~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Georganas, Sotiris; Healy, Paul J.; Weber, Roberto A.

Working Paper
On the Persistence of Strategic Sophistication

CESifo Working Paper, No. 4653

Provided in Cooperation with:
Ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Georganas, Sotiris; Healy, Paul J.; Weber, Roberto A. (2014) : On the Persistence
of Strategic Sophistication, CESifo Working Paper, No. 4653, Center for Economic Studies and ifo
Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/93430

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/93430
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

The international platform of Ludwig-Maximilians University’s Center for Economic Studies and the Ifo Institute

CESifo Working Papers

www.cesifo.org/wp

On the Persistence of Strategic Sophistication

Sotiris Georganas
Paul J. Healy
Roberto A. Weber

CESIFO WORKING PAPER NO. 4653

CATEGORY 13: BEHAVIOURAL ECONOMICS
FEBRUARY 2014

An electronic version of the paper may be downloaded

o from the SSRN website: www.SSRN.com
o from the RePEc website: www.RePEc.org
o from the CESifo website: www.CESifo-group.org/wp
CESifo

Center for Economic Studies & Ifo Institute


http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/

CESifo Working Paper No. 4653

On the Persistence of Strategic Sophistication

Abstract

We examine whether the ‘Level-k’ model of strategic behavior generates reliable cross-game
predictions within an individual. We find no correlation in subjects’ estimated levels of
reasoning across two families of games. Furthermore, estimating a higher level for Ann than
Bob in one family of games does not predict their ranking in the other. Direct tests of strategic
reasoning generally do not predict estimated levels. Within families of games, we find that
levels are fairly consistent within one family, but not the other. Our results suggest that the
use of Level-k reasoning varies by game, making prediction difficult.
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| INTRODUCTION

Following a considerable literature demonstrating déesest from Nash equilibrium play (see,
for example, Camerer, 2003), behavioral research has stugtodel the processes determin-
ing individual play and aggregate behavior in experimegéahes. One widely-used approach
for modeling behavioral deviations from Nash equilibriumone-shot games involves the use
of heterogeneous types, based on varying levels of stcaseghistication [Nagel, 1993, Stahl
and Wilson, 1994, Costa-Gomes et al., 2001, Camerer e08l4]2 In this framework—often
referred to as.evel-k or Cognitive Hierarchy—players’ strategic sophistication is represented
by the number of iterations of best response they perforrelgcsing an action.

In the simplest version of these models, Level-0 types ramz® uniformly over all actions
and, for allk > 0, the Levelk type plays a best response to the actions of Lékel-1). Thus,
the model suggests that a subject’s level is a measure ofragegc sophistication—or, more
precisely, her belief about her opponents’ strategic stiaition. The application of such
models to data from one-shot play in experiments has yietgedral instances in which the
model accurately describes the aggregate distributioastain choices. We provide a review
of this literature in the next section.

The value of the Levek framework as gost hoc descriptive model of the aggregate dis-
tribution of actions in laboratory games has been widelyudoented. There is also evidence
that the overall distribution of levels may posses someilgtahcross games (e.g., Camerer
et al., 2004), meaning that one might be able to predict thildution of actions in a novel
game based on the distributions in other games.

However, an open question remains regarding whether Lewgbes correspond to some
meaningful individual characteristic that one might lakel'strategic sophistication.” That is,
does a particular individual’s estimated level correspinal persistent trait that can be used to
predict play across games? If levels are indicative of efjiatsophistication, and if strategic
sophistication is an invariant characteristic of a persoen there should exist reliable cross-
game patterns in players’ observed levels. Estimateddemabne game could then be used
to predict players’ behavior in novel games. Moreovernestes of a player’s level could be
improved by using direct psychometric measures that aigelith strategic sophistication.

An alternative approach involves modeling deviations fidash equilibrium as noise (or unobservable utility
shocks) in players’ best response. For an example, see tAet&@)UiResponse Equilibrium model proposed by
McKelvey and Palfrey [1995]. Rogers et al. [2009] bridges Quantal Response approach with the “Level-
k" approach studied here. Other directions in behavioralg#mory include the study of dynamics following

initial play [see Crawford, 1995, Erev and Roth, 1998, Canand Ho, 1998, for example] or other-regarding
preferences [Fehr and Schmidt, 1999, e.qg.].
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On the other hand, if players’ levels appear to be randontigrdened from game to game,
then one of two negative conclusions must be reached: Hithrative best response is not an
accurate description of players’ reasoning, or the modat@irate but players’ levels vary
from game to game in a manner that is difficult to predict. Ilthes case, knowledge of a
player’s level in one game provides neither informationwhibeir play in another game, nor
a useful measure of that person’s strategic sophisticatigeneraf

In this paper we test for persistence of individuals’ sgatesophistication across games.
We begin by identifying several plausible, testable restns on cross-game behavior in the
Level-k£ framework. For example, the most stringent testable o#&tn is that players’ levels
are constant across all games. A weaker restriction regjoimey that players’ relative levels
be invariant, so that a ranking of players based on theitldeeenains constant across games,
even if their absolute levels do not.

We then conduct a laboratory experiment in which subjeetg péveral games drawn from
two distinct families of games. The first family of games detssof four novel matrix games
developed for this study, which we refer to as ‘undercuttiagnes’. The second family is a
set of two-person guessing games studied by Costa-GomeSrandord [2006] (henceforth
CGCo06)?

Within each family of games, we identify an individual’s &\Jn a Level% framework,
following a standard approach for classifying individuahlavior based on the observation of
play in several games. We then test whether these obsenveld Eatisfy any of the cross-
game restrictions we have identified. To complement thityaisa we also attempt to identify
individual levels separately for each game, and use thassifications to conduct cross-game
comparisons within each family of games.

We also consider two additional ways in which strategic ssttation might be detectable.
First, we elicit several direct measures of strategic ligighce using brief quizzes that are
known to identify strategic reasoning ability or generaélligence. We explore the relation-
ship between such measures and subjects’ levels identrbed their behavior. Second, we
have subjects play each game against three different oppsre subject randomly selected
from the population in the session, the opponent who scoigdtekt on the strategic intelli-
gence measures discussed above, and the opponent who kEweestt Thus, we are able to

2We do not suggest that levels must be constant across gantbe fimodel to have predictive power. Camerer
et al. [2004] and Chong et al. [2005], for example, suggestldvelswill change in certain situations. Predictive

power simply requires that situational changes be preudeta

3A two-person guessing game is different from the two-petseauty contest studied by Grosskopf and Nagel
[2008]; the latter has a (weak) dominant strategy while trener does not.
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detect whether sophisticated types vary their behaviaedas the expected sophistication of
their opponent.

The degree of persistence in strategic sophisticationetimatrges from our data is mixed.
The key results are summarized as follows:

(1) Theaggregate distribution of levels is similar to that found in previousidies for both
families of games.

(2) Individual levels show little persistence between tlie families of games. Moreover,
the relative ordering of players is also unstable betweerwo game families.

(3) The quizzes generally fail to predict players’ level®ither family of games, though
Level-1 play is weakly correlated with a test for autism aondmpshort-term memory.

(4) Looking within families of games, the aggregate disttibn of levels is remarkably
stable across undercutting games, but quite unstablest@vogperson guessing games.
Individual levels and relative ordering are moderatelysggent within the family of
undercutting games, but have no persistence within thdyarhguessing games.

(5) Some players adjust strategies against stronger opprimit neither quiz scores nor
levels predict which subjects make this adjustment.

Our interpretation of these results is that the congrueeteden Levelk models and sub-
jects’ actual decision processes depends on the conteytelBIconfronted with a novel game
may have many alternative processes for determining wreegly to select, and different en-
vironments trigger the use of different decision proceésksvel- reasoning might be one
process that is triggered in some contexts (undercuttimgega but not in others (guessing
games). Of course, if Levdl-reasoning is employed in some games, it is critical for the
theory’s predictive ability to be able to identify what facs trigger its use.

Additional insight into robustness comes from comparingguessing game data with that
of CGCO6. In their data the Levél-model receives stronger support—especially when con-
sidering subjects’ ‘lookup’ behavior—, though we also fimdbstantial cross-game instability
in their data as weft. We believe this difference in model accuracy stems fronr theé of
lengthier instructions about the games, and from their fiset@st to confirm subjects’ under-
standing of the best-response calculus before proceettirgpossible that these two design
features trigger the use of Levklreasoning in some fraction of the subjects. In contrast, our
experiment may not be not have triggered Lelvéhinking as frequently because our subjects
receive shorter instructions and no best-response uadeiag test.

“This interpretation is similar to the idea of a “toolbox” adnious decision making approaches or heuristics, that
are employed varyingly depending on the context [Gigerer2f91].

S0ur data are comparable to the CGCO06 ‘Baseline’ and ‘Opexi-Beatments. See the online appendix for this
and other comparisons with CGCO06.
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Il LITERATURE REVIEW

The notion of heterogeneous strategic sophisticationatiogy through limited iterations of
best response dates back at least to the ‘beauty contesisdisn of Keynes [1936]. Motivated
by this, Nagel [1993, 1995], Ho et al. [1998], and others gtuehavior in laboratory-beauty
contest games, in which all players submit a numbéb,ih00] and the closest guessjdimes
the average wins a prize. The observed distributions ofgpseshow clear spikes consistent
with Level-1 and Level-2 play. This finding is robust to theusture of the game [Duffy and
Nagel, 1997] and varied populations [Bosch-Doménech.g2@02]°

Stahl and Wilson [1994] study Levélbehavior in ten %3 matrix gameg. They find that
roughly 25 percent of players are Level-1, 50 percent arek2yvand 25 percent are Nash
equilibrium players. Level-0 play is virtually non-existe Stahl and Wilson [1995] exam-
ine play in twelve normal-form games played without feedbhaciding Worldly and Rational
Expectations types. In both studies, many subjects fit gtyanto one type, with posterior
probabilities of their maximum likelihood type exceedin@@. Stahl and Wilson [1995] also
provide a test of individual cross-game stability: Theyeseh subset of nine games, estimate
individuals’ types from these games, calculate the predicthoice probabilities for the re-
maining three games for each type, and then estimate therfpogtrobability that a subject
has a particular type. They classify as “stable” those sbjer whom the posterior probabil-
ity of having the same type is at least 15 percent. Using gi&ively low threshold, they find
that 35 of 48 subjects are stable. In contrast, we estimal@yans type independently in two
sets of games, and directly compare whether the two estintygpes are identicél.

Costa-Gomes et al. [2001] fit a Levelmodel, with 9 possible types, to behavior in 18
matrix games. In their experiment, payoffs in the gamesratially hidden to subjects, so that
estimation of a player’s level based on strategy choice eaaugmented by analyzing which
pieces of information subjects choose to view before makidgcision. The model fits well,
and they generally find higher levels in simpler games.

Camerer et al. [2004] introduce tl@ognitive Hierarchy variation of the Levek model,
in which players best respond to the distribution of levelstated below their own level.

Swhen the game is made into a global game in which players aceralvarded for guessing an unknown state
[Morris and Shin, 2002], however, the Leveimodel fits poorly when the state-guessing incentive is ersiphd
[Shapiro et al., 2009].

’In their model Level-0 players are assumed to randomly ahebsitegies, Level-1 players best respond to
Level-0, and Level-2 players best respond to a Level-1legsatvith noise added. This works similarly to best
responding to a mixture of Level-0 and Level-1.

8Burchardi and Penczynski [2011] and Penczynski [2011] fivat players’ estimated levels are altered after
communicating with others. Although this represents ontoonmf type instability, it is unlikely that it stems
from true randomness in players’ types.
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Thus, a Levelk player believes all other players are Level-0 through Lével 1 and his
belief about the relative frequencies of those levels isigte. Using a Poisson distribution of
levels reduces the model to a single paramet@fter defining the Level-0 distribution) that
describes the mean level in the population. They estimaalistribution for a wide range of
games. Ip-beauty contests, for example, they estimate higher meaislen more educated
populations, in simpler games, and when subjects are askedbeliefs about opponents’ play.
They also show that the model suffers relatively little loskkelihood scores when restricting
7 to be constant across games, indicating a fair amount o$-ggame stability in the aggregate
distribution of levels; however, they do not explore indival-level cross game stability.

In Costa-Gomes and Crawford [2006] (CGCO06), players pp#te in 16 two-person guess-
ing games in which a player and her opponent are each assignietérvala;, b;] and a ‘target’

p; € {0.5,0.7,1.3,1.5}. Players’ payoffs decrease in the distance between theigoess and
p; times their opponent’s guess. As in Costa-Gomes et al. [0®dkup behavior is used to
strengthen type estimation. Again the results support theel: model: A reasonably large
percentage of players play exactly the strategy predicyenhie of the Levek types. Six of
the ten games we study in this paper are two-person guesaingsy we compare our findings
to CGCO6 in the analysis below. Chen et al. [2009] study sintiwo-person games on a two-
dimensional grid. They use eye-tracking technology to aamjrthe type estimation based on
behavior alone. They find distributions of types that are aehat more uniform than in past
studies. When subjects’ data are randomly re-sampled tergennew bootstrapped samples,
however, only 8 of 17 subjects receive the same classifitatiat least 95% of the boot-
strapped samples as they did in the original sample. Thigesig that roughly half of the
subjects are not strongly consistent with any one levelsactivese games.

Arad and Rubinstein [2012] introduce the 11-20 money refggasie, which is similar to
our undercutting game in that it is a simple game designeddgdr Level% behavior while
allowing a clean separation of levels. Although they areexglicitly testing for cross-game
stability, they do find that subjects behave differentlyoasrvariations of the game that do not
change the equilibrium or Levélpredictions. De Sousa et al. [2012] identify non-strategic
players by observing play in 10 beauty contests, and findtheste subjects are more likely
to play non-strategically in the 11-20 money request gamwedks Batzilis et al. [2013] fit
a Level& model to a very large number of rock-paper-scissors (‘Rodhéi’) games among
Facebook users. They find that aggregate play frequencigshghtly from the equilibrium
prediction, and that most players’ strategies are not stersly aligned with any single level.

Relatively few authors test whether estimated levels tateavith personal traits such as
intelligence. Camerer et al. [2004] find higher averagelfeue subject pools with greater
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academic training, such as Caltech undergraduates andthaorésts. Burnham et al. [2009]
show that individuals’ choices injabeauty contest game correlate with scores on a 20-minute
test of cognitive ability. Gill and Prowse [2013] also find ar@lation between cognitive
ability and levels in g-beauty contest, and show that higher-ability players aoeentikely
to converge toward equilibrium over time and earn highenpayts. Chong et al. [2005] find
that cognitive effort matters along with intelligence. VHet their subjects play 22 mixed-
equilibrium matrix games in a fixed order and report a positigrrelation between thinking
time and levels. Furthermore, average levels are higheameg 12-22 than in games 1—
11, indicating a learning-by-doing increase in sophisigcaover time® On the other hand
De Sousa et al. [2012] do not find a correlation between thedflking (a measure of a chess
player’s quality) and the likelihood of playing stratedlga

The Level# model has also been applied successfully to a variety of gdmmes, including
‘hide-and-seek’ games [Crawford and Iriberri, 2007b] amplete-information betting games
[Brocas et al., 2009], betting games and matrix games [Rogkeal., 2009], coordinated at-
tack games [Kneeland, 2012], sender-receiver games augdwith eye-tracking data [Wang
et al., 2009], and cheap-talk games [Kawagoe and Takiza®@8]2 In the field, Levek has
been shown to fit behavior in Swedish lowest-unique-pasiinteger lottery games [Ostling
et al., 2011] and to explain the fact that movies that wereralgtased to critics before their
public opening earn higher revenues [Brown et al., 2012]uicfional MRI study even sug-
gests differences in brain activity between subjects whuohgixvarying degrees of ‘strategic
sophistication’ [Bhatt and Camerer, 2005]. Finally, a feseant papers apply the Level-
concept to study departures from Nash equilibrium play ictians, finding that the Levet-
approach often, though not always, yields a significantlyelbdit than the Nash equilibrium
[Crawford and Iriberri, 2007a, Georganas, 2011]. Howelanov et al. [2010] show that
models with misguided beliefs (such as Le¥g¢leannot explain the winners curse in common
value auctions, because subjects who play against theipastractions still exhibit substantial
overbidding.

For a more comprehensive survey of studies on the Leveldel, see Crawford et al.
[2013].

%Ina personal communication, Camerer reported that a reigresf individuals’ average second-half level on
their first-half level yields arR? value of 0.37, indicating reasonable predictive power @sthgames despite the
learning-by-doing effect. Our experiment reduces thedieace of learning-by-doing effects by allowing subjects
to revise any of their past decisions after making choicedliten games.
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[l A FORMULATION OF LEVEL-kK MODELS

The usual applications of the Levelmodel generally treat it as @ post descriptive model.
As such, prior analyses typically omit cross-game or cindgAddual testable restrictions, or
test only how the aggregate distribution of types varieesggames or populations [Camerer
et al., 2004, e.g.]. In this section we introduce a formainfesvork in which such testable
restrictions can be defined clearly. Our experiment them@xeas several possible cross-game
testable restrictions to see which have empirical merit.

Specifically, we build a simple type-space model for twoyplagames where an agent’s type
describes hecapacity for iterated best-response reasoning and her realexet of iterated
best-response reasoning. Under Harsanyi’'s (1967) irgejon, types would also describe
beliefs about opponents’ types, second-order beliefstadqmponents’ beliefs, and all higher-
order beliefs. Following the Levéliterature, however, we make the simplifying assumption
that a player’s level is a sufficient statistic for her enltirerarchy of beliefs, and that all players
believe all others to have strictly lower levels than thelves!®

In our experiment, subjects play several two-person gatetsy = ({i,;}, .S, u) represent
a typical two-person game with playersind j, strategy sets' = S; x S;, and payoffsy; :

S — R andu; : S — R. The set of all such two-player gamedisWhen players use mixed
strategiesr; € A(S;) we abuse notation slightly and let(o;, 0;) andu;(o;, 0;) represent
their expected payoffs. In some cases players receivelsighaut the type of their opponent;
we denote the signalreceives byr; € T, and letr® € T represent the uninformative ‘null’
signal.

Playeri’s type is given by, = (¢;, k;) wherec; : T' — Ny := {0,1,2,...} identifies:’s
capacity for each game € I, andk; : I' x T — Ny identifiesi’s level for each game € I’
and signal; € T. The capacity bounds the level, d~, ;) < c;(v) for all 4, v, and7;.*
Let © be the space of all possible types. Note thaloes not vary inr; since the capacity
represents a player’s underlying ability to ‘solve’ a pautar game, regardless of the type of

Oor example, Costa-Gomes et al. [2001], Costa-Gomes angf@h[2006], Crawford and Iriberri [2007a],
and Crawford and Iriberri [2007b] assume that all playerthailevel oft: > 0 believe all other players’ level to
be k — 1 with probability one. Camerer et al. [2004], on the otherdyassume that all players with a level of
k > 0 believe the realized levels of his opponents to follow a¢atad Poisson distribution ovéd, 1,. .., k—1}.
Whatever the assumption on first-order beliefs, all highreler beliefs are then assumed to be consistent with this
assumptionibelievesj believes his opponent’s levels follow this distributiehcetera). Strzalecki [2009] builds

a similar—though more general—type-space model that epasaes all Level-models. It does not explicitly
allow for levels to vary by game or for agents to update theligtis upon observing signals, though both features
could easily be incorporated.

UTechnically, the inclusion of capacities is extraneouslayer's type could simply be defined &s: I' x T —

Ny and then a capacity would then be derived by settitg) = sup; ki (v, ;) for eachy. We include capacities

in the model to emphasize that agents’ upper bounds omay vary invy.
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her opponent. The realized levelmay vary in7;, however, because the realized level stems
directly from:’s belief about her opponent’s strategy.

Beliefs are fixed by the model. Each play®&rpre-defined first-order beliefs are given by a
mappingv : Ny — A(Np) such that/(k;)({0,1,...,k; —1}) = 1 for all k; € Ny.*? For exam-
ple, in Camerer et al. [2004)\ > 0 is a free parameter andk)(l) = (\'/1!)/ E’;;(l]()\“/m!)
if | < kandv(k)(l) = 0 otherwise. The functiow is common knowledge and therefore is
not included in the description @§. Thus, thek; component of a player’s type completely
identifies her beliefs sinceis a function only ofk;; this is a common implicit assumption in
the literature.

Behavior in a Levelk model is defined inductively. The Level-0 strategy for ealdyeri
in ~ is given exogenously a8’ € A(S;). If k;(v,7;) = 0 then playeri playsc?. For each
level k > 0 the Levelk strategyo? € A(S;) for playeri with k;(+, ;) = k is a best response
to beliefsv(k), given that each level < k of player; playsUf.13 Formally, for eacht > 0,
the strategy” is such that for alk, € S;,

k—1 -1

S ik, o) vk) () > 3 uish, o) vlk) ().

~k=0

N

X
i
o

Finally, we define a ‘Nash’ type, denoted by= N, whose beliefs are(N)(N) = 1. The
profile ¢V is then the best response to the other player’s Nash-tyategyo—jv.l“

When ! is degenerate (the Levélstrategy is a unique pure strategy) we détbe the
strategy such that?(s¥) = 1.

To see how this construction operates, fix a ganand signalr;. If playeri’s type in this
situation is(c;, k;) = (0,0) then she plays?. If i's capacity is one then her type is either
(1,0) or (1,1). In the former case she play$; in the latter case her beliefs arél), which
hasv(1)(0) = 1, and so she plays!. If i's type is(2, 2) then she has beliefg2), which puts
pre-defined probabilities on her opponent being Level-0lamekl-1. In this case she plays
o2. For any(c;, k;) playeri’s beliefs arev(k;) and her best response to those beliefs’is

PThe simple interpretation of this assumption is that eaelyg believes they are more ‘sophisticated’ than all
of their opponents. An alternative interpretation is thialyprs are aware that they may be less sophisticated
than some of their opponents, but they have no model of howe mophisticated players choose strategies.
More sophisticated players are then treated as though tiedyexel-0 players. This second interpretation does
suggest that(k;)(0) should be positive for alt;, which is inconsistent with the commonly-used assumptiat t

i there are multiple pure-strategy best responsesadtieran be any distribution over those best responses, and
that distribution is assumed to be known by all higher levels

Yps is standard, we assunvék)(N) = 0 for all k # N. If multiple Nash equilibria exist then multiple Nash
types could be defined, but all of our games have a unique Nashbgium.
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Note that beliefs depend only @n, so player type$4, 2), (3,2), and(2, 2) all have the same
hierarchy of beliefs, for example.

Onceo? andv are defined, the only testable prediction of this model is ih@ach game
and for each signal all players must select a strategy frensét{c?, o}, 02, .. . JU{o¥}. 2 In
many applications, the researcher assumes that eachilplasc? with noise (usually with
a logistic distribution) and then assigns each subjectddetel that maximizes the likelihood
of their data across all games played.

As specified, a player’s levél(~, ;) can be any arbitrary function efandr;. If no struc-
ture is imposed on thg; function then the model is incapable of cross-game or csagsal
predictions; knowing that player plays Level-2 in one game doesn’t provide information
abouti’s level in another game. Our goal is to consider a set of mdse cross-game or
cross-signal testable restrictions bnand explore which (if any) receive empirical support.
Understanding which restrictions @napply will then lead to an understanding of the out-of-
sample predictions that can be made through this model. #ésiictions ork; can be found
then no out-of-sample predictions can be made for an indalid

Examples of possible restrictions énthat one can test using experiments are:

(1) Constant: k;(vy, ;) = ki(+/, /) forall 4, v, v/, 7;, andr;.

(2) Constant Across Games: k;(vy, ;) = ki(y', ;) for all i, v, v/, andr;.

(3) Constant Ordering: If k;(v,7) > k;(v, 7) for somey andr thenk; (v, 7') > k; (v, 7’)
for all v and7’.

(4) Responsivenessto Signals: For everyy andi there is some andr’ such that; (v, 7) >
ki(y, ).

(5) Consistent Ordering of Games: For anyr, if k;(v,7) > k;(+/, ) for somei, v and
7', thenk; (v, ) > k;(+/,7) forall 5.

The first restriction represents a very strict interpretatf the Levelk model in which each
person’s level never varies, regardless of the difficultthefgame or the information received.
The second restriction weakens the first by allowing playsefs to respond to information,
but to otherwise keep levels constant across games.

Instead of forcing absolute levels to be constant, the tieistriction requires only that play-
ers’ relative levels be fixed. Thus, if Anne plays a (weakligher level than Bob in one game
when they have identical information, then Anne should pl@yeakly) higher level than Bob

19t 50 is not restricted then there are no testable predictiotts)der® equal the empirical distribution of strate-
gies provides a perfect fit.
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in all games where they have identical information. Celyatinis would be violated with dif-
fering degrees of game-specific experience; recall, howévat the Levelt model applies
only to the first-time play of novel gamé$.

The fourth restriction requires that there exist a pair ghals in each game over which a
player’s level will differ. Thus, a minimal amount of resgveness to information, for at least
some players, is assumed.

The last restriction listed implies that the observed lewaln be used to order the games in
I'. If, at some fixed signal, all players play a lower levehirthan in+ then it can be inferred
that~’ is a more difficult or complex game. This enables future dtgaonmple predictions,
since a player who subsequently plays Level-2 tan be expected to play a lower levehin

It is certainly easy to imagine plausible functignghat violate each of these restrictions, or
that violate any other restriction we may consider. But easfriction that is violated means
the loss of a testable implication for the model. If the maspeically accurate version of the
Level-£ model requireg; functions that satisfy no cross-game or cross-signalicéisins, then
the model cannot be used to make out-of-sample predictiomstandividual behavior. Thus,
the predictive power of the model hinges on the presencernésdentifiable restrictions.

IV THE GAMES

We study two families of games: a novel family of games thatuseful for identifying player
types—which we call undercutting games (UG)—and the twes@eguessing games (2PGG)
studied by Costa-Gomes and Crawford [2006].

Undercutting Games

An undercutting game is a symmetric, two-player game patenized by two positive integers

m andn with m < n. Each playei € {1, 2} picks a positive integet; € {1,2,...,m,...,n}.
Playeri wins $10 from player; if eithers; = m < s; ors; +1 = s; < m. Thus, if playeri
expects her opponent to choase> m, then she best responds by choosing m; otherwise

she best responds by ‘undercutting’ her opponent and ahgsesi= s; — 1. If no player ‘wins’
then one of the following situations apply: If both choose @the unique Nash equilibrium
choice) then both earn a payoff of one. If both choadben both losd 1. If i chooses one
and; chooses: theni losesl1 andj earns nothing. In all other cases both players earn zero.

16Cross-game learning may still generate violates of thisioti®n; a chess master may play to a higher level
than a professional soccer player in checkers, but to a l@vetin an asymmetric matching pennies game. For
this reason the boundaries of applicability of the Levehodel are sometimes ambiguous.
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1 3 4 5 6 7
1 1 10 0 0 0 0 -11
1 -10 0 0 0 0 0
2 -10 0 10 0 0 0 0
10 0 -10 0 0 0 0
3 0 -10 0 10 0 0 0
0 10 0 -10 0 0 0
4 0 0 -10 0 10 10 10
0 0 10 0 -10 -10 -10
5 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
6 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
7 0 0 0 -10 0 0 -11
-11 0 0 10 0 0 -11

1 3 4 5 6 7 8 9
1 1 10 0 0 0 0 0 0 11
1 10 0 0 0 0 0 0 0
2 10 0 10 0 0 0 0 0 0
10 0 10 0 0 0 0 0 0
3 0 10 0 10 0 0 0 0 0
0 10 0 -10 0 0 0 0 0
4 10 0 -10 0 10 10 10 10 10
0 0 10 0 -10 -10 10 10 10
5 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
6 |0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
7 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
8 0 0 0 -10 0 0 0 0 0
0 0 0 10 0 0 0 0 0
9 0 0 0 -10 0 0 0 0 11
11 0 0 10 0 0 0 0 11

1 2 3 4 5 6 7 8 9

1 1 10 0 0 0 0 0 0 11

1 10 0 0 0 0 0 0 0
2 10 0 10 0 0 0 0 0 0

10 0 10 0 0 0 0 0 0
3 0 10 0 10 0 0 0 0 0

0 10 0 -10 0 0 0 0 0
4 10 0 10 0 10 0 0 0 0

0 0 10 0 -10 0 0 0 0
5 0 0 0 10 0 10 0 0 0

0 0 0 10 0 10 0 0 0
6 10 0 0 0 -10 0 10 10 10

0 0 0 0 10 0 10 10 10
7 10 0 0 0 0 -10 0 0 0

0 0 0 0 0 10 0 0 0
8 10 0 0 0 0 10 0 0 0

0 0 0 0 0 10 0 0 0
9 10 0 0 0 0 10 0 0 11

11 0 0 0 0 10 0 0 11

FIGURE Ill. Undercutting game 3 (UG3).

The cases where a player loses 11 are designed to rule outigeg-strategy Nash equilibria,
making(1, 1) the unique Nash equilibrium of the game.
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1 2 3 4 5 6 7
1 1 10 0 0 0 0 -11
1 -10 0 0 0 0 0
2 -10 0 10 0 0 0 0
10 0 -10 0 0 0 0
3 0 10 0 10 0 0 0
0 10 0 -10 0 0 0
4 0 0 10 0 30 10 10
0 0 10 0 -30 10 10
5 0 0 0 -30 0 0 0
0 0 0 30 0 0 0
6 0 0 0 -10 0 0 0
0 0 0 10 0 0 0
7 0 0 0 -10 0 0 11
-11 0 0 10 0 0 -11

FIGURE IV. Undercutting game 4 (UG4).

The payoff matrices of the undercutting games used in thpsment are shown in Figures
[-IV. Consider UG1, shown in Figure I. A levels-of-reasapimodel that assumes uniformly
random play by Level-0 types will predict that Level-1 tyg#ay s' = 4 as it maximizes the
sum of row payoffs, Level-2 types play = 3, Level-3 types play® = 2, and all higher levels
play the equilibrium strategy of¥ = 1. This enables a unique identification of a player’s level
(up to Level-4) from a single observation of their strategy.

The game in Figure 1V, UG4, departs from UG2 only in that thdeeninated actions have
been 'compressed’ into one (which is now itself also donaddty another dominated action).
Since dominated actions are never predicted for types ab®xa-0, this modification should
have little impact on the distribution of types.

This family of games was designed explicitly for testingltleeel-k model. Its undercutting
structure is intended to focus players’ attention on thatstyies of their opponents, encour-
aging Levelk-type thinking. The strategy space is relatively smalljkenp-beauty contest
games, but the only strategy that confounds multiple leiagteer than the Level-0 type, which
may randomize over many strategies) is the Nash equilibsuiategy since all levels greater
thanm are predicted to play this action. There are no other NasHiledga in pure or mixed
strategies. Moreover, variations in the Levedtrategy simply shift all levels uniformly; dif-
ferent Leveld models may assign different levels to different playerg,vall not alter the
relative ordering of players’ levels.

Two-Person Guessing Games

Two-person guessing games are asymmetric, two-player g@a@ameterized by a lower
bounda; > 0, upper bound; > a;, and targep; > 0 for each player. Strategies are given by
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- The 1“

>

(O jealous [ panicked [Jarrogant [ hateful

(0 aghast [ fantasizing [Jimpatient [ alarmed

FIGURE V. Sample questions from the Eye Gaze test.

s; € |a;, b;] and playeti is paid according to how far her choice is frgptimess;, denoted by
e; = |s; — pisjl.

Each playeli’s payment is a quasiconcave functionepthat is maximized at zero. Specif-
ically, players receivd5 — (11/200)e; dollars if e; < 200, 5 — (1/200)e; dollars if e; €
(200, 1000], and zero ife; > 1000. The unique best response is to set= 0 by choosing
s; = p;s;. If p;s; lands outside of’s strategy space then the nearest endpoint of the strategy
space is the best response. In a levels-of-reasoning moeled|-0 may be assumed to ran-
domize uniformly ovefa;, b;] or to play the midpoint ofa;, b;] with certainty. In either case
Level-1 types will plays! = p;(a; + b;)/2; if this is not attainable then the Level-1 player will
select the nearest endpoint of her interval. A Level-2 tyjieplay s? = pisjl- (or the nearest
endpoint), and so on. This iterative reasoning convergas\tash equilibrium with one player
playing on the boundary of her interval and the other begpording to that boundary strategy
[see Costa-Gomes and Crawford, 2006].

V EXPERIMENTAL DESIGN

In total, 116 undergraduate students from Ohio State Usiiyeparticipated as subjects in
these experiments. After reading through the experimestituntions, each subject completed
five tasks, intended to measure general cognitive abilitystrategic reasoning:

(1) anIQ test,
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(2) the Eye Gaze test for adult autism,

(3) the Wechsler digit span working memory test,
(4) the Cognitive Reflection Test (CRT), and

(5) the one-player Takeover game.

Each of these quizzes represents a previously-used medgiereral intelligence or strate-
gic sophistication. The IQ test consists of ten questiokesrtdrom the Mensa society’s ‘work-
out’ exam?’ Similar tests of cognitive ability have been shown to catehwith higher levels
of reasoning om-beauty contests [Burnham et al., 2009].

The Eye Gaze test [Baron-Cohen et al., 1997] asks subjealentify the emotions being
expressed by a pair of eyes in a photograph. See Figure V foplsgproblems. Poor per-
formance on this task is diagnostic of high-functioningladutism or Asperger’'s Syndrome
[Baron-Cohen et al., 1997] and strong performance is catedlwith the ability to determine
whether or not price movements in a market are affected bgdetrwith inside information
[Bruguier et al., 2010].

The Wechsler digit span memory test tests subjects’ aslitd recall strings of digits of
increasing length; this task has been used as one measuuenahhntelligence [Wechsler,
1958]. Devetag and Warglien [2003] had 67 subjects takesimist-term memory test and
then play three games against a computerized opponentlivatsaselected the equilibrium
strategy. The three games all required iterated reasonsw e the equilibrium best response.
They found a positive and significant correlation betwedsjexis’ memory test score and the
frequency with which they selected the best respdfise.

The CRT contains three questions for which the ininitialiitive response is often wrong.
Performance on the test is correlated with measured tinferpreces, risk taking in gains, risk
aversion in losses, and other IQ measures [Frederick, 200% measure also correlates with
a tendency to play default strategies in public goods gadlésmfnn and Falk, 2009].

Finally, the one-player Takeover game is a single-playeeesi selection problem in which
the subject is asked to make an offer to buy a company knoviagthe seller will only sell
if the company’s value is less than the offer. Given the patans of the problem, all positive
offers are unprofitable in expectation, yet many subjedtvi@im to the ‘winner’s curse’ by
submitting positive offers [Samuelson and Bazerman, 198&)n after receiving feedback and
gaining experience [Ball et al., 1991].

17see http://ww.mensa.org/workout2.php

18Camerer et al. [2004] use this observation as a plausibliigasion for their assumption that the the relative
frequencies of two consecutive levélandk — 1 (f(k)/f(k — 1)) is declining ink, which then motivates their
restriction to Poisson distributions of levels.
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Game Player's Opponent’s
ID Game Type Limits & Target | Limits & Target

UG1 | Undercutting Game See Figure |

UG2 | Undercutting Game See Figure I

UG3 | Undercutting Game See Figure Il

UG4 | Undercutting Game See Figure IV

GG5 | Guessing Game | ([215,815],1.4) | ([0,650],0.9)
GG6 | Guessing Game | ([100, 500],0.7) | ([300,900], 1 3)
GG7 | Guessing Game | ([100,500],0.5) | (] ],1.3)
GG8 | Guessing Game| ([0,650],0.9) ([215 815],1.4)
GGY9 | Guessing Game | ([300,900],1.3) | ([100,500],0.7)
GG10| Guessing Game | ([100,900],1.3) | ([100,500],0.5)
TABLE |. The ten games used in the experiment.

We normalized each of the quiz scores to a scale of ten pegsiimts. For scoring purposes
during the experiment, we combined the CRT and Takeover gaimene four-question, ten-
point quiz, with answers coded using a binary, correct ootirect, classification. For the
Takeover game, subjects received a positive score if andibtileir bid was exactly zero—
the unique profit-maximizing bitf. The sum of the four quiz scores was calculated for each
player. Players were given no feedback about any playesslate or relative performance on
the quizzes until the end of the experiment, at which poiaytlearned only their own total
quiz score.

After completing the quizzes, the subjects played ten gagamst varying opponents. The
first four games are undercutting games and the last six @esgwg games. The parameters of
each game are given in Table | and Figures I-1V. The final tgressing games are identical
to the first three, with the players’ roles reversed. As int&@3omes and Crawford [2006],
this allows players to play both roles and also allows subjeecisions in GG5, for example,
to be matched with another subject’s player-1 decision irf8@&letermine payoffs.

In each game subjects were asked to choose a strategy agaamstom opponent, against
the opponent (other than themselves) with the highest satale on all of the quizzes, and
against the opponent (other than themselves) with the kseese on the quizzes. All choices
were made without feedback. After making these three cBaiceall ten games, players
learned that they could ‘loop back’ through the games toseetheir choices if desired. This

¥n the data analysis below we disaggregate the CRT and Tekgmme quizzes and treat them separately.
The rationale for combining them in the experiment was tow@néa single question (the Takeover quiz) from
having an excessively disproportionate weight. Also, inanalysis we use a score for the Takeover game that
is linearly decreasing in a subject’s bid. Specifically, bjeat who submitted a bid df; was scored as earning
10(1 — b;/ max; b;) points in our analysis.
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couldn be done up to four times, for a total of five iteratidm®tigh the ten games, all without
feedback.

Once subjects finished all five iterations—or declined theootunity to loop back—their
play was recorded, four of their choices were randomly sete@wo from the undercutting
games and two from the guessing games), and they were matithezhother player and paid
for their decisions. Subjects earning less thérfthe standard show-up fee) were péitfor
their time. Subjects earned an averag82i.85 overall.

VI DATA ANALYSIS PROCEDURES

Each subject played ten games, each against three diffepgainents, for a total of thirty
game-play observations per subject. We employed threalsigh = {7-°, 7%, 7111) indicat-
ing whether the opponent had the lowest quiz score, was nalydszlected, or had the highest
quiz score. Following CGCO06 (and others), we focus on the edeerev(k)(k — 1) = 1 for
all k > 0 ando? is uniform overS;. We chose games so that the estimated levels (or, at least,
players’ relative rankings of levels) are fairly robust be$e assumptions. Furthermore, the
guessing game parameters were chosen from among the CGGbbgters to maximize the
distance between any two levels’ predicted strategy choites helps to minimize the error
in subjects’ level estimates.
For each subjeat signalr, and set of gameS C I" we can estimate a levg|(G, 7) using
a simple maximume-likelihood approach that follows clos€i§gC06. Specifically, for each
level & we define a likelihood functior.(s;,, |k, A, €) that follows a logistic response with
sensitivity\ > 0 based onv(k) with a ‘spike’ of sizes € [0,1] ats}, if s}, is well-defined.
Formally, lets;,, be the value o¥;,, rounded to the nearest integer, and/igt;., k) be
an indicator function that equals onesif,, = wa wheres? denotes the Level-strategy for
playeri in gamey.?° I,(s;,., k) equals zero otherwise. Thuk(s;, ., k) = 1 indicates that
played exactly the Levet-strategy, allowing for rounding. The likelihood functioorf: # 0
is then given by

L(siyr |k, Ay €) = € Li(Siyr, k) +(1—2) (1= 1547, &) ( exp (A3, wilsir, 07) V(F) (%)) ) |

fsi exp (A Y2, wi(zi, 0F) v(k) (k) dzi

Fork = 0 we setL(s.|0, A, €) equal tosy. , which is assumed to be the uniform distribution
over.s;.

20| strategies are integers in the undercutting games, iichvbases;, - = sir.
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For any set of gameS C I', denotei’s strategies given signalby s,q; = (Siy.7)yeq. FOr
each levek € Ny U { N}, the maximum likelihood of observing. is given by
L*(sicr|k) = omax [T Z(sinelB, A 2).
veG
In practice, we search over a non-uniform grid of 122 possialues for\ and a uniform grid
of 19 possible values far. The maximume-likelihood level for these observations etigiven

by

]{Zi G, = L* iGT ]{7 .
(G,7) arg, max (sigrlk)

Our games and our model of noisy play are such that the maxitikefihood level is generi-
cally unique. Given that levels greater than three are \@agly observed in past data, we only
calculate likelihood values for € {0,1,2,3, N}.

We consider two types of analyses. First, we estimate fdr salject one level for all under-
cutting games® = {1,...,4}) and another level for all guessing gamés£ {5,...,10}).
This enables us to compare stability of levels across famdf games. This pooling of several
games per estimate also matches the standard procedurstifoaing levels in the litera-
ture?! Second, we estimate for each subject a levelany game (@ = {~}). This enables us
to compare stability of levels within each family of gam&sln the appendix, we also explore
intermediate cases where two or three games per estimaiseate

VIl RESULTS
Result 1: Aggregate Distributions of Levels

The distributions of levels, both for each game family andefach individual game, are shown
in Table Il. These distributions represent fairly typicadtdbutions of estimated levels: Level-
0 is observed fairly infrequently, Level-1 is the modal typad Level-2 and Level-3 are ob-
served less frequently. The distribution for guessing gaimisimilar to the distribution found

21as a robustness check, we apply our procedure to CGCO06's patding all games to generate a single esti-
mated level per subject (as in their paper), and find exagestiby-subject agreement between our estimated
levels and theirs.

22n this casek; (G, ) represents an assignment rule rather than an economein@gssince only one obser-
vation is used for each ‘estimate’ and no standard errorsbeacalculated. For the case|@f| = 1, we also
estimate levels in the guessing games by eliminatiagd; (s; -, k), setting\ = 1.33 (the average estimated
value ofA in CGCO06 using only subjects’ guesses), and then assigrking aach observation as described above.
Under this new procedure, 85.5% of observations receivedhee level assignment as in our original procedure.
Roughly half of the observations whose level changes bedawel-0 observations, implying their likelihood
value simply falls below the uniform distribution likelibd. None of the key results of the paper change under
these alternative estimates.
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Game LO L1 L2 L3 Nash
UGLl| 7.76% 32.76% 19.83% 10.34% 29.31%
UG2| 7.76% 32.76% 22.41% 7.76% 29.31%
UG3| 5.17% 27.59% 18.10% 5.17% 43.97%
UG4| 6.03% 31.03% 29.31% 5.17% 28.45%
UGs Pooled 4.31% 28.45% 26.72% 5.17% 35.34%
GG5| 6.03% 70.69% 9.48% 12.07% 1.72%
GG6| 0.86% 65.52% 17.24% 11.21% 5.17%
GG7|43.10% 37.07% 13.79% 1.72% 4.31%
GG8| 6.90% 39.66% 24.14% 21.55% 7.76%
GGY9| 517% 42.24% 23.28% 4.31% 25.00%
GG10| 9.48% 38.79% 24.14% 19.83% 7.76%
GGs Pooled 1.72% 50.00% 10.34% 10.34% 27.59%
TABLE Il. Frequency of levels in each game, and when pooling eauoiiyfaof games.

by CGCO06. We do find that Nash (and higher-than-Level-3) playur undercutting games is
noticeably higher than what is found in many other games.

Within the family of undercutting games, the distributidrtypes is generally stable across
games. In all four games, there is a high proportion of L1, h@ lash behavior, and relatively
little behavior corresponding to LO and 3.

Within the guessing games, however, distributions of Ewary substantially from one
game to the next. For example, the fraction of Level-0 playps from 0.68% in guessing
game 6 (GG6) to 43.10% in GG7. The fraction of Level-1 playrtyedoubles from GG7
to GG5. Nash play ranges from 1.72% in GG5 to 25% in GG9. Thigests that either the
Level-£ model lacks descriptive power in these games, or else @dgeels shift substantially
between games.

We also find that 14.22% of all observations in the guessimgegacorrespond precisely
to one of the four (non-zero) levels’ predictions, aftermding. This is clearly greater than
the 0.7% frequency which would occur if actions were randoith & uniform distribution.
The most frequently-observed exact hit is the Level-1 a¢iiowhich players best respond to
the midpoint of their opponent’s interval, which accourttsroughly one-half of all the exact
hits 24

23 evel-0 is necessarily under-counted here, since a prigpoof all observed actions should be coming from
Level-0 players. Although this cannot be corrected at aividdal level, the aggregate frequency can be adjusted.
The result simply shifts mass uniformly from the higher levatown to LO.

24By contrast, 48.9% of the observations in CGCO06’s data &xaotrespond to one of the four levels’ predic-
tions. Cross-game variation in the distribution of levadsmains high, however. See the online appendix for
details. Again, we conjecture that these differences aectdulifferences in experimental instructions and their
use of a best-response understanding test.
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From| To — LO L1 L2 L3 Nash
LO | 0.0% 60.0% 0.0% 20.0% 20.0%
L1[6.1% 424% 6.1% 9.1% 36.4%
L2 |0.0% 51.6% 16.1% 9.7% 22.6%
L30.0% 33.3% 33.3% 0.0% 33.3%
Nash| 0.0% 56.1% 7.3% 12.2% 24.4%
Overall| 1.7% 50.0% 10.3% 10.3% 27.6%
TABLE Ill. Markov transitions from the pooled undercutting ganesthe
pooled guessing games.

In an online appendix, we compare a graphical illustratibthe likelihood functions for
each level with a histogram of actions. This analysis shdwst there does not appear to be
a substantial and regular concordance between actionharmuedicted behavior of different
types across games. That is, the spikes in the likelihooctifums do not consistently coincide
with spikes in the data for any type across the different gafhe

Result 2: Persistence of Absolute Levels

To examine the hypothesis that levels are constant acrossg@; (v, 7°) = k;(+/, °) for all

~ andv’), we generate a Markov transition matrix of levels betwémntivo families of games.
Table Il reports the frequency with which a subject movesrfreach level in the pooled
undercutting games to each level in the pooled guessinggafnem the table, it is apparent
that most of the transitions are into Level-1 and Nash typethé guessing game, and that
these transitions do not show great correlation with a stibjg/pe in the undercutting games.
The distributions in separate rows of Table Il are gengrsilnilar to the overall distribution
in the final row, which would occur if types were independesrbas families of games.

As a measure of the stability of levels across games, considgrediction accuracy of the
Level-£ model assuming; is constant. This is simply the probability that a playerygléhe
same level in two different games. We refer to this probghbés theconstant-level prediction
accuracy, or CLPA. Mathematically, the CLPA equals the main diagonal of thelkda matrix
weighted by the overall probability of each level. If types aonstant then the main diagonal
entries are all one, as is the CLPA. If types are randomly drda&n each row of the Markov
Wexercise also reveals purely mechanical reasons Wijgats are classified more frequently as the Level-1
and Nash types. First, Level-1 beliefs are disperse, whieans its likelihood function is quite flat. All higher
levels have ‘spike-shaped’ likelihoods that exceed theel-@ikelihood only in a small neighborhood around
the predicted action. Even with random data, the fractiosutiijects classified as Level-1 would be higher for
this reason. Second, the Nash type’s predicted play is aftarboundary, so that logistic-response trembles can

only occur in one direction. This truncation doubles thelitkood function on the interior of the strategy space,
giving it a relative advantage over types with an interiadiction.
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From| To — LO L1 L2 L3 Nash
LO [43.0% 22.6% 7.5% 9.7% 17.2%
L1| 4.9% 59.7% 14.6% 4.4% 16.4%
L2 | 2.2% 20.2% 57.1% 9.0% 11.5%
L3 | 9.1% 19.2% 28.3% 18.2% 25.3%
Nash| 3.5% 15.6% 7.9% 5.5%67.5%
Overall| 6.7% 31.0% 22.4% 7.1% 32.8%
TABLE IV. Markov transition between single-game levels withie fiour un-
dercutting games.

From] To — LO L1 L2 L3 Nash
LO| 8.7% 482% 18.1% 12.3% 12.8%
L1]11.7% 53.1% 16.8% 11.2% 7.1%
L2 |11.5% 44.2% 27.4% 10.0% 6.9%
L3|12.4% 46.6% 15.9% 13.2% 12.0%
Nash| 17.7% 40.3% 15.0% 16.3% 10.7%
Overall| 11.9% 49.0% 18.7% 11.8% 8.6%
TABLE V. Markov transition between single-game levels within $heguess-
ing games.

matrix equals the overall distribution, and so the CLPA my the sum of squared overall
probabilities in any row. In Table Il the overall frequeesiof the levels would imply a 29.4%
CLPA under the null hypothesis of independent, randombairlevels. The actual CLPA is
27.3%, suggesting a slighegative correlation in types across games.

To test whether levels uncorrelated, we generate 10,000Isaraf randomly-drawn levels,
with each sample drawn independently using the overaltidigton from Table Ill. For each
sample we calculate the CLPA, generating an approximateldison of CLPA values under
the null hypothesig® A comparison of the actual CLPA with this distribution faitsreject the
null that levels are randomly drawn across game famifieg{ue 0.68)}’

Tables IV and V also show these transition matrices for thglstgame levels in the un-
dercutting and guessing games, respectively. Clearlyeptalevels are more stable in the
undercutting games than in the guessing games. In the wittiegcgames, over half of all
Level-1, Level-2 and Nash types keep the same type acrossggamthe undercutting games,
mCarlo simulations use the same number of players@ag experiment.
2MThe cross-game (or cross-family) correlations can be adested statistically for any pair of games by calcu-
lating the Cramér correlation coefficient for categoritata [see Siegel and Castellan, 1988, p.225] and compar-
ing it against the null hypothesis of independently-draswels, which would give an expected Cramér correlation
of zero. When comparing between the two families of gameasgusooled-game estimates (Table Il), the null

hypothesis of independently-drawn types again cannotjbeteal, with a Cramér correlation of only 0.177 and a
p-value 0f0.562.
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the overall frequencies of the levels (given in the last réwable 1V) would imply a CLPA
of 26.3% if types were randomly drawn. In fact we observe a &£ bP57.6%, indicating
substantially stronger predictive power than if types wareely random, though still far from
perfectly accurate. In a Monte Carlo simulation of 10,006skes of independently-drawn
levels, none have a CLPA this large. Thus, we reject the iyplbthesis of random levels with
ap-value of less thafn.0001.

The results are quite different in the guessing games, whevel-1 acts as an absorb-
ing state. Little difference is seen between the rows of dall suggesting no correlation
across games. The realized prediction accuracy (CLPA).i8%84The expected CLPA under
randomly-drawn levels is 31.1%. Our Monte Carlo simulatidmandomly-generated levels
does reject the null hypothesis withpavalue of 0.0030, though the absolute magnitude of
the difference (34.7% versus 31.1%) implies little realngiai predictive accuracy over the
assumption of random levet8.

We conclude that estimated levels can reasonably be modslednstant within certain
families of similar games, but not within other families. iFlsuggests that Levéi-thinking
is applied robustly in some settings, but not in others.ld.guidance is currently available as
to which families of games will trigger Levél+easoning and which will not. In short, using
a player’s level in one game to predict their action in anothay be a futile exercise without
further information about the factors that determine whetkevel# reasoning is triggered.

Result 3;: Persistence of Relative Levels

To examine the frequency with which the ordinal ranking afygrs’ levels changes between
the two families of games, we consider each possible paiwofglayers and measure the
frequency with which the strictly higher-level player ineogame becomes the strictly lower-
level player in anotherk((~, ) > k;(v,7) butk;(v/,7) < k;(+/,7)). We refer to this as the
‘switch frequency’. This is compared against the ‘non-stvifrequency’, or the frequency
with which the same player has a strictly higher level in bggimes §;(v, 7) > k;(~, 7) and
ki(y',T) > k;j(+', 7)). Pairs whose levels are the same in at least one game avelegcko the
switch and non-switch frequencies often do not sum to one ‘Sitch ratio’ is the switch
frequency divided by the non-switch frequency; this hasgeeted value of one under the

280ur analysis of the CGCO06 data (in the online appendix) leve&LPA of 41.9%, which is between that of
our guessing games and our undercutting games.
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Data Null Hyp.
Pooled UGs vs. Pooled GGs
Switch Frequency: 25.0% 24.9%
Non-Switch Frequency: 22.7% 24.9%
Switch Ratio: 1.10 1.00
Undercutting Games
Switch Frequency: 13.2% 27.1%
Non-Switch Frequency: 45.3% 27.1%
Switch Ratio:  0.29 1.00
Guessing Games
Switch Frequency: 19.9%  23.8%
Non-Switch Frequency: 22.2%  23.8%
Switch Ratio:  0.89 1.00
TABLE VI. Observed frequency with which two players’ levels dtgic
switch their ordering, compared to the expected frequemcieuindependent,
randomly-drawn levels.

null hypothesis of independently-drawn levels. Under tegdl+ model with stable relative
levels, the ratio will equal zer®.

The switch frequency, non-switch frequency, and switclorahen comparing the pooled
undercutting games to the pooled guessing games are répori@ble VI. The table also
reports these statistics for the four undercutting gamas tlae six guessing games. The last
column shows the predicted values under the null hypotleésmslependently-drawn levels.

For the comparison between game families, switching dgtoaturs more frequently than
non-switching. In other words, if Anne exhibits a higherdethan Bob in the undercutting
games, then Bob is more likely to have a higher level in thesging games. Our 10,000-
sample Monte Carlo simulation actually rejects the nulldtesis in favor ohegatively cor-
related levels, with a-value of 0.0230. This is consistent with our earlier obagon that
absolute levels are negatively correlated across fanafigames.

Since absolute levels within the undercutting games aréy faiable, we expect similar
persistence in subjects’ relative levels. This is the ca¢en-switching pairs are observed
more than three times more frequently than switching pangng a switch ratio of 0.29.
None of the 10,000 simulated samples have a switch ratidawisndicating a clear rejection
of the null hypothesis at the 0.0001 level.

29n practice, the switch ratio would not exactly equal zemcsisome Level-0 players would be incorrectly
identified as higher-level players. Our simulations sugtiesactual switch ratio would be around 0.09 using our
overall level distributions.
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| Const. 1Q EyeGaze Memory CRT Takeover
Coefficient| 39.179 0.620  0.250 -0.275 0679  -0.229
p-value| (j0.001) (0.204) (0.318) (0.215)(0.002) (0.261)

TABLE VII. Regression of expected earnings on the five quiz scores.

In the guessing games, however, switching occurs nearlyegsiéntly as non-switching,
with a switch ratio of 0.89. The Monte Carlo simulation yielal marginap-value of exactly
0.05. Thus, while there is some stability of relative leweiihin the guessing games, it is much
weaker than the stability we observe in undercutting gaimet, in magnitude and statistical
significance.

Overall, we conclude that little to no extra predictive povgegained by considering relative
levels instead of absolute levels. Assumings constant for each subject performs roughly as
well as assuming the ordering bf across subjects is constant.

Result 4: Using Quizzesto Predict Levels

Each subject took five quizzes: an 1Q quiz, the Eye Gaze qumemory quiz, the Cogni-
tive Reflection Test (CRT), and a one-player Takeover Gantse@ed correlations between
scores on the various quizzes are surprisingly weak. 1Q,omgrand CRT scores all appear
to be positively correlated, though their estimated Spearnank correlation coefficients all
havep-values between 0.05 and 0.10. No other correlations atistgtally significant.

Next we ask whether quiz scores predict overall earningsre@ioce randomness in the
earnings measure, we calculate what each subject’s expeatrings would be in each game
if they played against the empirical distribution of acsaf all other subjects. The correlation
between subjects’ total expected earnings and the sum iofitheequiz scores is positive, but
not statistically significant (Spearman correlation of 2 Wwith p-value 0.064). Regressing
total expected earnings on each quiz (Table VII) reveals ahly the Cognitive Reflection
Test (CRT) score is significantly correlated with expectadhings.

Intuitively, higher levels should be more sophisticatealypls. But they do not earn more
money. Indeed, Level-2 is the most profitable type, sincetraoljects are estimated to be
Level-1 types. When looking at correlations between qures and estimated levels, we
therefore do not restrict ourselves to a linear relatignsds Level-2 types may actually score
the highest on the quizzes.

We focus on predicting levels estimated from the pooled liasdf games. For each type
of quiz, we first perform a Kruskal-Wallis test of the null lotpesis that all five levels’ quiz
scores are drawn from the same distribution. If this nulldtpsis is rejected for some type
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IQ EyeGaze Memory CRT Takeover
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FIGURE VI. Box plots of quiz scores for each estimated level in thelpd
undercutting gameg-values in parentheses are for Kruskal-Walis tests that all
levels generate the same distribution of quiz scores.

of quiz, then that quiz is diagnostic of at least one of the éisemated levels. In that case, we
perform a mutlinomial logistic regression of levels on tpatticular quiz score to see which
levels have significantly different quiz scores. Since maolhial logistic regressions require
an omitted level against which all others are compared, omgesregression is not useful in
analyzing all possible comparisons. We therefore reperttefficient estimates from all five
possible regressions, where each regression omits aatiffeavel*°

Figure VI shows a box plot of the distribution of each quizrector each of the five esti-
mated levels in the pooled undercutting games. jHvalues of the Kruskal-Wallis tests for
each quiz type appear in parentheses at the top of the grapHin@vsignificant differences
across levels only for the Eye Gaze quiz, where Levels 0 amppéax to perform worse. The
30These five regressions are not meant to be treated as indepeasts; rather, reporting them all provides a

better view of what is essentially one regression. Usingtimumial regression does control for the multiple
comparisons within the regressiare(, within each column).
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Eye Gaze Scor

e vs L-0

vs L-1

vs L-2

vs L-3

25

vs N

Level-0
(n=5)

-0.311
(0.223)

-0.821
(0.006)

-0.865
(0.048)

-0.643
(0.020)

Level-1
(n=33)

0.311
(0.223)

-0.510

-0.553
(0.143)

-0.332
(0.048)

Level-2
(n=31)

0.821
(0.006)

0.510
(0.011)

(0.012)

-0.044
(0.909)

0.178
(0.361)

Level-3
(n=6)

0.865
(0.048)

0.553
(0.143)

0.044
(0.909)

0.222
(0.554)

Nash
(n=41)

0.643
(0.020)

0.332
(0.048)

-0.178
(0.361)

-0.222
(0.554)

TABLE VIII. Multinomial logit regression coefficient estimate$ Bye Gaze
quiz scores on pooled undercutting game levels. Each col@presents a
regression with a different omitted category.

CRT Score

vs L-0

vs L-1

Vs L-2

vs L-3

vs N

Level-0
(n=2)

-2.730

-2.883
(0.815)

2574
(0.834)

-2.607
(0.832)

Level-1
(n=58)

2.730
(0.824)

(0.824)

-0.153
(0.098)

0.156
(0.133)

0.123
(0.072)

Level-2
(n=12)

2.883
(0.815)

0.153
(0.098)

0.310
(0.018)

0.277
(0.008)

Level-3
(n=12)

2574
(0.834)

-0.156
(0.133)

-0.310
(0.018)

-0.033
(0.766)

Nash

(n=32)

2.607
(0.832)

-0.123
(0.072)

0.277
(0.008)

0.033
(0.766)

TABLE IX. Multinomial logit regression coefficient estimates oRT quiz
scores on pooled guessing game levels. Each column refseseagression
with a different omitted category.

multinomial logistic regression results (Table VIII) canfithat Level-0 Eye Gaze scores are
significantly lower than those of Levels 2, 3, and Nash, aatlltbvel-1 scores are significantly
lower than Level-2 or Nash scores.
The Eye Gaze correlation with Level-0 and Level-1 play hagiiive appeal: Poor perfor-
mance on the Eye Gaze quiz is diagnostic of adult autism fB&ohen et al., 1997]. And
autism is often characterized by a lack of ‘theory of mindafBn-Cohen, 1990], or an in-
ability to recognize that others behave in response to eonst¢hought. This suggests that



26 GEORGANAS, HEALY AND WEBER

1Q EyeGaze Memory CRT Takeover
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FIGURE VII. Box plots of quiz scores for each estimated level in tl®lpd
guessing gamesp-values in parentheses are for Kruskal-Walis tests that all
levels generate the same distribution of quiz scores.

some of the Level-0 and Level-1 types are less able to cansttiers’ beliefs and strategies
in games, leading them to play more low-level actidhs.

Figure VII reports the score distributions for levels estied from the six pooled guessing
games. The Kruskal-Wallis tests indicate that the CRT hasegwower in predicting subjects’
levels. Specifically, the multinomial logistic regressdable IX) indicate that Level-2 can be
distinguished from the two higher levels, but not from the tawer levels. This is consistent
with our earlier results: Expected earnings are highedtéoel-2, and CRT scores are highly
correlated with expected earnings, so we already expetlLthel-2 types should have the
highest CRT scores.

34N p-beauty contest games, Coricelli and Nagel [2009] find thghdr-level players exhibit greater neural
activation in the medial prefrontal cortex (MPFC). Theofymind experiments also find activation in this region
(among others). These results are roughly consistent witkpe Gaze finding, and also suggest more predictable
heterogeneity ip-beauty contest games.
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vs. Low vs. Random vs. High
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FIGURE VIII. Level distributions by opponent in the pooled undetmg games.

This three-way correlation allows for multiple interprgdas. But any interpretation must
reconcile the fact that CRT scores are lower for higher Ewehich is not particularly intuitive
if higher levels are viewed as more sophisticated. Altevest, it may be that the Level-
model is not descriptive, but CRT scores are genuinely ptiediof expected earnings. Since
many subjects are mechanically categorized as Level-Stigee footnote 25), subjects with
the highest earnings (hence, highest CRT scores) are nmesta#tegorized as Level-2 types.
The result is a non-monotonic relationship between CRTescand levels, as we observe.

We perform similar analyses for game-by-game levels, aeddBults are consistent with
the pooled-game results. In the guessing games, playearplthathe Level-1 action in at
least three of four games have lower Eye Gaze scores thatsl@v2, and Nash. They also
have higher Takeover Game scores than Levels 0 and Nasle uéssing games none of the
quizzes are diagnostic of levels; the Kruskal-Walhgalue for the CRT is 0.082 (with subjects
estimated to be Level-2 in a majority of games scoring théést), and greater than 0.15 for
all other quizzes.
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Result 5: Responsiveness to Sgnals About Opponents

In each game each subject is asked to choose a strategytagensomly-selected opponent,
against the opponent with the highest total quiz score, gathat the opponent with the low-
est total quiz score. Although quiz scores are not strorg/ted to levels of play—and the
relationship certainly is not linear—they are correlatathwotal earnings, so we hypothesize
that subjects might treat quiz scores as proxies for sti@ssgphisticatior?? Thus, how sub-
jects respond to their opponents’ characteristics mayigeoanother testable prediction for
the Level# model.

Figure VIII shows the histogram of estimated levels in thelpd undercutting games for
each of the three types of opponent. Subjects appear t@setheir level of reasoning against
stronger opponents. In particular, Level-1 and Level-Z8/pecome less frequent—and Nash
types more frequent—when playing against opponents wgheriquiz scores. Kolmogorov-
Smirnov (K-S) tests confirm that the distribution of levedssignificantly different between
the low-score and high-score opponemvélue of0.039), though not significantly different
between the low-score and random opponepigajue 0f0.863) or between the random and
high-score opponentg-{value of0.541).3

While the above differences in behavior by opponent areesteng, we are concerned with
whether any information can predict this adjustment. Thatan we predict which subjects
have a high enough ‘capacity’ to be able to adjust their bieinan response to information
about opponents? We therefore ask whether quiz scorecptiedimagnitude of adjustment.
Using the pooled undercutting games, we measure for eagicstie difference between their
estimated level against a high-scoring opponent and tegmated level against a low-scoring
opponent. This difference is then regressed on the five goizs. No regression coefficients
are found to be significantly different from zero. Thus, geiz fail to measure the propensity
to adjust play against stronger opponents.

Looking at which subjects daot shift strategies yields more informative results. For éach
we calculate the fraction of Levéiplayers in the pooled undercutting games whose levels do
not shift in response to differing opponents. We refer taéestable players. The percentage
of stable players for eachare shown in Figure IX. If players’ levels are constrainedHmsir
capacities, we should expect that low-level players areeriikely to have low capacities, and
therefore are more likely to appear as stable players. Ttaeglaonsistent with this hypothesis

32Many subjects’ responses to a debriefing questionnairerooitiis hypothesis.
33Using game-by-game estimates of levels in the undercug@mges gives similar results, with the comparison
between low-score and random opponents now being signifigarmlue of 0.019).
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FIGURE IX. For eachk, the percentage of Levélsubjects in pooled under-
cutting games who do not change levels in response to opptypes.

for Level-1 through Level-3. Nash types, however, are thetnstable. For the capacity-
constrained Levek-model to hold, it must be that these players all have high ghcapacities
so that their chosen level is always greater than four. Siginlbvels are rarely observed in
the literature, suggesting that these players are mory ligeibborn Nash’ types who play
Nash equilibrium strategies regardless of the opponentisTthere may exist heterogeneity
amongst players beyond the number of best responses tHeymper

Similar analyses in the pooled guessing games (Figure Xjs/ie systematic pattern across
opponents. None of the three K-S tests for differences shgmifisant differences in dis-
tributions (p-values of 0.346, 0.438, and 0.938 for the low-vs-randomg¢oa-vs-high, and
low-vs-high comparisons, respectively). Using game-byag estimates yields three virtually
identical histograms with K-S tegtvalues all very close to one.

In summary, we do see some subjects adjusting their rededs against different op-
ponents, indicating some responsiveness to signals apponents, but neither the observed
levels nor the quiz scores are useful in predictvitch subjects will make this adjustment.

Result 6: The Persistence of Players Ordering of Games

An alternative identifying restriction one might imposetbe Levelx model is that the rank-
ing of games be consistent between players. Formally, thisgdvwrequire that ifk;(~, 7) >
k;(+',7) for somei andy thenk;(v,7) > k;(+/,7) for all 5. In this way the Levelk model
could be thought of as providing a measure of (relative) gdiffieulty or complexity.

Table X shows the frequency with which a randomly-drawn péiplayers changes levels
in the same direction when moving between two randomly-eh@mames, or in the opposite
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FIGURE X. Level distributions by opponent in the pooled guessinges

Frequency i.i.d. Prob.
Pooled UGs vs. Pooled GGs

Both change in same direction: 27.0% 24.9%
Both change in opposite directions: 29.1% 24.9%
Opposite/same ratio: 1.078 1.00
Undercutting Games
Both change in same direction: 9.6% 27.1%
Both change in opposite directions: 8.5% 27.1%
Opposite/same ratio: 0.884 1.00
Guessing Games
Both change in same direction: 26.6% 23.8%
Both change in opposite directions: 16.5% 23.8%
Opposite/same ratio: 0.618 1.00

TABLE X. Observed frequency of game-rank switching among randairs pf
subjects between randomly-drawn games, compared to tleexpfrequency
under independently-drawn (i.i.d.) types.

direction. These frequencies do not sum to one since paiesendt least one player does not
switch levels between games are excluded. The reporteddneips are compared against
the expected frequencies if levels were drawn indepengénth the empirical distribution of

types.
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Comparing the pooled undercutting games with the pooledsing games, switches occur
more often in the opposite direction than in the same dwactl he ratio of switch directions
is close to 1, which is what one would expect if levels wereepehdently drawn in each game
family. A Monte Carlo simulation with 1,000 samples showattiine empirical ratio of switch
directions fails to reject the null hypothesis of indeperttjedrawn levels, with a-value of
0.380. Thus, the two families of games cannot be clearlyegdnising estimated levels.

In the undercutting games we find some support for stabifityame orderings. It is more
likely that players switch levels in the same direction kedw games, as opposed to in the
opposite direction. A Monte Carlo simulation shows thatrwgo of switch directions is not
consistent with the null hypothesis of independently-drdevels, with ap-value of 0.026.
Although this result is statistically significant, its uskfess is tempered by the fact that the
vast majority of pairs have at least one player maintainireggame level between games.
Thus, a fairly large sample of behavior would be needed t& games based on observed
levels. Analyzing the game-by-game directions of shifthdates that UG3 is ‘easier’ than the
other three undercutting games. This is also evident frafabt that UG3 has substantially
more Nash play than the others. The relative ranks of ther dtinee games is ambiguous.
Thus, the ability to rank the undercutting games seems to stdirely from UG3.

Although the ratio of switch directions is lower in the guegsgames, we cannot reject
the null hypothesis that the ratio of switch directions waseayated by independently-drawn
levels—the Monte Carlo simulation yieldspavalue of 0.070. This occurs because the level
distributions vary more across guessing games, so theneariaf switch directions under the
null hypothesis is much larger.

VIII D ISCUSSION

In sum, the success of the Levelmodel is mixed: We find reasonably strong cross-game
stability within the family of undercutting games, but zestability in the two-person guess-
ing games. Even in the undercutting games, however, olgégvels do not correlate well
with our five psychometric measures, except that Level-§gskamay have a shorter working
memory and a less keen awareness of others’ emotions andiongfinally, it appears that
some players ‘step up’ against stronger opponents, but verzable to predict who makes
this adjustment using either psychometric measures onaséevels.

Although ours is the first paper to thoroughly examine crgesie stability of individual
levels, our conclusions about the success of the Lewvebdel are broadly consistent with the
past literature. Many papers find strong support for Lévplay in certain games using behav-
ioral data alone [Stahl and Wilson, 1994, 1995, Nagel, 188y and Nagel, 1997, Ho et al.,
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1998, Bosch-Domenech et al., 2002, Camerer et al., 200#¢lmavioral data augmented with
lookup data [Costa-Gomes et al., 2001, Costa-Gomes andf@v2006] or eye-tracking
data [Chen et al., 2009, Wang et al., 2009]. For some games\Taw, the Levek model does
not appear to organize the data well [lvanov et al., 200902Ctawford and Iriberri, 20078},
Shapiro et al. [2009] even find that the model’s fit can vanhimia single game when differ-
ent components of the payoff function are emphasized, witbtter fit as the game becomes
closer to a standarg-beauty contest and a worse fit as the game approaches theplete-
information global game of Morris and Shin [2002]. The breadclusion that emerges from
this line of research is that the Levelapproach works well in some games, but not in others.

Camerer et al. [2004, p. 873] argue that “fitting a wide raniggames turns up clues about
where models fail and how to improve them.” Our researchasgmts one such contribution,
by demonstrating the varying individual-level robustnettevel-£ models across two fam-
ilies of games. Thus, the Levélmodel may be one of many possible decision processes
players employ to select strategies in novel games. Diifgseocesses may be triggered un-
consciously in different settings, depending on featuoes s1s the characteristics of the game
and the way in which the game is described. Beauty contestpJesmatrix games, and our
undercutting games all seem to trigger the Lewdleuristic in a large fraction of subjects,
while its use appears infrequent in common-value auctiglhal games, and endogenous-
timing investment games. In two-person guessing gamediengasoning does not appear to
be triggered unless subjects are given experience cdluyla¢st responses prior to play.

Understanding the boundaries of the domain of applicgbilitthe Level# model means
understanding when it is used, when it is not, and what fadiogger its use; this, in turn,
increases the overall predictive power. At this point, wajeoture that Levek play is trig-
gered by simple, normal-form games of complete informatasnwell as in situations where
the game’s instructions directly focus attention on caltinh best responses, either directly
through understanding tests or indirectly through frameffgcts. In games of incomplete
information and games that are not represented in matrm foe expect less frequency of
Level-k reasoning. These hypotheses give rise to a wide range ofcqpmstions that can be
addressed in future work.

Given our conclusions, we suggest focusing behaviorabrebéboth on identifying distinct
decision “heuristics” employed by people playing gamaaed exploring their triggers. For
example, Ivanov et al. [2009] identify plausible ‘rules bfitnb’ to explain their data when
Level-£ and quantal response equilibrium cannot; to what extenhdset heuristics extend

34crawford and Iriberri [2007a] point out that the Levemodel fails to account for overbidding in second-price
auctions.
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beyond the dynamic investment game they study? In our tweepeguessing games, we
do not identify an alternative heuristic that organizesdata since our analysis focuses on
players’ estimated levels and not their actual strategies.

Finally, a multiple-heuristics model of strategic thingitmplies that researchers should
take care in extrapolating the success of any one model tofesample strategic settings.
Instead, future work should focus on understanding whichibgcs are widely used and which
features of a strategic environment trigger the use of iiffeheuristics. We speculate that
experimental protocols, training, and experience all feavempact on the choice of heuristic,
and that the presentation of a game in matrix form (as in odetsutting games) is more
likely to trigger best-response-based heuristics likeL#neel-X model.
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APPENDICESFOR ONLINE PUBLICATION

APPENDIX A (ONLINE): COMPARISONWITH CGCO06

The two-person guessing games used in our experiment weae feom Costa-Gomes and
Crawford [2006]. In this appendix we compare our resultsdtadrom their procedurally

similar ‘Baseline’ and ‘Open Boxes’ treatments to idengfyy significant differences. We first
use our maximume-likelihood procedure on their raw data toegate levels for each subject
in each game, and then repeat all of the above analyses om lthads. Unlike CGCO06, we

allow for Level-0 types (which account for 9.06% of our data &.16% of theirs) but exclude
dominance and sophisticated types (which occur in 9.09%ef tata)>

To our knowledge, there are two notable differences betvoeerexperimental design and
theirs.First, CGCO06 ran their experiments using studaots fUniversity of California, San
Diego and University of York who were enrolled in quantiatcourses but did not have ex-
tensive training in game theory. Our subjects were takem fagool of Ohio State University
undergraduate students, many of whom are economics majersgid not select or filter sub-
jects based on their major or courses. Both subject poolsaapp be standard within the
experimental economics literature.

Second, and perhaps more importantly, the instructionpesexperiment procedures were
substantially different between the experiments. CGC@étgects read through 19 screens of
instructions that included a four-question test in whicbhjeats were required to calculate
best-response strategies to hypothetical choices of dpgionent, as well as their opponent’s
best-response strategies to their own hypothetical chdic@ur instructions consisted of
five printed pages and only informed subjects of how theiroffayare calculated. We did
not explicitly ask subjects to calculate best responses gpponents’ best responses), and
we required no test of understanding before proceedingrGikie relatively similar subject
pools, we expect any differences in behavior between theskes to stem mainly from the
instructions and the best-response understanding test.

Table XI shows that the aggregate distribution of levels aghn6GCO06’s guessing games
(estimated game-by-game) looks similar to that found indata, though with more Level-2
subjects. But, as in our data, the game-by-game frequentiesels feature a large degree

35As a robustness check, we use our program to estimate a fugldor each subject across all 16 games, as in
CGCO06, and verify that our level estimates match theirs ¥erngesubject, excluding those levels and types that
are not common between the two studies.

38For example, subjects were asked: “If s/he guesses 500hwhjour guesses earns you the most points?”, and
“If you guess 400, which of her/his guesses earns her/hinmib&t points?”. Any subject who failed to answer
the four questions correctly was not allowed to participatde experiment.
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New Data CGCO06
50% — : : : : 50% — : :
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FIGURE XI. Aggregate level distributions across all standard giuresgames
in our data and in CGCO®6.

Game LO L1 L2 L3 Nash
1 7.95% 47.73% 12.50% 19.32% 12.50%
2 14.77% 21.59% 45.45% 18.18% 0.00%
3 14.77% 55.68% 18.18% 11.36% 0.00%
4 14.77% 35.23% 50.00% 0.00% 0.00%
5 14.77% 73.86% 4.55% 6.82% 0.00%
6 7.95% 54.55% 37.50% 0.00% 0.00%
7 9.09% 62.50% 26.14% 2.27% 0.00%
8 5.68% 71.59% 20.45% 2.27% 0.00%
9 13.64% 38.64% 40.91% 2.27% 4.55%

10 0.00% 37.50% 32.95% 26.14% 3.41%
11 10.23% 36.36% 46.59% 2.27% 4.55%
12 1.14% 45.45% 34.09% 18.18% 1.14%
13 4.55% 23.86% 40.91% 10.23% 20.45%
14 10.23% 35.23% 28.41% 18.18% 7.95%
15 7.95% 36.36% 30.68% 13.64% 11.36%
16 9.09% 46.59% 36.36% 2.27% 5.68%
Total 9.16% 45.17% 31.61% 9.59% 4.47%
TABLE XI. Frequency of estimated levels in each game of CGCO6.

of heterogeneity across games. In games 2-8, for examplee&@o Nash types, while in
game 13 over 20% of the observations are consistent with &sh Wpe. Level-1 play varies
from 21.59% (game 2) to 73.86% (game 5). Following CGCO06se¢hk5 games are ordered
so that lower-numbered games require fewer rounds of daro@alimination to solve the
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Data L1 L2 L3 Nash| Total
New Data| 14.66% 9.23% 0% 61.67%14.22%
CGC06| 25.36% 21.16% 13.71% 17.61P49.46%
TABLE XIlI. Frequency of exact conformity with the Levélmodel in the new
data and in Costa-Gomes and Crawford [2006].

From To LO L1 L2 L3 Nash
LO | 20.9% 44.0% 23.6% 7.2% 4.4%

L1| 8.9% 544% 24.9% 8.1% 3.6%

L2 | 6.8% 35.6% 43.1% 10.2% 4.2%

L3 | 6.9% 384% 33.6% 14.3% 6.9%

Nash| 9.0% 36.5% 29.8% 14.7% 9.9%

Overall| 9.2% 452% 31.6% 9.6% 4.5%

TAaBLE XIII. Markov switching matrix of levels in the CGCO06 data.

equilibrium. None of the five levels’ frequencies have a sigant correlation with the game
number (at the 5% level), indicating that this underlyingisture is not driving the variation
in level distributions across games.

One of the largest and most obvious differences between GGCata and ours is the
frequency with which subjects choose strategies that gxestrespond to one of the levels’
predictions (excluding Level-0). Only 14.22% of obsereat correspond to an ‘exact hit’ in
our data, and nearly 20% of CGCO06 observations are exac{Tatde XII). Over 25% of
Level-1 observations in the CGCO06 data are exact hits, agvanre20% of the Level-2 obser-
vations. Our Nash players conform exactly with the predisteategy more frequently than in
CGCO06, though the total number of Nash types is relatively \We believe the differences in
exact hit frequencies—especially among Levels 1 and 2—ist iiteely driven by the differ-
ence in instructions between studies and their use of arbsgnse understanding test, either
of which may trigger a Levek- heuristic in subjects.

The stability of levels appears slightly higher in the CGQi2fa, but not as stable as we
found in our guessing games. The Markov transition matriwben games is shown in Table
XIlIl. As in our data, Level-1 acts as an absorbing state, @ladirsubjects have a high prob-
ability of transitioning to Level-1, regardless of theirgent level. The CLPA (constant-level
prediction accuracy) of this Markov matrix is 41.9%. Monta0 simulations reveal that this
is significantly higher (at the 1% significance level) thaa 82.3% CLPA expected if individ-
ual levels were independently drawn from the populatiotrithstion of levels in each game.
In absolute terms, a 41.9% CLPA lies between the 34.7% CLP#emed in our guessing
games and the 57.6% CLPA in our undercutting games.
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Frequency i.i.d. Prob.
CGCO06 Guessing Games
Switch Frequency: 14.8% 22.9%
Non-Switch Frequency: 26.7% 22.9%
Switch Ratio: 0.553 1.00
TABLE XIV. Observed frequency of level-switching among pairs albjects
between randomly-drawn games in CGCO06’s data, comparduetexpected
frequency under independently-drawn (i.i.d.) types.

The stability of relative levels in CGCO06's data also liesAmen that of our guessing games
and our undercutting games. Table XIV reveals a switchitig tf 0.553, which lies between
the ratio of 0.29 found in our undercutting games and 0.89uinguessing games. Monte
Carlo simulations easily confirm that a switching ratio @3B is not generated by random
data p-value less than 0.001), though it implies that one out of\etleree pairs of subjects
with well-ordered levels will generate a strict switch ieihlevels between games.

Finally, using levels to order games also generates a rlestiiteen our guessing game and
undercutting game results: The ratio of strict game-ordgticies over strict non-switches for
randomly-drawn pairs of subjects is 0.683, in between ttie 6d0.618 in our guessing games
and 0.884 in our undercutting games.

The improvement in stability in the CGCO06 data is likely doghe lengthier instructions
and the use of an understanding test. Crawford et al. [208Bahat a best-response under-
standing test is crucial for replicating field settings hessa“most people seem to understand
very well how their payoffs are determined” (p. 32). Althéuge did not require an under-
standing test, our instructions provided adequate andlsidgscriptions of subject payoffs.
For example, subjects in our experiments were told “you bellpaid for this game based on
how small your error is, and smaller errors mean larger gayahathematical formulas for
calculating errors and payoffs were given along with vedscriptions, payoffs (as a func-
tion of errors) were shown in graphical form, and two numedrexamples were worked out. In
a post-experiment questionnaire, we received no feedlhatkstibjects were confused about
payoffs in any of the games.

We view differences between these studies as evidencehbdtavel4# model’s predic-
tions are not robust to varying protocols, as varying thérircsions and understanding tests
may trigger different behavioral heuristics within the sagame. Applying any one behav-
ioral model to the field may require some attention to thelle¥enstruction or amount of
experience that agents have received. Unfortunatelye tlaesors may be difficult to quantify,
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heterogeneous across agents, or unobservable. Uncgdhmit past experiences would then
lead to uncertainty about the predictive accuracy of theel-e\model.

APPENDIX B (ONLINE): VISUALIZING MODEL FIT IN GUESSING GAMES

The fit of the Levelk model in a given guessing game can be visualized by plottingtagram

of actions along with likelihood functions for each of thesfpossible levels. This is done for
each game in Figure Xll. For simplicity, the likelihood furmans are all plotted assuming
A = 1l ande = 0. The label for each level appears below its likelihood fiorcs peak, and the
Level-0 likelihood appears simply as a uniform distribataver the strategy space. The range
of dominated strategies for each game (if any) appears asteeddine labeled DOM. For any
action on the horizontal axis, the assigned level is thatsghiielihood function is greatest at
that point, given thah is chosen optimally for each level.

Before analyzing fit, we note two mathematical regularities arise with the logistic spec-
ification. First, the Level-1 likelihood function is muchtlier than that of the higher levels.
This is because its beliefs are uniform, making deviatiommfperfect best response less costly
in terms of expected loss to the player. Higher levels, bytresih have degenerate beliefs. De-
viations from best response are significantly more costlgné estimates the Levél-model
with randomly-generated data, the Level-1 type will tyfliche the modal type because of
this discrepancy. In other words, the fact that many autkd@stify the Level-1 type is the
most frequently-observed could be an artifact of the logstecification.

Second, levels whose actions are at the boundary of thegyrapace receive nearly double
the likelihood for nearby strategies than do levels witkeiitr actions. This is because the
trembles beyond the boundary are truncated, and the treohpabbability mass is distributed
among strategies within the boundaries. For example, in,G@&§ers who choose actions
closer to the Level-3 prediction may still be categorizedNash types because the Nash like-
lihood function is amplified by truncation much more than tevel-3 likelihood function.
Similar phenomena occur in GG7 and GG9. This is visible iruFegXIl. Since Nash types
are the only types whose predictions lie at the bounda@esiam data will generate relatively
larger frequencies of Nash types than Level-3 types. Adhisjs consistent with our results.

If the Level+« model fits well, peaks in the histograms should align withiigea the like-
lihood functions. Quality of fit clearly differs by game, assvshown in the game-by-game
estimated level distributions in Table 1. The high propamtof Level-0 types in GG7 is due
to players whose action lies in the upper half of the stragggce, while all levels’ predictions
lie in the lower half. The large frequency of Level-1 type&65 comes from that type having
a flat likelihood function that captures several peaks indé@. The jump in Nash types in
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FIGURE XII. Histograms of actions in each guessing game, with ifiebd
functions for each level (assuming= 1).

GG9 is due to a large number of players choosing the lower@ntlpf the strategy space. If
these players are truly using equilibrium logic, then maestanly doing so in this one game;
the frequency of Nash play is much lower in the other five games

APPENDIX C (ONLINE): ROBUSTNESS TO THENUMBER OF GAMES PERESTIMATE

In this appendix we briefly explore the robustness of Lévettimates to the number of games
used in each estimaté It may be that assigning a single level to each observatisadnces
significant noise in the resulting levels, causing the tsdolappear artificially biased toward

3Ane thank Vince Crawford for suggesting this test.
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randomly-generated levels. Estimating levels based otipleigames may reduce this vari-
ability and lead to more reliable estimates of players’ sypeading to greater stability in the
Level-£ model.

Formally, letl’ = {v1,72,...,7vx} denote the set ol games played by the subjects. For
each divisor- of m one can construct partitions of the fodfy, . = (p1, . .., p.) of I' consisting
of r sets ofm/r games each. For examplenif = 6 andr = 3 then one possible partition
of the 6 games into 3 setsi% 3 = {{1,2}, {3,4},{5,6}}. Lettings = m/r, the number of
partitions containing equal-sized sets afelements each is given by

(D)) Q)

q(m,s) = i

Note thatg(m, m) = q(m, 1) = 1. Letq index the various partitions fromto ¢(m, s), so Py, .
is one of the partitions af: games into- equal-sized subsets.

Take any set of data from players overn games, and any divisorof m. We can pick
anyq € {1,...,q(m,r)}, take the partition®?, . = {p1,p2,...,p,}, and for each partition
elemenp;, estimate a level for each subjeaiver the set of games . This is done exactly
according to the maximum-likelihood procedure used in C&@0d in this paper, where the
likelihood of observing data point under levelk is given by a logistic error structure around
the optimal strategy fok, with a ‘spike’ of weights on the exact Levek strategy. The result
is a level estimate for each playem each partition element;, which we denote simply by
k;(j). Thus, we generatelevels for each subject, using/r games (or, data points) for each
level estimated.

In CGCO6r always equals one; in our papeeither equalsn (for game-by-game analyses)
or one (for pooled analyses). In either caser, s) = 1, so the choice of which partition to
choose is trivial. Here we explore intermediate cases wherer < m. ldeally, we would
fix r, generate all possible partitions of sizeand for each partition, generateestimated
levels per subject. We could then perform analysis of thbilgiaof thoser levels (as in
the body of the paper). For example, the switch ratio can bsuledied for each partition
qg€{1,...,q9(m,s)} and the entire ‘distribution’ of (m, s) switch ratios reported.

Sinceq(m, s) can be quite largeg(16,4) = 2,627,625, for example), we instead draw a
small random sample of possible partitions. We then esém#gvels per subject, calculate
the switching ratio for each randomly-drawn partition, aegort the sample distribution of
switch ratios. We perform this exercise for each divisaf m to see how the distribution
of switch ratios would change as more games are used perdstiglate (or, equivalently, as
fewer level estimates per subject are performed). Thismedor both our guessing game data
(wherem = 6) and the CGCO06 guessing game data (where 16).
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FIGURE XIIl. Switching ratios as the number of levels estimated sdject
varies, using many randomly-drawn partitions of the games.

The results of this analysis appear in Figure XIll. The homial axis contains the various
values ofr. The case of = 1 is degenerate; each subject has only one level estimate and
so stability measures such as the switching ratio are naotet&fiThe vertical axis reports the
switching ratio, as described in the body of the paper.

As benchmarks, we include a horizontal line at one to indi¢he switching ratio if the
levels were independent random draws from a fixed distobutiVe also simulate the switch-
ing ratio for the Levelt model with constank; functions; in theory these ratios should all
equal zero, but because a true Level-0 subject (who randeeiécts their strategy) would
occasionally be misclassified as a different level, somdaamess is introduced into the level
estimates. This can result in a small but non-trivial switglratio.

As the number of estimates per subject decreases, so todluwé&gquency with which
randomly-drawn subjects can be strictly ordered by theglkin two randomly-drawn games.
Thus, both the numerator and denominator of the switchitig keecome smaller as de-
creases; this generates higher variance in the switchiiggdigtributions for smalt-.
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CGCO06 order their games based on ‘structure’, roughly spoading to how many steps of
elimination of dominated strategies are necessary to shiv&lash equilibrium of the game.
We report the switching ratios for the partitions that resgais ordering. Specifically, if
{1,2,...,16} is the original ordering of the 16 games, we report the switghatios for the
partitions{{1,...,8},{9,...,16}},{{1,...,4},...,{13,...,16}},{{1,2},{3,4},...,{15,16}},
and{{1},{2},...,{16}}.

The graph reveals that stability in the CGCO06 data improv#sfewer estimates per subject
(or, more games per estimate), though its switching ragesnoverlap with the constant-level
switching ratios. In the best case< 2) the switching ratios approach the 0.288 ratio achieved
in our undercutting games. The ordering of CGC06’s gamesdas structure, however,
does not generate obviously greater or smaller switchitigg.aSwitching ratios in our data
do not improve with more games per estimate. This suggeatsQBCO06’s subjects were
somewhere more persistent in their underlying type anddnhtfaere was some noise added
to their estimated levels by using only one game per estun@e more correctly, assigned)
level.

Again, the most obvious difference in experimental desigiwvieen CGC06 and our exper-
iment is in the length of instructions and use of an undedstantest. We therefore speculate
that one or both of these design features triggered the usieedfevel4 heuristic in more
subjects in the CGCO06 experiment than in ours. This resnltelatively more stable level
estimates across games for their data.
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