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Abstract

This paper studies a monopoly pricing problem when the seller can also

choose the timing of a trade with each buyer endowed with private information

about the seller’s good. A buyer’s valuation of the good is the weighted sum of

his and other buyers’ private signals, and is affected by the publicly observable

outcomes of preceding transactions. We show that it is optimal for the seller to

employ a sequential sales scheme in which trading with the buyers takes place

one by one. Furthermore, when the degree of interdependence differs across

buyers, we analyze how the optimal sales scheme orders them, and how it may

induce herding among them.
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1 Introduction

When a monopolist seller of a good trades with multiple buyers, he often employs

a dynamic sales strategy. That is, instead of serving the entire market at once, we

often observe the seller partition the market and serve different segments at different

timings. For example, in automobile and electronics industries, firms often launch a

new product in one country, introduce the product in another country only after the

success in the first country is well publicized.1 Similar observations hold for movie

and other entertainment industries, where success in one market (say in U.S.) is a

key to promotion in another.

There is perhaps more than one reason why a seller may employ such a dynamic

sales strategy. For example, it may simply be the case that the seller is constrained

by his physical resource to a particular segment of the market at one time. In many

cases, however, we believe that it is based on more strategic motives. For example,

through experimental sales to a small group of consumers, the seller may wish to

learn about consumer characteristics or the marketability of his product. He may

also target some subset of consumers in the expectation that they provide positive

referrals for his product to other consumers through word-of-mouth communication.

Marketing theory advocates that when a product is in the introductory stage of its

life-cycle, the firm should target a small segment of the market that is willing to

accept a new innovation and has an influence on the behavior of other consumers.

In this paper, we take the interpretation that the seller adopts a dynamic strat-

egy in order to take advantage of the interdependence of buyer valuations. More

specifically, when buyers’ valuations of the seller’s good are determined in part by

the publicly observable behavior of other buyers, we analyze whether the seller is

better off trading with different buyers at different timings. When successful, such

a trading strategy can create a chain of positive events: successful transactions with

the initial set of buyers raise the valuations of the next line of buyers, success with

the latter raises even further the valuation of the buyers to follow, and so on. Once

in such a cycle, the seller can continually increase his offer price and raise more

revenue than from static sales. Of course, the seller adopting such a scheme also

faces the risk of a downward spiral where a failure in the initial markets leads to a

sequence of failures in subsequent markets.

In our model of dynamic trading, a seller faces multiple buyers each endowed

1One recent example is Toyota’s introduction of the Lexus brand to Japan after its well-

publicized success in the U.S.
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with private information about the seller’s good. Each buyer demands one unit

of the good, which is produced at no cost to the seller. The private signals are

independent across buyers and a buyer’s valuation of the seller’s good is a weighted

sum of all buyers’ signals. As in the classical monopoly pricing problem, the seller’s

trading with each buyer takes the form of a take-it-or-leave-it offer. The outcomes

of transactions are publicly observable to subsequent buyers, and form the basis for

the expected value of the good to them. Each buyer meets the seller once and leaves

the market after accepting or rejecting the offer.

The nature of the problem can be best illustrated in a model where there are

only two buyers. The seller can either trade with both at once or trade with one of

them first and the other next. In the first scheme, referred to here as a simultaneous

scheme, the seller provides the buyers no opportunity to learn about each other’s

private signals. In other words, each buyer’s valuation depends only on his own

signal and the unconditional expectation of the other buyer’s signals. In the second

scheme, referred to as a sequential scheme, the seller allows the second buyer to

infer the private signal of his predecessor: Acceptance by the first buyer raises the

second buyer’s valuation, while rejection lowers it. It should be noted that the

exact amount by which the second buyer’s valuation changes depends on the level

of the price offer to the first buyer: If the first buyer accepts a high price, then

there will be a considerable increase in the second buyer’s valuation, while if the

first buyer accepts a low price, then the increase in the valuation will be small. In

this sense, the seller’s price offer to the first buyer determines not only his expected

revenue in stage 1, but also the parameters of his maximization problem in stage

2. If the two buyers are not ex ante identical, then the seller must also choose

which buyer to serve first. With three or more buyers, the seller’s problem is similar

but significantly more complex. First, besides sequential and simultaneous schemes,

there are a number of intermediate schemes in which trading takes place in multiple

stages. Second, the choice of buyers at each stage can be contingent on the history

of transactions. For example, the seller may want to trade with either buyer 2 or

buyer 3 in stage 2 depending on whether his transaction with buyer 1 in stage 1 is a

success or not. Unlike in the two-buyer model, hence, the seller’s current price offer

may in general affect the contingent choice of buyers in future stages.

The first main conclusion of the paper is that it is optimal for the seller to employ

a sequential scheme. The conclusion is based on the construction of a sequential

scheme that replicates any given non-sequential scheme. In the two-buyer model,
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for example, given any simultaneous scheme, we can construct a sequential scheme

that raises the same expected revenue. Suppose that the seller orginally employs

a simultaneous scheme which offers price x1 to buyer 1 and x2 to buyer 2. The

alternative sequential scheme offers x1 to buyer 1 in period 1, and makes contingent

offers to buyer 2 in period 2. In particular, the seller offers player 2 a higher price

when 1 accepts his offer and a lower price otherwise. The price is adjusted so that

buyer 2 accepts the contingent offers with exactly the same probability as he accepts

x2 under the original scheme. The choice of such contingent offers is possible since

buyer 2’s valuation shifts up or down by a deterministic amount as a result of the

period 1 outcome under our assumptions that the valuation function is additive and

the private signals are independent. The key is to show that those contingent offers

yield the same expected revenue as x2.

An alternative interpretation of the present model is from the perspective of

the seller’s information revelation policy. Suppose that the outcome of past trans-

actions is not publicly observable but can be revealed by the seller to each buyer

before trading. The sequential scheme of the present model may be identified as

the full revelation policy which reveals information about all past transactions to

every buyer, while the simultaneous scheme can be identified as the no revelation

policy that conceals the information by making price offers non-contingent on past

outcomes. In this context, it would be useful to compare the suggested optimality

of the full revelation policy in the present paper with the well-known linkage prin-

ciple in auction theory ( Milgrom and Weber (1982)). The principle says that the

auctioneer’s expected revenue is maximized when he commits to fully revealing his

private information before bidding takes place provided that the bidders’ private

signals are affiliated with one another and that of the auctioneer. The linkage prin-

ciple also claims the superiority of an English auction, which publicly releases the

bidders’ private information through their bidding, over a sealed-bid second-price

auction. In the sense that the seller’s payoff is higher when he uses a mechanism

which reveals buyers’ private information through their actions, the latter version

of the principle bears much resemblance to the conclusion of this paper. It should

be noted, however, there is no formal connection between the two, which are based

on entirely different logics. To see that direct application of the linkage principle is

not possible, it should be pointed out that the principle fails outside the symmetric

single-unit auction environment. For example, in the twice-repeated common value

auctions, de-Frutos and Rosenthal (1998) show that the auctioneer is better off not
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revealing bids in the first auction to the bidders in the second auction. The princi-

ple may also fail in auctions with asymmetric bidders (Krishna (2002, Ch. 8)), or in

multi-unit auctions (Perry and Reny (1999)). The problem of information revelation

by a privately informed seller is also studied by Milgrom (1981) and Ottaviani and

Prat (2001) in alternative frameworks: For example, Ottaviani and Prat (2001) show

in their monopoly pricing model against a single buyer that the optimal strategy

of the monopolist is to fully reveal his private information before trading. Aoyagi

(2005) points out in a model of a dynamic tournament with a privately informed

organizer that the optimal degree of information feedback to the contestants may

subtly depend on the parameters of the model.

It is also possible to interpret a sequential sales scheme of the present paper as a

generalization of models of social learning as studied by Bikchandhani et al. (2000).2

While models of social learning typically assume correlated private signals about

the underlying common value, it is easy to see that cascading does take place in

the present environment with independent signals and interdependent valuations.

In other words, when the first n buyers all make the same decision, the remaining

buyers follow suit irrespective of their signals. The present model departs from the

classical setup by making the cost of adopting the alternative (i.e., price of the good)

and the buyer sequence both endogenously determined by the revenue maximizing

seller.3 Instead of offering a constant price, for example, the seller will likely raise

his price after a series of successful transactions at some price x, but will lower it

after a series of failures. Furthermore, with idiosyncratic buyers, the buyer ordering

will be determined in a history-contingent manner and is not fixed. As discussed

below, we find that the seller’s revenue maximizing decisions may actually induce

more herding among buyers than in the classical setup.

Given the optimality of a sequential scheme, the second question we address is

on the optimal ordering of buyers. Specifically, we suppose that the buyers’ private

signals have the same distribution, and that their valuation places a single common

weight on the signals of all other buyers. The buyers differ from one another only

in those weights, which measure how dependent their valuations are on others’

information. We provide sufficient conditions under which the optimal sales scheme

first trades with the buyer with the smallest weight, then with the buyer with

2See also Banerjee (1999).
3See Chamley (2004, Chap. 4) for an alternative model of social learning with an endogenously

determined price and ex ante identical buyers with private information about the common value of

the good.
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the second smallest weight, and so on until it reaches the last buyer who has the

largest weight. According to such a scheme, hence, the buyers who are more heavily

influenced by public information about past transactions are placed towards the end

of the sequence and given the most opportunity to observe such information. Note

also that under the conditions, the optimal buyer sequence is not contingent on the

history of transactions.

Because of the technical difficulty, further analysis of the optimal sales scheme

is conducted under the additional assumption that the buyers’ private signals have

a uniform distribution. In this setup, we provide an explicit characterization of

the optimal pricing strategy along any fixed sequence of buyers. This characteri-

zation can then be used to verify the sufficient conditions for the optimality of the

monotone sequence of weights as described above. The analysis also highlights the

herd-inducing property of the optimal scheme. Specifically, it can be shown that in

the optimal scheme, the probability with which the seller’s offer is accepted keeps in-

creasing as long as all the previous transactions are successful, and keeps decreasing

as long as all the previous transactions are unsuccessful. Furthermore, the proba-

bility that any buyer accepts his offer is maximized when all his predecessors accept

their offers, and is minimized when all his predecessors reject the offers. This implies

that not only are the buyers who are more heavily influenced by others’ behavior

placed late in the sequence to observe more information, but also are they induced

to take the same action as their predecessors. This finding may be interpreted as

providing one further explanation for the frequent occurrence of consumption fads

in some markets, and also a theoretical foundation for the aforementioned marketing

strategy that first targets the consumers whose behavior influences the decisions of

other consumers.

It should be noted that the time dimension introduced in this paper is a device

to sort out informational events and does not entail discounting and depreciation.

For this reason, we do not discuss issues related to durable good monopoly such as

possible delay in transactions associated with the Coase conjecture. Also implicit

in our assumption is that the seller cannot gain by creating the scarcity of his good

by limiting its supply. Under some parametrization, for example, the seller may be

able to raise a higher revenue by producing only half as many units of the good as

the number of the buyers and hold an auction. We do not consider such possiblities

by supposing that exclusion of any buyers results in lower profits.4

4That is, the implicit assumption is that the support of buyer valuation is such that selling at
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The paper is organized as follows: The next section formulates a model of

monopoly. In Section 3, we present an example and some preliminary results that

are used extensively in the subsequent analysis. Section 4 proves the optimality

of a sequential scheme. In Section 5, we present sufficient conditions for the op-

timal sequential scheme to entail a monotone ordering of the dependence weights

as described above. Section 6 provides an explicit characterization of the optimal

sales scheme when the signal distribution is uniform, and demonstrates the herd-

generating property of such a scheme. We conclude with a discussion in Section

7.

2 Model

A seller of a good faces the set I = {1, . . . , I} of I buyers each of whom has private

information about the valuation of the good.5 Let si denote buyer i’s private signal.

We assume that s1, . . . , sn are independent and identically distributed over the

set R+ of non-negative real numbers. Let µi be the mean value of si. When

s = (s1, . . . , sn) denotes a signal profile, buyer i’s valuation of a single unit of the

seller’s good is given by

vi(s) = ci0 + ciisi +
X
j 6=i

cij(sj − µj),

where cii > 0, and cij ≥ 0 (j 6= 0, i). In other words, the valuations are linearly

interdependent, and buyer i places weight cij on buyer j’s signal.
6 As seen below,

subtraction of the mean µj from sj for every j 6= i simplifies the representation of
the expected valuation.7

We normalize the marginal cost of producing the good to zero, and assume

that every buyer demands at most one unit. As discussed in the Introduction, an

alternative interpretation of each buyer in this model is that they represent a segment

of the market that is difficult to futher break down and consists of individuals who

have the same taste and information about the seller’s good.

the minimum price to every buyer is more profitable than selling at the maximum price to any

proper subset of them.
5Note that I represents both the set of buyers and its cardinality.
6Note that the linear specification of the valuation function is common in the auction literature

since the work of Myerson (1981). It can also be interpreted as an approximation to a more general

valuation function.
7The optimality of a sequential scheme in Section 4 holds as is without the subtraction of µj .

For the conclusions in Sections 5 and 6, proper adjustment in the constant term is required.
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The seller trades with each buyer by offering him a price. The buyer then accepts

or rejects the price offer and leaves the market. The price offered to each buyer and

their response to the offer are both publicly observable.

In every period, the seller chooses which buyers to make offers and what prices

to offer to them as a function of past trades. Formally, denote by It ⊂ I the set of
buyers who are made offers in period t. An outcome yt in period t is a partition

(At, Bt) of the set It: At represents the set of buyers who have accepted their offers,

and Bt represents those who have rejected their offers. For any subset J of buyers,

let Y (J) denote the set of possible outcomes from the set J of buyers. In other

words, Y (J) consists of all the two-way partitions of the set J including (J, ∅) and
(∅, J). A history of length t consists of the outcomes in periods 1, . . . , t. Let Ht

denote the set of possible histories of length t, and let H = ∪∞t=0Ht be the set of
all possible histories, where H0 is the singleton set of the null history. Given any

history h ∈ H, we denote by I(h) and U(h) = I \ I(h) the set of buyers with whom
the seller has and has not, respectively, traded along h.

A sales scheme of the seller, denoted σ, consists of a pair of mappings r : H → 2I

and x = (xi)i∈I : H → RI
+: r(h) specifies the subset of buyers the seller chooses for

trading at histroy h, and xi(h) specifies the price he offers to buyer i at h. Note in

particular that the seller’s choice of the buyers in any period is contingent on the

history. In a three-buyer model, for example, the seller chooses buyer 1 in period

1, and in period 2, he chooses buyer 2 if buyer 1 accepted his offer, but buyer 3

otherwise, etc. It should also be noted that the specification of the price xi(h) is

relevant only for i ∈ r(h). In order to eliminate the possibility of inaction in any
period, we require that r chooses at least one buyer in every period until the list

of buyers is exhausted: r(h) 6= ∅ if U(h) 6= ∅. This in particular implies that all
the trading ends in or before period I. Let Σ be the set of all sales schemes. Two

representative classes of sales schemes are the simultaneous schemes in which the

seller trades with all the buyers at once (i.e., r(h) = I for h ∈ H0), and the sequential
schemes in which he trades one by one with each buyer (i.e., r(h) = {i} for some
i ∈ U(h) for each h ∈ Ht−1 and t = 1, . . . , I).

Given a sales scheme σ, let P σ denote the joint probability distribution of the

signal profile s and the history h induced by σ. Let Eσ be the expectation with

respect to the distribution P σ. We use P without the superscript to denote the

marginal distribution of s that does not depend on the sales scheme, and E to
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denote the corresponding expectation. For any history h ∈ H, let

V σ
i (si | h) = Eσ[vi(si, s̃−i) | h]

be the expected valuation of buyer i with signal si given history h. By assumption,

it can be explicitly written as

V σ
i (si | h) = ci0 + ciisi +

X
j∈I(h)

cij E
σ[s̃j − µj | h].

Note that the summation above is over the set I(h) of buyers who have already

traded along h since any other term involves the unconditional expectation of the

private signal and hence cancels out. Buyer i with signal si accepts the seller’s offer

xi at history h if and only if the expected value of the good conditional on h is

greater than or equal to xi: Vi(si | h) ≥ xi. The seller’s expected revenue under the
sales scheme σ, denoted by π(σ), is simply the sum of expected payments from the

I buyers.

3 Preliminaries

In this section, we first present a simple example to illustrate the problem, and then

provide some preliminary results that are key to much of the subsequent analysis.

Consider first the following example. There are two buyers whose private signals

s1 and s2 both have the uniform distribution over the unit interval [0, 1] with the

means µ1 = µ2 = 1/2. Suppose also that their valuation functions are given by

v1(s1, s2) = s1 + c1

³
s2 − 1

2

´
and v1(s1, s2) = s2 + c2

³
s1 − 1

2

´
,

where 0 < c1 ≤ c2. It can be seen that this is a special case of the general formulation
in the previous section.

When the seller uses the simulataneous sales scheme, he will choose the price

offers x1 and x2 so as to maximize x1P (s̃1 ≥ x1) and x2P (s̃2 ≥ x2), respectively.
As is readily verified, the revenue maximizing prices equal x1 = x2 = 1/2 and the

seller’s expected payoff equals

π0 =
1

4
× 2 = 1

2
.

On the other hand, when the seller uses the sequential sales scheme that trades

with buyers 1 and 2 in this order, he needs to solve a two-step optimization problem.
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Consider first the problem in period 2 given the first period offer x1 ∈ [0, 1]. Let
h1 = 1 denote the history corresponding to buyer 1’s acceptance, and h1 = 0 denote

the histroy corresponding to his rejection. Depending on h1, buyer 2’s valuation

function is either

V2(s2 | 1) = s2 + c2E
h
s̃1 − 1

2
| s̃1 ≥ x1

i
= s2 + c2

x1
2
,

or

V2(s2 | 0) = s2 + c2E
h
s̃1 − 1

2
| s̃1 < x1

i
= s2 + c2

x1 − 1
2

.

The seller also has two prices to consider in period 2: x2(1) is the price offer to

buyer 2 when buyer 1 accepted in period 1, and x2(0) is the offer to buyer 2 when

buyer 1 rejected. The period 2 price offers hence solve

x2(1) ∈ argmax
x2

x2 P
³
V2(s̃2 | 1) ≥ x2

´
,

and

x2(0) ∈ argmax
x2

x2 P
³
V2(s̃2 | 0) ≥ x2

´
.

Upon substituting for V2, we can solve these problems to obtain

x2(1) =
1

2

³
1+

c2
4

´
, and x2(0) =

1

2

³
1− c2

4

´
.

Let π2(x1 | 1) and π2(x1 | 0) denote the optimized values of the period 2 expected
payoffs after h1 = 1 and h1 = 0, respectively. They are given by

π2(x1 | 1) = 1

4

³
1+

c2
2
x1

´2
, and π2(x1 | 0) = 1

4

³
1+

c2
2
(x1 − 1)

´2
.

Using them, we can also write the seller’s period 1 problem as:

max
x1

P (s̃1 ≥ x1)
n
x1 + π2(x1 | 1)

o
+ P (s̃1 < x1) π2(x1 | 0).

Solve this to get

x1 =
1

2
.

These optimal prices can also be obtained from Theorem 6.1 in Section 6. The

optimized value of the seller’s overall expected payoff under the sequential sales

scheme equals

π12 =
1

2
+
c22
64
.
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Likewise, when the seller uses the sequential scheme with the order of buyers 1 and

2 switched, his expected payoff is given by

π21 =
1

2
+
c21
64
.

Given our assumptions on c1 and c2, we hence have the following ordering:

π0 < π21 ≤ π12.

The above inequalities already hint the main conclusions of the paper: A sequential

scheme performs better than the simultaneous scheme, and the optimal sequential

scheme has an increasing sequence of dependence weights.

In a more general setting, it is not analytically feasible to make direct revenue

comparisons of various schemes unlike above. For this reason, we take a different

approach to the problem by examining how a local change in the given scheme

affects the revenue. Given below is some preliminary analysis of the general model

in this direction.

Consider a pair of sales schemes σ and σ0, and suppose that a pair of histories
h and h0 are induced by σ and σ0, respectively. Suppose that along these histories,
the seller has traded with the same set of buyers with exactly the same outcomes.

That is, the set of buyers who have accepted the seller’s offers along h is the same

as that along h0 (A(h) = A(h0)), and also the set of the buyers who have rejected
the offers along h is the same as that along h0 (B(h) = B(h0)). The following

lemma states that if, for every one of those buyers, the probability that he would

have accepted the offer is the same under both schemes, then so are the valuation

functions of subsequent buyers conditional on h and h0. Formally, given any sales
scheme σ = (r, x) ∈ Σ and any history h ∈ H, let

zσi (h) = P
³
V σ
i (s̃i | h) ≥ xi(h)

´
be the probability that buyer i accepts the seller’s offer xi(h) given his valuation

conditional on history h ∈ H.

Lemma 3.1. Let σ = (r, x) and σ0 = (r0, x0) be any sales schemes and h and h0 be
any histories induced by σ and σ0, respectively, with the same set of buyers along
them and the same outcomes (i.e., A(h) = A(h0) and B(h) = B(h0)). For any buyer
j ∈ J ≡ I(h) = I(h0), let hj and h0j denote the truncations of h and h0, respectively,
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at which the seller chooses j: r(hj) = r0(h0j) = j. If zσj (hj) = zσ
0
j (h

0
j) for every

j ∈ J , then for any i /∈ J ,

V σ
i (si | h) = V σ0

i (si | h0) for every si.

Proof. Take any j ∈ A(h) = A(h0). Write

wσj (hj) = cj0 +
X

k∈I(hj)
cjk E

σ[s̃k − µk | hj ]

for the part of j’s valuation under σ that is determined by the history hj . Likewise,

define wσ
0
j (h

0
j) to be the part of j’s valuation under σ

0 that is determined by the
history h0j . Since V

σ
j (sj | hj) = cjjsj + wσj (hj) and V σ0

j (sj | h0j) = cjjsj + wσ
0
j (h

0
j),

we have by assumption,

zσj (hi) = P
³
cjj s̃j ≥ xj(hj)− wσj (hj)

´
= P

³
cjj s̃j ≥ x0j(h0j)−wσ

0
j (h

0
j)
´
= zσ

0
j (h

0
j).

Hence

Eσ[s̃j − µj | h] = E[s̃j − µj | V σ
j (s̃j | hj) ≥ xj(hj)]

= E[s̃j − µj | cjj s̃j ≥ xj(hj)− wσj (hj)]
= E[s̃j − µj | cjj s̃j ≥ x0j(h0j)− wσ

0
j (h

0
j)]

= E[s̃j − µj | V σ0
j (s̃j | h0j) ≥ x0j(h0j)]

= Eσ0 [s̃j − µj | h0].

(1)

Likewise, for any j ∈ B(h) = B(h0), we have Eσ[s̃j−µj | h] = Eσ0 [s̃j−µj | h0]. Now
take any buyer i /∈ J who comes after h or h0. Since for any si, V σ

i (si | h) = ci0 +
ciisi+

P
j∈J cij E

σ[s̃j−µj | h] and V σ0
i (si | h0) = ci0+ciisi+

P
j∈J cij E

σ0 [s̃j−µj | h0],
we conclude from the above that V σ

i (si | h) = V σ0
i (si | h0). ¥

Our next observation concerns the expected change in a buyer’s valuation as a

function of the decision of any other buyer who precedes him. For any sales scheme

σ, history h, and buyer i that σ chooses at h, let

κσi (h) = E[s̃i − µi | V σ
i (s̃i | h) ≥ xi(h)],

λσi (h) = E[s̃i − µi | V σ
i (s̃i | h) < xi(h)].

(2)
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That is, κσi (h) denotes the expected value of bidder i’s private signal (minus its

unconditional mean µi) when he accepted the seller’s offer xi(h) at history h. Like-

wise, λi(h) is the expected value of his private signal (minus µi) when he rejected

the offer. It should be noted that for any buyer j that comes after i, cji κ
σ
i (h) equals

the change in his valuation when i accepts the offer, and cji λ
σ
i (h) equals the change

in his valuation when i rejects the offer. The following lemma simply says that

conditional on h, the expected change in j’s valuation is zero.

Lemma 3.2. For any σ = (r, x), h ∈ H, and i ∈ I such that r(h) = i, zi(h)κσi (h)+
(1− zi(h))λσi (h) = 0.

Proof.

zi(h)κ
σ
i (h) + (1− zi(h))λσi (h)

= E
h
(s̃i − µi) 1{V σi (s̃i|h)≥xi(h)} + (s̃i − µi) 1{V σi (s̃i|h)<xi(h)}

i
= 0.

¥

Lemma 3.2 also implies that κσi (h) ≥ 0 and λσi (h) ≤ 0. That is, every acceptance
has a positive impact on a subsequent buyer’s valuation, while every rejection has

a negative impact. As seen in the next section, given any scheme that trades with

buyers i and j simultaneously, Lemma 3.2 allows us to construct an alternative

scheme that trades with them in sequence, but yields exactly the same revenue.

4 Sequential Sales Scheme

In this section, we show that the seller’s expected payoff is maximized when he

employs a sequential scheme.

Theorem 4.1. The seller’s expected revenue is maximized when he employs a se-

quential scheme: There exists a sequential sales scheme σ∗ such that π(σ∗) =
maxσ∈Σ π(σ).

Proof. See the Appendix. ¥

The proof of the theorem shows that given any non-sequential scheme σ, there

exists a sequential scheme that performs at least as well as σ. Suppose for simplicity

that σ induces some history h ∈ Hn−1 (n ≥ 1) at which it trades with two buyers i

12



and j. Let xj ≡ xj(h) denote the price offer to buyer j under the original scheme.
Consider the following alternative scheme σ∗ = (r∗, x∗): In period n at history h,
σ∗ trades only with buyer i by offering the same price as under σ. In period n+ 1,
σ∗ trades with buyer j with the price offer adjusted according to the outcome of
trade with buyer i. Specifically, the offer to j under σ∗ equals xj + cji κσi (h) when
buyer i accepted the offer, and it equals xj + cji λ

σ
i (h) when buyer i rejected the

offer. Since buyer j’s valuation changes by either cji κi(h) or cji λi(h) as a result of

the period n outcome, the probability that he accepts the modified offer after each

contingency is equal to the probability that he accepts the offer xj at h under the

original scheme. Specifically, if we denote by (h, 1) ∈ Hn the history under σ∗ which
takes place when i accepts the offer at h, then

z∗j (h, 1) = P
³
V σ∗
j (s̃j | h, 1) ≥ xj + cji κi(h)

´
= P

³
cj0 + cjj s̃j +

X
k∈I(h)

cjk E
σ[s̃k − µk | h] + cji κi(h) ≥ xj + cji κi(h)

´
= P

³
cj0 + cjj s̃j +

X
k∈I(h)

cjk E
σ[s̃k − µk | h] ≥ xj

´
= P

³
V σ
j (s̃j | h) ≥ xj

´
= zj(h).

Likewise, if (h, 0) ∈ Hn denotes the n+ 1-length history under σ∗ which takes place
when i rejects the offer at h, then z∗j (h, 0) = zj(h). It then follows that the seller’s
expected revenue from buyer j under σ∗ conditional on h is computed as

zi(h) zj(h) {xj + cji κσi (h)}+ (1− zi(h)) zj(h) {xj + cji λσi (h)}
= zj(h)

h
xj + cji

n
zi(h)κ

σ
i (h) + (1− zi(h))λσi (h)

oi
= zj(h)xj ,

where the second equality follows from Lemma 3.2. Note that zj(h)xj = zj(h)xj(h)

is just the expected revenue from buyer j under the original scheme. It also follows

from Lemma 3.1 that the valuation functions of all the buyers that come after (h, 1)

or (h, 0) are the same as those under σ since regardless of i’s decision, the probability

that j accepts the offer under σ∗ is the same under the original scheme. Therefore, if
σ∗ makes the same price offer to each of those buyers as σ, then the seller’s expected
revenue from them is just the same. As seen in the formal proof in the Appendix,

13



these arguments generalize to the case where σ chooses more than two buyers at

h. Hence, if σ∗ trades with more than one buyer in any period, we can repeatedly
apply the above argument to conclude that there is a sequential scheme that yields

the same expected revenue as σ.

5 Optimal Buyer Sequence

Given the optimality of sequential sales schemes demonstrated in the previous sec-

tion, we now turn to the question of how the seller should order the buyers in such

schemes. In particular, when the buyers differ in the weights they place on others’

signals, how should the seller order them in terms of those weights? In order to

focus on this question, we suppose in what follows that each buyer’s private sig-

nal has a common distribution, and that his valuation vi(s) given the signal profile

s = (s1, . . . , sI) equals

vi(s) = c0 + si + ci
X
j 6=i
(sj − µ),

where µ is the common mean of sj . That is, we set cii = 1, cij = ci for j 6= i, 0, and
ci0 = c0 in the general formulation of Section 2. Note that ci is the only source of

difference across buyers and is an unambiguous measure of the degree of dependence

of buyer i’s valuation on others’ information.

Given a sequential sales scheme σ = (r, x), we redefine r(h) to be the buyer (an

element of I) that r chooses at history h. We also express a history induced by σ

as a sequence of 0’s and 1’s: At history h ∈ Ht−1, outcome 1 in period t implies
that buyer r(h) accepted the seller’s offer and outcome 0 implies that he rejected

it. For example, (1, 0) ∈ H2 denotes the history induced by σ in which buyer r(h0)
accepts the offer x(h0), and then buyer r(1) rejects the offer x(1). Likewise, given

any history h ∈ Ht−1 induced by σ, (h, 1) and (h, 0) ∈ Ht represent the histories
obtained by appending to h buyer r(h)’s acceptance and rejection, respectively, in

period t.

Let a sales scheme σ ∈ Σ be given. For any history h ∈ Ht−1, let

ασ(h) =
X
j∈I(h)

Eσ[s̃j − µ | h]

be the sum of the expected values of private signals (minus µ) conditional on history

h. It can be readily verified that buyer i’s valuation function conditional on history
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h can be expressed as

V σ
i (si | h) = c0 + si + ciασ(h). (3)

In the sense that ασ(h) completely determines a buyer’s valuation at h, it is referred

to as the state at h. It should be noted that the transition of the state is described

as follows when r(h) = i:

ασ(h, 1) = ασ(h) + E[s̃i − µ | V σ
i (s̃i | h) ≥ xi(h)] if i accepts,

and

ασ(h, 0) = ασ(h) + E[s̃i − µ | V σ
i (s̃i | h) < xi(h)] if i rejects.

Since E[s̃i − µ] = 0, we have E[s̃i − µ | V σ
i (s̃i | h) ≥ xi(h)] ≥ 0 ≥ E[s̃i − µ |

V σ
i (s̃i | h) < xi(h)]. Hence the state variable goes up with every acceptance and

goes down with every rejection. Furthermore, since the initial state is α0 = 0, the

state remains positive as long as all previous transactions have been successful, and

remains negative as long as they have all failed.

In what follows, we will focus on a class of sequential schemes in which the pricing

function x satisfies certain monotonicity conditions. It will be shown in the next

section that these conditions are indeed satisfied by the optimal pricing function

when the signal distribution is uniform.

Formally, given any history h ∈ Hn−1 (n ≤ I−1), the selection function r is non-
contingent after h if the buyers it chooses in periods n+ 1, . . . , I are independent of

the outcomes in periods n, . . . , I − 1, i.e., for any n+ 1 ≤ t ≤ I, there exists rt ∈ I
such that for any sequence of outcomes yn, . . . , yt−1 in periods n, . . . , t,

r(h, yn, . . . , yt−1) = rt. (4)

The selection function r is non-contingent if it is non-contingent after the null his-

tory. Intuitively, r is non-contingent if the target buyer in every period is known in

advance. It should be noted that every r is non-contingent at any history h ∈ HI−2
since then no matter what happens with buyer r(h) in period I−1, the seller always
chooses the only remaining buyer in period I.

Given any sales scheme σ ∈ Σ and history h ∈ H, recall that zi(h) ≡ zσi (h)

denotes the probability that the seller’s price offer xi(h) is accepted by buyer i at
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history h ∈ H. Define Σ0 to be the class of sequential sales schemes such that

Σ0 =
n
σ = (r, x) : For any h ∈ H induced by σ, if r is non-contingent after h,

r(h) = j, and r(h, 0) = r(h, 1) = i, then

zi(h, 0) ≤ zi(h, 1), and
ασ(h)

h
zj(h)− zj(h)zi(h, 1)− (1− zj(h))zi(h, 0)

i
≥ 0

o
.

(5)

Note that both requirements concern the probabilities of acceptance at histo-

ries after which r is non-contingent. The first condition requires that the seller’s

contingent offer to i have a higher probability of acceptance when j has accepted

his offer than when j has rejected it. As for the second requirement, note that

zj(h)zi(h, 1) + (1 − zj(h))zi(h, 0) is the expected probability conditional on h that
buyer i accepts the seller’s contingent offers. Hence, it says that the expected prob-

ability of acceptance increases as the seller moves from buyer j to buyer i when the

state variable ασ(h) is positive, and decreases when ασ(h) is negative.

Now take any pair of buyers i and j such that buyer j is more dependent on

others’ signals than buyer i: cj ≥ ci. The following lemma states that for any

σ ∈ Σ0, if r is non-contingent after some history h and trades with buyers j and i
in this order at h, then there exists an alternative scheme that switches the order

of i and j and yields a higher revenue than σ.

Lemma 5.1. Let σ = (r, x) ∈ Σ0. Suppose σ induces history h ∈ Hn−1 (1 ≤ n ≤
I − 1) such that r is non-contingent after h, and

r(h) = j and r(h, 0) = r(h, 1) = i

for some i 6= j such that cj ≥ ci. Then there exists σ∗ = (r∗, x∗) ∈ Σ0 such that r∗
is non-contingent after h, r∗(h) = i, r∗(h, 0) = r∗(h, 1) = j, and π(σ∗) ≥ π(σ).

Proof. See the Appendix. ¥

Suppose cj ≥ ci. It follows from Lemma 5.1 that revenue improvement is possible
if r trades with j and i in this order at h ∈ HI−2 since r is non-contingent at any such
h as noted above. Whenever there are two buyers left, then, it is always optimal to

trade first with the one with the smaller weight. This suggests that at any history

h ∈ HI−3 where three buyers are left, it is optimal to choose r that is non-contingent
after h: No matter what the outcome with buyer r(h) in period I − 2, choose the
buyer with the smaller weight in period I − 1. If r is non-contingent at h ∈ HI−3,
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however, Lemma 5.1 suggests that revenue improvement is possible if r trades with

a buyer with the smallest weight among three first at h. Repeating this argument,

we can show that it is optimal to trade with the buyer with the smallest weight in

period 1, one with the second smallest weight in period 2, and so on. The following

theorem formalizes this argument and states that among the sales schemes in Σ0,

the seller’s expected revenue is maximized when he trades with the buyers in the

increasing order of their weights ci.

Theorem 5.2. Suppose that c1 ≤ · · · ≤ cI . Among the sales schemes in Σ0, the
seller’s expected revenue is maximized when he employs a non-contingent scheme

that trades with buyer t in period t for every t ∈ I.
Proof. See the Appendix. ¥

6 Uniform Distribution and Generation of Herds

In this section, we give an explicit characterization of the seller’s optimal sales

scheme when a buyer’s private signal is drawn from a uniform distribution. We will

then show that the optimal scheme induces herding among buyers by examining the

probability that the seller’s offer is accepted along the path of play.

For the characterization of the optimal scheme, we first consider a constrained

optimization problem with respect to the probability of acceptance z given the

selection function r. We will verify that the solution to this problem satisfies the

monotonicity conditions in the definition (5) of Σ0. This implies that for any scheme

σ = (r, z) and any history h it induces, if r is non-contingent after h and z maximizes

continuation revenue at h, then z satisfies those conditions. This shows that any

solution σ to the unconstrained revenue maximization problem belongs to Σ0. It

will then follow from Theorem 5.2 that the optimal σ entails the monotone ordering

of the weights ci.

Formally, suppose that all buyers are identical except for the weights ci as in

the previous section, and that their signals are drawn from the uniform distribution

over the unit interval [0, 1]. Fix a non-contingent selection function r and consider

the constrained optimization problem with respect to the probability of acceptance

z given r. With slight abuse of notation, we denote by r(t) ∈ I the buyer that
the selection function r chooses in period t ∈ I. Since a buyer’s valuation function
at any history is completely determined by the value of α at that history as seen

in (3), we use αt−1 to denote the state in period t and write Vr(t)(sr(t) | αt−1) for
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buyer r(t)’s valuation in state αt−1. Since the seller’s problem in period t is also

completely described by αt−1, we will treat the state αt−1 as a continuous variable
and describe x and the associated probability of acceptance z as functions of αt−1.

Suppose now that the seller chooses his offer xr(t) to buyer r(t) in period t so

that it will be accepted with probability zt when the state is αt−1.8 It can then be
verified from (3) that xr(t) and zt are related through xr(t) = 1− zt+ cr(t)αt−1+ c0.
If buyer r(t) accepts this offer, the updated expected value of sr(t) equals E[s̃r(t) |
Vr(t)(s̃r(t) | αt−1) ≥ xr(t)], or equilivalently, E[s̃r(t) | s̃r(t) ≥ 1 − zt]. We redefine κ
and λ as follows: Let κ(z) denote the expected value of si minus µ conditional on

buyer i accepting the seller’s offer intended to be accepted with probability z:

κ(z) = E
£
s̃i − µ | s̃i ≥ 1− z

¤
.

Likewise, let λ(z) denote the expected value of si minus µ when buyer i rejects the

same offer:

λ(z) = E
£
s̃i − µ | s̃i < 1− z

¤
.

Note that both κ(z) and λ(z) are independent of the state or the identity of the

buyer. The state transition on the path can hence be described as

αt =

αt−1 + κ(zt(αt−1)) when buyer r(t) accepts,

αt−1 + λ(zt(αt−1)) when buyer r(t) rejects.

When si has the uniform distribution over [0, 1], κ(z) and λ(z) can be written

explicitly as:

κ(z) =
1− z
2

and λ(z) = −z
2
.

Using z and α, we now write down the seller’s constrained optimization problem

given r. Let πI(zI ,αI−1) denote the seller’s expected revenue from buyer r(I) in

state αI−1 when he makes an offer that is accepted with probability zI . It can be
written as

πI(zI ,αI−1) = g(zI) + zIcr(I)αI−1 + c0zI ,

8For simplicity, we use zt rather than zr(t) to denote the probability of acceptance in period t

by buyer r(t).
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where g : [0, 1] → R is defined by g(z) = z(1 − z). Let π∗I (αI−1) denote the
maximized value of πI(zI ,αI−1):

π∗I (αI−1) = max
zI∈[0,1]

πI(zI ,αI−1).

For t = 1, . . . , I−1, the seller’s expected revenue over periods t, . . . , I is recursively
defined by

πt(zt,αt−1) = g(zt) + ztcr(t)αt−1 + c0zt + ft+1(zt,αt−1),

where

ft+1(zt,αt−1) = zt π∗t+1
³
αt−1 + κ(zt)

´
+ (1− zt)π∗t+1

³
αt−1 + λ(zt)

´
is the seller’s expected revenue over periods t + 1, . . . , I when he chooses zt in

period t, and then follows the optimal course of action in subsequent periods. The

optimized value of πt(zt,αt−1) is denoted by

π∗t (αt−1) = max
zt∈[0,1]

πt(zt,αt−1). (6)

Let ar(t) and br(t) be defined by ar(I) = 1+ c0, br(I) = cr(I), and

ar(t) = 1+
c0

1+ 1
16

PI
k=t+1 br(k)cr(k)

, and br(t) =
cr(t)

1+ 1
16

PI
k=t+1 br(k)cr(k)

for t = 1, . . . , I − 1. The following theorem explicitly describes the solution to the

constrained maximization problem (6) when it has an interior solution for every i.

Theorem 6.1. Suppose that every si has the uniform distribution over [0, 1], and

that the seller trades with buyer r(t) in period t. If

br(t) <
2(2− ar(t))
I − 1 for every t = 1, . . . , I, (7)

then the solution to the maximization problem (6) is given by

zt(αt−1) =
1

2
(ar(t) + br(t)αt−1) for every t = 1, . . . , I. (8)

Proof. See the Appendix. ¥
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The condition (7) guarantees that the solution to (6) is in the interior: zt(αt−1) ∈
(0, 1) for any αt−1 and t. Since br(t) ≤ cr(t), it can be seen that this condition holds
when c0 < 1 and all the weights ci are small. It should be noted however that the

total weight (I−1) ci placed by i on others’ signals need not be small: For example,
when c0 = 0, (7) is sastisfied if (I − 1) ci < 2 for every i ∈ I.

Suppose that the weights satisfy the following conditions:

c0 = 0, max
i∈I

ci <
2

I − 1 , (9)³
1+

1

16

X
k 6=i,j

c2k

´
(ci − cj) ≤

c3j

16
n
1+ I−2

4(I−1)2
o for any i 6= j. (10)

Let σ be any constrained optimal scheme that trades with buyer r(t) in period t.

Since c0 = 0 implies ar(t) = 1 for every t, (7) holds under (9). Since zt is an affine

function by Theorem 6.1, we have for any α,

zt(α) zt+1

³
α+ κ(zt(α))

´
+ (1− zt(α)) zt+1

³
α+ λ(zt(α))

´
= zt+1

³
α+ zt(α)κ(zt(α)) + (1− zt(α))λ(zt(α))

´
= zt+1(α),

(11)

where the second equality follows from Lemma 3.2. On the other hand, the condition

(10) requires that the buyers not be so dissimilar in the sense that ci and cj are

close to each other. In particular, the following can be verified after some algebra.

Lemma 6.2. For any permutation r : I → I, if (9) and (10) hold, then

br(t) ≤ br(t+1) for every t = 1, . . . , I − 1. (12)

Proof. See the Appendix. ¥

It follows from (8) and (12) that

α ≥ 0 ⇒ zt(α) ≤ zt+1(α), and α ≤ 0 ⇒ zt(α) ≥ zt+1(α) (13)

for t = 1, . . . , I − 1. Note that (11) and (13) together imply the second condition
for Σ0 in (5). Since each zt is also increasing, we can conclude that σ ∈ Σ0. Let
then σ = (r, z) be any (possibly contingent) optimal scheme and h be any history

that it induces. If r is non-contingent after h, the above in particular shows that
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z restricted to the (non-contingent) subsequence of buyers after h also satifies the

monotonicity conditions in (5). This shows that σ ∈ Σ0. We hence obtain the

following result.

Theorem 6.3. Suppose that every si has the uniform distribution over [0, 1], and

that (9) and (10) hold. If c1 ≤ . . . ≤ cI , then the seller’s expected revenue is

maximized when he employs a non-contingent sequential scheme and trades with

buyer t in period t (i.e, r(t) = t) by making an offer that is accepted with probability

zt given in Theorem 6.1.

We next use Theorems 6.1 and 6.3 to derive a qualitative characterization of the

seller’s offers in the optimal scheme. It follows from (13) that if αt ≥ max {0,αt−1},
then zt+1(αt) ≥ zt(αt) ≥ zt(αt−1). In other words, when the seller has a successful
transaction with buyer r(t) = t and the resulting state is positive in period t +

1, the seller’s offer to buyer r(t + 1) = t + 1 is more likely to be accepted than

his offer to buyer t. Likewise, if αt ≤ max {0,αt−1}, then zt+1(αt) ≤ zt(αt) ≤
zt(αt−1). In other words, when the transaction with buyer t fails and the resulting
state is negative in period t + 1, the seller’s offer to buyer t + 1 is less likely to

be accepted than his offer to buyer t. Since the initial state α0 = 0, the state

remains positive and increasing along any history in which all the transactions are

successful. Hence, the probability of acceptance keeps increasing along any such

history. On the other hand, the probability of acceptance keeps declining along the

history in which all the transactions have failed. Note also that αt−1 is the highest
when the buyers 1, . . . , t − 1 all accept the seller’s offers, and is the lowest when
they all reject the offers. This, along with the fact that zt is increasing in αt−1,
shows that the probability that buyer t accepts the seller’s offer is maximized when

all his predecessors accept, and minimized when they all reject. We summarize

these observations as a corollary below. Combined with the fact that the buyer

who is more heavily influenced by others’ behavior are placed towards the end of

the sequence, the corollary demonstrates the intrinsic tendency of the optimal sales

scheme to induce herding among buyers.

Corollary 6.4. Suppose that the conditions of Theorem 6.3 hold. In the optimal

sales scheme σ that trades with buyer t in period t, the probability of acceptance

increases along the history in which all the buyers accept, and decreases along the

history in which they all reject. Furthermore, for any t, the probability of acceptance

by buyer t is maximized when buyers 1, . . . , t − 1 all accept, and minimized when
they all reject.
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We turn next to the examination of the price path. As seen earlier, the price

xt(αt−1) offered to buyer t in state αt−1 is related to zt(αt−1) through

xt(αt−1) = 1− zt(αt−1) + ctαt−1
= 1− 1

2
(1+ btαt−1) + ctαt−1

=
1

2
+
³
ct − bt

2

´
αt−1.

Likewise, xt+1(αt) can be expressed as

xt+1(αt) =
1

2
+
³
ct+1 − bt+1

2

´
αt.

It can also be readily verified that the state transition is given by

αt =

αt−1 + 1
4(1− btαt−1) when buyer t accepts,

αt−1 − 1
4(1+ btαt−1) when buyer t rejects.

The following corollary gives a qualitative characterization of the price path when

ci’s are sufficiently small. Its conclusion on the monotone price path conforms to

our basic intuition.

Corollary 6.5. Suppose that the conditions of Theorem 6.3 hold. Let σ be the op-

timal sales scheme that trades with buyer t in period t. There exists ² > 0 such

that if cI < ², then xt(αt−1) ≤ xt+1(αt) if αt−1 ≥ 0 and buyer t accepts, and

xt(αt−1) ≥ xt+1(αt) if αt−1 ≤ 0 and buyer t rejects. In particular, the price is

monotone increasing along the history in which all the buyers accept, and is mono-

tone decreasing along the history in which all the buyers reject.

Proof. See the Appendix. ¥

7 Discussions

As seen in Section 3, it is public information how much a buyer’s valuation (as

a function of his private signal) shifts up or down as a result of each previous

transaction under our assumptions that the buyers’ private signals are independent,

and that their valuation can be expressed as the weighted sum of those private

signals. This property is used extensively in the analysis for the construction of

an alternative scheme. We would have a very different problem when the signals
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are correlated or when the valuation functions are not affine. For example, if the

valuation functions have a multiplicative form with respect to the private signals,

then it can be seen that the impact of previous transactions on a buyer’s valuation

varies with his own signal. The same is true when the signals are correlated across

buyers. With correlated signals, the seller also faces the learning problem. For

example, if the private signals indicate the underlying common value of the good,

it may be in the interest of the seller to engage in experimental pricing against the

initial set of buyers. These issues significantly complicate the analysis.

As mentioned in the Introduction, an alternative interpretation of the present

model is through the seller’s information revelation policy. A more direct model of

information revelation would be one in which trades take place sequentially but the

outcome of each transaction is the seller’s private information. In such a setup, the

seller’s information revelation policy specifies which past outcomes to reveal to each

buyer as a function of the history. While this is a possible alternative to the present

formulation, we suspect that the analysis of such a model is more involved with its

equilibrium delicately dependent on the specification of the buyers’ beliefs. From a

more practical point of view, the seller may find it difficult to strictly control his

sales information when trades take place in sequence.

Appendix

Proof of Theorem 4.1 Fix any sales scheme σ that is not sequential. That is,

σ induces a history h ∈ Hn−1 (n ≥ 1) such that r(h) = {m} ∪ J for some m ∈ I
and J 6= ∅. In other words, according to σ, the seller trades with buyer m and at

least one other buyer in period n at history h. We will construct an alternative

scheme σ∗ that raises the same expected revenue as σ as follows: The sales scheme
σ∗ operates in the same way as σ does except when h arises. At history h, σ∗ trades
only with buyer m with the same offer price as under the original scheme. For

simplicity, denote the outcome yn ∈ Y ({m}) in period n from buyer m under σ∗ by
either 0 or 1: 1 represents the outcome ({m}, ∅) that buyer m accepts the seller’s

offer, and 0 represents the outcome (∅, {m}) that he rejects it. In period n + 1 at
either (h, 1) or (h, 0), σ∗ trades with the buyers in J with the offer prices adjusted
according to the outcome in period n. In any subsequent period, the set of buyers

and prices specified by σ∗ along any history (h, yn, . . . , yt−1) ∈ Ht−1 are the same
as those specified by σ along the history (h, yn∪yn+1, yn+2, . . . , yt−1) ∈ Ht−2, where
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yn ∪ yn+1 = (An ∪An+1, Bn ∪Bn+1) is the “union” of two outcomes yn and yn+1:
Those who accept under yn ∪ yn+1 are the union of those who accept under yn and
yn+1, and those who reject under yn ∪ yn+1 are the union of those who reject under
yn ∪ yn+1. In other words, σ∗ operates just as σ by assuming that the outcomes in
periods n and n+ 1 came from the same period. A formal description of σ∗ is given
as follows:

r∗(h) =



{m} if h = h,

J if h = (h, 1) or (h, 0),

r(h, yn ∪ yn+1, yn+2, . . . , yt−1)
if h = (h, yn, . . . , yt−1) for some
yn, . . . , yt−1 (t ≥ n+ 2),

r(h) otherwise.

(14)

and for any i ∈ I,

x∗i (h) =



xi(h) + cimκm(h) if h = (h, 1)

xi(h) + cimλm(h) if h = (h, 0)

xi(h, yn ∪ yn+1, yn+2, . . . , yt−1)
if h = (h, yn, . . . , yt−1) for some
yn, . . . , yt−1 (t ≥ n+ 2),

xi(h) otherwise.

(15)

In what follows, we will show that σ∗ yields the same expected revenue as σ. Since σ
is an arbitrary non-sequential scheme, repeated application of this argument shows

that for any scheme σ that is not sequential, there exists a sequential scheme that

yields the same expected payoff as σ. The desired conclusion would then follow.

For simplicity, denote

Vi(si | h) = V σ
i (si | h), V ∗i (si | h) = V σ∗

i (si | h),
κi(h) = κσi (h), and λi(h) = λσi (h).

Let also wi(h) be defined by

wi(h) = ci0 +
X

j∈In−1
cijE

σ[s̃j − µj | h].

Note that

Vi(si | h) = V ∗i (si | h) = ciisi + wi(h), (16)
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and for any outcome yn ∈ Y ({m}) = {0, 1} from buyer m in period n,

V ∗i (si | h, yn) =
ciisi + wi(h) + cimκm(h) if yn = 1,

ciisi + wi(h) + cimλm(h) if yn = 0.
(17)

It hence follows from (15) that for any i ∈ J ,

z∗i (h, yn) = P
³
V ∗i (s̃i | h, yn) ≥ x∗i (h, yn)

´
= P

³
ciis̃i + wi(h) ≥ xi(h)

´
= P

³
Vi(s̃i | h) ≥ xi(h)

´
= zi(h).

(18)

It then follows from Lemma 3.1 that

V ∗i (si | h, yn, yn+1) = Vi(si | h, yn ∪ yn+1).

For any t ≥ n+2 and any sequence of outcomes yn, . . . , yt−1 in periods n, . . . , t− 1
under σ∗, we will show that a buyer’s valuation function V ∗i (· | h, yn, . . . , yt−1)
in period t induced by σ∗ is the same as the valuation function Vi(· | h, yn ∪
yn+1, yn+2, . . . , yt−1) in period t − 1 induced by σ. As an induction hypothesis,

suppose that

V ∗i (si | h, yn, . . . , yt−1) = Vi(si | h, yn ∪ yn+1, yn+2, . . . , yt−1)

for some t ≥ n+ 2. Since

x∗i (h, yn, . . . , yt−1) = xi(h, yn ∪ yn+1, yn+2, . . . , yt−1)

by definition, we have

z∗i (h, yn, . . . , yt−1) = zi(h, yn ∪ yn+1, yn+2, . . . , yt−1).

Hence, Lemma 3.1 implies that

V ∗i (si | h, yn, . . . , yt) = Vi(si | h, yn ∪ yn+1, yn+2, . . . , yt).

For any h ∈ Ht−1, let πt(h) denote the seller’s expected revenue in periods t, . . . , I
at history h when he employs the sales scheme σ. Define π∗t (h) similarly for σ∗.
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Given the equality of the valuation functions induced by the two schemes as seen

above, we have

π∗n+2(h, yn, yn+1) = πn+1(h, yn ∪ yn+1)

for any sequence of outcomes (yn, yn+1) in periods n and n + 1 under σ
∗. On the

other hand,

π∗n(h) =
X

yn∈Y ({m})

X
yn+1∈Y (J)

P σ∗(yn | h)P σ∗(yn+1 | h, yn)

·
nX
i∈An

x∗i (h) +
X

i∈An+1
x∗i (h, yn) + π∗n+2(h, yn, yn+1)

o
.

(19)

Likewise, the expected revenue in period n under σ conditional on h can be expressed

using Y ({m}) and Y (J) as:

πn(h) =
X

yn∈Y ({m})

X
yn+1∈Y (J)

P (yn | h)P (yn+1 | h)

·
nX
i∈An

xi(h) +
X

i∈An+1
xi(h) + πn+1(h, yn ∪ yn+1)

o
.

(20)

Since σ and σ∗ are identical up to and including period n − 1, we have for yn ∈
Y ({m}) = {0, 1},

P σ∗(yn | h) = P σ(yn | h). (21)

By (18), we also have for any yn+1 ∈ Y (J),

P σ∗(yn+1 | h, yn) =
Y

i∈An+1
z∗i (h, yn)

Y
i∈Bn+1

(1− z∗i (h, yn))

=
Y

i∈An+1
zi(h)

Y
i∈Bn+1

(1− zi(h))

= P σ(yn+1 | h).

(22)

Using (20), (22) and (21), and substituting the definitions of x∗i (h) and x
∗
i (h, yn),

we can rewrite (19) as:

π∗n(h) = πn(h) +
X

yn+1∈Y (J)
P σ(yn+1 | h)

·
X

i∈An+1

· X
yn∈Y ({m})

P σ(yn | h)
nX
j∈An

cijκj(h) +
X
j∈Bn

cijλj(h)
o¸
,

(23)
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where the order of the summations in the second term is reversed since their ranges

are independent of each other. Since Y ({m}) = {(∅, {m}), ({m}, ∅)}, the quantity
in the square brackets on the right-hand side of (23) equalsX

yn∈Y ({m})
P (yn | h)

nX
j∈An

cijκj(h) +
X
j∈Bn

cijλj(h)
o

= cim

n
zm(h)κm(h) + (1− zm(h))λm(h)

o
= 0.

(24)

This completes the proof of the theorem. ¥

Proof of Lemma 5.1 Define σ∗ = (r∗, x∗) as follows:

r∗(h) =


i if h = h,

j if h = (h, 0) or (h, 1),

r(h) otherwise,

x∗i (h) =

xj(h)− (cj − ci)ασ(h) if h = h,

xi(h) otherwise,

x∗j (h) =


xi(h, 0) + (cj − ci) {ασ(h) + κj(h, 0)} if h = (h, 0),

xi(h, 1) + (cj − ci) {ασ(h) + κj(h, 1)} if h = (h, 1),

xj(h) otherwise,

and x∗k(h) = xk(h) for any h ∈ H and k 6= i, j. Just as in the proof of Theorem 4.1,

for any history h ∈ H, denote
V ∗i (si | h) = V σ∗

i (si | h), and z∗i (h) = z
σ∗
i (h).

It is clear that r∗ is non-contingent after h. It can also be verified that z∗i (h) = zj(h)
since ασ(h) = ασ

∗
(h) and hence

z∗i (h) = P
³
V ∗i (s̃i | h) ≥ x∗i (h)

´
= P

³
c0 + s̃i + ciα

σ∗(h) ≥ xj(h)− (cj − ci)ασ(h)
´

= P
³
c0 + s̃i + cjα

σ(h) ≥ xj(h)
´

= P
³
Vj(s̃j | h) ≥ xj(h)

´
= zj(h).
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Since κi(h, 0) = κj(h, 0) and κi(h, 1) = κj(h, 1), it can also be verified that z
∗
j (h, 0) =

zi(h, 0) and z
∗
j (h, 1) = zi(h, 1). Lemma 3.1 then implies that for any k 6= i, j and

any sequence of outcomes (yn, yn+1) in periods n and n + 1, V
∗
k (· | h, yn, yn+1) =

Vk(· | h, yn, yn+1). It follows from this and x∗k(h) = xk(h) for any k 6= i, j and

h ∈ H that for any k 6= i, j and any sequence of outcomes (yn, . . . , yt−1) in periods
n, . . . , t− 1,

z∗k(h, yn, . . . , yt−1) = zk(h, yn, . . . , yt−1), (25)

and

V ∗k (· | h, yn, . . . , yt−1) = Vk(· | h, yn, · · · , yt−1). (26)

(25) in particular shows that σ∗ ∈ Σ0.
Now for any history h ∈ Ht−1 and t ∈ I, let πt(h) denote the seller’s ex-

pected revenue over periods t, . . . , I at history h under σ. Likewise, let π∗t (h)
denote his expected revenue over periods t, . . . , I at history h under σ∗. By (26),
π∗n+2(h, yn, yn+1) = πn+2(h, yn, yn+1) for any sequence of outcomes (yn, yn+1) in pe-

riods n and n+1. It hence follows from the definition of σ∗ and the above observation
that

π∗n(h)

= z∗i (h) x
∗
i (h)

+ z∗i (h)
h
z∗j (h, 1)

n
x∗j (h, 1) + πn+2(h, 1, 1)

o
+ (1− z∗j (h, 1))πn+2(h, 1, 0)

i
+ (1− z∗i (h))

h
z∗j (h, 0)

n
x∗j (h, 0) + πn+2(h, 0, 1)

o
+ (1− z∗j (h, 0))πn+2(h, 0, 0)

i
= πn(h) + (cj − ci)

h
ασ(h)

n
zj(h)zi(h, 1) + (1− zj(h))zi(h, 0)− zj(h)

o
+
n
zi(h, 1) zj(h)κj(h, 1) + zi(h, 0) (1− zj(h)) κj(h, 0)

oi
.

(27)

Since σ ∈ Σ0, the first quantity in the square brackets on the right-hand side of (27)
is ≥ 0. Furthermore, since zi(h, 1) ≥ zi(h, 0), the second quantity is greater than or
equal to

zi(h, 0)
n
zj(h)κj(h, 1) + (1− zj(h))κj(h, 0)

o
= 0.

We hence obtain the desired conclusion that π(σ∗) ≥ π(σ). ¥
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Proof of Theorem 5.2 Let σ ∈ Σ0 be an arbitrary scheme that is optimal within
Σ0. For any h ∈ HI−2, since U(h, 0) = U(h, 1) = {i} for some i ∈ I, we must have
r(h, 0) = r(h, 1) = i. If r(h) = j > i, then Lemma 5.1 implies that σ is weakly

dominated by an alternative scheme in σ0 which, after history h, trades with buyer

i in period I− 1 and buyer j in period I. Therefore, we conclude that there exists a
revenue maximizing scheme σ ∈ Σ0 that satisfies for any h ∈ HI−2, if U(h) = {i1, i2}
for some i1 < i2, then

r(h) = i1 and r(h, 0) = r(h, 1) = i2.

As an induction hypothesis, given t (2 ≤ t ≤ I − 1), suppose that there exists
a revenue maximizing scheme σ ∈ Σ0 that satisfies for any h ∈ HI−t, if U(h) =
{i1, . . . , it} for i1 < · · · < it, then

r(h) = i1, r(h, 0) = r(h, 1) = i2,

. . . , r(h, 0, . . . , 0| {z }
t−1

) = · · · = r(h, 1, . . . , 1| {z }
t−1

) = it. (28)

Take any h ∈ HI−t−1. Since U(h, 0) = U(h, 1) = {i1, . . . , it} for some i1 < · · · < it,
it follows from the induction hypothesis that

r(h, 0) = r(h, 0) = i1, r(h, 0, 0) = · · · = r(h, 1, 1) = i2,
. . . , r(h, 0, . . . , 0| {z }

t

) = · · · = r(h, 1, . . . , 1| {z }
t

) = it.
(29)

Hence, if r(h) = j for some j > i1, then Lemma 5.1 implies that σ is weakly

dominated by an alternative scheme in Σ0 which, after history h, trades with buyer

i1 in period t−1 and buyer j in period t. If j > i2, then the latter scheme is further
dominated by a scheme that offers buyer i2 in period t and buyer j in period t+ 1.

Repeating this argument, we can conclude that there exists a revenue maximizing

scheme σ ∈ Σ0 that satisfies for any h ∈ HI−t−1, if U(h) = {i1, . . . , it+1} for some
i1 < · · · < it+1, then

r(h) = i1, r(h, 0) = r(h, 1) = i2,

. . . , r(h, 0, . . . , 0| {z }
t

) = · · · = r(h, 1, . . . , 1| {z }
t

) = it+1.
(30)

Therefore, we have advanced the induction step and established that among the

optimal schemes within Σ0, there exists a non-contingent scheme σ ∈ Σ0 which

trades with buyer t in period t. ¥
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Proof of Theorem 6.1 Suppose for simplicity that r(t) = t for every t ∈ I. Note
that g(z) = z(1− z) for the uniform distribution. Since

∂πI
∂zI

(zI ,αI−1) = 1− 2zI + cIαI−1 + c0

is decreasing in zI , the first-order condition yields the optimal solution zI(αI−1) =
1
2(1+ c0 + cIαI−1). The envelope theorem also implies that

∂π∗I
∂αI−1

(αI−1) = cIzI(αI−1).

As an induction hypothesis, suppose now that (8) holds for i+ 1, . . . , I (i ≤ I − 1)
and that

∂π∗i+1
∂αi

(αi) =

IX
j=i+1

cjzj(αi).

The expected revenue function for periods i, . . . , I can be written as

πi(zi,αi−1) = g(zi) + ziciαi−1 + c0zi + fi+1(zi,αi−1),

where

fi+1(zi,αi−1) = zi π∗i+1
³
αi−1 + κi(zi, 1)

´
+ (1− zi) π∗i+1

³
αi−1 + κi(zi, 0)

´
It follows that

∂πi
∂zi

(zi,αi−1) = 1− 2zi + c0 + ciαi−1

+
IX

j=i+1

cj

½Z αi−1+κ(zi)

αi−1+λ(zi)
zj(αi) dαi − 1

2
zj(αi)

¾

= 1− 2zi + c0 + ciαi−1 +
IX

j=i+1

bjcj
16

(1− 2zi)

= (1− 2zi)
³
1+

IX
j=i+1

bjcj
16

´
+ c0 + ciαi−1.

(31)

Since this is decreasing in zi, the first-order condition yields the optimal solution

zi(αi−1) =
1

2

³
1+

c0 + ciαi−1
1+

PI
j=i+1 bjcj/16

´
.
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Furthermore, since each zi is an affine function,

∂fi+1
∂αi−1

(zi,αi−1) = zi
∂π∗i+1
∂αi

(αi−1 + κ(zi)) + (1− zi)
∂π∗i+1
∂αi

(αi−1 + λ(zi))

=

IX
j=i+1

cj

n
zizj(αi−1 + κ(zi)) + (1− zi)zj(αi−1 + λ(zi))

o

=
IX

j=i+1

cjzj

³
αi−1 + ziκ(zi) + (1− zi)λ(zi)

´
=
∂π∗i+1
∂αi

(αi−1).

(32)

Hence, the envelope theorem implies that

∂π∗i
∂αi−1

(αi−1) = cizi(αi−1) +
∂π∗i+1
∂αi

(αi−1) =
IX
j=i

cjzj(αi−1).

This advances the induction step and completes the proof. ¥

Proof of Lemma 6.2 Simple algebra verifies that (12) holds if and only if

³
1+

1

16

IX
k=t+2

br(k)cr(k)

´
(cr(t) − cr(t+1)) ≤

1

16
br(t+1)c

2
r(t+1). (33)

Since br(t) ≤ cr(t) ≤ 2
I−1 , we have

br(t) ≥
cr(t)

1+ 1
16

PI
k=t+1 c

2
r(k)

≥ cr(t)

1+ I−t
4(I−1)2

.

Hence, (33) holds if

³
1+

1

16

IX
k=t+2

c2r(k)

´
(cr(t) − cr(t+1)) ≤

c3r(t+1)

16
n
1+ I−t−1

4(I−1)2
o .

Denoting r(t) = i and r(t+ 1) = j, we see that the above is implied by (10). ¥

Proof of Corollary 6.5 Suppose first that αt−1 ≥ 0 and that buyer t accepts the
seller’s offer. In this case, αt = αt−1 + 1

4(1 − btαt−1) ≥ 0. Therefore, xt+1(αt) ≥
xt(αt−1) if and only if³

ct+1 − bt+1
2

´n
αt−1 +

1

4
(1− btαt−1)

o
≥
³
ct − bt

2

´
αt−1.
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Let

κ = 1− 1

2{1+ 1
16 (I − 1) ²2}

.

Since ² ≥ ct+1 ≥ ct ≥ bt ≥ ct
1+ 1

16
(I−t)²2 ≥ 2ct(1 − κ), and ct+1 ≥ bt+1, the above

inequality is implied by

ct+1
2

n
αt−1 +

1

4
(1− ²αt−1)

o
≥ κ ct+1αt−1.

Dividing both sides by ct+1 > 0, we can rewrite this as³
2κ− 1+ ²

4

´
αt−1 ≤ 1

4
.

Since κ → 1/2 as ² → 0, this inequality holds for any αt−1 ≤ t−1
2 when ² > 0 is

sufficiently small.

Suppose next that αt−1 ≤ 0 and that buyer t rejects the seller’s offer. We then
have αt = αt−1 − 1

4(1+ btαt−1) ≤ 0. Therefore, xt+1(αt) ≤ xt(αt−1) if and only if³
ct+1 − bt+1

2

´n
αt−1 − 1

4
(1+ btαt−1)

o
≤
³
ct − bt

2

´
αt−1.

By the same logic as above, this inequality is implied by

ct+1
2

n1
4
(1+ ²αt−1)− αt−1

o
≥ −κ ct+1αt−1.

We can further rewrite this as³
2κ− 1+ ²

4

´
(−αt−1) ≤ 1

4
,

which is seen to hold for any αt−1 ≥ − t−12 when ² > 0 is sufficiently small. ¥
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