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Portfolio Optimization Using Forward-Looking
Information

Abstract

We develop a new family of estimators of the covariance matrix that relies solely on forward-
looking information. It uses only current prices of plain-vanilla options. In an out-of-sample
study we show that a minimum-variance strategy based on these fully-implied estimators
outperforms several benchmark strategies, including various strategies based on historical es-
timates, index investing, and 1/N investing. The outperformance originates in crisis periods
when information flow and information asymmetry are high. Although the historical bench-
mark strategies improve when more recent data is used, they never outperform fully-implied
strategies. Thus, our results suggest that investors are better off relying on forward-looking
information.

JEL Classification: G11, G13, G17



1 Introduction

Selecting an optimal portfolio is a classic problem in finance. Although the solution for the

mean-variance investor has been well known since the seminal work by Markowitz (1952),

implementation remains a challenging task. Generally, estimation errors make a simple imple-

mentation based on historical sample moments unstable (see, for example, Best and Grauer

(1991), Chopra and Ziemba (1993), and Michaud (1989)), and specifically, expected returns

are hard to estimate (see Merton (1980)). Facing these implementation limitations, re-

searchers are paying growing attention to the global minimum variance portfolio (GMVP),

the only efficient portfolio that doesn’t depend on expected returns. The GMVP often leads

to a better out-of-sample performance than a mean-variance optimized portfolio (see, for

example, Ledoit and Wolf (2003) and Jagannathan and Ma (2003)).

Despite the attractiveness of the GMVP, an estimation risk with respect to the covariance

matrix remains, and several recent papers suggest ways to reduce estimation errors. For

example, Ledoit and Wolf (2004) impose restrictions on the covariance matrix, whereas Ja-

gannathan and Ma (2003) as well as DeMiguel, Garlappi, Nogales, and Uppal (2009) put

restrictions on the portfolio weights. Despite all the progress, the study by DeMiguel, Gar-

lappi, and Uppal (2009) concludes that “there are still many miles to go before the gains

promised by optimal portfolio selection can actually be realized out of sample.” Specifically,

DeMiguel, Garlappi, and Uppal (2009) base their conclusion on the finding that the GMVP

is unable to beat simple benchmark strategies like investing in an equally weighted portfolio

(1/N-strategy).

Echoing these concerns and the limitations raised by previous research, we suggest a new
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approach to estimate the covariance matrix and show that the GMVP based on the resulting

estimates is able to beat the 1/N-strategy and other benchmark strategies in an out-of-

sample test. The core idea of our new approach is to rely solely on current option prices

when estimating the covariance matrix instead of using historical return information. Since

option prices reflect the expectations of market participants about risk, our approach - unlike

the backward-looking approaches used so far - is inherently forward looking.

Our paper makes two major contributions to the literature. First, we develop a new family of

estimators of the covariance matrix that uses exclusively forward-looking information from a

cross-section of option prices. Such estimators require implied volatilities as well as implied

correlations. While implied volatilities can be easily derived from plain-vanilla options, im-

plied correlations cannot be derived in a similar way since cross-correlation derivatives, such

as exchange options and quantos, are usually not available. Therefore, we suggest a different

route and develop a model that allows us to derive implied correlations from a cross-section

of plain-vanilla options.

The second main contribution is to show that the GMVP based on the implied estimates of

the covariance matrix performs extremely well in an out-of-sample study for US blue-chip

stocks. Specifically, we show that strategies using implied estimators beat various benchmark

strategies: GMVP based on historical estimates of the covariance matrix, 1/N-strategy, and

index investments. The superiority of the implied approach is due to its better performance

in crisis periods, while in quiet periods all strategies lead to similar results. This is highly

sensible given that the information flow and the information content of option prices are

high in turbulent markets. Although the historical strategies and partially-implied strategies,

which use implied variances (correlations) and historical correlations (variances) at the same
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time, never beat the implied strategies, their disadvantage is smaller when using more recent

data for the estimation. This is consistent with the view that more recent data cover the

current market situation better (which is best reflected in current option prices). Overall,

our empirical results suggest that relying on forward-looking information is a promising way

for investors to better realize the possible gains from optimal portfolio diversification.

Our paper relates to two strands of literature. First, we extend the scarce literature on

implied estimation of covariances. Skintzi and Refenes (2005) use prices of individual stock

options and index options to obtain a single implied correlation measure for all stocks in

the market. Hence, they assume that the correlations for all stock pairs are identical. Buss

and Vilkov (2012) use cross-sectional information from option prices combined with time

series information to estimate correlations. Thus, in contrast to our paper, their approach

is not a fully-implied one. Chang, Christoffersen, Jacobs, and Vainberg (2012) develop a

beta estimator based on implied skewness that could be combined with an implied index

variance to obtain fully-implied covariances. However, positive definiteness of the resulting

covariance matrix is not guaranteed. In contrast, we suggest an estimator which always leads

to a positive definite matrix.

The second related strand of literature consists of the few papers that have used forward-

looking information from option prices in solving portfolio problems. Kostakis, Panigirt-

zoglou, and Skiadopoulos (2011) show that implied distributions can be useful to solve the

problem of how to allocate wealth between a market investment and a risk-free asset. How-

ever, in this problem, correlations do not matter and Kostakis, Panigirtzoglou, and Ski-

adopoulos (2011) consequently make no attempt to estimate implied correlations. The same

holds for the portfolio allocation problem studied by Jabbour, Peña, Vera, and Zuluaga
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(2008), who seek to find a portfolio’s worst case Conditional Value-at-Risk. Aı̈t-Sahalia and

Brandt (2008) study the dynamic consumption and portfolio choice problem of an investor

who can invest in the stock market, the bond market, and in a risk-free asset. They charac-

terize the properties of consumption and portfolio rules using implied marginal distributions.

Since they do not derive the joint implied distribution, they have to estimate the correla-

tion between the bond and stock market from historical returns. DeMiguel, Plyakha, Uppal,

and Vilkov (2012) analyze the portfolio selection problem among a large set of stocks and

provide evidence on minimum-variance portfolios, but they either combine implied variances

with historical correlations or historical variances with implied correlations. Thus, DeMiguel,

Plyakha, Uppal, and Vilkov (2012) do not consider a fully-implied approach. This is the main

difference from our paper, which is the first to present and test a fully-implied approach to

find the GMVP.

The remainder of the paper is organized as follows. In Section 2 we develop the family

of fully-implied estimators of the covariance matrix. In Section 3 we present our empirical

study. Section 4 concludes.

2 A Family of Fully-Implied Covariance Estimators

To derive implied covariances from a cross-section of plain-vanilla options, we make two

assumptions. First, we assume that the returns of a set of N assets follow a generalized

version of the Sharpe (1963) market model with time-varying coefficients:

Rit = αit + βitRmt + εit, ∀ i = 1, . . . , N. (1)
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Rit and Rmt denote the returns of the ith asset and the market, respectively. εit is a zero

mean idiosyncratic error term that is independent of the market return. In addition, εit and

εjt are independent for all i 6= j. αit and βit are model coefficients. Note that the model is

fairly general since the coefficients can change over time. In the market model the return

covariances depend only on the beta coefficients and the variance of the market return:

Cov(Rit, Rjt) = βitβjtV ar(Rmt), ∀ i 6= j . (2)

Since the variance of the market return can be derived from traded index options, we are left

with the problem of identifying betas from the prices of plain-vanilla options written on the

individual assets. To solve this problem, we make our second assumption, a cross-sectional

restriction on one moment of the return distribution. We can derive a whole family of fully-

implied covariance estimators by imposing restrictions either on the second, third, fourth, or

any other higher moment, respectively. In Sections 2.1, 2.2, and 2.3 we outline estimators

based on the second, third, and fourth moments, respectively, and compare the properties of

these fully-implied estimators in Section 2.4.

2.1 ESTIMATOR BASED ON SECOND MOMENTS

To derive the first member of the family, we impose a cross-sectional restriction on the return

variance. We assume that the same (time varying) proportion of total variance is systematic

for all assets. Denote this proportion by ct, with 0 ≤ ct < 1. Then β2
itV ar(Rmt) = ctV ar(Rit)

and V ar(εit) = (1−ct)V ar(Rit). Our cross-sectional restriction implies that high-beta stocks

tend to have high idiosyncratic risk. Such a relation between beta and idiosyncratic risk is
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well documented in the literature (e.g., Fama and MacBeth (1973), Malkiel and Xu (2002),

Bali and Cakici (2008), and Fu (2009)). Solving the return variance of the ith asset

V ar(Rit) = β2
itV ar(Rmt) + (1− ct)V ar(Rit) (3)

for βit leads to

βit = c
1/2
t

(
V ar(Rit)

V ar(Rmt)

)1/2

. (4)

Since the market beta equals one, we can use the weights witm of the different assets i =

1, . . . , N in the market portfolio to identify the parameter ct:

N∑
i=1

witm βit =
N∑
i=1

witm c
1/2
t

(
V ar(Rit)

V ar(Rmt)

)1/2

= 1. (5)

Solving for ct leads to

ct =
V ar(Rmt)(∑N

i=1witm V ar(Rit)1/2
)2 . (6)

The above expression shows that ct is positive and smaller than one given that not all assets

in the index are perfectly correlated. Substitution of ct from Equation (6) into Equation (4)

and substitution of the resulting betas into Equation (2) finally leads to

Cov(Rit, Rjt) =
V ar(Rit)

1/2 V ar(Rjt)
1/2(∑N

i=1witm V ar(Rit)1/2
)2 V ar(Rmt), ∀ i 6= j. (7)

Equation (7) shows that the covariances are functions of individual asset variances and the

variance of the market only. No cross-moments appear. Therefore, we can use implied

volatilities from plain-vanilla options written on individual assets and the market index to
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obtain a fully-implied covariance estimate.

2.2 ESTIMATOR BASED ON THIRD MOMENTS

To obtain the further members of the family of fully-implied estimators, we just have to

replace the assumption concerning the proportion of systematic variance with a corresponding

assumption about how systematic risk affects higher moments.

To derive a skewness-based estimator of covariances, we now assume that the proportion of

systematic return skewness is equal for all assets.1 Denote this proportion by cSkewt . Then,

the return skewness of the ith asset is

Skew(Rit) = β3
itSkew(Rmt) + (1− cSkewt )Skew(Rit), (8)

and solving for βit leads to

βit = (cSkewt )1/3
(
Skew(Rit)

Skew(Rmt)

)1/3

. (9)

Again, the condition that the market beta equals one delivers the proportion cSkewt . Solving

for cSkewt and substituting the solution into Equation (9) provides the beta coefficients and

finally leads to the following covariances:

Cov(Rit, Rjt) =
Skew(Rit)

1/3Skew(Rjt)
1/3(∑N

i=1witmSkew(Rit)1/3
)2 V ar(Rmt), ∀ i 6= j . (10)

1Note that the assumption by Chang, Christoffersen, Jacobs, and Vainberg (2012) that the proportion of
systematic skewness equals 100% is a special case.
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Equation (10) provides the second member of our family of fully-implied estimators of co-

variances.

2.3 ESTIMATOR BASED ON FOURTH MOMENTS

The final example we provide is a kurtosis-based estimator of covariances. We can derive it

as above, but now assume that the proportion of systematic kurtosis is equal for all N assets.

We denote this proportion by cKurt
t , with 0 ≤ cKurt

t < 1, and obtain the third fully-implied

covariance estimator as

Cov(Rit, Rjt) =
Kurt(Rit)

1/4Kurt(Rjt)
1/4(∑N

i=1witmKurt(Rit)1/4
)2 V ar(Rmt), ∀ i 6= j . (11)

In a similar way, one can easily derive further estimators using restrictions on higher moments

of the return distribution.

2.4 PROPERTIES OF THE ESTIMATORS

The various members of the family of covariance estimators differ with respect to their

properties. Most important for our portfolio application is the fact that they have different

implications for the positive definiteness of the covariance matrix and the cross-sectional

variation of correlations.

A positive definite covariance matrix is a prerequisite to solve our portfolio optimization

problem. The variance-based estimator of Section 2.1 guarantees a positive definite covari-

ance matrix since ct < 1.2 In contrast, the skewness- and kurtosis-based estimators do not

2To guarantee positive definiteness of the covariance matrix, it is sufficient that the correlation matrix
is positive definite. As we see from Equations (6) and (7), all the off-diagonal elements of the correlation
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guarantee a positive definite covariance matrix. Since betas are identified from skewness or

kurtosis in Sections 2.2 and 2.3, the implied beta estimates together with the implied stock

and index volatilities could induce a negative estimate of the idiosyncratic variance, which

would translate into an estimated covariance matrix that is not positive definite.

Based on model-free implied moments according to Bakshi, Kapadia, and Madan (2003),

we empirically analyze the severity of this problem for our data set of US blue-chip stocks.

Using all estimates from our empirical study in Section 3, we find that the problem appears

only for the skewness-based estimator. It leads to a negative implied idiosyncratic variance

in 135 cases, which affect 43 of the 169 months in our out-of-sample period. In contrast,

the kurtosis-based estimator does not lead to a negative idiosyncratic variance in a single

case. This finding suggests that the variance-based and kurtosis-based estimators are more

promising than the skewness-based estimator in portfolio applications.3 Therefore, we do not

use the skewness-based estimator in the empirical exercise in Section 3.

With respect to the cross-sectional variation of correlations, the variance-based estimator

implies a constant value of ct across all assets, as Equations (6) and (7) show. In contrast,

the kurtosis-based estimator (as well as the skewness-based estimator) does not imply such a

restriction and allows for heterogeneous correlations across assets. From a theoretical point

of view, the restriction to a constant correlation across all pairs of assets is undesirable. From

an empirical point of view, however, the constant correlation model might lead to better out-

of-sample investment results than alternative approaches (see, for example, Chan, Karceski,

and Lakonishok (1999) and Elton, Gruber, and Spitzer (2006)).

matrix equal ct. Thus, positive definiteness is guaranteed for ct < 1.
3Martellini and Ziemann (2010) provide complementary evidence on this issue for historical moment

estimates by showing that odd moments are much more difficult to estimate than even ones.
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3 Empirical Study

3.1 DATA AND PORTFOLIO STRATEGIES

Our sample consists of stocks included in the Dow Jones Industrial Average. We use daily

prices (adjusted for dividends and stock splits) of all stocks included in the index during the

period January 1998 to January 2012, which is our out-of-sample period. In addition, we

use stock prices from January 1993 to December 1997 to estimate covariance matrices for

historical benchmark strategies. The data source is Datastream. Table I provides information

on the stock price data for the out-of-sample period. It shows annualized average excess log-

returns, realized return volatilities, and the period for which the stocks are included in the

index.4

[ Insert Table I about here ]

Table I shows that excess returns of stocks included over the whole period range from -4.7%

to 11.1% p.a. and volatilities from about 19.4% to 39.7%. The Dow Jones Index itself has an

average excess return of 0.5%. The index volatility is 18.1%, providing evidence for potential

diversification benefits.

To estimate an implied covariance matrix we use model-free implied moments, i.e., we do

not rely on a particular valuation model. The idea goes back to the seminal paper by

Breeden and Litzenberger (1978), who show that the whole risk-neutral return distribution

can be recovered from option prices if a continuum of strike prices is available.5 We apply

4For the calculation of excess returns, we use the zero rates provided by the IvyDB data base. Interest
rates provided by IvyDB are derived from BBA LIBOR rates and settlement prices of CME Eurodollar
futures. We interpolate them with a cubic spline to get the appropriate yield.

5See, for example, Britten-Jones and Neuberger (2000), Carr and Madan (2001), Jiang and Tian (2005),
Vanden (2008), and Shackleton, Taylor, and Yu (2010) for more recent theoretical and empirical research on
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the approach by Bakshi, Kapadia, and Madan (2003) to derive model-free implied moments

which we then put into Equations (7) and (11) to obtain implied covariance estimates. As

our data source we use the volatility surfaces provided by IvyDB. They deliver Black-Scholes

implied volatilities for a variety of strike prices and maturity buckets. These surfaces are

available for all individual stocks and the Dow Jones Index.

Although options provide moments under the risk-neutral measure and portfolio selection

requires moments under the physical measure, we make no attempt to risk-adjust implied

moments in our study. Rubinstein (1994) provides examples of how the risk-neutral and

physical distributions of the market are related. He concludes that the difference lies mainly

in a mean shift and that the distributions are similar in shape. Moreover, even if the shape

of the distribution is changed, the GMVP remains unaffected as long as the proportional

variance and covariance risk premia are the same for all assets. Thus, it is an empirical

question how valuable implied moments from option prices are for investment strategies6 –

a question that we address in the sections to come.

When implementing our trading strategy, we do not allow for short sales since short-sales

restrictions typically lead to a better performance in empirical studies.7 We use a monthly

rebalancing frequency for the portfolio.8 The rebalancing data is the first trading day after

the expiration day of options contracts at CBOE for rebalancing since liquid options with

model-free implied moments.
6A large literature shows that implied volatilities are useful to predict future realized volatilities. See

Poon and Granger (2003) and Poon and Granger (2005) for surveys and Busch, Christensen, and Ørregaard
Nielsen (2011) for a recent study that uses state-of-the-art benchmark predictors. For a recent survey that
considers also implied correlations and betas see Christoffersen, Jacobs, and Chang (2012).

7See, for example, Frost and Savarino (1988), Grauer and Shen (2000), and Jagannathan and Ma (2003).
This holds in our sample as well: No matter whether we use implied or historical estimators, the trading
strategy delivers a better performance when short sales are not allowed.

8As a robustness check, we repeat the analysis using a quarterly rebalancing frequency. The results remain
qualitatively the same.
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a time to maturity of about 30 days exist then. For this maturity bucket, we select all

out-of-the money put and call options and fit a cubic spline to obtain a smooth volatility

curve for each stock and the index.9 Outside the available range of strike prices, we assume

that the volatility curve is flat. Then, we select 1000 equally spaced strike prices on the

interval [0.003 · Si, 3 · Si], where Si denotes the current spot price of the ith asset. For these

1000 strike prices we convert back the implied volatilities into European option prices via

the Black-Scholes formula. To do this conversion, we use the matching spot prices and the

risk-free interest rates provided by IvyDB. Based on these option prices we calculate the

model-free implied moments following Bakshi, Kapadia, and Madan (2003).

For every month in the out-of-sample period, we set up GMVPs that differ in the way

the covariance matrices are estimated. The first group of GMVP strategies relies on the

fully-implied estimators of the covariance matrix. We denote the strategy using the implied

estimator based on the variance by Imp Var and the one based on the implied kurtosis by

Imp Kurt.

As a first set of benchmarks, we consider three passive strategies for which no estimates

of the covariance matrix are needed. The first benchmark follows the construction of the

Dow Jones Industrial Average and applies a price weighting of the 30 stocks (Pass DJ). The

second one uses a capital weighting (Pass CW) and the third gives equal weights to all stocks

(Pass 1/N).

Our second set of benchmarks consists of three GMVP strategies using historical estimators.

The first benchmark relies on the unrestricted sample estimator of the covariance matrix

9Using out-of-the-money options diminishes the price effect of a potential early exercise of American
options, which reduces model risk with respect to the early exercise premium. Moreover, out-of-the-money
options are usually much more liquid than in-the-money options.
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(Hist Sample). The other two use shrinkage estimators that attempt to find the optimal

trade-off between sampling error and specification error and combine the sample covariance

matrix with estimators that impose more structure. Such shrinkage estimators are successful

in earlier studies, as shown by, e.g., DeMiguel, Garlappi, Nogales, and Uppal (2009). In

particular, we use the estimator by Ledoit and Wolf (2004) that shrinks the sample covariance

towards the estimates obtained under constant correlations (Hist Sh CC) and the estimator

by Ledoit and Wolf (2003) that uses a one-factor market model instead of the constant-

correlation model (Hist Sh FM). For each of the three historical estimators, we apply three

different estimation windows. The first one uses monthly returns of the preceding 60 months

to estimate the covariance matrix (60 Months). The second window uses weekly returns of

the preceding 60 weeks (60 Weeks) and the third one employs daily returns of the preceding

60 days (60 Days). Since all estimation windows apply the same number of observations,

they allow us to look at the consequences of using more or less recent information. A natural

hypothesis is that the strategies using more recent historical data perform more like the

strategies using implied estimators, which exploit current market information only.

For each strategy and every month in our out-of-sample period we calculate the excess log-

return and the realized volatility using the daily returns within the particular month.

3.2 MAIN RESULTS

3.2.1 Base Case

Table II shows the out-of-sample average realized return volatilities (σ) and excess returns

(R) of the different portfolio strategies. For ease of interpretation, we report annualized

13



values.

[ Insert Table II about here ]

Panel A shows that the two implied strategies perform about the same. The out-of-sample

volatility σ is 13.8% for both of them. These values are clearly smaller than the ones obtained

from the passive benchmark strategies (shown in Panel B). The differences are statistically

significant at the 1%-level in all cases as shown by the p-values of Panel B (given in brack-

ets). The p-values refer to tests of significant differences between the respective benchmark

strategy and the implied strategies. The first p-value relates to Imp Var and the second one

to Imp Kurt. Since no statistically significant differences exist for average returns, the im-

plied strategies clearly beat the passive benchmark strategies with respect to the risk-return

trade-off. Compared to the historical benchmark strategies (shown in Panel C), the implied

estimators always lead to a smaller out-of-sample volatility, irrespective of the estimation

window used for the historical estimators. The difference in out-of-sample volatility is the

larger the less recent data is used. For the estimation window of 60 months, the difference is

significant at the 1% level for all three historical estimators and for the estimation window

of 60 weeks, the significance level is 10%, at least. For an estimation window of 60 days, the

significance disappears when comparing the implied estimators with the shrinkage estimators.

Overall, Table II gives a clear picture. Average returns are never significantly different. Out-

of-sample volatilities are smallest for the implied strategies and highest for the passive ones.

Historical benchmark strategies lie in between. Within this group, we observe that the more

recent the data, the better the results. Moreover, employing a shrinkage estimator instead

of the sample estimator always improves the out-of-sample volatility of the GMVP strategy.
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3.2.2 Information Flow and Implied Estimators

Implied moments rely on current option prices and use no historical time series. Therefore,

one expects the implied strategies to perform particularly well in crisis periods for two reasons.

First, the information flow is high in crisis periods. This could make historical information

less valuable leading to superiority of the implied approach, which relies solely on current

data. Second, informed investors can exploit their private information better in options

markets than in spot markets.10 Therefore, one expects to see a higher fraction of informed

investors in the options market during periods of high information asymmetry. This would

make option prices more informative, again suggesting that the implied strategy performs

particularly well in crisis periods. In quiet market periods, however, when no major events

occur and the information asymmetry is low, implied moments might have no advantage over

historical ones. We test these hypotheses now.

Our sample period contains two major stock market crises. The first crisis is the burst of the

Dot-com bubble; the second one the global financial crisis. The burst of the Dot-com bubble

began in March 2000, when the NASDAQ index lost almost nine percent of its value in just

six days. As the end of the Dot-com crisis we choose April 2003, the month when the stock

market started its recovery. As the starting point of the global financial crisis, we use June

2007, the month when the problems of two of Bear Stearns’ hedge funds became public, and

we classify the whole remaining sample period until January 2012 as a crisis period. This

classification leaves us with 94 observations in crisis periods and 75 observations in non-crisis

periods. Table III provides the out-of-sample volatilities and excess returns of all strategies

10See, for example, Kumar, Sarin, and Shastri (1992), Easley, O’Hara, and Srinivas (1998), Chakravarty,
Gulen, and Mayhew (2004), Cao, Chen, and Griffin (2005), and Pan and Poteshman (2006).
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for crisis and non-crisis periods.

[ Insert Table III about here ]

Table III shows that the out-of-sample volatility is higher in the crisis periods (Panels A

- C) than in the non-crisis periods (Panels D - F), which indicates that our definition of

crisis periods is sensible. When looking at crisis periods, we see a similar pattern to that

in Table II which is, however, more pronounced.11 The passive strategies (Panel B) that do

not use any information about the covariance matrix perform worst. They are followed by

the historical strategies (Panel C). Within this group of strategies, it always pays to use a

shrinkage estimator and it is always better to use more recent data to estimate the covariance

matrix. This latter finding suggests that it is crucial to adapt quickly to new information

in times of crisis. Consistent with this rationale, the implied strategies that rely only on

contemporaneous information perform best (Panel A). Their out-of-sample volatilities are

significantly smaller than the volatilities of all other strategies.

The non-crisis periods provide a different picture of the performance of various strategies:

It makes no difference how one estimates the covariance matrix. Implied (Panel D) and

historical (Panel F) strategies lead to almost identical out-of-sample volatilities and we do

not find a single statistically significant difference. The passive strategies (Panel E) have a

significantly higher volatility, but the disadvantage is much smaller than in the crisis periods.

We also observe a clear pattern in average returns, although differences are not statistically

significant. Optimized portfolios (GMVPs) have higher average returns than passive portfo-

11The p-values in brackets refer to differences between the Imp Var strategy and the corresponding bench-
mark strategy. We omit the corresponding values for the Imp Kurt strategy here and in the following tables,
because they lead to the same conclusions.
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lios in crisis periods and lower average returns in non-crisis periods. This finding highlights

that minimum-variance portfolios are also low-beta portfolios.12

3.2.3 Fully- versus Partially-Implied Estimators

A main insight from the previous section is that a GMVP strategy using implied estimators

for variances and correlations delivers a lower out-of-sample volatility in crisis periods than

a GMVP strategy using historical estimators for variances and correlations. We now analyze

GMVP strategies that use implied and historical estimates at the same time.

Table IV reports the results for such partially-implied approaches. We again use returns of

the previous 60 months, 60 weeks, and 60 days, respectively, for the historical estimates. We

conduct our analysis using data from the crisis periods only, since we know from Table III

that the way we estimate the covariance matrix matters only in crisis periods. The p-values,

reported in brackets, refer to tests of significant differences to the fully-implied approach

Imp Var, which delivers an out-of-sample volatility of 15.1% and an average return of 0.4%

(see Panel A of Table III).

We present results for four partially-implied approaches. In the first approach (Panel A),

we use implied correlations and historically estimated variances. In the other approaches

(Panel B), we use historically estimated correlations and implied variances. The historical

correlation estimates use the sample estimator, the shrinkage estimator towards constant

correlations, and the shrinkage estimator based on a factor model, respectively. Since all

data needed is readily available, investors can easily apply the approaches presented in Panel

B. The approach of Panel A is more challenging since one has to implement our model of

12Clarke, De Silva, and Thorley (2010) provide analytical results on the relation between the portfolio
weights of the GMVP and betas.
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Section 2.1 to extract the implied correlations from a cross-section of options.

[ Insert Table IV about here ]

If we combine implied correlations with historical variances (Panel A of Table IV), the out-

of-sample volatilities of the corresponding GMVPs are clearly higher than the ones of the

fully-implied strategy (Panel A of Table III). The p-values show that the differences are

significant at the 1%-level, irrespective of the estimation window. Out-of-sample volatilities

resulting from a combination of implied correlations and historical variances can even be

higher than those resulting from pure historical estimates based on shrinkage estimators (see

Panel C of Table III). This finding suggests that it makes no sense to use our model only

to estimate implied correlations. It exploits its full potential only when used to consistently

estimate implied variances and correlations.

The results for the other partially-implied approaches (Panel B of Table IV) show that

the use of implied variances instead of historical ones (see Panel C of Table III) always

reduces out-of-sample volatilities of the portfolio strategies. Thus, using implied information

about variances leads to a clear improvement. However, the resulting out-of-sample volatility

of these partially-implied approaches is still significantly higher than the volatility of the

fully-implied approach in most cases. Only for the shrinkage estimators implemented with

recent data do we find no significant differences between fully-implied and partially-implied

strategies.

To possibly get even better results for the partially-implied approach, we now use different

estimation windows. Since our analysis so far shows that more recent data leads to better

results, one might expect that the results get even better if we leave out older observations.
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However, there is an opposite effect. Leaving out older observations reduces the number of

observations and increases the estimation risk. Given that there are a recentness effect and

an opposing estimation risk effect, it is not clear ex ante whether the investor is better off

using fewer than 60 daily observations. She might be even better off using more observations.

We test this issue by providing results for varying numbers of daily observations in Table V.

We report results for 31 days, which is the shortest period we can use given that our sample

consists of 30 stocks. For comparison, we also report the results for 60 days (taken from

Table IV). Finally, we calculate the values for 250 days, which roughly correspond to a

one-year period.

[ Insert Table V about here ]

Table V shows that we cannot further improve the performance of the partially-implied strate-

gies by using the most recent estimation period possible. When using implied correlations

and historical variances (Panel A) the out-of-sample volatilities remain significantly larger

than the ones derived from the implied estimators. Panel B shows the results for partially

implied estimators that use historical correlations and implied variances. Interestingly, it

makes no big difference for the best-performing of these partially-implied strategies whether

one uses 31, 60, or 250 daily observations. This finding suggests that the recentness effect

and the estimation risk effect roughly cancel out. Thus, the overall conclusion of this section

is that partially implied estimators do not beat the fully-implied ones despite all our efforts.
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3.2.4 Combinations of Implied and Historical Estimators

A possible way to get more precise estimates is to combine different estimators. The shrinkage

estimator of Ledoit and Wolf (2004) is an example of that. It consists of a linear combina-

tion of the sample covariance matrix and an estimator that imposes more structure on the

covariance matrix, namely a constant correlation across assets. We now take up this idea

and combine the sample covariance matrix and the implied covariance estimator. Table VI

shows the out-of-sample volatilities and excess returns of GMVPs based on three different

weighting schemes, that give a weight of 75% (Imp75 Hist25), 50% (Imp50 Hist50), and 25%

(Imp25 Hist75), respectively, to the implied estimator. We again focus on the crisis periods

only.

[ Insert Table VI about here ]

The results in Table VI show that none of the combined estimators leads to a significantly

lower out-of-sample volatility than the pure implied one, which equals 0.151 (see Panel A

of Table III). However, note that we made no attempt to determine the optimal weight-

ing scheme. The search for “optimal” combinations of implied and historical estimators is

certainly an interesting field for future research.

4 Conclusions

In this paper, we develop a family of fully-implied estimators of the covariance matrix. Our

basic idea is to obtain estimates of the covariance matrix solely from current prices of plain-

vanilla options. These prices reflect market expectations about the return distributions of
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the underlying assets. Therefore, the approach is forward looking and differs fundamentally

from the backward-looking approach that uses time series of returns. The members of the

family differ with respect to the moment of the implied distribution they use to obtain the

covariance matrix. We implement estimators based on the second and fourth moment.

We test the quality of the new estimators by analyzing the out-of-sample performance of the

corresponding global minimum variance (GMVP) strategies for the 30 stocks included in the

Dow Jones Industrial Average (DJIA) and find that they work equally well. We compare

their performance with several benchmark strategies and show that it makes a big difference

which strategy one uses, but only in periods of high information flow. Then the investor

is better off by using more recent data, in particular using only current market data as in

our fully-implied approach. Historical strategies, partially-implied strategies, and strategies

based on combinations of historical and implied estimators also gain from using more recent

data, but never beat the fully-implied strategies.

Our empirical study delivers two main insights for an investor: First, strategies based on fully-

implied estimators are a good choice because they significantly outperform the benchmark

strategies in most cases and are never beaten by any other strategy. Second, if an investor

nevertheless wants to use historical estimators, she should use shrinkage estimators and most

recent data.

Our paper has three main limitations to be addressed in future research. First, it demon-

strates a superior performance of the implied estimators only for an investment universe of

30 blue-chip stocks over a period when options data on the DJIA is available. However, the

number of assets in the investment universe might have an impact on the results. Since the

implied estimators impose cross-sectional restrictions that might not be adequate for a larger
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investment universe with more heterogeneous stocks, it is possible that the performance of

the implied estimators is worse when applied to a wider investment universe.

Second, the implied estimators derived in this paper rely on a single-factor return structure.

Generalizations of our fully-implied approach to multi-factor return structures are possible

under two conditions. (i) We need options written on all factors to obtain implied moment

estimates. (ii) We have to impose multiple cross-sectional restrictions to achieve identification

of the model parameters. For example, one could assume that the proportion of systematic

variance is identical for all stocks in the cross section - as for our variance-based estimator -

and idiosyncratic skewness is zero as assumed by Chang, Christoffersen, Jacobs, and Vainberg

(2012).

Finally, our paper focusses on GMVP strategies and, therefore, uses only forward-looking

information about the covariance matrix. The natural next step would be to combine the

fully-implied covariance matrix suggested in this paper with option-implied information about

expected returns. This would allow us to go beyond the GMVP and possibly reach an even

better out-of-sample performance. We believe that this is a promising avenue for further

research since several recent papers like Ang, Bali, and Cakici (2010), Bali and Hovakimian

(2009), Conrad, Dittmar, and Ghysels (2009), Cremers and Weinbaum (2010), DeMiguel,

Plyakha, Uppal, and Vilkov (2012), Rehman and Vilkov (2010), and Xing, Zhang, and Zhao

(2010) show that option-implied information has predictive power for expected returns.
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Table I. Excess returns and return volatilities of individual stocks and the Dow Jones Index

This table shows average excess returns and return volatilities of individual stocks and the Dow Jones Index.
We calculate average excess returns and return volatilities using daily data and report annualized values.
The upper part of the table lists all stocks that are in the index during the full period (January 1998 to
January 2012). The lower part of the table lists all other stocks together with the periods when they have
been in the index.

Tickers R σ Period

CAT 0.111 0.333 01/98 - 1/12
UTX 0.097 0.272 01/98 - 1/12
MCD 0.090 0.251 01/98 - 1/12
IBM 0.071 0.264 01/98 - 1/12
XOM 0.066 0.242 01/98 - 1/12
WMT 0.057 0.254 01/98 - 1/12
MMM 0.046 0.242 01/98 - 1/12
AXP 0.038 0.354 01/98 - 1/12
JNJ 0.035 0.194 01/98 - 1/12
BA 0.028 0.313 01/98 - 1/12
PG 0.025 0.214 01/98 - 1/12

JPM 0.004 0.379 01/98 - 1/12
DD -0.003 0.289 01/98 - 1/12
DIS -0.003 0.314 01/98 - 1/12
KO -0.006 0.216 01/98 - 1/12

HPQ -0.008 0.374 01/98 - 1/12
GE -0.022 0.289 01/98 - 1/12

MRK -0.023 0.276 01/98 - 1/12
AA -0.047 0.397 01/98 - 1/12

DJ Index 0.005 0.181 01/98 - 1/12

UK 0.181 0.393 01/98 - 11/99
TRV 0.161 0.215 06/09 - 1/12
MO 0.090 0.270 01/98 - 02/08
CVX 0.087 0.291 02/08 - 1/12
KFT 0.077 0.204 09/08 - 1/12

T 0.065 0.220 11/05 - 1/12
CVX 0.063 0.282 01/98 - 11/99
VZ 0.045 0.199 04/04 - 1/12

CSCO 0.041 0.281 06/09 - 1/12
HON 0.026 0.323 01/98 - 02/08
HD -0.021 0.316 11/99 - 1/12
IP -0.027 0.340 01/98 - 04/04

MSFT -0.036 0.295 11/99 - 1/12
INTC -0.043 0.379 11/99 - 1/12
PFE -0.054 0.232 04/04 - 1/12
SBC -0.136 0.331 11/99 - 11/05
EK -0.144 0.333 01/98 - 04/04
C -0.192 0.406 01/98 - 06/09
T -0.205 0.412 01/98 - 04/04
S -0.253 0.370 01/98 - 11/99

GM -0.326 0.462 01/98 - 06/09
GT -0.342 0.322 01/98 - 11/99

BAC -0.401 0.683 02/08 - 1/12
AIG -0.653 0.332 04/04 - 09/08
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Table II. Out-of-sample volatilities and excess returns of the portfolio strategies

This table shows out-of-sample average realized return volatilities (σ) and excess returns (R) of different
portfolio strategies using monthly rebalancing. We report annualized values of volatilities and returns. The
out-of-sample period starts in January 1998 and ends in January 2012, i.e., the number of observations is 169.
Panel A presents the results for GMVPs based on the implied estimators. We denote the strategy using the
implied estimator derived in Section 2.1 by Imp Var and the one derived in Section 2.3 by Imp Kurt. Panel B
reports the results for the following passive benchmarks strategies: passive investments using price weighting
(Pass DJ), capital weighting (Pass CW), and equal weighting (Pass 1/N), respectively. The numbers in
brackets are p-values for tests of significant differences between the implied strategies (Imp Var, Imp Kurt)
and the benchmarks. The first p-value relates to Imp Var and the second one to Imp Kurt. Panel C provides
the results for GMVPs based on three historical estimators for different estimation windows (60 months, 60
weeks, 60 days). The historical estimators are the sample estimator (Hist Sample), Ledoit’s and Wolf’s (2004)
estimator that shrinks the sample correlations towards constant correlations (Hist Sh CC), and Ledoit’s and
Wolf’s (2003) estimator that shrinks the sample correlations towards those obtained from a one-factor model
(Hist Sh FM). The numbers in brackets are again p-values for tests of significant differences between the
implied strategies (Imp Var, Imp Kurt) and the benchmarks. The first p-value relates to Imp Var and the
second one to Imp Kurt.

Panel A: Portfolios Based on Implied Estimators

σ R σ R

Imp Var Imp Kurt

0.138 0.028 0.138 0.031

Panel B: Passive Benchmarks

σ R σ R σ R

Pass DJ Pass CW Pass 1/N

0.174 0.026 0.181 0.005 0.187 0.024
(0.000) (0.946) (0.000) (0.465) (0.000) (0.912)

(0.000) (0.860) (0.000) (0.407) (0.000) (0.839)

Panel C: Benchmarks Based on Historical Estimators

σ R σ R σ R

Hist Sample Hist Sh CC Hist Sh FM

0.151 0.020 0.149 0.017 0.148 0.023
60 Months (0.000) (0.724) (0.000) (0.565) (0.000) (0.821)

(0.000) (0.617) (0.000) (0.457) (0.000) (0.699)

0.146 0.026 0.141 0.025 0.141 0.018
60 Weeks (0.001) (0.940) (0.083) (0.859) (0.100) (0.630)

(0.000) (0.221) (0.032) (0.897) (0.033) (0.440)

0.143 0.016 0.141 0.023 0.139 0.013
60 Days (0.004) (0.540) (0.103) (0.755) (0.370) (0.404)

(0.007) (0.436) (0.152) (0.618) (0.489) (0.309)
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Table IV. Out-of-sample volatilities and excess returns of GMVPs based on partially-implied esti-
mators

This table shows out-of-sample average realized return volatilities (σ) and excess returns (R) of portfolio
strategies based on partially-implied estimators of the covariance matrix. We again use monthly rebalancing
and report annualized values of volatilities and returns. The out-of-sample period covers the crisis periods
from March 2000 to April 2003 and June 2007 to January 2012 (94 observations). Historical variances and
correlations use monthly returns of the preceding 60 months (60 Months), weekly returns of the preceding
60 weeks (60 Weeks), or daily returns of the preceding 60 days (60 Days). Panel A reports the results for
GMVP strategies that use implied correlations and historical variances. We obtain implied correlations from
our variance-based estimator derived in Section 2.1. Panel B shows the results for GMVP strategies based on
historical correlations and implied variances. The historical correlation estimators are the sample estimator
(Hist Sample), Ledoit’s and Wolf’s (2004) estimator that shrinks the sample correlations towards constant
correlations (Hist Sh CC), and Ledoit’s and Wolf’s (2003) estimator that shrinks the sample correlations
towards those obtained from a one-factor model (Hist Sh FM). The numbers in brackets are p-values for tests
of significant differences between the fully-implied strategy Imp Var and the corresponding partially-implied
strategy.

Panel A: Implied Correlations – Historical Variances

σ R

0.169 -0.011
60 Months (0.000) (0.650)

0.159 -0.018
60 Weeks (0.001) (0.354)

0.159 -0.002
60 Days (0.000) (0.766)

Panel B: Historical Correlations – Implied Variances

σ R σ R σ R

Hist Sample Hist Sh CC Hist Sh FM

0.164 -0.034 0.155 -0.021 0.160 -0.020
60 Months (0.000) (0.187) (0.031) (0.134) (0.000) (0.309)

0.162 -0.024 0.153 -0.009 0.156 -0.021
60 Weeks (0.000) (0.305) (0.157) (0.362) (0.020) (0.284)

0.158 -0.031 0.151 -0.018 0.152 -0.026
60 Days (0.007) (0.172) (0.799) (0.167) (0.638) (0.187)
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Table V. Out-of-Sample volatilities and excess returns of GMVPs based on partially-implied esti-
mators: alternative estimation windows

This table shows out-of-sample average realized return volatilities (σ) and excess returns (R) for the same
portfolio strategies and out-of-sample period as in Table IV, but now based on alternative estimation win-
dows. Historical variances and correlations use daily returns of the preceding 31 days (31 Days), 60 days (60
Days), or 250 days (250 Days), respectively.

Panel A: Implied Correlations – Historical Variances

σ R

0.165 0.001
31 Days (0.000) (0.911)

0.159 -0.002
60 Days (0.000) (0.766)

0.157 -0.003
250 Days (0.003) (0.733)

Panel B: Historical Correlations – Implied Variances

σ R σ R σ R

Hist Sample Hist Sh CC Hist Sh FM

0.162 -0.022 0.151 -0.015 0.153 -0.020
31 Days (0.000) (0.393) (0.680) (0.139) (0.388) (0.317)

0.158 -0.031 0.151 -0.018 0.152 -0.026
60 Days (0.007) (0.172) (0.799) (0.167) (0.638) (0.187)

0.153 -0.027 0.151 -0.015 0.152 -0.021
250 Days (0.327) (0.163) (0.936) (0.289) (0.734) (0.214)
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Table VI. Out-of-sample volatilities and excess returns of GMVPs based on combinations of implied
and historical estimators

This table shows out-of-sample average realized return volatilities (σ) and excess returns (R) of portfolio
strategies based on a combination of implied and historical covariance estimators. We again use monthly
rebalancing and report annualized values of volatilities and returns. The out-of-sample period covers the
crisis periods from March 2000 to April 2003 and June 2007 to January 2012 (94 observations). The implied
covariance estimator is the variance-based estimator Imp Var derived in Section 2.1. The historical estimator
is the sample estimator obtained from monthly returns of the preceding 60 months (60 Months), weekly
returns of the preceding 60 weeks (60 Weeks), or from daily returns of the preceding 60 days (60 Days).
The weight of the implied estimator is 75% (Imp75 Hist25), 50% (Imp50 Hist50), or 25% (Imp25 Hist75),
respectively. The numbers in brackets are p-values for tests of significant differences between the fully-
implied strategy Imp Var and the corresponding strategy that uses a combination of implied and historical
estimators.

σ R σ R σ R

Imp75 Hist25 Imp50 Hist50 Imp25 Hist75

0.152 -0.014 0.155 -0.021 0.162 -0.021
60 Months (0.762) (0.099) (0.019) (0.177) (0.000) (0.317)

0.150 -0.009 0.153 -0.019 0.158 -0.028
60 Weeks (0.355) (0.178) (0.294) (0.202) (0.013) (0.206)

0.150 -0.006 0.152 -0.011 0.155 -0.016
60 Days (0.228) (0.371) (0.838) (0.411) (0.070) (0.389)
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