,
1,, , −−−⊥ t

i
to

i
tm

itir ryy .

Condition (1) is the Granger non-causality condition (a2 in Section 2.5), which is a necessary condition to

ensure weak ignorability, even in the case of monotone response. Condition (2), together with 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr ,

is equivalent to the sequential MAR condition given in Section 2.5.

 As proved in Appendix C, in the case of the non-monotone response pattern, the k-sequential CAR in

Gill and Robins (1997) is different from both our definition of MAR and the one given by Robins, Rotnitzky

and Zhao (1995).

 In conclusion, the definitions of sequential MAR are not equivalent in the different papers of Robins

and co-authors. Borrowing from reduction model theory we have clarified what is missing in the definitions by

Robins et al. for the special case of panel data, i.e. for the case in which there is a sequential order for the

observations on the same units.

2.9 Further extensions of the MAR and MCAR conditions

 The concepts of Granger causality, sequential cut, and strong and weak exogeneity are meaningful

when working with time series analysis. In the previous sections, we have shown that these concepts are very

useful for panel data too, which can be viewed as a set of time series. In particular, we have shown their

usefulness in extending the definitions of MAR and MCAR from cross-sectional data to panel data. By

analogy, the same extension applies to the definitions of coarsening at random given in Heitjan and Rubin

(1991) and described in Appendix A.

 The same type of extension can be useful in causal inference when the treatments or risk exposures,

the effects of which are to be evaluated, are time varying. In particular, this extension is helpful in

disentangling some of the misunderstandings between Holland and Granger (see Holland 1986). Holland's

(1986) attempt to use the definition of Granger causality in causal inference is misleading because he considers

the evaluation of the effect of a treatment lasting in a single period. Granger causality is only meaningful when

there are repeated observations across time and when attention is focused on a sequential model conditioning

to past information, (see Granger 1986). I agree instead with Holland (1986) when, in his reply to Granger, he

explains how the application of Rubin’s model is not limited to cross-sectional data but may be extended to

situations in which there are time series data for each unit or the so-called panel or longitudinal data.

 As Holland (1986) remarks, in the 1980s, there were no applications of causal inference to

longitudinal data, but now there are numerous examples of such studies (see, for example Robins, Greenland

and Hu 1999). In these applications, the Granger causality concept is useful to help understand which

conditions are necessary to make a correct causal inference and to clarify the difference between the causal

concepts developed by Granger and Rubin.
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3. Limits of Some Tests for MAR and MCAR in Longitudinal Data

 Both the MAR and MCAR conditions require that the selection mechanism does not depend on

unobserved variables. Clearly it is hard to verify dependence on unobserved variables whose values are

unknown. Tests for the MAR or the MCAR conditions that verify restrictions on the parameters of the model

of interest ignoring the selection mechanism, or, vice versa, on the parameters of the selection mechanism

disregarding the model of interest, fail the objective, at least partially.

 In this section, we outline the limitations of the procedures proposed by Little (1988), Diggle (1989),

Park and Davis (1993) and Taris (1996, 1997) in detecting the selection problem. These procedures are only

able to detect the MCAR conditions in part, and they cannot check the MAR assumption. These procedures

investigate the dependence of the selection mechanism on the observed variables, but they cannot control for

the selectivity caused by the dependence of the selection mechanism on missing variables.

 

3.1 Limits of the Little and Park-Davis tests

 The Little (1988) and Park and Davis (1993) tests are based on a common idea: to divide units into

groups according to the missing (response) pattern, ( T
i 1,r ),6 and to estimate the model of interest for each group

separately, then to test the MCAR condition by verifying if the estimated parameters of the models, associated

with each missing pattern, are different. Little considers the normal probability distribution for a continuous

variable, y, subjected to non-response, and tests the MCAR assumption by a likelihood ratio test. Park and

Davis consider the distribution of a discrete variable, y, conditional on a set of explanatory variables, and use a

Wald test, instead of a likelihood ratio test, to verify the MCAR. Both tests verify a condition that is only

necessary but not sufficient to guarantee the MCAR assumption. Suppose that T different repeated values are

observed for the unit, i, for the variable, y, T
i 1,y , then the Little test verifies if 1)(

1,
.
1,1,1, , −

+⊥ to
i

t
i

T
ti

t
i yrry , while the

Park and Davis test verifies if t
i

to
i

t
i

T
ti

t
i 1.

1)(
1,

.
1,1,1, ,, xyrry −

+⊥ , where t
i 1.x  are variables that are always observed.

 The null hypothesis used in both tests is inadequate. The reason for this inadequacy is more evident

when the missing data problem is limited to the attrition problem. Let y be a variable that we observe on N

units repeatedly in time, up to the drop out of the unit from the panel or up to T, the last wave of the panel.

Little (1988) assumes that, under MCAR, T
i 1,y  is distributed as N(µ,Σ), no matter what the response pattern,

T
i 1,r , is. Then, Little (1988) tests MCAR verifying if the sub-vector of the observed variables is distributed as a

multivariate normal with mean equal to the corresponding sub-vector of µ and sub-matrix of Σ, of the

multivariate normal distribution for T
i 1,y . In the case of attrition, the sub-vector of observed variables for a

generic unit dropping out after t periods is t
i 1,y  and we denote with )(tµ  and )(tΣ  the mean vector and the

variance matrix corresponding to the sub-vector of first t elements of µ, and to the txt principal sub-matrix of

Σ. Let tm  be the number of units that drop out of the panel at period (t+1), let �
=

=
tm

j

t
j

t

t

m 1
1,

)( 1
yy , and let )(ˆ tµ  be

                                               
6 For example, for a panel of T waves there are 2T possible response patterns and therefore 2T corresponding groups in which a unit may belong.
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equal to the sub-vector of the first t elements of the maximum likelihood estimator of µ, then the Little test

statistic equals �
=

− −Σ′−=
T

t

ttttt
tL mT

1

)()(1)()()( )ˆ()ˆ( µµ yy . Little asserts that under the MCAR assumption, LT  is

distributed as a Chi-square, with 
2

)1(T-T ×
 degrees of freedom. This assertion is true; however, the same

distribution remains valid under the weaker assumption that t
i

t
i

T
titiy 1,

1
1,1,, ,ryr −

+⊥ .

 Little's test cannot verify if an observable variable, tiy , , given its past values, is independent from t
i 1,r ;

in fact, if tiy ,  is observable, t
i 1,r  is always equal to the vector of ones. In other words, Little’s test cannot verify

the MAR condition, 1
1,1,,
−⊥ t

i
t
itiy yr , but can only check the condition, t

i
t
i

T
titiy 1,

1
1,1,, ,ryr −

+⊥ . We can prove that the

last condition is equivalent to the hypothesis that y does not Granger cause r, 
1

1,

1
1,

−−⊥ t

i

t
iitr ry .7 In conclusion, the

Little test verifies a condition that is necessary but not sufficient for MCAR, and that is neither necessary nor

sufficient for the MAR assumption (see Section 2).

 The same comments apply to the Park and Davis test, if we change the above conditional

independence hypothesis by adding a set of explanatory variables, x, among the conditioning variables, and

consider a discrete distribution for the variable y.

 An equivalent reasoning is valid when the missing problem is more general than the attrition

problem. The true null hypothesis of the Little test is 1)(
1,

.
1,1,1, , −

+⊥ to
i

t
i

T
ti

t
i yrry  or equivalently 1

1,
1)(

1,,
−−⊥ t

i
to

itir ry ; again,

this is a condition that is necessary but not sufficient for MCAR.

3.2 Limits of the Diggle test

 Diggle (1989) has proposed a class of tests to verify if the attrition in a panel survey occurs at random.

Given a panel with T waves, the units can be observed for a number of consecutive periods ranging from 1 to

T. The tests proposed by Diggle verify if units that dropout at the (t+1)-th wave represent a random sample of

units that drop out after the (t+1) or more waves. He introduces a score function of the observed past variables

t
i 1,y , h( t

i 1,y ), that should be linked to the probability of drop out, and tests if the score functions for the units

dropping out after (t+1) times are a random sample from the set of scores for units that drop out in the (t+1)th

wave or later. A possible test used to verify this is a Kolmogorov-Smirnov statistic test.

 In other words, Diggle (1989) verifies whether the distribution of  { }1=1,=|) h( 1,1,
t
i,1 +ti

t
i rry  is equal to

the distribution of { }0=1,=|) h( 1,1,
t
i,1 +ti

t
i rry ; that is, whether the condition { }1=|) h( 1,1,

t
i,1

t
itir ry +⊥  holds. Let us

assume that the function h is such that { }) h( 1,=| t
i,11,1,

t
i,1 yry t

itir +⊥ ; that is, h is, given the past information of r,

a balancing score, as defined by Rosenbaum and Rubin (1983). In this case, testing { }1=|) h( 1,1,
t
i,1

t
itir ry +⊥  is

equivalent to testing { }1=| 1,1,
t
i,1

t
itir ry +⊥ ; that is the condition that y does not Granger cause r, which is not the

MAR condition.
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 Diggle suggests choosing a function h that reflects the probability that 1, +tir =1 as a function of t
i,1y ;

that is, he implicitly suggests using the propensity score, Pr( 1, +tir =1| t
i,1y , 1=1,

t
ir ).  As proven by Rosenbaum

and Rubin (1983), the propensity score is the coarsest balancing score; in other words, any other balancing

score is a function of the propensity score.

 In conclusion, the Diggle test verifies the Granger non-causality condition, { }1=| 1,1,
t
i,1

t
itir ry +⊥ .

However, it is not able to verify if { }t
i

t
ititi yr 1,1,1,1, , y1r =⊥ ++ , and so it is not a test for the MAR or, as defined by

Diggle, for  random dropouts.

 

3.3 Limits of the Taris test

 Let Pr( 1, +tir =0| 1=1,
t
ir , t

i
t
i 1,1, ,yx ) be the probability to drop out at a specific wave, t, for a generic unit,

i, conditioning on its permanence in the panel until wave (t-1) and on a set of explanatory variables. Let τ  be

the time of permanence of a unit in the panel; then we can rewrite the above probability as:

Pr( iτ =t| iτ >t-1, t
i

t
i 1,1, ,yx ),

which is a discrete hazard function. If the data are MCAR, then the hazard function should depend neither on

observed variables nor on unobserved ones, and should be constant across waves; that is:

Pr( iτ =t| iτ >t-1, t
i

t
i 1,1, ,yx )=c.

 A very interesting result for the hazard function is stated by the “lemma” of movers and stayers, which

states that when the distribution of a duration T, conditional on a set of variables x, is exponential with a

parameter λ(x), a function of x, and x follows any distribution for which the first derivative exists, then the

non-conditional hazard function of T, marginalized with respect to x, is time decreasing (see Lancaster 1990).

This means that a negative time dependence of the hazard function may be caused by the omission of relevant

explanatory variables. Therefore it is necessary to distinguish between spurious and true time dependence.

 Under the assumption that there is no true time dependence, a decreasing hazard function implies that

data are not MCAR, while a constant hazard implies that we would not reject the MCAR condition.

 This is the idea developed by Taris (1996, 1997), who says that '…a decreasing non-response for every

successive wave indicates that non-response is selective to a degree.' Taris’s idea is very useful to verify the

MCAR condition. Taris also explains that it is possible to control for observed variables by trying to identify

different groups of the population for which the hazard function is constant.  In this case we would say that

data are MAR but not MCAR. Taris does not use the conditional duration model approach in which variables

enter as explanatories; rather he uses the Markov chains approach (the simple first order Markov chain, the

mixed Markov chain and the mover-stayer model).

 We think that the conditional duration model approach can be useful to detect the MAR condition. A

conditional duration model is more general then a Markov chain model because it allows for time non-

homogeneity, and it may be very useful in distinguishing between observed and unobserved heterogeneity

causing the spurious time dependence.

                                                                                                                                                 
7 For a formal proof, see Florens and Mouchart (1982).
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 If, after controlling for all observed variables in the hazard model, there is still a time dependence,

then we should conclude that the data are neither MAR nor MCAR; whereas in the absence of time

dependence, we cannot reject that data are MAR. If, without controlling for any explanatory variables, there is

time independence, then we cannot reject the MCAR assumption.

 Obviously we should not exclude a priori the assumption that the hazard function may be the result of

a mixture of different hazard functions for different populations, as in the mixed Markov chain.

 In conclusion, the Taris idea of verifying the MCAR and MAR conditions by checking the time

dependence is very useful, but its validity is based on the assumption that the hazard function has no true time

dependence. This assumption may not be true.  Indeed, there may be a conditioning problem in the behavior of

the person. For example, if a person is always contacted by the same interviewer, it may be that the propensity

to drop out decreases from one wave to another. Furthermore, in testing the MAR condition, a misspecification

of the selection mechanism can distort the results.

3.4 Limits of the variable addition test

 Another type of test that has been suggested to verify the relevance of the selection mechanism is the

variable addition test. This is a simple test that verifies the influence of variables associated with the non-

response patterns on the regression model of interest. These variables are added to the regression model of

interest as explanatory variables. If these added variables are not significant, then the selection mechanism is

considered ignorable.

 One should be careful in choosing the additional variables. In the case of the attrition problem, it is

useless to add 1, −tir  to a regression equation at the time t containing also a constant; in fact, 1, −tir  always takes

value 1. If there are time effects in the regression, it is also inappropriate to use �
=

T

t
tir

1
, .

 The MAR condition 1
1,1,1,, , −⊥ t

i
t
i

t
itiy yxr  is impossible to verify, because we only have information on tiy ,

when 1r =t
i 1, . We are only able to verify if 1ryxr =⊥ −−

+
1

1,
1

1,1,1,, ,, t
i

t
i

t
i

T
titiy , that is, if 1ryxy =⊥ −−− 1

1,
1

1,1,
1

1,, ,, t
i

t
i

t
i

t
itir , which

is not sufficient to ensure the MCAR and MAR conditions.

 Verbeek and Nijman (1992) presented the results of a Monte-Carlo analysis of the properties of the

variable addition tests and found that in some cases, the variable addition tests have no power. In particular,

when they used the following model of interest and missing data mechanism for the simulation experiment:

 tiititi xy ,,, εαβ ++= , (1)

 )0Pr()0Pr()1Pr( ,,10
*
,, >+++=>== tiitititi xrr ηξγγ , (2)

where titi ,,   and ηε  are error terms i.i.d. with mean zero, 2
, )( εσε =tiV , 2

, )V( ηση =ti and ηεσηε ,,, ),( =titiCov ;

ii ξα   and  are random effects i.i.d. with mean zeros, 2)( ασα =iV , 2)V( ξσξ =i , ξασξα ,),( =iiCov  and

2
ξσ + 2

ησ =1; then, they found that each of the following variables, � ∏
= =

−

T

t

T

t
tititi rrr

1 1
1,,,   ,  , , added to equation (1)

were not significant.
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 In the following we prove that the additional variable tests proposed by Verbeek and Njiman (1992)

are adequate to check departure from MAR caused by a correlation between the random effects in the two

equations, while they are not adequate to check departure caused by the correlation between the error terms.

Since Verbeek and Nijman (1992) do not allow for a severe selection bias caused by the correlation between

random effects, the little power of the additional variable tests follows. In the reference experiment situation in

Verbeek and Nijman (1992), the correlation between ξ and η is 0.5, but the importance of the random effects

in both equations is too low, the ratios 2
ασ /( 2

ασ + 2
εσ ) and 2

ξσ /( 2
ξσ + 2

ησ ) are 0.1, so that the resulting selection

bias is not severe and the power of the tests is small.

 To prove that the additional variable tests proposed in Verbeek and Nijman (1992) cannot be used to

verify departure from the MAR caused by correlation between error terms, we consider the case of a null

correlation between the random effects in the equations (1) and (2). If the correlation between random effects is

0, then the following independence conditions hold: 1
1,1,

1
1,, , −−⊥ t

i
t
i

t
itiy yxr  and 1

1,1,
1

1,, , −−⊥ t
i

t
i

t
itir rxy  (that is,

1
1,1,1,, , −

+⊥ t
i

t
i

T
titiy yxr ). By consequence, the equation (1) is not affected by 1

1,
−t

ir and T
ti 1, +r , but only by tir , .

Obviously the dependence between tiy ,  and tir ,  cannot be verified because we observe tiy ,  only when tir , =1.

 The above authors have carried out the same simulation exercise for the quasi-Hausman test (a test

which verifies if the model coefficients for the balanced and unbalanced panels are equal) and have found that

the power is better but non-satisfactory. This is again a consequence of the fact that, ignoring the random

effects because of their little importance, 1
1,1,

1
1,, , −−⊥ t

i
t
i

t
itiy yxr  and 1

1,1,1,, , −
+⊥ t

i
t
i

T
titiy yxr , so that

)1,,()1,,( ,
1

1,1,,1,
1

1,1,, === −−
ti

t
i

t
iti

T
i

t
i

t
iti ryfyf yxryx ,

and the balanced and unbalanced panels give the same results.

 When instead, the authors simulated the following model for the missing data mechanism:

)0Pr()0Pr()1Pr( ,0
*
,, >+++=>== tiiititi xrr ηξπγ , (3)

the power of the variable addition tests and of the quasi-Hausman tests increased. This is not surprising since

in this case, x is not strictly exogenous for the parameters of model (1) and 1
1,1,1,, , −

+⊥/ t
i

t
i

T
titiy yxr . This means that

variables that are linked to the future response path T
ti 1, +r  affect the model (1). The results of Verbeek and

Nijman (1992) support this claim; in fact, the power of the tests obtained by adding the variables

� ∏
= =

T

t

T

t
titi rr

1 1
,,   e  is good, while the power is very small when the variable 1, −tir  is added.

 The same type of reasoning implies that the quasi-Hausman tests are more powerful when model (3) is

used for simulation instead of model (2), and the results again support our conclusion.

 Finally, Verbeek and Nijman (1992) also computed the power for the Lagrange multiplier test and

found that it is good in both simulations. In fact, the Lagrange multiplier test is the only one of the three tests

used that correctly takes account of the joint specification of the model of interest and selection mechanism.

 It seems that the simulation results obtained by Verbeek and Nijman (1992) are in support of the

observation that tests trying to verify the ignorability of the selection mechanism without jointly specifying the
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model of interest and selection mechanism can be misleading. As these tests under-reject the null hypothesis of

ignorability, their usefulness in the detection of the selection problem is questionable.

3. Conclusions

 Rubin (1986) proves that in order to make correct likelihood-based inference, we need two conditions:

the MAR condition and the variation-free condition for the parameters of the model of interest and the

selection mechanism. In this paper, we have defined the weak ignorability of the selection mechanism as the

set of conditions necessary and sufficient to make correct and efficient inference based on the likelihood

function. Using the terminology of model reduction theory, we have shown that weak ignorability is satisfied if

the model of interest and selection mechanism operate a statistical cut, and if the MAR condition is true. In

borrowing from model reduction theory, we have extended the definitions of weak ignorability to the panel

data case. Two definitions of weak ignorability may be given: one in terms of a joint model of interest, defined

for T consecutive waves, and another in terms of a sequential model, corresponding to a dynamic model of

interest and defined for a single time period. We have proved that weak ignorability for a joint model of

interest requires a MAR condition and an initial cut, whereas weak ignorability for a dynamic model requires a

sequential cut, a Granger non-causality condition and a sequential MAR condition. Moreover, we have shown

that, if the model of interest is conditional on a set of explanatory variables, then some additional conditions

are necessary. Substituting MAR with MCAR in the definition of weak ignorability, we have obtained the

strong ignorability definition, which is the condition ensuring a correct inference for any type of inference

methodology.

 The extension of weak and strong ignorability to the case of dynamic panel models has allowed us to

emphasize the failure of some tests proposed in the literature to verify the MAR and/or the MCAR conditions.

Indeed, we have proved that the null hypothesis of some tests is given by an assumption that is not necessary

for MAR and which is necessary but not sufficient for MCAR.

 Furthermore, the formal definition of weak and strong ignorability has helped us to emphasize some

of the limitations of the MAR and MCAR definitions given by Robins and co-authors, and to disentangle some

of the misunderstandings that occurred between Holland and Granger concerning the concept of causality in

the causal inference.
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Appendix A: Definition of CAR following Heitjan and Rubin (1991)

 Heitjan and Rubin (1991) consider a general coarsening mechanism f(r|y;φ), in which r is a variable

indicating the level of coarsening. For example, if there is only a level of coarsening r, is a dummy variable

and we assume that y is coarsened if r=0 and perfectly observable if r=1. When r=0 we have a piece of

information about y that is not precise. For example, in the case of missing data, y is not observable; in

grouped data, y is known to belong to a sub-space of its domain; in right censored duration data, y belong to

),( ∞c  where c is the censor value. In general coarsened data occur when we do not know the exact value of y,

but we know that y belongs to a sub-space of Y. Let y~  be the coarse variable, which defines the sub-space to

which y belong, then y~ =y when r=1 and YB ⊂∈y~ if r=0. In the case of missing data mYB =  and it is often

equal to the entire space Y .

 More generally, r may be a continuous variable, with a sample space given by R, that determines the

coarsening mechanism, so that y~  can be expressed as a function of y and the variable r, ),(
~~ ryYy = . The

distribution function of r given y, f(r|y;φ), is the process that determines the level of precision in measuring y.

In the case of missing data the coarsening mechanism is a selection process or missing data mechanism, in the

grouped data it is a grouping mechanism, in the causal inference it is an assignment process, and so on.

 The definition of coarsening at random (CAR) given by Heitjan and Rubin (1991), that generalizes

the missing at random (MAR) given by Rubin (1976), is the following one: y is coarsened at random if, for

each fixed value y~ , f(r|y;φ) takes the same value for all y∈ ),(
~~ ryYy = .

 The MAR definition (1) given in Section 2 is equal to the MAR given in Heitjan and Rubin (1991). In

fact when y is observed, y~  is not an interval but a point, so the requirement that f(r|y;φ) takes the same value

for all y∈ ),(
~~ ryYy =  is always satisfied. Therefore the Heitjan and Rubin (1991) MAR definition reduces to

require that f(r|y;φ) takes the same value for all mmy Y∈ , that is the definition of MAR in Section 2.

 The CAR condition together to the variation free condition ensure that the censored likelihood, cL ,

and the likelihood with informative missing data, IL , are equal. Indeed the two likelihood functions are

respectively given by the following expressions:

 ( )
r

mmro

y
c

m

dyyfyfdyyfL

−

�
�
�

�
�
�
�

�
== ��

1

~
);();();(

Y

θθθ ,
 

 (1)

and

 dydryrfryyfyfdydrryyfryfL
yy

I � �� � ==
~~

);|(),|~();(),|~(),;,( φθφθ =

 = �
y

dyyyfyf
~

);|~();( φθ ,

 

 (2)

where the integration is respect to the underlying dominating measure, a Lebesgue measure or a counting

measure, and ),|~( ryyf  is the conditional degenerate distribution of y~  given y and r
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�
�
�

≠
==

),(
~~ if  0

),(
~~ if  1

),|~(
ryYy

ryYy
ryyf .

 Under CAR f(r|y;φ) takes the same value for any y∈ ),(
~~ ryYy =  so

);|~();|(),|~( φφ yyfdryrfryyf =�  is a constant, say α, for any y∈ y~  and we can rewrite (2)

as
�
�

�

�

�
�

�

�
� dyyf
y~

);( θα , that is proportional to the likelihood (1). The proportionality between (1) and (2) under

CAR ensures that inference on θ based on the censored likelihood or on the likelihood with informative

missing data is equal.

 Sometimes r is unknown. An example is given by the case of a survey in which some units give a

rounded response and some other give the exact value, but we cannot distinguish between the two types of

units. When r is unknown, the definition of coarsened at random is: y is coarsened at random if, for each fixed

value y~ , dryrfryyfyyf �= );|(),|~();|~( φφ  takes the same value for all y∈ ),(
~~ ryYy = .

 For a formal proof of the equivalence between inference based on likelihood (1) and (2) see Heitjan

and Rubin (1991), for detailed examples see Heitjan (1993).

Appendix B: The case of a deterministically censored variable

 In this section we present a very simple example of a censored variable to show that MAR condition

does not require that the selection mechanism is constant for any y but only for any mYy ∈ .

 Let y be a continuous variable with support ),( +∞−∞=Y  and let us assume that we observe y only

when its value is lower than or equal to a constant c, then YY ⊂∞= ),(cm  and y is MAR because for any

value greater than c the probability to observe y is equal to 0.

 In this specific example the likelihood (1) in appendix A becomes

 ( ) ( ) ( ) rro

r

mmro

y

cFyfdyyfyfdyyf
m

−

−

−=�
�
�

�
�
�
�

�
= ��

1

1

~
);(1);();();();( θθθθθ

Y

.

The selection mechanism f(r|y;φ) is deterministic, in fact

 
�
�
�

>
≤

=
1y probabiltiwith  if   0

1y probabiltiwith  if   1

cy

cy
r .

 When y is missing 1);|(),|();|~(
1

0
�

=
==

r

mmmm yrfryfyyf φφ Y  for any mmy Y∈ , when y is

observable �
=

=
1

0

);|(),|();|~(
r

oooo yrfryyfyyf φφ  is also equal to 1. This allows us to write the informative

likelihood (1) as

 �
y

dyyyfyf
~

);|~();( φθ = ( ) ( ) rro cFyf −− 1);(1);( θθ ,

which is equal to the likelihood with informative missing data (2).
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 This equality proves that the weak ignorability of selection mechanism does not require that the

selection mechanism be constant for any Yy ∈ , but only for any mYy ∈ .

Appendix C: The sequential CAR condition in Gill and Robins (1997)

and our sequential MAR condition

 A variable X is said to be coarsened if we cannot observe its exact value, but we know the subset of the

sample space to which it belongs. In other words we observe a coarse variable χ, instead of X, which defines

the subset to which X belongs.

 Following Gill and Robins (1997) we assume that “… χ is a coarsening of an underlying random

variable X. We suppose that X takes values in a finite space E. Its power set (the set of all subset of E) is

denoted by �. So χ takes values in �\{�} and X�χ with probability one.”

 

Definition of a k-sequential coarsening: (Gill and Robins 1997) “We say that the random sets  χχχ ,,...,1 k

with each mχ  and χ��\{�} form a k-sequential coarsening of a random variable X if for m=0,…, k+1,

1+⊆ mm χχ  with probability 1 where { }Xo ≡χ  and χχ ≡+1k .”

Definition of a k-sequential CAR: (Gill and Robins 1997) “A k-sequential coarsening is a k-sequential CAR

if, for m=1,…, k, the conditional distribution of mχ  given 1−mχ  does not depend on the particular realization

of 1−mχ  except through the fact that is compatible with mχ . In the discrete case, this means

( )BA mm == −1Pr χχ  is the same for all B in the support of 1−mχ  such that B⊆A.”

When the coarsening is due to the attrition problem, we prove that the k-sequential CAR definition of Gill and

Robins (1997) is equivalent to the sequential MAR definition given in this work.

 Let us consider a random sample of N units, for each unit i we observe repeatedly in time a variable y,

which takes values in the sample space Y, and we denote this multivariate variable T
iy 1, , where T is the number

of repeated observations. If tiy ,  is missing, then the successive variables, Titi yy ,1, ,...,+ , are also unknown (this

is the case of the attrition problem). Each missing variable, y, takes value in Y, so that the corresponding

coarse variable, y~ , which defines the sub-space to which y belongs, is equal to the entire sample space Y.  Let

T
iTii yyyX 1,,1, ],...,[ == ; then the coarsened multivariate variable associated to a unit i, for which the last k

variables are not observed, is denoted by ],...,,,...,[]~,...,~,,...,[ 1,1,21,1, YY+−+−+− == kTiiTKTkTii yyyyyyχ .

 If we define χχχ ,,...,0 k  in the following way:

],,...,,,...,[ 12,1,1,0 TTkTikTii yyyyy −+−+−=χ ,

],,...,,,...,[]~,,...,,,...,[ 12,1,1,12,1,1,1 Y−+−+−−+−+− == TkTikTiiTTkTikTii yyyyyyyyyχ ,
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…

],...,,,...,[]~,...,~,,...,[ 1,1,21,1, YY+−+−+− === kTiiTKTkTiik yyyyyyχχ ;

then mm χχ ⊆−1  for any m=0,…,k and χ  can be viewed as the result of a k-sequential coarsening.

 To prove that χ  is a k-sequential CAR, we have to show that ( )BA mm == −1Pr χχ =c, where c is a

constant, for all B in the support of 1−mχ  such that B⊆A (see the above definition of k-sequential CAR).

 If the first (T-1) elements of 1χ  are not equal to the corresponding observed elements of 0χ , then

( )BA == 01Pr χχ =0; so that verifying

 ( )BA == 01Pr χχ =c

is equivalent to verify that

 ( )1,,,...,~Pr 1
1,,1,1, == −

−
T

iTiTiiT ryyyy Y =c ∀ Y∈Tiy , ,

that is, using the fact that )0()~( ,, === titi ry Y ,

  ( )1== −
−

1
1,,1,1,, ,,,...,0Pr T

iTiTiiTi ryyyr = ( )1== −
−

1
1,1,1,. ,,...,0Pr T

iTiiTi ryyr ,

where r is the dummy indicator of response.

 By analogy ( )BA mm == −1Pr χχ =c for all B in the support of 1−mχ  such that B⊆A is true if and only

if

 ( )01 === +
−

−
T
ti

t
ititiiti rryyyr 1,

1
1,,1,1,, ,,,,...,0Pr =

 ( )01 === +
−

−
T
ti

t
itititi rryyr 1,

1
1,1,,. ,,,...,0Pr

 where t=T-m+1. Since ( ) 0,,,,...,0Pr 1,
1

1,,1,1,, =≠== +
−

− 01 T
ti

t
ititiiti rryyyr  in the case of attrition, we can rewrite

the last equality as

 ( )1== −
−

1
1,,1,1,, ,,,...,0Pr t

ititiiti ryyyr = ( )1== −
−

1
1,1,,. ,,...,0Pr t

itititi ryyr ,

that is the sequential MAR condition given in Section 2.6, 1
1,

1
1,,, , −−⊥ t

i
t
ititi yr yr .

If we consider a more general response pattern, possibly non-monotone, then the definition of k-sequential

CAR given in Gill and Robins (1997) does not correspond to our definition of sequential MAR.

 Indeed, the k-sequential CAR condition for non-monotone response patterns is equivalent to the

following condition,

 ( )T
ti

t
iti

oT
iti rryyr 1,

1
1,,1,, ,,,0Pr +
−= = ( )T

ti
t

i
oT
iti rryr 1,

1
1,1,, ,,0Pr +
−= ;

while our sequential MAR definition is

 ( )1
1,,1,, ,,0Pr −= t

iti
ot
iti ryyr = ( )1

1,1,, ,0Pr −= t
i

ot
iti ryr .
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