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1 Introduction

Situations exist in which agents choose a subset from a set of objects. For example, existing
members of a club choose new members from a list of candidates, and city council members
choose public projects to carry out from a list. Barberà et al. (1991) initiate to model these sit-
uations and axiomatically examine a rule (or a social choice function) that maps each preference
profile to a subset of objects. They first assume that agents’ preferences satisfy separability,
which requires that an object e is preferred to the null outcome if and only if any set of can-
didates including e is preferred to that set subtracting e. We refer to the class of separable
preferences as the separable domain. Barberà et al. (1991) establish that on the separable
domain, a class of rules called “voting by committees” satisfies “strategy-proofness” and “on-
toness,” and only this class satisfies those requirements. Strategy-proofness, which is one
of the most frequently employed properties for incentive compatibility, requires that no agent
can be better off by misrepresenting her true preference whatever preferences other agents may
have. Ontoness, which is recognized as an minimal requirement for agent sovereignty, requires
that any subset of objects can be an outcome for some preference profile. Thus, their result is
positive in the sense that the class of voting by committees includes a variety of rules, all of
which satisfy both requirements. Their model and result are followed in various studies.1

The larger the domain of rules, the greater the variety of situations to which the results can be
applied. Thus, once we obtain a positive result on some domain, we wish to enlarge the domain
as long as the positive result holds. However, in this model, Gibbard (1973) and Satterthwaite’s
(1975) theorem implies that if the domain is unrestricted, no rule other than trivial ones such as
dictatorships satisfies strategy-proofness and ontoness. A natural question then arises: (i) how
large can the domain be while the class of voting by committees satisfies strategy-proofness and
ontoness? Since the class of voting by committees includes trivial rules such as a dictatorship,
which satisfy both requirements on the unrestricted domain, this question is qualified as: (i*)
how large can the domain be while a nontrivial voting by committees satisfies strategy-proofness
and ontoness? Barberà et al. (1991) themselves address this problem, and establish that
the separable domain is a maximal domain where voting by “no-vetoer” committees satisfies
strategy-proofness.2 No-vetoer is a condition that excludes trivial rules such as dictatorships.
It says that no agent has a veto power, and is sufficient for ontoness.3

Note that in the search for maximal domains, we need not restrict rules to a specific class of
rules such as voting by committees, a priori, as there may be other interesting rules. Restricting
rules to voting by committees in the search for maximal domains might make the maximal
domains unnecessarily small. This is why we search for maximal domains without restricting the

1See, for example, Barberà et al. (1993), Shimomura (1996), Ju (2003, 2005), Berga et al. (2004, 2006), and
Nehring and Puppe (2007).

2In fact, the rule employed by Barberà et al. (1991) is voting by no-vetoer and “no-dummy” committees.
No-dummy is employed to make all agents’ domains equal. In this paper, we omit this condition since we assume
exogenously that all agents’ domains are the same. Similar types of the maximal domain problem for various rules
are studied by Serizawa (1995), Barberà et al. (1999), and Berga (2002) for a generalized median voter scheme;
Barbie et al. (2006) and Vorsatz (2008) for Borda’s rule; and Sanver (2009) for the plurality rule.

3No-vetoer is employed in various studies including Repullo (1987), Maskin (1999), and Berga and Serizawa
(2000).
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rules to voting by committees. We generalize the above question (i*) as: (ii) how large can the
domain be while there exists a nontrivial rule satisfying strategy-proofness and ontoness? Berga
and Serizawa (2000) study this general maximal domain problem (ii) in the model where the set
of alternatives is a continuous line. Many authors study this type of maximal domain problem
in various models, including Ching and Serizawa (1998), Massó and Neme (2001, 2004), Ehlers
(2002), and Mizobuchi and Serizawa (2006). However, no author has investigated the general
maximal domain problem in the original multi-object choice model by Barberà et al. (1991).
In this paper, we establish that the separable domain is a maximal domain for the existence of
rules satisfying strategy-proofness and no-vetoer. Even though we seek a larger domain than
the separable domain by not specifying from voting by committees, this result states that they
coincide. As we discuss the details in the Appendix, the general maximal domain problem in
the multi-object choice model requires us to develop a much more complex proof procedure than
in the previous literature.

The rest of this paper is organized as follows. Section 2 sets out the details of the model.
Section 3 states the main theorem. Section 4 notes some remaining questions and concludes.
The Appendix includes the proof for the main theorem.

2 Preliminaries

Let N ≡ {1, · · · , n} be the set of agents (or voters). Assume n ≥ 3.4 A coalition is a subset I

of N , and let #I denote the number of agents in I. Let K ≡ {1, · · · , k} be the set of objects.
Let Z denote the set of alternatives that are the vertices of a k-dimensional hypercube; that
is, Z ≡

∏k
e=1 Ze, where for all e ∈ K, Ze ≡ {0, 1}. Given z ∈ Z and e ∈ K, ze = 0 represents

that the object e is not selected and ze = 1 represents that the object e is selected.5 We endow
Z with the L1-norm. That is, for every y, z ∈ Z,

||y − z|| ≡
k∑

e=1

|ye − ze|.

Given y, z ∈ Z, the box containing y and z is defined as

B(y, z) ≡ {x ∈ Z : ||y − z|| = ||y − x||+ ||x− z||}.

Preferences are complete, transitive, and asymmetric binary relations over Z. Generic
preferences without links to a specific agent are denoted by P0, P ′

0, P̂0, and so on. Agent i’s
preferences are denoted by Pi, P ′

i , P̂i, and so on. Let DU denote the set of all preferences,
and we call DU the universal domain. Given P0 ∈ DU , let τ(P0) ∈ Z be such that for
all z ∈ Z\{τ(P0)}, τ(P0) P0 z. We call τ(P0) the top for P0. A preference profile P ≡
(P1, . . . , Pn) ∈ Dn

U is an n-tuple of preferences. For i, j ∈ N , let (P ′
i , P−i) ∈ Dn

U denote the
preference profile obtained from P by replacing Pi with P ′

i , (P ′′
j , P ′

i , P−{i,j}) ∈ Dn
U denote the

4In the following investigation, we impose “no-vetoer” on the rule. This property is not meaningful if there
are only two agents.

5Our representation of an alternative follows Barberà et al. (1993) rather than Barberà et al. (1991).
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profile obtained from (P ′
i , P−i) by replacing Pj with P ′′

j , and so on. Given a coalition I ⊆ N ,
let PI ∈ D#I

U denote a #I-tuple of preferences associated with I, and P−I ∈ Dn−#I
U denote an

(n−#I)-tuple of preferences associated with N\I. Let τ(P ) ≡ (τ(P1), . . . , τ(Pn)), which is the
profile of tops associated with P . A domain is a subset D of DU . A rule (or a social choice
function) on a domain D is defined as a function f : Dn → Z. Note that we implicitly deal with
the case where the domains of all agents’ preferences can be considered as the same.

The next property of preference has an important role in this paper.

Separability. For all y, z ∈ Z such that y 6= z and y ∈ B(z, τ(P0)), y P0 z.

Let DS denote the set of separable preferences. We call DS the separable domain.
We introduce several basic properties of a rule. The first prevents agents from gaining by

misrepresenting their true preferences. The second says that any alternative can be an outcome.
The third forbids the rule from giving any agent an extreme decisive power. The fourth forbids
the rule from giving any agent an extreme veto power.

Strategy-proofness. For all P ∈ Dn, all i ∈ N , and all P̂i ∈ D\{Pi}, f(P ) Pi f(P̂i, P−i) or
f(P ) = f(P̂i, P−i).

Ontoness. For all z ∈ Z, there exists P ∈ Dn such that f(P ) = z.

No-dictator. There is no i ∈ N such that for all P ∈ Dn, f(P ) = τ(Pi).

No-vetoer. There is no z ∈ Z, i ∈ N , and Pi ∈ D such that for all P−i ∈ Dn−1, f(P ) 6= z.

If f fails strategy-proofness, f is said to be manipulable. Further, we say that agent i

manipulates f at P via P̂i if f(P̂i, P−i) Pi f(P ). No-vetoer is equivalent to that for all i ∈ N ,
all z ∈ Z, and all Pi ∈ D, there exists P−i ∈ Dn−1 such that f(P ) = z. Also note that no-vetoer
implies both ontoness and no-dictator.

Next, we introduce a class of rules, which Barberà et al. (1991) call “voting by committees,”
that plays an important role in our paper. A coalition is said to be “winning” for an object e

if it has the power to have the object e selected. Voting by committees is a rule generated by
specifying the class of winning coalitions for each object. We assume that for each object, (1)
the empty coalition is not winning, (2) the set of all agents is winning, and (3) larger coalitions
have more power.

Set of winning coalitions We ( 2N for an object e ∈ K. (1) ∅ /∈ We, (2) N ∈ We, and (3)
for all I, I ′ ∈ 2N such that I ∈ We and I ⊆ I ′, I ′ ∈ We.

Given We, let We ≡ {I ∈ We : for all i ∈ I, I\{i} 6∈ We}, which we call the set of minimal

winning coalitions associated with We. Let a winning coalition system W ≡ {We}k
e=1. A

voting by committees is a rule associated with a winning coalition system such that each object
e is selected in the outcome if and only if the set of agents whose top alternative contains e

belongs to the set of winning coalitions for e.

Voting by committees. There exists a winning coalition system W such that for all P ∈ Dn

and all e ∈ K,
fe(P ) = 1 ⇐⇒ {i ∈ N : τe(Pi) = 1} ∈ We
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The following is the main result by Barberà et al. (1991).

Theorem 1 (Barberà et al., 1991). A rule on the separable domain satisfies strategy-
proofness and ontoness if and only if it is a voting by committees.6

Immediately, we obtain the characterization result by using strategy-proofness and no-vetoer
on the separable domain as a corollary of Theorem 1, which must be a strict subset of the set
of voting by committees. The characterized rules are defined by a winning coalition system and
additionally satisfy (1) any sole agent cannot be a winning coalition, and (2) any coalition with
n− 1 members is a winning coalition.

Set of no-vetoer winning coalitions We ( 2N for an object e ∈ K. (1) For all i ∈ N, {i} 6∈
We, (2) for all i ∈ N, N\{i} ∈ We, and (3) for all I, I ′ ∈ 2N such that I ∈ We and I ⊆ I ′,
I ′ ∈ We.

Voting by no-vetoer committees. There exists a no-vetoer winning coalition system W such
that for all P ∈ Dn and all e ∈ K,

fe(P ) = 1 ⇐⇒ {i ∈ N : τe(Pi) = 1} ∈ We

Remark 1. A rule on the separable domain satisfies strategy-proofness and no-vetoer if and
only if it is voting by no-vetoer committees.

Because of Theorem 1, we only need to check that (i) voting by no-vetoer committees is
certain to satisfy no-vetoer, and (ii) if a rule is voting by committees but not voting by no-
vetoer committees, it violates no-vetoer. To see (i), by condition (1) of the sets of no-vetoer
winning coalitions, any agent i solely does not have veto power against an alternative z ∈ K

with ze = 0. Similarly, by condition (2), any agent i solely cannot veto an alternative z with
ze = 1. To see (ii), if condition (1) for some e ∈ K is violated, then an agent i has a veto power
to an alternative z with ze = 1. Similarly, if condition (2) is violated, an agent i has veto power
against an alternative z with ze = 1.

3 The Main Result

In this section, we first define the precise concept of the “maximal domain” following Ching and
Serizawa (1998), and then derive the main result.

Maximal domain DM ⊆ D for a list of properties. (1) There exists a rule on DM satisfying
the properties, and (2) for any domain D such that DM ( D ⊆ DU , no rule on Dn satisfies the
same properties.

Note that given a list of properties, there is a possibility that multiple maximal domains
exist. Now we can state the main theorem of this paper.

6Barberà et al. (1991) note that Theorem 1 holds even on the additive domain, which is the domain of
preferences with additive numerical representations and is strictly smaller than the separable domain, without
any technical difficulty. See Barberà et al. (1991) for the precise definition of the additive preferences.
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Theorem 2. The separable domain is a maximal domain for strategy-proofness and no-vetoer.7

Note that there can be another maximal domain that does not contain the separable domain
for these properties. However, since separability in preferences is quite important and considered
in almost all articles studying this model, this result should be at least one of the most interesting
maximal domain results for this model.

In the proof, placed in the Appendix, we fix a domain D such that DS ( D ⊆ DU , and derive
a contradiction when assuming that there exists a rule satisfying the properties of strategy-
proofness and no-vetoer on D.

Finally in this section, we present an example illustrating that no-vetoer is indispensable for
the theorem. This example shows that a maximal domain for strategy-proofness, ontoness, and
no-dictator that includes the separable domain is strictly larger than the separable domain.

Example 1. Let N = {1, 2, 3} and K = {1, 2}. Let P̂0 ∈ DU be such that (0, 0) P̂0 (0, 1) P̂0 (1, 1) P̂0 (1, 0),
and D = DS ∪{P̂0}. Let W1 = {N} and W2 = {I ⊆ N : #I ≥ 1}. Let f : D3 → Z be the voting
by committees generated by W. Then f satisfies strategy-proofness, ontoness, and no-dictator
but does not satisfy no-vetoer.

By the structure of W1, any agent can be a vetoer against alternatives with object 1 chosen.
No-dictator is obviously satisfied. Since f is voting by committees, by Theorem 1, ontoness is
satisfied and no agent with a separable preference has an incentive to misrepresent her preference.
If the preference of some agent, say agent i, is P̂0 and she represents her true preference, then
by the structure of W1, the outcome is (0, 0) or (0, 1). In the case of (0, 0), which is agent i’s
top alternative τ(P̂0), it is certain that she has no incentive for misrepresentation. In the case of
(0, 1), by W, it follows that the top alternative of one of the other two agents is (0, 1) or (1, 1).
Then the outcome that agent i can obtain by misrepresenting her preference is either (0, 1) or
(1, 1). Since she prefers (0, 1) to (1, 1), she has no incentive for misrepresentation. Hence f

satisfies strategy-proofness.

4 Concluding Remarks

In this paper, we have established that the separable domain is a maximal domain for the prop-
erties of strategy-proofness and no-vetoer. However, this result does not exclude the possibility
that there are other interesting maximal domains for the same properties. We close the article
by discussing the possibility of the uniqueness of meaningful maximal domains.

When we model a situation, we make assumptions on preferences that are suitable for it.
Unless domains include a minimal variety of natural preferences, the results on the domains
cannot be applied to interesting situations and become meaningless. Although generally maximal
domains are not unique, a maximal domain including small and natural subdomains may be
unique. For example, Barberà et al. (1991) show the uniqueness of a maximal domain that
includes a subdomain, called a “minimally rich domain” and on which voting by no-vetoer

7By the same proof for Theorem 2, we immediately obtain the result that the separable domain is a unique
maximal domain including the additive domain for strategy-proofness and no-vetoer.
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committees satisfies strategy-proofness. A domain D is minimally rich if for any z ∈ Z, there
is a unique P0 ∈ D such that τ(P0) = z.

Note that Barberà et al.’s (1991) result is a statement on a restricted class of rules, the class
of voting by committees although it claims the uniqueness of the maximal domain for strategy-
proofness. In the model where the set of alternatives is a continuous line, without restricting
the class of rules a priori, Berga and Serizawa (2000) show the uniqueness of a maximal domain
including a minimally rich domain for strategy-proofness and no-vetoer. Therefore, the following
is an interesting open question: is the separable domain a unique maximal domain including a
minimally rich domain for strategy-proofness and no-vetoer?

The previous studies that obtain unique maximal domains without restricting the class of
rules a priori employ characterization results of rules satisfying lists of properties on subdomains.
For example, in establishing the uniqueness of maximal domains, Berga and Serizawa (2000)
employ the fact that on a minimally rich domain, the class of rules called “generalized median
voter schemes” is a unique class of rules satisfying strategy-proofness and ontoness. Accordingly,
to establish the uniqueness of a maximal domain in the multi-object choice model, it is important
whether or not the class of voting by committees is the unique class of rules for strategy-proofness
on a minimally rich domain. However, since some strategy-proof rules on a minimally rich domain
are not voting by committees, we need to develop new proof techniques to solve the above open
question.

Appendix

In this Appendix, the proof of Theorem 2 is given. In this Appendix, when a specific preference
P0 is given beforehand, Pi is employed to denote agent i’s preference such that Pi = P0 unless
mentioned explicitly. First, we introduce a remark that plays a quite important role in the proof.

Remark 2. Let DS ( D ⊆ DU . Suppose that a rule f : Dn → Z satisfies strategy-proofness
and no-vetoer. Then there exists a voting by no-vetoer committees g such that for all P ∈ Dn

S,
f(P ) = g(P ).

We obtain this remark immediately from Remark 1 and that f restricted to DS must satisfy
strategy-proofness and no-vetoer.

Let DS ( D ⊂ DU . Suppose, on the contrary, that there is a rule f on Dn, satisfying
strategy-proofness and no-vetoer. We derive a contradiction. Let P̂0 ∈ D\DS . Let τ ≡ τ(P̂0).

Let A ≡ {(y, z) ∈ Z2 : y ∈ B(z, τ) and z P̂0 y}. Let A∗ ≡ {(y, z) ∈ A : for all (y′, z′) ∈
A, ||z − τ || ≤ ||z′ − τ ||}. A is the set of pairs for which P̂0 violates the condition of separability.
A∗ is the set of pairs in A for which the distances between z and τ are minimal. By P̂0 ∈ D\DS ,
A 6= ∅, and so A∗ 6= ∅. We have the following lemma.

Lemma 1. There exists (y, z) ∈ A∗ such that ||z − y|| = 1.

Proof of Lemma 1. Suppose, on the contrary, that for all (y, z) ∈ A∗, ||z − y|| > 1. Let
(y, z) ∈ A∗. By ||z − y|| > 1, there is x ∈ B(z, τ) such that ||z − x|| = 1, and y ∈ B(x, τ). If
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z P̂0 x, then x ∈ B(z, τ) implies (x, z) ∈ A∗, and so ||z − x|| = 1 contradicts the hypothesis. If
x P̂0 z, then z P̂0 y implies x P̂0 y, and so y ∈ B(x, τ) implies (y, x) ∈ A. Since x ∈ B(z, τ) and
||z − x|| = 1 imply ||x− τ || < ||z − τ ||, this contradicts (y, z) ∈ A∗. �

Hereafter, let (y, z) ∈ A∗ be such that ||z − y|| = 1. By relabeling coordinates, we have

τ ≡ (1, · · · · · · · · · , 1), y ≡ (1, 0, · · · , 0︸ ︷︷ ︸
a−1

, 1, · · · , 1), z ≡ (0, 0, · · · , 0︸ ︷︷ ︸
a

, 1, · · · , 1),

where a ∈ K is such that 2 ≤ a ≤ k − 1.
Given b ∈ K such that 1 ≤ b ≤ a, let xb ≡ (1, · · · , 1︸ ︷︷ ︸

b

, 0, · · · , 0︸ ︷︷ ︸
a−b

, 1, · · · , 1). Note that x1 = y

and xa = τ . Also note that since (y, z) ∈ A∗ and ||z − y|| = 1, τ P̂0 xa−1 P̂0 · · · P̂0 x2 P̂0 y.
Let c ∈ {2, · · · , a} be such that xc P̂0 z and z P̂0 xc−1. Let d be the maximal element of

{c, · · · , a} such that Id = Ic. Let r ≡ rc (= rd) and x∗ ≡ xd. Note that if Ic = Ia, i.e., if rc = ra,
then d = a and x∗ = τ , and that if Ic ( Ia, i.e., if rc < ra, then d < a, x∗ 6= τ , Id ( Id+1, and
rd < rd+1. Note that x∗ P̂0 xc or x∗ = xc. Then by transitivity, x∗ P̂0 z.

Let E ≡ Z\B(z, τ). Since τ ≡ (1, · · · , 1) and z ≡ (0, · · · , 0︸ ︷︷ ︸
a

, 1, · · · , 1),

E = {x ∈ Z : for some e ∈ {a + 1, · · · , k}, xe = 0}.

Given x ∈ B(z, τ), let B+
x ≡ {x′ ∈ B(z, τ) : x′ P̂0 x} and B−

x ≡ {x′ ∈ B(z, τ) : x P̂0 x′}.
Given x ∈ Z, let P x

0 ∈ DS be such that τ(P x
0 ) = x. Assume that for all x ∈ B(z, τ) and all

x′ ∈ E, x P z
0 x′. Assume that for all x ∈ B(z, τ) and all x′ ∈ E, x P y

0 x′, and for all w ∈ B(z, τ)
such that w1 = 1 and all w′ ∈ B(z, τ) such that w′

1 = 0, w P y
0 w′. Assume that for all x ∈ B(z, τ)

and all x′ ∈ E, x P τ
0 x′, and P τ

0 and P̂0 are equivalent over B(z, τ)\{z}.8

By Remark 2, there exists a voting by no-vetoer committees g : Dn
S → Z such that for all

P ∈ Dn
S , f(P ) = g(P ). Let W be the no-vetoer winning coalition system associated with g. By

relabeling agents, we have I1 ≡ {1, · · · , q} ∈ W1. Note that by condition (2) of the no-vetoer
winning coalition, 2 ≤ q ≤ n−1. Given e ∈ {2, · · · , a}, let re be such that Ie ≡ {1, · · · , re} ∈ We

and Ie\{re} 6∈ We. By relabeling coordinates, we have: I2 ⊆ · · · ⊆ Ia. Then by condition (2) of
no-vetoer winning coalitions, 2 ≤ r2 ≤ · · · ≤ ra ≤ n− 1.

The next two lemmas are frequently used in the following investigation.

Lemma 2. Let e ∈ {2, · · · , a} and s ≤ re − 1. Let P ∈ Dn be such that for all i ≤ s,
Pi ∈ {P̂0, P

τ
0 }, and for all i ≥ s + 1, Pi ∈ {P y

0 , P z
0 }. Let x ≡ f(P ). Then for all l ∈ {e, · · · , a},

xl = 0.

Proof of Lemma 2. Suppose, on the contrary, that there exists l ∈ {e, · · · , a} such that xl = 1.
Since f(P ) = x, by the repeated use of strategy-proofness, f(P x

{1,··· ,s}, P{s+1,··· ,n}) = x. Since

8Given Z′ ⊆ Z and P0 ∈ D, let τ(P0, Z
′) ∈ Z′ be such that for all x ∈ Z′\{τ(P0, Z

′)}, τ(P0, Z
′) P0 x. P0 is

separable over Z′ if for all y′, z′ ∈ Z′\{τ(P0, Z
′)}, y′ 6= z′ and y′ ∈ B(z′, τ(P0)) imply y′ P0 z′. Note that since

(y, z) ∈ A∗, P̂0 satisfies separability over B(z, τ)\{z}.

8



(P x
{1,··· ,s}, P{s+1,··· ,n}) ∈ Dn

S , we have

g(P x
{1,··· ,s}, P{s+1,··· ,n}) = f(P x

{1,··· ,s}, P{s+1,··· ,n}) = x.

Since s ≤ re − 1 ≤ rl − 1, {1, · · · , s} 6∈ Wl. This contradicts g(P x
{1,··· ,s}, P{s+1,··· ,n}) = x and

xl = 1. �

Lemma 3. Let j ∈ N , P−j ∈ Dn−1 , and x ∈ B(z, τ). Suppose that f(P τ
j , P−j) = x. Then (i)

f(P̂j , P−j) = x, or (ii) f(P̂j , P−j) ∈ E and f(P̂j , P−j) P̂0 x.

Proof of Lemma 3. Note that Z = {x} ∪B+
x ∪B−

x ∪ E.
If f(P̂j , P−j) ∈ B−

x , then agent j manipulates f at (P̂j , P−j) via P τ
j , contradicting strategy-

proofness.
Suppose that f(P̂j , P−j) ∈ B+

x . Since P̂0 and P τ
0 are equivalent on B(z, τ)\{z}, and since

x P̂0 z implies B+
x ( B(z, τ)\{z}, P̂0 and P τ

0 are equivalent on B+
x . Thus, f(P̂j , P−j) ∈ B+

x

implies that j manipulates f at (P τ
j , P−j) via P̂j . This contradicts strategy-proofness.

Hence, f(P̂j , P−j) = x or f(P̂j , P−j) ∈ E. In the latter case, by strategy-proofness, f(P̂j , P−j) P̂0 x.
�

There are two cases, Cases A and B. Case A is that I1 ⊆ Id, i.e., q ≤ r. Case B is that
Id ( I1, i.e., r < q. We derive a contradiction in each of the two cases.

Case A.

Step 1. Let 0 ≤ j ≤ r−2. Let f(P̂{1,··· ,j}, P
τ
{j+1,··· ,r}, P

z
−Id

) ∈ E, and f(P̂{1,··· ,j}, P
τ
{j+1,··· ,r}, P

z
−Id

) P̂0 x∗.
Then x ≡ f(P̂{1,··· ,j+1}, P

τ
{j+2,··· ,r}, P

z
−Id

) ∈ E and x P̂0 x∗.

Proof of Step 1. Since f(P̂{1,··· ,j}, P
τ
{j+1,··· ,r}, P

z
−Id

) P̂0 x∗, d < a, and strategy-proofness, x P̂0 x∗.
Suppose that x 6∈ E, i.e., x ∈ B(z, τ). By x P̂0 x∗ and x∗ P̂0 z, x P̂0 z and so x 6= z. By x 6= z,

x ∈ B(z, τ)\{z}. Then since P̂0 satisfies separability on B(z, τ)\{z} and x P̂0 x∗, x∗ 6∈ B(x, τ).
Since τ ≡ (1, · · · · · · · · · , 1) and x∗ = (1, · · · , 1︸ ︷︷ ︸

d

, 0, · · · , 0︸ ︷︷ ︸
a−d

, 1, · · · , 1), and since x ∈ B(z, τ) imply

that for all e ∈ {a + 1, · · · , n}, xe = 1, it follows that for some e ∈ {d + 1, · · · , a}, xe = 1. On
the other hand, since d + 1 ≤ e implies rd+1 ≤ re, r = rd < rd+1 implies r ≤ re − 1. Thus, by
Lemma 2, xe = 0. This is a contradiction. Hence, x ∈ E. �

Step 2. (i) f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) = x∗, or

(ii) f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) ∈ E and f(P̂{1,··· ,r−1}, P

τ
r , P z

−Id
) P̂0 x∗.

Proof of Step 2. Since (P τ
Id

, P z
−Id

) ∈ Dn
S , Id ∈ We for all e ∈ {1, · · · , d}, and Id 6∈ We for all

e ∈ {d + 1, · · · , a}, we have f(P τ
Id

, P z
−Id

) = g(P τ
Id

, P z
−Id

) = x∗. By first applying Lemma 3, and
then r − 2 additional times either Lemma 3 or Step 1, we obtain the statement of this step. �

Step 3. f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) = x∗.
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Proof of Step 3. Suppose that f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) 6= x∗. We derive a contradiction in three

substeps.
Substep 3-1. By Step 2 and f(P̂{1,··· ,r−1}, P

τ
r , P z

−Id
) 6= x∗, we have f(P̂{1,··· ,r−1}, P

τ
r , P z

−Id
) ∈ E

and f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) P̂0 x∗. Note that if d = a, then x∗ = τ . It contradicts

f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) P̂0 x∗. Thus d < a and x∗ 6= τ .

Substep 3-2. Let d′ be the maximal element of {d + 1, · · · , a} such that Id′ = Id+1. Let
r′ ≡ rd′ and x′ ≡ xd′ . Note that if Id+1 = Ia, i.e., if rd+1 = ra, then d′ = a and x′ =
τ , and that if Id+1 ( Ia, i.e., if rd+1 < ra, then d′ < a, x′ 6= τ and rd′ < rd′+1. In this
substep, we show that (i) f(P τ

{1,··· ,r′}, P
z
{r′+1,··· ,n}) = x′, (ii) f(P̂{1,··· ,r′}, P

z
{r′+1,··· ,n}) P̂0 x′, and

(iii) f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) ∈ E.

Since (P τ
{1,··· ,r′}, P

z
{r′+1,··· ,n}) ∈ D

n
S , Id′ = {1, · · · , r′} ∈ We for all e ∈ {1, . . . , d′} and Id′ /∈ We

for all e ∈ {d′ + 1, . . . , a}, f(P τ
{1,··· ,r′}, P

z
{r′+1,··· ,n}) = g(P τ

{1,··· ,r′}, P
z
{r′+1,··· ,n}) = x′. Thus, we

have (i).
Let x ≡ f(P̂{1,··· ,r′−1}, P

z
{r′,··· ,n}). In this paragraph, we show x ∈ E. Since

f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) P̂0 x∗, by the repeated use of strategy-proofness, x P̂0 x∗. Thus x ∈ B+

x∗ ∪
E. Suppose that x ∈ B+

x∗ . Since P̂0 satisfies separability on B+
x∗ , τ ≡ (1, · · · · · · · · · , 1), and

x∗ = (1, · · · , 1︸ ︷︷ ︸
d

, 0, · · · , 0︸ ︷︷ ︸
a−d

, 1, · · · , 1), x ∈ B+
x∗ implies that for some e ∈ {d + 1, · · · , a}, xe = 1. Let

e ∈ {d + 1, · · · , a} be such that xe = 1. By d + 1 ≤ e, rd+1 ≤ re. Thus, r′ ≡ rd′ = rd+1 implies
r′ − 1 ≤ re − 1. Accordingly, by Lemma 2, xe = 0. This is a contradiction. Therefore, x ∈ E.

Let y′ ≡ f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}). If y′ = x′, then by x′ ∈ B(z, τ) and the definition of P z

0 , for
all z′ ∈ E, y′ P z

0 z′. By x ∈ E, this implies that agent r′ manipulates f at (P̂{1,··· ,r′−1}, P
z
{r′,··· ,n})

via P̂r′ . It contradicts strategy-proofness. Thus, y′ 6= x′. By y′ 6= x′, and the repeated use of
strategy-proofness to (i), we have (ii) f(P̂{1,··· ,r′}, P

z
{r′+1,··· ,n}) = y′ P̂0 x′.

Suppose that y′ 6∈ E. Then, by y′ 6= x′, y′ ∈ B(z, τ)\{x′}. By y′ P̂0 x′, x′ 6= τ and so
d′ < a. Note that since x′ P̂0 x∗ and x∗ P̂0 z, B+

x′ ∪ {x′} ⊆ B(z, τ)\{z}. Since P̂0 is separable
on B(z, τ)\{z}, it is separable on B+

x′ ∪ {x′}. Thus by y′ P̂0 x′, x′ 6∈ B(y′, τ). Then since
τ ≡ (1, · · · · · · · · · , 1), and x′ = (1, · · · , 1︸ ︷︷ ︸

d′

, 0, · · · , 0︸ ︷︷ ︸
a−d′

, 1, · · · , 1), for some e ∈ {d′+1, · · · , a}, we have

y′e = 1. By d′ + 1 ≤ e, rd′+1 ≤ re. Thus, r′ ≡ rd′ < rd′+1 ≤ re, and so r′ ≤ re − 1. Therefore, by
Lemma 2, y′e = 0. This is a contradiction. Thus, f(P̂{1,··· ,r′}, P

z
{r′+1,··· ,n}) = y′ ∈ E.

Substep 3-3. As we show in Substep 3-2, f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) P̂0 x′ and

f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) ∈ E. Similarly to Substep 3-1, we have d′ < a. Let d′′ be the maximal

element of {d′+1, · · · , a} such that Id′′ = Id′+1. Let r′′ ≡ rd′′ and x′′ ≡ xd′′ . Then we can repeat
the argument of Substep 3-2 by replacing r′ with r′′, x∗ with x′ and x′′ with x′. As a result, we
obtain that f(P̂{1,··· ,r′′}, P

z
{r′′+1,··· ,n}) P̂0 x′′ and f(P̂{1,··· ,r′′}, P

z
{r′′+1,··· ,n}) ∈ E.

Repeat the argument. Then, finally, we have that f(P̂{1,··· ,ra−1}, P
z
{ra,··· ,n}) ∈ E. Note that

f(P τ
{1,··· ,ra}, P

z
{ra+1,··· ,n}) = g(P τ

{1,··· ,ra}, P
z
{ra+1,··· ,n}) = τ . Thus by the repeated use of strategy-

proofness, f(P̂{1,··· ,ra}, P
z
{ra+1,··· ,n}) = τ . Then agent ra manipulates f at (P̂{1,··· ,ra−1}, P

z
{ra,··· ,n})

via P̂ra . It contradicts strategy-proofness. Hence, we have f(P̂{1,··· ,r−1}, P
τ
r , P z

−Id
) = x∗ �

Step 4. Let 0 ≤ j ≤ r − 2. Let f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
r , P z

−Id
) = z. Then
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(i) f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) = z, or

(ii) f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) ∈ E and f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) P̂0 z.

Proof of Step 4. Note that Z = {z}∪B+
z ∪B−

z ∪E. Let x ≡ f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
r , P z

−Id
).

(I) If x ∈ B−
z , then agent j+1 manipulates f at (P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) via P z

j+1,
which contradicts strategy-proofness.

(II) Suppose that x ∈ B+
z . Then by the repeated use of strategy-proofness,

f(P x
{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) = x. Since x ∈ B+

z and z P̂0 xc−1, we have x 6= z, xc−1 6=
z, and x P̂0 xc−1. Then since P̂0 satisfies separability on B(z, τ)\{z}, xc−1 6∈ B(x, τ). Since
τ ≡ (1, · · · · · · · · · , 1), xc−1 = (1, · · · , 1︸ ︷︷ ︸

c−1

, 0, · · · , 0︸ ︷︷ ︸
a−(c−1)

, 1, · · · , 1), and x ∈ B(z, τ) implies that for all

e ∈ {a + 1, · · · , n}, xe = 1, it follows that for some e ∈ {c, · · · , a}, xe = 1. Let e ∈ {c, · · · , a} be
such that xe = 1. By c ≤ e, r = rc ≤ re, and so r− 1 ≤ re − 1. Therefore, by Lemma 2, xe = 0.
This is a contradiction.

Hence, we obtain that x = z or x ∈ E. In the latter case, by strategy-proofness, x P̂0 z. �

Step 5. Let 1 ≤ j ≤ r − 2. Suppose that f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
r , P z

−Id
) ∈ E and

f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
r , P z

−Id
) P̂0 z. Then f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) ∈ E and

f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
r , P z

−Id
) P̂0 z.

Proof of Step 5. Let x ≡ f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
r , P z

−Id
). Since f(P̂{1,··· ,j}, P

z
{j+1,··· ,r−1}, P

y
r , P z

−Id
) P̂0 z,

by strategy-proofness, x P̂0 z. Suppose that x 6∈ E. Then by x P̂0 z, x ∈ B+
z . Then by the same

way to case (II) of Step 4, we obtain a contradiction. �

Step 6. f(P̂{1,··· ,r−1}, P
y
r , P z

−Id
) = z or f(P̂{1,··· ,r−1}, P

y
r , P z

−Id
) ∈ E.

Proof of Step 6. f(P z
{1,··· ,r−1}, P

y
r , P z

−Id
) = g(P z

{1,··· ,r−1}, P
y
r , P z

−Id
) = z. By first applying Step 4,

and then r− 2 additional times either Step 4 or Step 5, we obtain the statement of this step. �

Proof of Case A. By Step 3, we have (1) f(P̂{1,··· ,r−1}, P
τ
r , P z

−I2
) = x∗. By Step 6, we have

(2) f(P̂{1,··· ,r−1}, P
y
r , P z

−I2
) = z, or (3) f(P̂{1,··· ,r−1}, P

y
r , P z

−I2
) ∈ E. In either (2) or (3), by

comparing with (1), agent r manipulates f at (P̂{1,··· ,r−1}, P
y
r , P z

−I2
) via P τ

r , which contradicts
strategy-proofness. �

Case B.

The argument of Case B is parallel to Case A, but for different points. Let h be the maximal
element of {d, · · · , a} such that Ih ⊆ I1, i.e., rh ≤ q. Let x∗∗ ≡ xh. Note that h = a and x∗∗ = τ

if and only if ra ≤ q, and that h < a and x∗∗ 6= τ if and only if ra > q, and that if ra > q,
rh ≤ q < rh+1. Also note that x∗∗ P̂0 x∗ or x∗∗ = x∗. Thus x∗∗ P̂0 z.

Parallel to Steps 1-6, we can show Steps 7-12 below. Their precise proofs are available in
the Online Supplementary Note.

Step 7. Let 1 ≤ j ≤ r − 2. Let f(P̂{1,··· ,j}, P
τ
{j+1,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j}, P

τ
{j+1,··· ,q}, P

z
−I1

) P̂0 x∗∗. Then f(P̂{1,··· ,j+1}, P
τ
{j+2,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j+1}, P

τ
{j+2,··· ,q}, P

z
−I1

) P̂0 x∗∗.
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Step 8. (i) f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) = x∗∗ or
(ii) f(P̂{1,··· ,r−1}, P

τ
{r,··· ,q}, P

z
−I1

) ∈ E and f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) P̂0 x∗∗.

Step 9. f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) = x∗∗.

Step 10. Let j ∈ {0, · · · , r − 2}. Let f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = z. Then
(i) f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = z, or
(ii) f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈ E and f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z.

Step 11. Let j ∈ {1, · · · , r− 2}. Suppose that f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j}, P

z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z. Then f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈
E and f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z .

Step 12. f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) = z or f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) ∈ E.

Proof of Case B. By Step 9, we have (4) f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) = x∗∗. By repeated use of
strategy-proofness to (4), we have (5) f(P̂{1,··· ,r−1}, P

τ
r , P y

{r+1,··· ,q}, P
z
−I1

) ∈ {x ∈ Z : x P y
0 x∗∗} ∪

{x∗∗}. By Step 12, we have (6) f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) = z, or (7) f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) ∈
E. Note that by the definition of P y

0 , x∗∗ P y
0 z and for all y′ ∈ E, x∗∗ P y

0 y′. Thus in either (6)
or (7), by comparing (5), agent r manipulates f at (P̂{1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) via P τ
r , which

contradicts strategy-proofness. �
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In this supplementary note, we provide the proofs of Steps 7-12, which are omitted in the
main paper because they are parallel to those of Steps 1-6.

Step 7. Let 1 ≤ j ≤ r − 2. Let f(P̂{1,··· ,j}, P
τ
{j+1,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j}, P

τ
{j+1,··· ,q}, P

z
−I1

) P̂0 x∗∗. Then f(P̂{1,··· ,j+1}, P
τ
{j+2,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j+1}, P

τ
{j+2,··· ,q}, P

z
−I1

) P̂0 x∗∗.

Proof of Step 7. Let x ≡ f(P̂{1,··· ,j+1}, P
τ
{j+2,··· ,q}, P

z
−I1

). By f(P̂{1,··· ,j}, P
τ
{j+1,··· ,q}, P

z
−I1

) P̂0 x∗∗,
x∗∗ 6= τ , and by strategy-proofness, x P̂0 x∗∗. By x∗∗ 6= τ , h < a, and rh ≤ q < rh+1.

Suppose that x 6∈ E, i.e., x ∈ B(z, τ). By x P̂0 x∗∗ and x∗∗ P̂0 z, x P̂0 z and so x 6= z.
By x 6= z, x ∈ B(z, τ)\{z}. Then since P̂0 satisfies separability on B(z, τ)\{z} and x P̂0 x∗∗,
x∗∗ 6∈ B(x, τ). Since

τ ≡ (1, · · · · · · · · · , 1),

x∗∗ = (1, · · · , 1︸ ︷︷ ︸
h

, 0, · · · , 0︸ ︷︷ ︸
a−h

, 1, · · · , 1)

and since x ∈ B(z, τ) imply that for all e ∈ {a + 1, · · · , n}, xe = 1, it follows that for some
e ∈ {h + 1, · · · , a}, xe = 1. On the other hand, since h + 1 ≤ e implies rh+1 ≤ re, q < rh+1

implies q ≤ re − 1. Thus, by Lemma 2, xe = 0. This is a contradiction. Hence, x ∈ E. �

Step 8. (i) f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) = x∗∗ or
(ii) f(P̂{1,··· ,r−1}, P

τ
{r,··· ,q}, P

z
−I1

) ∈ E and f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) P̂0 x∗∗.

Proof of Step 8. Since for all e ∈ {1, · · · , h}, I1 ∈ We and for all e ∈ {h+1, · · · , a},1 I1 6∈ We, we
have f(P τ

I1
, P z

−I1
) = g(P τ

I1
, P z

−I1
) = x∗∗. By first applying Lemma 3, and then r − 2 additional

times either Lemma 3 or Step 7, we obtain the statement of this step. �
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1If ra ≤ q, then h = a, and so {h + 1, · · · , a} = ?.
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Step 9. f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) = x∗∗.

Proof of Step 9. Suppose that f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) 6= x∗∗. We derive a contradiction in
three substeps.
Substep 9-1. By Step 8 and f(P̂{1,··· ,r−1}, P

τ
{r,··· ,q}, P

z
−I1

) 6= x∗∗, we have f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) ∈
E and f(P̂{1,··· ,r−1}, P

τ
{r,··· ,q}, P

z
−I1

) P̂0 x∗∗. Note that if h = a, then x∗∗ = τ . It contra-
dicts f(P̂{1,··· ,r−1}, P

τ
{r,··· ,q}, P

z
−I1

) P̂0 x∗∗. Thus h < a and x∗∗ 6= τ . By h < a, q < ra and
rh ≤ q < rh+1.
Substep 9-2. Let h′ be the maximal element of {h+1, · · · , a} such that Ih′ = Ih+1. Let r′ ≡ rh′

and x∗∗′ ≡ xh′
. Note that r′ > q, that if Ih+1 = Ia, i.e., if rh+1 = ra, then h′ = a and x∗∗′ = τ ,

and that if Ih+1 ( Ia, i.e., if rh+1 < ra, then h′ < a, x∗∗′ 6= τ and rh′ < rh′+1. In this substep,
we show that (i) f(P τ

{1,··· ,r′}, P
z
{r′+1,··· ,n}) = x∗∗′, (ii) f(P̂{1,··· ,r′}, P

z
{r′+1,··· ,n}) P̂0 x∗∗′, and (iii)

f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) ∈ E.

Since (P τ
{1,··· ,r′}, P

z
{r′+1,··· ,n}) ∈ D

n
S , Ih′ = {1, · · · , r′} ∈ We for all e ∈ {1, . . . , h′} and Ih′ /∈ We

for all e ∈ {h′ + 1, . . . , a}, we have

(i) f(P τ
{1,··· ,r′}, P

z
{r′+1,··· ,n}) = g(P τ

{1,··· ,r′}, P
z
{r′+1,··· ,n}) = x∗∗′.

Let x ≡ f(P̂{1,··· ,r′−1}, P
z
{r′,··· ,n}). In this paragraph, we show x ∈ E. Since

f(P̂{1,··· ,r−1}, P
τ
{r,··· ,q}, P

z
−I1

) P̂0 x∗∗, by the repeated use of strategy-proofness, x P̂0 x∗∗. Thus
x ∈ B+

x∗∗ ∪ E. Suppose that x ∈ B+
x∗∗ . Since P̂0 satisfies separability on B+

x∗∗ and

τ ≡ (1, · · · · · · · · · , 1),

x∗∗ = (1, · · · , 1︸ ︷︷ ︸
h

, 0, · · · , 0︸ ︷︷ ︸
a−h

, 1, · · · , 1),

x ∈ B+
x∗∗ implies that for some e ∈ {h + 1, · · · , a}, xe = 1. Let e ∈ {h + 1, · · · , a}be such that

xe = 1. By h + 1 ≤ e, rh+1 ≤ re. Thus, r′ ≡ rh′ = rh+1 implies r′ − 1 ≤ re − 1. Accordingly, by
Lemma 2, xe = 0. This is a contradiction. Therefore, x ∈ E.

Let y′ ≡ f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}). If y′ = x∗∗′, then by x∗∗′ ∈ B(z, τ) and the defini-

tion of P z
0 , for all z′ ∈ E, y′ P z

0 z′. By x ∈ E, this implies that agent r′ manipulates f at
(P̂{1,··· ,r′−1}, P

z
{r′,··· ,n}) via P̂r′ . It contradicts strategy-proofness. Thus, y′ 6= x∗∗′.

By y′ 6= x∗∗′, and the repeated use of strategy-proofness to (i), we have (ii) f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) =

y′ P̂0 x∗∗′.
Suppose that y′ 6∈ E. Then, by y′ 6= x∗∗′, y′ ∈ B(z, τ)\{x∗∗′}. By y′ P̂0 x∗∗′, x∗∗′ 6= τ and so

h′ < a. Note that since x∗∗′ P̂0 x∗ and x∗ P̂0 z, B+
x∗∗′∪{x∗∗′} ⊆ B(z, τ)\{z}. Since P̂0 is separable

on B(z, τ)\{z}, it is separable on B+
x∗∗′ ∪ {x∗∗′}. Thus by y′ P̂0 x∗∗′, x∗∗′ 6∈ B(y′, τ). Then since

τ ≡ (1, · · · · · · · · · , 1),

x∗∗′ = (1, · · · , 1︸ ︷︷ ︸
h′

, 0, · · · , 0︸ ︷︷ ︸
a−h′

, 1, · · · , 1),

for some e ∈ {h′ + 1, · · · , a}, y′e = 1. By h′ + 1 ≤ e, rh′+1 ≤ re. Thus, r′ ≡ rh′ < rh′+1 ≤ re,
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and so r′ ≤ re − 1. Therefore, by Lemma 2, y′e = 0. This is a contradiction. Therefore,
f(P̂{1,··· ,r′}, P

z
{r′+1,··· ,n}) = y′ ∈ E.

Substep 9-3. As we show in Substep 9-2, f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) P̂0 x∗∗′ and

f(P̂{1,··· ,r′}, P
z
{r′+1,··· ,n}) ∈ E. Similarly to Substep 9-1, we have h′ < a. Let h′′ be the maximal

element of {h′ + 1, · · · , a} such that Ih′′ = Ih′+1. Let r′′ ≡ rh′′ and x∗∗′′ ≡ xh′′
. Then we can

repeat the argument of Substep 9-2 by replacing r′ with r′′, x∗∗ with x∗∗′ and x∗∗′′ with x∗∗′.
As a result, we obtain that f(P̂{1,··· ,r′′}, P

z
{r′′+1,··· ,n}) P̂0 x∗∗′′ and f(P̂{1,··· ,r′′}, P

z
{r′′+1,··· ,n}) ∈ E.

Repeat the argument. Then finally, we have that f(P̂{1,··· ,ra−1}, P
z
{ra,··· ,n}) ∈ E. Note that

f(P τ
{1,··· ,ra}, P

z
{ra+1,··· ,n}) = g(P τ

{1,··· ,ra}, P
z
{ra+1,··· ,n}) = τ . Thus by the repeated use of strategy-

proofness, f(P̂{1,··· ,ra}, P
z
{ra+1,··· ,n}) = τ . Then agent ra manipulates f at (P̂{1,··· ,ra−1}, P

z
{ra,··· ,n})

via P̂ra . It contradicts strategy-proofness.
Hence, we have f(P̂{1,··· ,r−1}, P

τ
r , P z

−Id
) = x∗∗ �

Step 10. Let j ∈ {0, · · · , r − 2}. Let f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = z. Then
(i) f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = z, or
(ii) f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈ E and f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z.

Proof of Step 10.
Note that Z = {z} ∪B+

z ∪B−
z ∪ E. Let x ≡ f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

).
(I) If x ∈ B−

z , then agent j +1 manipulates f at (P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) via
P z

j+1, which contradicts strategy-proofness.
(II) Suppose that x ∈ B+

z . Then by the repeated use of strategy-proofness,
f(P x

{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = x. Since x ∈ B+
z and z P̂0 xc−1, we have: x 6= z,

xc−1 6= z, and x P̂0 xc−1. Then since P̂0 satisfies separability on B(z, τ)\{z}, xc−1 6∈ B(x, τ).
Since

τ ≡ (1, · · · · · · · · · , 1),

xc−1 = (1, · · · , 1︸ ︷︷ ︸
c−1

, 0, · · · , 0︸ ︷︷ ︸
a−(c−1)

, 1, · · · , 1)

and x ∈ B(z, τ) implies that for all e ∈ {a + 1, · · · , n}, xe = 1, it follows that for some
e ∈ {c, · · · , a}, xe = 1. Let e ∈ {c, · · · , a} be such that xe = 1. By c ≤ e, r = rc ≤ re, and so
r − 1 ≤ re − 1. Therefore, by Lemma 2, x0 = 0. This is a contradiction.

Hence, we obtain that x = z or x ∈ E. In the latter case, by strategy-proofness, x P̂0 z. �

Step 11. Let j ∈ {1, · · · , r− 2}. Suppose that f(P̂{1,··· ,j}, P
z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈ E and
f(P̂{1,··· ,j}, P

z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z. Then f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) ∈
E and f(P̂{1,··· ,j+1}, P

z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z .

Proof of Step 11. Let x ≡ f(P̂{1,··· ,j+1}, P
z
{j+2,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

). Since
f(P̂{1,··· ,j}, P

z
{j+1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) P̂0 z, by strategy-proofness, x P̂0 z. Suppose that x 6∈ E.
Then by x P̂0 z, x ∈ B+

z . Then by the same way to case (II) of Step 10, we obtain a contradiction.
�.
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Step 12. f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) = z or f(P̂{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) ∈ E.

Proof of Step 12. By {1, · · · , q} ∈ W1 and 2 ≤ r, {r, · · · , q} 6∈ W1. Thus
f(P z

{1,··· ,r−1}, P
y
{r,··· ,q}, P

z
−I1

) = g(P z
{1,··· ,r−1}, P

y
{r,··· ,q}, P

z
−I1

) = z. By first applying Step 10, and
then r − 2 additional times either Step 10 or Step 11, we obtain the statement of this step. �
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