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Abstract

This paper estimates the cost of using simple percentage fees rather than
the broker optimal Bayesian mechanism, using data for real estate transactions
in Boston in the mid-1990s. This counterfactual analysis shows that interme-
diaries using the best percentage fee mechanisms with fees ranging from 5.4%
to 7.4% achieve 85% or more of the maximum profit. With the empirically
observed 6% fees intermediaries achieve at least 83% of the maximum profit
and with an optimally structured linear fee, they achieve 98% or more of the
maximum profit.

Keywords: brokers, simple mechanisms, percentage fees, real estate brokerage.

JEL-Classification: C72, C78, L13

1 Introduction

Real world economic agents often employ simple mechanisms. Examples include

uniform pricing by iTunes, cost-reimbursement contracts in procurement, and per-

centage fees employed by credit card companies and real estate brokers.1 On its

∗We want to thank Aviv Nevo and Harry J. Paarsch for early comments on this project and
David Byrne, Arnaud Costinot, David Genesove, Martin Peitz, Juan Santaló, Philipp Schmidt-
Dengler, Yuya Takahashi and participants of the IIOC 2012 in Washington D.C., the SFB TR15
2012 meeting in Mannheim, the Swiss IO Day 2012 in Bern, and EARIE 2012 in Rome for comments
on the paper in its present form. We also want to thank David Genesove and Chris Mayer for
providing us with their data set and Christian Michel for excellent research assistance. Financial
support through a research grant by the Faculty of Business and Economics at the University of
Melbourne is also gratefully acknowledged.

†Department of Economics, Economics & Commerce Building, University of Melbourne, Victoria
3010, Australia. Email: simonl@unimelb.edu.au.

‡Economics Department, University of Mannheim, L7, 3-5, D-68131Mannheim, Germany. Email:
aniederm@rumms.uni-mannheim.de.

1See, respectively, Shiller and Waldfogel (2011), Rogerson (2003), Shy and Wang (2011) and
Hsieh and Moretti (2003).
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surface, at least, this simplicity contrasts with the prescriptions and predictions of

Bayesian mechanism design, which suggests that optimal mechanisms will in general

be rather sophisticated. For example, percentage fees are optimal mechanisms for

brokers if and only if the supply function brokers face is isoelastic (Loertscher and

Niedermayer, 2012), begging the question whether the choice of mechanisms is, in

reality, primarily driven by concerns of simplicity and practicality rather than guided

by insights uncovered by economic theory.

In this paper, we investigate how much profit is sacrificed by the use of simple

mechanisms rather than optimal ones in the case of real estate brokerage. Using a

structural model and the data set of Genesove and Mayer (2001), which was gen-

erously provided to us by the authors, our counterfactual analysis shows that inter-

mediaries who employ the best proportional fee mechanisms with fees ranging from

5.4% to 7.4% achieve 85% or more of the maximum profit. With the empirically

observed 6% fees intermediaries achieve at least 83% of the maximum profit and with

an optimally structured linear fee, they achieve 98% or more of the maximum profit.

Seemingly very little profit is lost using very simple mechanisms, which suggests that

concerns of practicality and economic principles may be well aligned.

We also make two methodological contributions. First, we show how the com-

bination of different numerical techniques can reduce computational time by several

orders of magnitude and hence make the estimation computable in a practically use-

ful amount of time. Second, our results suggest that for future research a simpler

approach can be taken: a family of functions – Generalized Pareto distribution func-

tions – turn out to be a good approximation of the seller’s supply function. This

family of functions allows for a closed-form solution for the problem at hand.2

The fact that simple mechanisms can achieve a large percentage of the optimal sur-

plus or profit has been shown in a variety of contexts. McAfee (2002), Rogerson (2003)

and Chu and Sappington (2007) provide theoretical analysis of simple mechanisms

2Our theoretical results (Loertscher and Niedermayer, 2012) show that Generalized Pareto dis-
tributions are a necessary and sufficient condition for linear fees to be exactly optimal. Therefore,
we could not use this simplifying functional form for the current analysis whose purpose is to find
out how well linear fees perform relative to optimal fees.
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for assortative matching, incentives in procurement, and cost-sharing, respectively.3

Recent empirical work includes Shiller and Waldfogel (2011), who demonstrate that

uniform pricing by iTunes is close to optimal, and Chu, Leslie, and Sorensen (2011),

who study a simple form of bundling, called bundled-size pricing, with an application

to the pricing of theater tickers. To the best of our knowledge, the present paper is

the first to quantify the performance of simple fee setting mechanisms by brokers,

with an application to the real estate brokerage industry. By providing empirically

based measures that quantify how well the simple mechanisms employed by real estate

brokers fare, our paper also contributes to the literature on real estate and real estate

brokerage, which has witnessed an upsurge of interest over the past decade; see, for

example, Genesove and Mayer (1997, 2001), Hsieh and Moretti (2003), Hendel, Nevo,

and Ortalo-Magné (2009), and Genesove and Han (2012).

While our question and setup are quite different, our paper has similarities to

the empirical work on auctions, such as Donald and Paarsch (1993), Bajari (1997),

Bajari and Hortaçsu (2003), and Shneyerov (2006) because we model the bargaining

procedure as an auction. The similarity to Bajari and Hortaçsu (2003) goes even

further: the auctions for which they estimate the optimal reserve prices are run by a

profit maximizing intermediary – eBay – that also charges a transaction fee. Some

of our methods should be applicable in a modified way to analyze the fee setting

behavior of intermediaries in setups beyond real estate brokerage.

The remainder of this paper is structured as follows. Section 2 introduces the

theory. The empirical analysis and results are described in Section 3. Sections 4

and 5 discuss results and methodological contributions. Section 6 concludes. The

appendix contains additional results and a description of the numerical methods.

2 Model

The theoretical model is a slight generalization of the dynamic random matching

model analyzed in Loertscher and Niedermayer (2012, LN hereafter).4 LN have the

3Holmstrom and Milgrom (1987) analyze the optimality of simple, linear incentive schemes in an
intertemporal principal-agent model.

4The model underlying our empirical analysis is more general in that we allow for many buyers
to be matched to any broker-seller pair. We also allow for a more general bargaining procedure than
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following stage game for buyers viewing a real estate property that a seller offers for

sale through a broker. Every buyer’s reservation price – the maximum amount he

is willing to pay – v is his private information and drawn independently from the

distribution F , which is common knowledge. The seller’s opportunity cost of selling –

the minimum amount he is willing to accept – c is also private information and drawn

from the commonly known distribution G. The densities of the distributions are f

and g with the respective supports [v, v] and [c, c]. LN model these distributions as

endogenous outcomes of a larger market interaction: both traders take into account

their option value of trading with other potential trading partners. Further, high

cost sellers and low valuation buyers must spend more time searching for a trading

opportunity than others and are hence overrepresented in the market relative to

the distribution of entrants. Since our estimation of the parameters of the model

is agnostic about the market equilibrium concept that generates these endogenous

distributions F andG, we will first describe the predictions of the model based directly

on the endogenous distributions. We will need to make some (limited) assumptions

about the equilibrium concept once we perform the counterfactual analysis.

2.1 Deriving the Data Generating Process

As Hsieh and Moretti (2003) note, the fees charged by brokers are almost always very

close to 6%. As an approximation of the bargaining process, we model the behavior

of market participants in the following way. The seller sets an optimal reserve price

p for an auction with a 6% fee. The buyers participate in a second price auction. If

trade occurs, the broker receives 6% of the transaction price. The exposition becomes

simpler by defining some additional functions.

Define the virtual valuation function Φ and the virtual cost function Γ as

Φ(v) := v − 1− F (v)

f(v)
and Γ(c) := c+

G(c)

g(c)
.

Further, define the (price) elasticity of demand ηd and the (price) elasticity of supply

the take-it-or-leave-it offers underlying most of the theoretical analysis in LN.

4



ηs as
5

ηd(v) :=
vf(v)

1− F (v)
and ηs(c) :=

cg(c)

G(c)
.

Observe that Φ(v) = v(1 + 1/ηd(v)) and Γ(c) = c(1 + 1/ηs(c)). Let ω(p̂) be the fee

charged by the broker, leaving p̂ − ω(p̂) to the seller if a transaction occurs at price

p̂. For the empirically observed fees of 6%, ω(p̂) = 0.06p̂. Assume that k ≥ 1 buyers

with valuations that are independently drawn from F participate in a second price

auction where the reserve price p is set by the seller. The seller’s problem is then to

choose p to maximize

k(p−ω(p))(1−F (p))F (p)k−1+k

∫ v

p

(y−ω(y))(1−F (y))(k−1)F (y)k−2f(y)dy+cF (p)k.

(1)

The above equation is the same as in standard auction theory, except that the seller

has to pay the fee ω(·). The first term in the sum is the seller’s profit if only one

buyer bids above the reserve price p, in which case he receives p− ω(p). The second

term is the expected net price y−ω(y) given by the second highest bid if two or more

buyers bid above p. The third term represents the case in which no one bids above

p. For ω(p̂) = 0.06p̂, we have p̂ − ω(p̂) = 0.94p̂, so that the problem simplifies to

maximizing

0.94

{

kp(1− F (p))F (p)k−1 + k

∫ v

p

y(1− F (y))(k − 1)F (y)k−2f(y)dy +
c

0.94
F (p)k

}

over p. Solving the first-order condition yields

p = Φ−1(c/0.94), (2)

which is independent of k, reflecting a result that is well-known from auction theory.

Therefore, it does not matter whether the seller knows the number of buyers at the

time he sets the reserve price.

If a buyer and a seller trade, they leave the market. If there is no trade, the buyer

and seller stay in the market until the next rematching, which happens after time τ

5To see that these are the price elasticities, interpret the probability that a buyer is willing to
buy and a seller is willing to sell at price p as quantity demanded and quantity supplied, which
are denoted qd(p) := 1 − F (p) and qs(p) := G(p), respectively. The price elasticities being defined
as −qd

′

(p)p/qd(p) and qs
′

(p)p/qs(p), ηd(p) = pf(p)/(1 − F (p)) and ηs(p) = pg(p)/(G(p)) follows
immediately after differentiation and substitution.
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has passed. With exogenous probability 1− ǫ a seller or buyer drop out of the market

without trading. The dropout probability is a simple device to take into account a

variety of sources of impatience, for example, traders may have deadlines regarding

when they want to move or buyers may have to rent temporarily at a high price if

they do not buy.

The number of buyers who visit a seller in a given period is a random variable

that follows a Poisson process with arrival rate λ := λ0NB/NS, where λ0 ∈ (0, 1] is

the probability that a randomly picked buyer has a preference for this seller’s house

and NB and NS are the masses of buyers and sellers in the market, respectively.6

The Poisson distribution of the number of buyers is founded in random matching

theory. The probability πk(λ) of being matched to k buyers with k = 0, 1, 2, .. is then

πk(λ) = e−λλk/(k!). Accordingly, the probability that a seller who sets the reserve

price p does not sell in a given period is

F̂ (p) :=

∞
∑

k=0

πk(λ)F (p)k = e−λ(1−F (p)). (3)

Note that (3) implies that F (p) = 1 + ln(F̂ (p))/λ. This allows us to express the

virtual valuation Φ(v) without λ and F and in terms of F̂ only:

Φ(v) = v +
F̂ (v)

f̂(v)
ln(F̂ (v)),

where f̂ is the density of F̂ .

The time on market t of a property has a geometric distribution with the distri-

bution function 1− (ǫF̂ (p))t/τ and mean

T (p) =
τ

1− ǫF̂ (p)
. (4)

The probability that a property sells in period t is (1 − F̂ (p))(ǫF̂ (p))t/τ . Taking the

sum of this geometric series over t from 0 to infinity gives us the probability 1−F̂∞(p)

that a house that is offered at price p is ever sold:

1− F̂∞(p) =
1− F̂ (p)

1− ǫF̂ (p)
. (5)

6We model heterogeneity of houses and preferences in a simple, binary way. With probability λ0,
a buyer has a preference for a given house and values it according to v drawn from F (v), and with
probability 1− λ0 she does not like the house in the sense that her valuation of it is 0.
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When taking the model in LN to the data, we make two modifications of the baseline

model in addition to those on matching and bargaining. First, the price p is a quality-

adjusted reserve price, which is observed with an error. Second, time on market is

observed with an error. The details of how we model these errors are spelled out in

Section 3.2.

2.2 Model with Optimal Fee Setting

We can now consider the model for the counterfactual analysis. We need one addi-

tional assumption for this: when the broker proposes the exchange mechanism for

the buyers and the seller, he faces the competitive threat that the buyer and seller

may go to a different broker in the future if they do not like the mechanism he offers.

We model this competitive threat in the spirit of Burdett and Mortensen (1998) in

the following way, with similarities to Wolinsky (1986)’s and Anderson and Renault

(1999)’s models of imperfect competition. The broker can only extract rents from the

current trade, but not from future trades.7 Hence, the broker’s mechanism depends

directly on the equilibrium distributions F and G for the current trade, which he

takes as exogenously given. This assumption means that the broker does not try to

change the distributions F and G by, for example, reducing the option value of future

trade or by letting certain types of traders cumulate more in the market.

The broker designs a mechanism that maximizes his own profits given the incen-

tive compatibility and individual rationality constraints of participants. Arguments

similar to those in LN show that no mechanism exists that generates higher profits

than a fee setting mechanism, which is defined as follows. The broker announces a

fee function ω(p), then the seller sets a reserve price p, and an arbitrary number of

buyers, which is drawn from a Poisson distribution with arrival rate λ, participate

in a second price auction.8 If there is trade, the winning buyer pays the transaction

7Alternatively, one could allow the level of competition between brokers to vary. Appendix C in
LN provides a model that has the required flexibility. In the spirit of Burdett and Mortensen (1998),
it assumes that every seller who is matched to a broker in a given period does not stay with the
same broker in the next period with probability ν ∈ [0, 1]. The present model corresponds to the
case ν = 1.

8English auctions, which are strategically equivalent to second price auctions in our environment
with private values, appear to be a good description of the bargaining between sellers and buyers in
real estate markets. Whenever a seller (or his broker) receives a new offer, he will advise the bidder
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price p̂, which is given by the maximum of the second highest bid and the seller’s

reserve price p. Therefore, the seller nets p̂ − ω(p̂) and the broker nets ω(p̂) if trade

occurs. If there is no trade, the payoff is zero for all players in the current period.

The optimal fee function is

ω(p) = p−Ev[Γ
−1(Φ(v))|v ≥ p] = p−

∫ v

p

Γ−1(Φ(v))
[ln F̂ (v)]′

ln F̂ (p)
dv, (6)

which induces a seller with cost c to set the price

P (c) := Φ−1(Γ(c)), (7)

as shown in Proposition 1 in LN. It can also be shown that an overall increase in the

elasticity of supply ηs(c) leads to an overall decrease in fees ω(p) and, through this

channel, to an overall decrease in the gross prices P (c). An overall increase in the

elasticity of demand ηd(v) leads to a decrease in prices P (c), which has an ambiguous

effect on fees.

Constant elasticities of supply are helpful to obtain further insights about fees. If

the seller’s cost has the distribution G(c) = cα, the elasticity of supply is constant

with ηs(c) = α and the optimal fee is proportional to the price: ω(p) = p/(1 +

α). A similar, more general observation is that for mirrored Generalized Pareto

distributions9 G(c) = [(c − c)/(c − c)]α the optimal fee function is linear, ω(p) =

p/(1 + α) − c/(1 + α) (see Proposition 4 in LN). Note that for linear virtual cost

distributions, the fees are determined solely by the seller’s elasticity of supply and

are independent of the buyer’s distribution.

Factors driving optimal fees towards linearity Beyond being analytically con-

venient, one may wonder whether there are reasons to expect mirrored Generalized

with the current highest bid. With the empirically observed proportional fees, the same results are
obtained assuming a first price auction even if the buyers are not aware of the number of competitors
when placing their bids as long as all buyers are ex ante equally well (or equally poorly) informed
of this number; see Krishna (2002, p. 34) for details. However, for the counterfactual analysis that
uses the broker optimal fee, which will typically not be proportional, additional structure would
have to be imposed for first price auctions.

9These are equivalent to distributions with linear virtual cost functions, which have linear inverse
hazard rates G(c)/g(c). Here we focus on mirrored Generalized Pareto distributions with a finite
lower bound. A mirrored Generalized Pareto distribution with an infinite lower bound is a (mirrored)
exponential distribution G(c) = exp(−α(c− c)).
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Pareto distributions and the linear optimal fees they imply to be plausible descrip-

tions of reality. Three forces drive optimal fees towards linearity. LN identify two

forces that lower the elasticity of supply and make it “more constant”. The first one

arises in a static setup (i.e. when ǫ = 0) and the second one results from dynamics.

To understand the static effect, assume that the seller’s opportunity cost of selling

stems from price offers for his property that are generated outside the broker’s plat-

form. If the seller receives one outside price offer c drawn from G(c), the implied

elasticity of supply is ηs(c) = cg(c)/G(c). If the seller gets α > 1 i.i.d. outside price

offers drawn from G, then the distribution of the best offer is G(c)α, which implies

elasticity αηs(c) > ηs(c). This clearly lowers fees and makes them “more linear” in

the following sense. Let ωα(p) be the optimal fee function associated with the dis-

tribution G(c)α. This function ωα(p) lies within a concave upper bound ωα(p) and a

convex lower bound ωα(p), and the difference ωα(p)− ωα(p) decreases in α and goes

to 0 for all p as α goes to infinity (Proposition 2 in LN).

The dynamic effect arises because high cost sellers set higher prices and have a

lower probability of sale. Hence higher cost sellers are overrepresented in the market

compared to the entrant population. This transformation from inflow to stock dis-

tributions increases the density of sellers with higher costs. The dynamic cumulation

effect increases the elasticity of demand and lowers fees. It also makes the inverse

elasticity 1/ηs(c) “more constant” and fees “more linear” (see Propositions 6 and 7

and the numerical results in Section 3.3 in LN), with a variety of measures being

used for “closeness of the fees to linearity”: the absolute curvature of the virtual cost

function |Γ′′(c)|, the distance between the convex hull and the concave hull of Γ, and

the ratio of profits generated by the best linear fee and by the optimal (non-linear)

fee.

A further effect is based on Extreme Value Theory in statistics (see, for exam-

ple, Coles (2001)). If only the most motivated sellers enter the market (only those

whose costs are below an upper threshold c∗), the distribution of sellers in the market

is G(c)/G(c∗). The second theorem of extreme value theory (Pickands-Balkema-de

Haan theorem) states that as c∗ goes to the lower bound of the support c, the trun-
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cated distribution G(c)/G(c∗) converges to a Pareto distribution (after an appropriate

rescaling). This asymptotic result holds for arbitrary G satisfying some weak regu-

larity conditions.10

Optimal, linear and proportional fees We now bring the theoretical model to

the data and turn to the empirical question of how brokers fare when they employ

linear or proportional fees rather than optimal fees. The optimal profit of an inter-

mediary given k buyers is

Evi,c[max
i=1..k

{Φ(vi)− Γ(c), 0}] = Eṽ∼F (ṽ)k ,c[max{Φ(ṽ)− Γ(c), 0}]

Taking expectations over k we obtain

Πoptimal =

∞
∑

k=0

∫ ∫

πk(λ)max{Φ(ṽ)− Γ(c), 0}dG(c)[F (ṽ)k]′dṽ

=

∫ ∫

max{Φ(ṽ)− Γ(c), 0}dG(c)[

∞
∑

k=0

πk(λ)F (ṽ)k]′dṽ

=

∫ ∫

max{Φ(ṽ)− Γ(c), 0}dG(c)[F̂ (ṽ)]′dṽ, (8)

where the second equality follows by moving the sum into the brackets and the third

makes use of the definition of F̂ in (3). This means that we can compute Πoptimal

without knowledge of λ and F , provided we have F̂ and G. This result is important

for our analysis because we can identify F̂ but not λ and F separately from the data,

as discussed below.

The expected profit of a seller with cost c and reserve price p facing k ≥ 1 buyers

is given in (1) for arbitrary ω(·) (and not only the optimal fee function). Taking

expectations over k we obtain

(p− ω(p)))(1− F (p))[
∑∞

k=1 πkkF (p)k−1]

+
∫ v

p
(y − ω(y))(1− F (y))[

∑∞
k=1 πkkF (y)k−1]′dy +

∑∞
k=0 cF (p)k

= (p− ω(p)))(− ln F̂ (p))F̂ (p) +
∫ v

p
(y − ω(y))(− ln F̂ (y))f̂(y)dy + cF̂ (p). (9)

10Formally, the distribution has to be in the domain of attraction of an extreme value distribution.
As noted in the literature on extreme value theory, all continuous “textbook” distributions satisfy
these conditions. Examples are the normal, exponential, Cauchy, Beta, and uniform distributions.
See Coles (2001) for more details.
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Note that for k ≥ 1, πkk = λπk−1, and therefore
∑∞

k=1 πkkF (p)k−1 = λ
∑∞

k=0 πkkF (p)k =

λF̂ (p). Replacing
∑∞

k=1 πkkF (p)k−1 by λF̂ (p) and 1−F by − ln(F̂ )/λ, we obtain the

equality. Therefore, the seller’s expected profit can be written in terms of F̂ only,

irrespective of λ and F . The seller’s optimal reserve satisfies the first-order condition

0 = [(p− ω(p)− c)(− ln F̂ (p))]′.

In addition, the intermediary’s expected profit as a function of p given an arbitrary

fee function ω will also be independent of λ and F as it is simply

Π(p, ω) = ω(p)(− ln F̂ (p))F̂ (p) +

∫ v

p

ω(y)(− ln F̂ (y))f̂(y)dy, (10)

which can be derived in the same way as (9). Our counterfactual analysis is concerned

with the intermediary’s profit and how the seller’s maximization problem changes as

fees change. Since these profits can be expressed in terms of F̂ alone, we only need

to identify F̂ rather than λ and F separately.

For a linear fee ωξ,ζ(p) = ξp + ζ the seller’s optimal reserve price is P−1
ξ,ζ (c) =

Φ−1((c+ ζ)/(1− ξ)), which can be derived from the first-order condition. The inter-

mediary’s expected profit (taking expectations also over prices) is

Πξ,ζ = Ec[Π(Pξ,ζ(c), ωξ,ζ)]. (11)

Maximizing with respect to the slope ξ and the intercept ζ of the fee yields the

best linear profit Πlinear = maxξ,ζ Πξ,ζ. Note that under a linear fee, the seller’s

optimal reserve is Pξ,ζ(c) = Φ−1((c + ζ)/(1− ξ)). In addition to the performance of

linear fees, we will estimate the profits generated by the best proportional fee function

Πproportional = maxξ Πξ,0 and by the 6% fee which is a reasonable approximation of

the fee typically chosen by brokers, Π6% = Π0.06,0.

3 Data, Identification, and Estimation

3.1 Data

The data set we use is the one constructed and used by Genesove and Mayer (2001).

These data track individual properties in the condominium market in downtown
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Boston and contain the date of the entry and exit of a property, listing price, and,

if applicable, sale price, and property characteristics. Importantly, where available

the data contain the sale price of previous transactions, which Genesove and Mayer

(2001) also used to account for unobserved property heterogeneity in constructing

a quality-adjusted price as discussed below. The data set includes property listings

from January 6, 1990 to December 28, 1997 and property delistings (due to sale or

withdrawal) from May 10, 1990 to March 16, 1998. We have 5792 observations in

total.

As we are adding complexity to our model by solving for the optimal mechanism,

we prefer to reduce complexity in other dimensions. In particular, we use a model that

assumes a stationary environment. For stationarity to be a plausible assumption, we

only use data from April 1, 1993 to April 1, 1996 because the changes in the real estate

price index were relatively modest during this period. As an additional measure to

reduce the effect of price changes over time, we do separate estimations for individual

years, that is the year starting from April 1, 1993; from April 1, 1994; and from April

1, 1995. There is a trade-off when choosing the time length of the interval for which

one does a separate estimation: a shorter interval reduces the effect of price changes

over time and increases the weight of the effect of cross-sectional price variation.

However, it also leads to fewer observations per estimation.11 A calendar year also

appears to be the appropriate choice for the time interval on the ground that the

standard deviation of the price index within a year between 1993 and 1995 is much

smaller than the standard deviation of the quality adjusted price. A further indicator

is a measure stemming from a widely documented stylized fact in real estate markets:

the correlation between price and time on market is weakly positive in cross-sectional

data and negative in longitudinal data.12 An intuitive explanation for the former

11Another effect is that some property is listed at the end of one period and sold at the beginning
of another. As the results of the counterfactual analysis performed for different years are similar,
we expect this effect to be small.

12Kang and Gardner (1989) provide empirical evidence that time on market increases with price
in cross-sectional data – both based on their own dataset and on a review of other empirical work.
Similar findings are reported in Glower, Haurin, and Hendershott (1998) and Genesove and Mayer
(1997, 2001). The empirical literature typically finds a negative correlation between prices and
vacancies – the latter can be seen as a proxy for time-on-market. Quigley (1999) investigates the
effect of economic cycles on the housing market using international data on housing. He finds a
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observation is that expensive houses need more time to sell. An explanation for the

latter is that in times of booms, houses sell faster and at higher prices. Time on

market increases in quality adjusted price for the years we include in our estimation.

Further, the relative change of the real estate price index is generally small for the

years considered. Table 1 shows the standard deviation of the price index within the

time interval, the standard deviation of quality adjusted prices, the change of the

price index, and the slope of time on market in price. Fig. 1 displays the movement

of the real estate price index. The table and the figure suggest that for the time

period 1993 to 1995, a time interval of one year appears to be sufficiently short to be

considered cross-sectional. Excluding data for the years before 1993 and after 1995

has the additional advantage of avoiding truncation issues, which would occur for the

first two and last two years in our dataset.

Measures of Stationarity

Year Index Std/Mean Price Std/Mean Relative ∆Index

Slope
Time on Market

– Price
Coeff. (Std. Err.)

1990 0.110 0.199 -0.241 -87.6 (28.2)
1991 0.021 0.204 -0.030 39.0 (20.9)
1992 0.051 0.214 0.131 67.0 (21.5)
1993 0.016 0.203 0.006 21.3 (22.0)
1994 0.020 0.185 -0.003 19.2 (22.0)
1995 0.026 0.190 0.067 40.1 (20.2)
1996 0.041 0.204 0.097 -7.6 (15.6)
1997 0.020 0.201 0.044 7.2 (9.8)

Table 1: Standard deviation of the real estate index divided by its mean in a given
time interval, standard deviation of the quality adjusted price divided by its mean
in a given time interval, change of the index divided by the index at the beginning
of the interval, and slope time on market – quality adjusted price. The slope is the
coefficient β1 in the regression T = β0 + β1P + ǫ, where T is the time on market and
P the quality adjusted price.

There are 2455 observations between April 1, 1993 and April 1, 1996. We ex-

clude data with a quality-adjusted price larger than two and less than half as well as

negative correlation between vacancies and prices. See also the overview about empirical findings
on the relation of vacancies and prices provided in Wheaton (1990).
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Figure 1: Development of the real estate price index in Boston. Data between the
two dashed lines were used for estimations.

properties that were on the market for more than two years. This applies to 5.0%

of the observations and results in 2333 remaining observations. The reason for the

exclusion is that a property that is offered at less than half of or more than two times

the previous transaction price (adjusted by the movement of the real estate price

index) is likely to have undergone significant changes in quality or to constitute an

error within the dataset. Similarly, a property on the market for more than two years

was probably not seriously marketed. This exclusion does not change the estimation

results qualitatively as shown in the robustness checks reported in the appendix.

Table 2 contains descriptive statistics of the included data. The average ratio of

transaction price over list price is remarkably similar to the one found by Merlo and

Ortalo-Magné (2004, Table 1), who use data from two regions in the United Kingdom

(UK). Unsold houses stayed longer on the market than houses that did sell. If a house

is delisted and relisted within four weeks, it is considered to be the same transaction.

For further details about the data, see Genesove and Mayer (2001).

14



Descriptive Statistics

Variables All Houses Sold Houses Unsold Houses

Observations 2333 1522 811
Listing Price $223,077 ($177,736) $231973 ($172,861) $206,383 ($185,501)

Quality Adjusted
Listing Price

1.139 (0.219) 1.125 (0.220) 1.165 (0.215)

100Transaction Price
Listing Price

92%

Time on Market 148 (134) days 130 (123) days 182 (147) days

Table 2: Sample Means (Standard Deviations) of Descriptive Statistics

3.2 Estimating the Dynamic Random Matching Model with

Measurement Error

We use the quality index constructed by Genesove and Mayer (2001) which is based

on previous transaction prices and a quarterly real estate price index P index
q . Formally,

in quarter q the measured “objective” quality index ϑ̂i of house i which was previously

traded in quarter q′ < q for the price P̂iq′ is

ϑ̂i =
P index
q

P index
q′

P̂iq′.

We assume that the true quality index ϑi is measured with a multiplicative error ǫQi ,

which may stem from an imperfect measurement of the quality index or changes in

the quality of a property, that is, the measured quality is ϑ̂i = ϑiǫ
Q
i .

13 While the price

index P index
q is adjusted every quarter, our analysis is based on annual data. In what

follows we therefore drop the time-index for individual observations.

Although it would be interesting to have a complex empirical model that takes into

account many effects besides those of our model, it is also interesting and informative

to analyze how well our baseline model can explain observations if we add two minimal

modifications to this model.

First, the listing price is an imperfect proxy of the seller’s reserve price as a

sizable number of properties sell below the listing price. We account for this by

assuming that the true quality-adjusted reserve price of seller i, denoted by pi, involves

13This measure of quality adjustment is appropriate if all house prices move in proportion from
one year to another. It neglects the impact of the seller specific type at time q′ and of structural
changes in demand from q′ to time q.
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a multiplicative error term ǫDi , which may be thought of as a “discount” on the listing

price. If Pi is the observed listing price of object i, the observed quality- and discount-

adjusted reserve price pi satisfies Pi = piǫ
D
i ϑ̂i, or equivalently,

pi =
Pi

ǫDi ϑ̂i

=
Pi

ǫPi ϑi

, (12)

where the error of the proxy is ǫPi := ǫQi ǫ
D
i . We denote the density of ǫPi as hp(ǫ

P
i )

and assume that it is log-normal.

Second, the true time on market ti is also observed with an error, denoted ǫTi , so

that

Ti = ti + ǫTi ,

where Ti is the observed time on the market. The error ǫTi may arise because a broker

starts to show the property some time after it has been listed or because a property is

delayed in being delisted after the buyer and the seller agreed on a deal. In the data

set we use (described above), most properties are listed and delisted on a Sunday,

Thus, we essentially have weekly data and delay happens at least until the end of the

week.

Denote the joint density of prices and times on market as predicted by our baseline

model as htps(p, t, s) and the density of the error term for the time on market ǫTi as

ht(ǫ
T
i ). Let si be 1 if the house was sold and 0 otherwise.

First, we describe the prediction of the baseline model without error terms. The

empirical inverse price function is denoted by PI(p) = 0.94Φ(p). This function gives us

the cost c of a seller who will optimally set the price p = Φ−1(c/0.94). As sellers’ costs

have density g(c), the steady state density of prices is proportional to g(PI(p))P
′
I(p) =:

gp(p). Sellers that spend a long time on the market are over represented in steady

state compared to the entrant population. Hence, to obtain the entrant distribution

of prices, we have to divide by the average time on market, denoted T (p). The

entrant density of prices is therefore given as σg(PI(p))P
′
I(p)/T (p) =: gp0(p), where

σ is a constant that ensures that the density adds up to 1.14

Since rematching occurs every τ periods, and a house drops out of the market

with probability 1 − ǫ and is sold with probability 1 − F̂ (p), the probability that a

14In the matching model, σ is the mass or stocks of sellers in the market.
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house is still on the market after t periods is (ǫF̂ (p))t/τ . Hence the joint distribution

of p, t, and s has the density

htps(t, p, s) =

{

(1− F̂ (p))(ǫF̂ (p))tgp0(p) if s = 1,

(1− ǫ)F̂ (p)(ǫF̂ (p))tgp0(p) if s = 0.
(13)

As the quality-adjusted reserve price p and time on market t are observed with

noise ǫP and ǫT , the likelihood of an observation Xi = (Ti, Pi, si) given the parameter

vector θ as specified below is

l(Xi|θ) =
Ti/τ
∑

k=1

∫ ∞

−∞

htps(Ti − kτ, Pi/ǫ
P , si)ht(kτ)hp(ǫ

P )dǫP (14)

where kτ is the summation variable representing the error term ǫT .

3.3 Identification

Identification without measurement errors If the quality-adjusted price and

time on market were observable without the errors ǫP and ǫT , it would be easy to

see that our model is non-parametrically identifiable given observations of quality-

adjusted price, time on market and whether a house was sold: Rearranging (4) and

(5), the expressions for time on market as a function of the quality-adjusted price

T (p) and for the probability of ever selling 1− F∞(p), we obtain

1− F̂ (p) =
1− F̂∞(p)

T (p)/τ
,

ǫ =
T (p2)− T (p1)

T (p2)(1− F̂∞(p1))− T (p1)(1− F̂∞(p1))
,

τ =
T (p1)F̂∞(p2)− T (p2)F̂∞(p1)

F̂∞(p2)− F̂∞(p1)
,

where p1 and p2 are two arbitrary prices (or – with some modification of the equations

– price segment).15 This makes F̂ , ǫ, and τ non-parametrically identifiable. Knowing

F̂ , the distribution of sellers’ costs G is non-parametrically identifiable by the dis-

tribution of prices Gp via the relationship G(c) = Gp(Φ
−1(c/0.94)) because a seller

with cost c sets the optimal reserve price Φ−1(c/0.94). Given F̂ and G, our theory

provides the unique best-response fee-setting mechanism of the broker.

15The simplest example would be a price that never leads to trade and a price that leads to
instantaneous trade, p2 = v and p1 = v. This simplifies the expressions to τ = T (v) and ǫ =
(T (v)−T (v))/T (v). In practice, one would want to take two different price segments and expectations
over them, rather then two prices.
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Identification with measurement errors With errors in the measurement of the

quality adjusted discounted reserve price ǫP and of time on market ǫT , the argument

is more involved, but identification is still possible. Redefine the observed probabil-

ity of ever selling 1 − F̂∞(Pi/ϑi) and the time on market of sold and unsold houses

T s(Pi/ϑi) and T u(Pi/ϑi) as functions of the observed quality adjusted listing price

Pi/ϑi rather than the true (quality- and discount-adjusted) reserve price pi. Further,

let T̂ s(Pi/ϑi) := T s(Pi/ϑi) + E[ǫT ] and T̂ u(Pi/ϑi) := T u(Pi/ϑi) + E[ǫT ] be the ob-

served average times on market. The probability of ever selling given Pi/ϑi and ǫPi is

Prob(s = 1|Pi/ϑi, ǫ
P
i ) = (1−F̂ (Pi/(ϑiǫ

P
i )))/(1−ǫF̂ (Pi/(ϑiǫ

P
i ))) and the probability of

never selling Prob(s = 0|Pi/ϑi, ǫ
P
i ) = (1− ǫ)F̂ (Pi/(ϑiǫ

P
i ))/(1− ǫF̂ (Pi/(ϑiǫ

P
i ))). Given

the unconditional density hp(ǫ
P ), the conditional densities are hp(ǫ

P |Pi/ϑi, s = 1) ∝
hp(ǫ

P )/Prob(s = 1|Pi/ϑi, ǫ
P ) and hp(ǫ

P |Pi/ϑi, s = 0) ∝ hp(ǫ
P )/Prob(s = 0|Pi/ϑi, ǫ

P )

by Bayes’ Law. This gives us

1− F̂∞(Pi/ϑi) = EǫP
i
∼Hp

[

1− F̂ (Pi/(ϑiǫ
P
i ))

1− ǫF̂ (Pi/(ϑiǫPi ))

]

, (15)

T̂ s(Pi/ϑi) = EǫPi ∼Hp(·|Pi/ϑi,s=1)

[

τ

1− ǫF̂ (Pi/(ϑiǫPi ))

]

+ E[ǫT ],

T̂ u(Pi/ϑi) = EǫPi ∼Hp(·|Pi/ϑi,s=0)

[

τ

1− ǫF̂ (Pi/(ϑiǫPi ))

]

+ E[ǫT ]

Note that (15) and T̂ u(Pi/ϑi)−T̂ s(Pi/ϑi) do not require any knowledge about the dis-

tributions of ǫT and c and identify F̂ and Hp for given ǫ and τ . The density of time on

market t conditional on a particular price Pi/ϑi, EǫP∼Hp,ǫT∼Ht
[(ǫF̂ (Pi/(ϑiǫ

P )))t/τ−ǫT |ǫT ≤
t/τ ] identifies Ht. This uses only one price Pi/ϑi. The different densities of t for two

additional prices Pj/ϑj and Pl/ϑl pin down ǫ and τ . Only the seller’s distribution

G remains to be identified. It is non-parametrically identifiable in the same way as

without measurement errors ǫP and ǫT because G(c) = Gp(Φ
−1(c/0.94)).

3.4 Estimation Procedure

While our model is non-parametrically identifiable in principle, our estimation is

based on a parametric specification of the model and on Bayesian estimation meth-

ods. The main reason is that our main hypothesis is – loosely speaking – that if one
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was to pick distributions F , or equivalently F̂ , and G randomly, then “most of the

time” (or “on average”) linear fees would perform close to optimally. Drawing F̂ and

G from the Bayesian posteriors distribution is a natural choice and also provides a

clearer meaning to “on average”. Further, the standard maximum likelihood estima-

tor is biased because of the nuisance parameters and possible discontinuities in the

likelihood function. Using a Bayesian estimator avoids the problems arising for the

maximum likelihood estimator. Section 5 discusses methodology in more detail.

For our estimation we make the following functional form assumptions and take the

following parametrization. We assume that F̂ (v) and G(c) are Beta distributions in

the sense that (v− v)/(v− v) and (c− c)/(c− c) are Beta-distributed with respective

parameters (αF , βF ) and (αG, βG), where the density of the Beta distribution for

xi is proportional to xαi−1
i (1 − xi)

βi−1 with i = F,G and xF = (v − v)/(v − v)

and xG = (c − c)/(c − c). The error in time on market ǫT follows a geometric

distribution with parameter βT , whose probability mass function is proportional to

e−ǫT /βT . Finally, the error in the quality-adjusted price ǫP is assumed to be normally

distributed with mean 0 and variance σ2
p . The advantage of using Beta distributions

is that they are flexible in shape and specialize to linear virtual cost and valuation

functions for βG = 1 and αF = 1, respectively. The vector of parameters is thus

θ = (αF , βF , αG, βG, βT , σp, ǫ, v, v, c, c, λ).
16 We set c = v to simplify the computations

and c = (1− ξempirical)v and the empirical percentage fee ξempirical to 0.06.

Given observations X = {Xi}Ni=1 = {(Ti, Pi, si)}Ni=1 and the parameter vector θ,

the likelihood function for the N observations is l(X|θ) :=
∏

i l(Xi|θ), where l(X|θ) is
the probability of observing X given θ. The unconditional probability of observing X

is denoted by l(X). We are searching for the posterior beliefs about the parameters

θ given X , π(θ|X).17 By Bayes’ Law π(θ|X) = l(X|θ)π(θ)/l(X), where π(θ) is

the prior about θ. Assuming a uniform prior π(θ), we obtain the proportionality

16Note that θ does not include the period length τ , which is the only parameter that we cannot
estimate. This is partly because we use a discrete time model, so the distribution of the error in
time on market ǫT cannot be compared across different τ . Hence comparisons of the likelihood
function would not make sense. A remedy would be to use continuous time errors ǫT . We chose to
run robustness checks with alternative values of τ .

17We use lower case π to denote beliefs and, as above, upper case Π to denote expected profits.
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π(θ|X) ∝ l(X|θ) as l(X) does not depend on θ.18

We are seeking to find Bayesian estimates of the mean and variance of several

functions y(θ), that is, Eθ∼π(θ|X)[y(θ)] and Varθ∼π(θ|X)[y(θ)]. These functions y(θ) are

the ratio of linear over optimal profit Πlinear(θ)/Πoptimal(θ), the ratio of proportional

over optimal profit Πproportional(θ)/Πoptimal(θ), the ratio of 6% profit over optimal profit

Π6%(θ)/Πoptimal(θ), the optimal proportional fee ξproportional(θ), and the optimal linear

fee with fixed component ζlinear(θ) and slope component ξlinear(θ).

Computing the expectations requires computing a 10-dimensional integral. This

is numerically challenging as a simple approach would lead to a computational time

of several years.19 We use several numerical improvements to reduce computational

time to a few hours (see Section 5 and Appendix B).

While our main interest is the Bayesian posterior beliefs about the different vari-

ables, for illustration purposes (for example, to plot the predicted distribution of

prices or the relation of price and time on market) we also want a pointwise es-

timator for θ. For this we take the Maximum A Posteriori Probability estimator

θMAP = argmaxθ π(θ|X), that is, the mode of the Bayesian posterior distribution.20

3.5 Results

Estimates of parameters In Table 3 we report the Bayesian estimates for the

parameter vector θ under the assumption that there are seven matchings per week

(that is, τ = 1/365). We report the Bayesian mean (for example Eθ∼π(θ|X)[αF ] in

the first row), the Bayesian standard deviation (for example
√

Varθ∼π(θ|X)[αF ] in

parentheses in the first row), and the computational error (in square brackets). The

18To be precise, we constrain the uniform prior π(θ) to be the same positive constant wherever
the constraints that we impose to avoid numerical problems are satisfied and to be 0 wherever they
are not. These constraints are: (a) virtual valuation/cost functions must be increasing (to avoid

the need for ironing), (b) αF , βF , αG, βG ≥ 1 (to avoid infinite densities at endpoints of f̂ and g),
(c) v − v ≥ 0.2 (to avoid numerical problems with nearly degenerate distributions that arise when
v ≈ v).

19This estimate is based on extrapolation of the time needed to solve part of the problem. In
addition, standard Markov Chain Monte Carlo techniques for multidimensional integration do not
work in our setup.

20Alternatively, one could use the Bayesian mean θ∗ = E[θ]. However, some of the constraints
imposed on θ (for example, increasing virtual valuations) by setting π(θ|X) = 0 where constraints
are violated, may not be satisfied at θ∗. They hold for θMAP. Note that for uniform priors, the
Maximum A Posteriori Probability estimator coincides with the Maximum Likelihood Estimator.
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computational error is as reported by the algorithm in Hahn (2005) (which is sum-

marized in Appendix B). It provides the 99% confidence interval for the results of

the (quasi-)Monte Carlo integration used when computing the Bayesian estimates.21

Estimated Parameter Values

Parameters 1993 1994 1995

αF
2.704(0.356)

[0.002]
6.622(0.855)

[0.003]
6.697(1.119)

[0.006]

βF
3.696(0.958)

[0.003]
8.563(0.344)

[0.004]
8.510(0.460)

[0.007]

αG
8.240(0.615)

[0.006]
5.381(1.141)

[0.003]
5.238(1.709)

[0.003]

βG
6.373(1.998)

[0.006]
8.633(2.017)

[0.004]
7.893(2.049)

[0.005]

βT
13.96(0.64)

[0.01]
11.676(0.657)

[0.006]
12.204(0.677)

[0.01]

σp
0.2060(0.0028)

[0.0001]
0.18586(0.00226)

[9.e-05]
0.1894(0.0025)

[0.0001]

ǫ
0.9683(0.0016)

[0.0006]
0.9707(0.0015)

[0.0005]
0.9750(0.0019)

[0.0008]

v
0.7605(0.0497)

[0.0005]
0.9490(0.0193)

[0.0005]
0.9105(0.0316)

[0.0007]

v
1.3492(0.0458)

[0.0009]
1.3383(0.0293)

[0.0006]
1.351(0.024)

[0.001]

λ
0.5743(0.0764)

[0.0004]
0.3098(0.1032)

[0.0002]
0.5331(0.1218)

[0.0003]

# Observations 720 831 782

Table 3: Bayesian estimates of parameter values for 1993 - 1995 for seven matchings
per week. Table entries read: Mean (Standard Deviation) [Computational Error].

Figure 2 (a) provides a graphical illustration of parameter estimates for the Max-

imum A Posteriori Probability estimates of θ for 1993. In particular, it displays the

estimated endogenous densities f(v) (dashed line) and g(c) (solid line). Panels (b) to

21For example, for the first column in the first row, if the correct value of the integral
∫

αFπ(θ|X)dθ
was above 2.706 or below 2.702, then the null hypothesis that it is a correct calculation would be
rejected with a probability of at least 99%. Note the difference to the Bayesian standard deviation of
the estimate, which is determined by the (fixed) number of observations. The computational error
depends on the number of computational steps. The algorithm increases the number of computa-
tional steps until the length of the confidence interval is below the desired level. While it is common
not to report the computational error separately, it is useful to do so as it is an indicator of the
reliability of the computational method.
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Figure 2: Theory and Empirics (1993, 7 matchings per week). The graphs are based
on maximum a posteriori probability estimates of the parameters. (a) Endogenous
densities f(v) (dashed) and g(c) (solid), (b) model prediction for densities time on
market for sold (solid) and unsold (dashed) houses, (c) time on market as a func-
tion of quality-adjusted price, empirical (kernel regression, dashed) and predictions
of model (solid), (d) density of quality-adjusted price, empirical (kernel density esti-
mator, dashed) and model prediction (solid), (e) empirical densities time on market
(kernel density estimator) for sold (solid) and unsold (dashed) houses, (f) probability
of ever selling, empirical (kernel regression, dashed) and model predictions (solid),
(g) empirical fees (6%, dashed), counterfactual prediction for best non-linear (solid),
linear (dotted), and proportional (dash-dotted) fees.
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(f) illustrate how well predictions of the model fit the observed data. Panels (c), (d)

and (f) show, respectively, the relationships between time on the market, and quality-

adjusted price, density of quality adjusted prices, and the probability of selling. In

each case, the empirically observed relationship is displayed as a dashed line while

the relationship that our model implies when evaluated at the estimated parameter

values is shown as a solid line. The densities of time on the market for sold and unsold

houses are displayed, respectively, with solid and dashed lines, in panel (b) as implied

by our model and the parameter estimates and in panel (e) for what is observed in

the data. In both cases the modes are positive, implying that the densities of time on

the market are not exponential and suggesting that time on the market is measured

with some error, as one would expect. Panels (b) to (f) in Figure 2 indicate that our

model is a fairly good fit to the data. We will return to panel (g) later.

Counterfactual Fees and Profits

Variables 1993 1994 1995

linear profit
optimal profit

0.9849(0.0026)
[0.0009]

0.9886(0.0032)
[0.0008]

0.991(0.003)
[0.001]

proportional profit
optimal profit

0.8909(0.0288)
[0.0008]

0.8548(0.0154)
[0.0007]

0.872(0.014)
[0.001]

6% profit
optimal profit

0.8563(0.0264)
[0.0008]

0.8365(0.0371)
[0.0007]

0.864(0.017)
[0.001]

opt. proportional fee
0.07407(0.01015)

[7.e-05]
0.05400(0.00535)

[5.e-05]
0.06035(0.00547)

[7.e-05]

opt. slope (linear fee)
0.3909(0.0347)

[0.0003]
0.5040(0.0168)

[0.0004]
0.4922(0.0212)

[0.0006]
opt. fixed component

(linear fee)
−0.3551(0.0404)

[0.0003]
−0.5079(0.0208)

[0.0004]
−0.4814(0.0276)

[0.0006]

6% profit
linear profit

0.8694(0.0259)
[0.0008]

0.8461(0.0360)
[0.0007]

0.872(0.016)
[0.001]

6% profit
proportional profit

0.9617(0.0305)
[0.0009]

0.9784(0.0329)
[0.0008]

0.991(0.015)
[0.001]

# Observations 720 831 782

Table 4: Bayesian Estimates of Fees and Profits Implied by the Model and the Pa-
rameter Estimates (1993 - 1995, seven matchings per week). Table entries read: Mean
(Standard Deviation) [Computational Error].
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Counterfactual: The opportunity cost of simple fees We use Bayesian es-

timates of the parameters reported in Table 3 to conduct a counterfactual analysis.

Table 4 contains the Bayesian estimates of fees and profits for all three years for

which we have data under the assumption that there are seven matchings per week

(i.e. τ = 1/365). The results for the alternative assumptions of two and 14 weekly

matchings are summarized in Appendix A as are the results for the estimation with

a quality index constructed from physical characteristics and for a dataset that does

not exclude outliers. According to Table 4 (third row), intermediaries who used a 6%

fee achieved between 83% and 86% of the optimal profit, given the parameter esti-

mates. The optimal proportional fee, which is displayed in row four, varies between

5.4% and 7.4% over the three years. Rather remarkably, an intermediary’s expected

profit under an optimally chosen linear fee falls short of the maximum profit by no

more than roughly 1.2% (see the first row in Table 4). Panel (g) in Figure 2 shows

the optimal fee ω(p) as a solid curve, the optimal linear fee ωlinear(p) as a dotted line

and the optimal proportional fee ωprop(p) as a dashed line as implied by our model

evaluated at the estimated parameter values. The empirically observed 6% fee is

displayed as a dashed line.

4 Discussion

Given that simple percentage fees are easy to implement, they perform fairly well,

generating at least 83% of the revenues of the optimal mechanism. However, it is

somewhat puzzling that linear fees, which appear similarly simple as percentage fees,

achieve 98% of the optimal profit, but are not used by intermediaries. One possible

explanation is that the common theoretical assumption that agents’ types are pri-

vate information, but the distributions of types (which correspond to demand and

supply functions) are common knowledge, is only an approximation of reality. In our

counterfactual analysis, we had the benefit of hindsight: we observe all offered prop-

erties and their histories on the market (price offered, sold/unsold, time on market)

ex post. A real estate agent will typically not know the details of demand and supply

in advance and should prefer mechanisms that are robust to “getting things wrong”.
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We will conduct two simple counterfactual thought experiments that shed some light

on robustness. In particular, we will examine robustness with respect to getting the

parameters wrong and with respect to getting the quality index wrong.

Parameter uncertainty For robustness with respect to parameter uncertainty, we

will make the following comparison.22 We use the estimate of the parameters from

one year (for example, 1993) to compute the optimal linear fee and compute the

profits of a broker that uses this fee structure in another year (for example, 1994).

In Table 5, we compare the combinations of different years with profits that can be

achieved using a 6% fee. For the example of using the best linear fee from 1993 if

the true parameters are those of 1994, one obtains 76.5% of optimal profits, which

is less than the 85.2% that a broker achieves with 6% fees. The off-diagonal values

in Table 5 show that even when taking three consecutive years into account, using

parameter estimates from one year in order to choose linear fees in another year can

lead to significant losses in revenue, particularly when evaluated at the minimum.23 It

seems reasonable to assume that over a longer period, linear fees are even less robust

to changes in demand and supply. In contrast to linear fees, percentage fees are rather

robust. Note that for the sake of computational simplicity, we have calculated profits

implied by Bayesian parameter estimates rather than Bayesian estimates of profits.24

Uncertainty about quality index Next, we will consider robustness with respect

to the quality index ϑi. We have assumed that the quality index for a property is

observable by market participant (even if not directly observable by the econometri-

cian) and that it is possible to make contracts contingent on the quality index. In

reality, this may only be partially true, either because market participants only have

a noisy signal of the quality index or because it is too complicated to write contracts

that are contingent on this index. We will report results for a counterfactual analysis

22We thank Juan Santaló for suggesting this comparison.
23For arguments why the minimum may be the appropriate criterion when robustness is a concern,

see Bergemann and Morris (2005).
24Profits implied by the Bayesian mean of the parameters are slightly different from the Bayesian

mean of profits because profits are not a linear function of parameters. Formally, E[y(θ)] is not
(exactly) equal to y(E[θ]). However, it is reasonably close and much simpler to compute.
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Robustness with respect to Parameter Uncertainty

Optimal fee based on True parameters from year
estimates from year ξ ζ 1993 1994 1995

1993 0.4 -0.36 0.984 0.765 0.913
1994 0.51 -0.51 0.701 0.989 0.941
1995 0.49 -0.48 0.886 0.938 0.991

6% 0.06 0 0.849 0.852 0.873

Table 5: Profits generated by choosing the optimal linear fee (proportional part ξ
and fixed part ζ) implied by the estimated parameters of one year in another year.
The last row represents profits generated by 6% fees. All profits are provided as a
ratio of the optimal profit of the given year. Values are based on Bayesian means of
parameter estimates.

in which we assume that the broker chooses the best linear fee assuming that the

quality index is some value ϑ̄ (this could be the average quality index) while in truth

it is some other value ϑi.

So far we have considered the quality-adjusted fee as a function of the quality-

adjusted price, which is ω(p) = ξp+ ζ for linear fees. The non-quality-adjusted fee in

case the quality is ϑi is ωi(Pi) = ξPi + ϑiζ with non-quality-adjusted price Pi = ϑip.

If the broker adjusts the fee by ϑ rather than the true quality index ϑi, the fee is

ω(Pi) = ξPi + ϑζ . Then profits given a price Pi and a quality index ϑi are, following

(10),

Π(Pi) = (ξPi + ϑζ)

(

− ln F̂

(

Pi

ϑi

))

F̂

(

Pi

ϑi

)

+

∫ ϑiv

Pi

(ξy + ϑζ)

(

− ln F̂

(

y

ϑi

))

f̂

(

y

ϑi

)

dy

= ϑi

[(

ξp+ ζ
ϑ

ϑi

)

(− ln F̂ (p))F̂ (p) +

∫ v

p

(

ξy + ζ
ϑ

ϑi

)

(− ln F̂ (y))f̂(y)dy

]

.

(16)

The expression in square brackets in (16) is the quality-adjusted price with a quality-

adjusted fee ω(p) = ξp+ ζϑ/ϑi. Taking expectations over the distribution of price Pi,

the expression in (16) becomes ϑiΠξ,ζϑ/ϑi
with Πξ,ζ given in (11). We compute profits

for the best linear fee (for ϑ), ϑiΠξlinear,ζlinearϑ/ϑi
and 6% fees, ϑiΠ0.06,0 for different

values of ϑi. We report these profits – divided by ϑi for easier comparability – in

Figure 3. The flat lines represent profits for a 6% fee for the years 1993, 1994, and

1995. The curves represent profits for linear fees. The figure shows that if one has a
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very good estimate of ϑi, linear fees perform better than a six percent fee. However,

if ϑ is sufficiently far from ϑi, linear fees perform far worse.
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Figure 3: Robustness to choosing fee based on quality index ϑ rather than true quality
index ϑi. Flat lines are profits for a 6% fee, curves are profits for the best linear fee for
a given year. Calculations are provided for the years 1993 (solid line), 1994 (dashed),
and 1995 (dash-dotted).

Profit function under percentage fees A further interesting question concern-

ing percentage fees is how sensitive the profit is with respect to the choice of the

percentage. At the optimal percentage fee, the first-order effect of a change of the fee

is of course zero. However, the higher-order effects are relevant for larger changes of

the fee. Figure 4 shows profits as a function of the percentage fee for the years 1993,

1994, and 1995, indicating a low sensitivity of profits to moderate deviations from

the optimal percentage fee.
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Figure 4: Profit as a function of the percentage fee being charged. Calculations are
provided for the years 1993 (solid line), 1994 (dashed), and 1995 (dash-dotted). The
vertical line indicates 6% fees.

5 Methodology

The combination of numerical techniques we employ reduces computational time from

(estimated) several years to a few hours. The adaptive quasi-Monte Carlo algorithm

we use also ensures robustness of the computation and avoids possible pitfalls, such

as a Markov Chain Monte Carlo algorithm getting stuck in a local peak. Appendix B

provides a more detailed description of the numerical techniques we use.

Our findings also suggest a number of simplifications for future applied research.

Our theoretical work has shown that large parts of the problem at hand can be

solved in closed-form if G is a mirrored Generalized Pareto distribution and if F is

a Genelarized Pareto distribution. To be precise, for G(c) = [(c − c)/(c − c)]α and

F (v) = 1 − [(v − v)/(v − v)]β, the virtual cost function Γ and the virtual valuation

function Φ are linear. This implies that the optimal fee will be linear and that a seller

who faces a linear fee (not necessarily the optimal fee) will set a reserve price that is

a linear function of his cost. For example, facing the empirically observed 6% fee a

seller with cost c will set the reserve price Φ−1(c/0.94), which is linear in c because

of the linearity of Φ. Given linear virtual cost and virtual valuation functions and
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linear fees, the distribution of reserve prices Gp will be a mirrored Generalized Pareto

distribution, that is, Gp(p) = [(p − p)/(p − p)]α, where α is the shape parameter of

the Pareto distribution G and the boundaries of the support p and p are given by the

parameters of F and G.25

Estimating the shape parameter α of a Pareto distribution is a well studied prob-

lem, with several well documented frequentist and Bayesian estimation methods (see

Coles, 2001) if one is willing to abstract away from the measurement error in the

quality-adjusted reserve price. An estimate of α and c allows for a closed-form solu-

tion for the optimal fee, ω(p) = (p− c)/(α+ 1). For the current analysis, the simpli-

fying assumption of (mirrored) Generalized Pareto distributions was not admissible

because this assumption implies that linear fees are exactly optimal (see Loertscher

and Niedermayer, 2012). Therefore, the question how linear fees perform compared to

optimal (possibly nonlinear) fees, could not have been answered. However, an analy-

sis that is concerned with the level rather than the linearity of fees would be greatly

simplified by this assumption. Given that linear fees achieve more than 98% of the

optimal fees, this simplification does not appear to be a severe restriction. If one is

further willing to assume that percentage fees, rather than linear fees in general, are

optimal, this adds the additional restriction c = 0. Hence, under this assumption the

shape parameter α of the price distribution Gp – which coincides with the elasticity

of supply – is sufficient to determine the optimal fee ω(p) = p/(α+ 1).

Even if one does not neglect the measurement error of the quality-adjusted reserve

price, Pareto distributions greatly simplify the structural estimation, because of the

closed-form solutions for Φ−1, F̂ , T , and Gp0. Further, the functional forms have the

effect that the parameters enter the posterior density, loosely speaking, in a more

linear way. This should, in turn, also allow for more easily implementable Markov

Chain Monte Carlo techniques that are sufficiently fast and robust for the problems

at hand.

25For example for 6% fees, the boundaries p = Φ−1(c/0.94) and p = Φ−1(c/0.94) are obtained by
using the functional form of F , which yields

p =
cβ(v − v) + 0.94v

0.94(β(v − v) + 1)
and p =

cβ(v − v) + 0.94v

0.94(β(v − v) + 1)
.
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Similarly to Bajari (1997) and Bajari and Hortaçsu (2003) we use a Bayesian es-

timation method to avoid the difficulties arising when using a maximum likelihood or

a general method of moments estimator. The difficulties arise because two regularity

conditions are not satisfied in our setup. First, the number of nuisance parameters

(here the errors-in-variables for time-on-market and quality adjusted price) increases

with the number of observations. If we were to drop the errors-in-variables (there

are good reasons not to do so26), then another condition would be violated: the

boundaries of observable data would depend on the estimated parameters v, v, c,

and c. Second, for Beta distributions there is no simple condition that ensures that

the virtual valuation and cost function are increasing (that is, Myerson’s regularity

condition is satisfied). Not excluding parameters that lead to non-increasing virtual

valuations would cause problems both for numerical calculations and for estimation.27

Therefore, we exclude non-increasing virtual valuations by setting the prior to zero

for corresponding parameters. Using an analogous approach for a constrained Maxi-

mum Likelihood estimator would lead to discontinuities in the likelihood function, a

violation of another regularity condition for maximum likelihood estimation.

There is a strand of literature that views Bayesian estimators as classical (efficient)

estimators; see for example Hirano and Porter (2003) and the references therein. Hi-

rano and Porter (2003) note that “in regular parametric models, Bayesian estimators

are typically asymptotically equivalent to Maximum Likelihood” estimators and hence

efficient and show that for certain non-regular models the Bayesian estimator is effi-

cient, whereas the Maximum Likelihood estimator is not; see also Chernozhukov and

Hong (2003).

Donald and Paarsch (1993) and Laffont, Ossard, and Vuong (1995) show that for

26In our theoretical paper we show that in our setup errors-in-variables are needed to explain
that the mode of the distribution of time-on-market is greater than zero and that time-on-market
is larger for an unsold house than for a sold house offered at the same quality adjusted price. We
observe both in our data.

27Distributions that violate Myerson’s regularity condition are typically avoided in both theoret-
ical and empirical work. For computation, a violation of the condition would greatly increase the
complexity of the computational procedure, since one would have to use ironing techniques (see
Myerson (1981)). For estimation, this would mean that choices of agents would be discontinuous
function of their types. In particular, this would mean that some reserve prices (and also transaction
prices) would never be chosen in equilibrium, which is a problem for identification.
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standard first- and second-price auctions maximum likelihood and general method

of moment estimators are biased. They derive methods to correct the bias. Guerre,

Perrigne, and Vuong (2000) derive a non-parametric estimator for first-price auctions.

Unfortunately, one cannot apply the techniques developed in these papers in our setup

for a variety of reasons, which include our errors-in-variables, the facts that we do

not take a stance on whether bargaining is a first- or second-price auction, and that

we use time-on-market for estimation rather than the distribution of bids.

6 Conclusions

In this paper we have used a structural model based on Loertscher and Niedermayer

(2012) to estimate demand and supply parameters for a data set constructed by

Genesove and Mayer (2001), which covers the Boston condominium market in the

1990s. Using these parameter estimates for a counterfactual analysis, we have found

that for the parametrization with seven matchings per week the empirically observed

6% fee achieves 83% or more of the maximum profit that can be achieved with an op-

timal Bayesian mechanism. With an optimally structured linear fee, brokers achieve

at least 98% of the maximum profit. Of course, the optimal mechanism and the opti-

mal linear fee both vary with the parameter estimates, which exhibit some variation

in the data set. Even well-informed brokers will face non-trivial uncertainty about

the relevant parameters values and hence about the optimal mechanism, be it linear

or unconstrained. In contrast, 6% fees are obviously independent of these specific

parameter values and the finer details of the design problem such as the objective

quality of a property and supply and demand parameters. Thus, they resemble ro-

bust mechanisms in the sense of Wilson (1987), which makes their good empirical

performance even more remarkable.
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Appendix

A Robustness Checks

In this appendix we report robustness checks. Tables 6 and 7 summarize the result-

ing fees and profits when alternative rematching frequencies are chosen (two and 14

rematchings per week rather than seven).

Table 8 performs an additional robustness check based on an alternative quality

index constructed by Genesove and Mayer (2001), which relies on physical charac-

teristics rather than the previous transaction price. Given the vector Yi of physical

characteristics of property i (such as the number of bedrooms and whether there is air

conditioning), Genesove and Mayer (2001) ran a regression with the observed listing

price P̂i as the dependent variable:

ln P̂i = Yiβ + ǫi.

For our purposes, we interpret exp(Yiβ) = ϑi as the quality index and the statistical

error exp(ǫi) = pi as the quality adjusted price.28

We also report estimation results if we do not exclude outliers based on time on

market, but only exclude property with a price less than 1/10 of or more than 10

times the original sales price adjusted by changes of the real estate price index, in

Table 9.

Tables 6, 7, 8, and 9 suggest that our results are robust to a change of the matching

frequency, quality index, and outliers to be excluded.

Data before 1993 and after 1995 cannot be used for a reliable estimation for

several reasons. First, our theory is about cross-sectional variations and relies on the

simplifying assumption that the environment is (nearly) stationary. Since the years

before 1993 and after 1995 show considerable change of real estate prices over time,

a model based on stationarity cannot be used for estimation. Second, data at the

beginning and the end of the periods we observe suffers from truncation issues. The

reason for this is that property that was listed before 1990 or delisted after 1997

28Note that the quality adjusted prices based on physical characteristics are a biased estimate,
since the residuals ǫ̂i are correlated.
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does not show up in the dataset. While extending our theory to a non-stationary

environment is possible in principle, it would add a significant amount of complexity.

For the sake of completeness, we also report estimates for the years before 1993 and

after 1995 in Table 10. While interpreting estimates of a stationary model based on

non-stationary data is difficult, Table 10 should at least give a rough idea of what a

more complex model that takes non-stationarity and truncation into account might

predict. Linear fees perform similarly well, while there is variation in the performance

of proportional fees. The optimal proportional fee ranges between 4% and 15% and

a 6% fee achieves about 70% of optimal profits.

Counterfactual Fees and Profits

Variables 1993 1994 1995

linear profit
optimal profit

0.9827(0.0022)
[0.0007]

0.9826(0.0014)
[0.0008]

0.979(0.002)
[0.001]

proportional profit
optimal profit

0.9039(0.0184)
[0.0007]

0.8866(0.0083)
[0.0007]

0.825(0.013)
[0.001]

6% profit
optimal profit

0.8899(0.0154)
[0.0007]

0.8843(0.0113)
[0.0007]

0.788(0.021)
[0.001]

opt. proportional fee
0.06812(0.00597)

[5.e-05]
0.05839(0.00281)

[5.e-05]
0.04775(0.00207)

[6.e-05]

opt. slope (linear fee)
0.3595(0.0249)

[0.0003]
0.3998(0.0123)

[0.0003]
0.4832(0.0117)

[0.0006]
opt. fixed component

(linear fee)
−0.3288(0.0292)

[0.0002]
−0.3865(0.0166)

[0.0003]
−0.4864(0.0134)

[0.0006]

6% profit
linear profit

0.9055(0.0143)
[0.0007]

0.9000(0.0108)
[0.0007]

0.805(0.021)
[0.001]

6% profit
proportional profit

0.9846(0.0130)
[0.0007]

0.9975(0.0069)
[0.0008]

0.955(0.018)
[0.001]

# Observations 720 831 782

Table 6: Bayesian Estimates of Fees and Profits Implied by the Model and the Pa-
rameter Estimates (1993 - 1995, two matchings per week).
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Counterfactual Fees and Profits

Variables 1993 1994 1995

linear profit
optimal profit

0.9872(0.0025)
[0.0009]

0.9766(0.0026)
[0.0009]

0.97(0.001)
[0.01]

proportional profit
optimal profit

0.9024(0.0125)
[0.0008]

0.7799(0.0187)
[0.0007]

0.759(0.006)
[0.009]

6% profit
optimal profit

0.7130(0.0273)
[0.0006]

0.7735(0.0229)
[0.0009]

0.752(0.011)
[0.009]

opt. proportional fee
0.11198(0.00545)

[0.0001]
0.06178(0.00456)

[6.e-05]
0.0542(0.0030)

[0.0004]

opt. slope (linear fee)
0.4512(0.0198)

[0.0004]
0.5180(0.0121)

[0.0005]
0.547(0.009)

[0.007]
opt. fixed component

(linear fee)
−0.3908(0.0192)

[0.0003]
−0.5010(0.0132)

[0.0005]
−0.547(0.012)

[0.007]

6% profit
linear profit

0.7222(0.0274)
[0.0006]

0.7920(0.0220)
[0.0009]

0.777(0.011)
[0.01]

6% profit
proportional profit

0.7901(0.0273)
[0.0007]

0.9918(0.0168)
[0.0009]

0.99(0.01)
[0.01]

# Observations 720 831 782

Table 7: Bayesian Estimates of Fees and Profits Implied by the Model and the Pa-
rameter Estimates (1993 - 1995, 14 matchings per week).
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Counterfactual Fees and Profits

Variables 1993 1994 1995

linear profit
optimal profit

0.988(0.002)
[0.001]

0.9771(0.0032)
[0.0006]

0.994(0.002)
[0.001]

proportional profit
optimal profit

0.905(0.016)
[0.001]

0.7845(0.0158)
[0.0005]

0.922(0.019)
[0.001]

6% profit
optimal profit

0.830(0.019)
[0.001]

0.7044(0.0323)
[0.0004]

0.918(0.023)
[0.001]

opt. proportional fee
0.08625(0.00603)

[0.0001]
0.04377(0.00253)

[3.e-05]
0.05678(0.00255)

[7.e-05]

opt. slope (linear fee)
0.4100(0.0212)

[0.0005]
0.5428(0.0166)

[0.0003]
0.4598(0.0235)

[0.0006]
opt. fixed component

(linear fee)
−0.3806(0.0271)

[0.0005]
−0.5753(0.0191)

[0.0003]
−0.4703(0.0263)

[0.0006]

6% profit
linear profit

0.840(0.020)
[0.001]

0.7208(0.0315)
[0.0004]

0.923(0.022)
[0.001]

6% profit
proportional profit

0.917(0.027)
[0.001]

0.8977(0.0316)
[0.0005]

0.995(0.007)
[0.001]

# Observations 740 854 799

Table 8: Bayesian Estimates of Fees and Profits Implied by the Model and the Param-
eter Estimates (1993 - 1995, seven matchings per week) when physical characteristics
are used to control for house quality.
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Counterfactual Fees and Profits

Variables 1993 1994 1995

linear profit
optimal profit

0.981(0.003)
[0.009]

0.982(0.018)
[0.002]

0.987(0.001)
[0.008]

proportional profit
optimal profit

0.888(0.013)
[0.008]

0.848(0.027)
[0.001]

0.890(0.007)
[0.007]

6% profit
optimal profit

0.837(0.016)
[0.008]

0.799(0.046)
[0.001]

0.886(0.012)
[0.007]

opt. proportional fee
0.0811(0.0055)

[0.0007]
0.04852(0.00299)

[8.e-05]
0.0569(0.0032)

[0.0004]

opt. slope (linear fee)
0.395(0.015)

[0.004]
0.4441(0.0580)

[0.0007]
0.428(0.012)

[0.003]
opt. fixed component

(linear fee)
−0.387(0.021)

[0.004]
−0.4730(0.0683)

[0.0008]
−0.436(0.018)

[0.003]

6% profit
linear profit

0.853(0.016)
[0.008]

0.814(0.044)
[0.001]

0.897(0.011)
[0.008]

6% profit
proportional profit

0.942(0.020)
[0.009]

0.942(0.032)
[0.002]

0.995(0.009)
[0.008]

# Observations 761 869 807

Table 9: Bayesian Estimates of Fees and Profits Implied by the Model and the Param-
eter Estimates (1993 - 1995, seven matchings per week, no exclusion of outliers based
on time on market, only excluding outliers with a price less than 1/10 of or more
than 10 times the adjusted original sales price). Table entries read: Mean (Standard
Deviation) [Computational Error].
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Counterfactual Fees and Profits

Variables 1990 1991 1992 1996 1997

linear profit
optimal profit

0.940
(0.049)
[0.01]

0.98
(0.004)
[0.01]

0.99
(0.001)
[0.01]

0.989
(0.003)
[0.003]

0.975
(0.002)
[0.006]

proportional profit
optimal profit

0.717
(0.052)
[0.008]

0.886
(0.022)
[0.009]

0.95
(0.009)
[0.01]

0.819
(0.019)
[0.003]

0.641
(0.050)
[0.004]

6% profit
optimal profit

0.701
(0.057)
[0.007]

0.729
(0.039)
[0.007]

0.642
(0.029)
[0.007]

0.728
(0.059)
[0.002]

0.641
(0.050)
[0.004]

opt. proportional fee
0.0548
(0.0027)
[0.0006]

0.1076
(0.0127)
[0.001]

0.144
(0.008)
[0.002]

0.0449
(0.0035)
[0.0001]

0.0598
(0.0002)
[0.0004]

opt. slope (linear fee)
0.468
(0.094)
[0.005]

0.414
(0.023)
[0.004]

0.356
(0.018)
[0.004]

0.602
(0.024)
[0.002]

0.734
(0.029)
[0.005]

opt. fixed component
(linear fee)

−0.540
(0.120)
[0.005]

−0.406
(0.039)
[0.004]

−0.269
(0.019)
[0.003]

−0.614
(0.028)
[0.002]

−0.700
(0.024)
[0.005]

6% profit
linear profit

0.746
(0.058)
[0.008]

0.743
(0.041)
[0.007]

0.648
(0.029)
[0.007]

0.736
(0.058)
[0.002]

0.657
(0.051)
[0.004]

6% profit
proportional profit

0.98
(0.02)
[0.01]

0.824
(0.057)
[0.008]

0.678
(0.029)
[0.008]

0.888
(0.057)
[0.003]

1.00
(0.0004)
[0.007]

# Observations 519 656 666 688 531

Table 10: Bayesian Estimates of Fees and Profits Implied by the Model and the
Parameter Estimates (1990 - 1997 without 1993 - 1995, seven matchings per week).
Note that the estimates are not reliable because of non-stationarity and truncation
of the data.
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B Numerical Methods

In this appendix, we briefly describe the main numerical methods we use. The Matlab

and Fortran-MEX files used are available upon request from the authors.

The computation of the likelihood function can be sped up by rewriting the ex-

pressions. By using the true values t and p as summation/integration variables rather

than the error terms ǫT and ǫP , (14) can be transformed to

Ti/τ
∑

k=1

∫ p

p

htps(kτ, p, si)ht(Ti − kτ)hp(Pi − p)dp, (17)

where the summation variable kτ represents the true time on market t.

Note the difference in terms of the numerical evaluation of (14) and (17) with

(13). For the former, one must evaluate a three-dimensional function htps(·, ·, ·) in

four loops (summation and integration, looping over all observations and repeatedly

evaluating the likelihood function in a Monte Carlo simulation). For the latter one

has two one-dimensional functions F (p) and gp0(p) combined with simple addition

and multiplication operations. One can greatly increase the computational speed

by approximating F (p) and gp0(p) with Chebyshev polynomials and then using the

closed-form solutions of the integrals of the polynomials (i.e. reusing precomputed

values for multiple Gauss-Chebyshev quadratures).

The Bayesian estimation further requires us to integrate over the 10-dimensional

posterior density function π(θ|X). We do this by using the Divonne algorithm,

which is an extension of the CERNLIB D.151 algorithm (see Hahn, 2005; Fried-

man and Wright, 1981, for a detailed description). (Note that the usual numerical

techniques, such as Markov Chain Monte Carlo sampling/integration, fail to pro-

vide a useful accuracy level. Further, tests indicate that the integrands are not

smooth enough for sparse-grid quadrature.)29 The basic intuition for how the al-

gorithm works can be illustrated by example of the simple one-dimensional case.

The algorithm relies on the Koksma-Hlawka theorem, which states that the error of

29One reason may be that some of the variables are strongly correlated (in terms of posterior
distribution). Another is that the posterior density has multiple peaks (for example, not allowing
distributions with non-increasing virtual valuations and approximation errors when computing the
integrands). A Markov Chain Monte Carlo method (without additional refinements) has difficulties
“walking” over narrow ridges and might additionally get stuck in local maxima.
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a finite sum approximation of an integral of a function y(x) is bounded above by

the product of the integrated function’s total variation and the discrepancy of the

point set at which the function is evaluated. Formally,
∣

∣

∣

1
N

∑N
i=1 y(xi)−

∫ 1

0
y(u) du

∣

∣

∣
≤

V (y)D∗
N(x1, . . . , xN), where the total variation is V (y) =

∫ 1

0
|y′(x)|dx if y is dif-

ferentiable and V (y) = maxx∈[0,1] y(x) − minx∈[0,1] y(x) if y is monotone and where

D∗
N = supt∈[0,1]

∣

∣

∣

|{x1,x2,...,xN}|∩[0,t)|
N

− t
∣

∣

∣
is the discrepancy and measures how “con-

centrated” the points {xi} are. Discrepancy is maximal if all points coincide (if

xi = x̄ ∀i then D∗
N = max{x̄, 1 − x̄}) and minimal if all points are equidistant

(D∗
N = 1/N). For uniformly distributed (pseudo-)random numbers expected discrep-

ancy is proportional to 1/
√
N , for quasi-random numbers30 worst-case discrepancy

is proportional to (lnN)/N . The algorithm reduces the approximation error in two

ways. First, it uses quasi-random rather than pseudo-random numbers. The dif-

ference can be quite substantial. For example, to reduce the approximation error

by a factor of 10, one needs to increase N by a factor of 100 using a (pseudo-

)Monte Carlo method, whereas with a quasi-Monte Carlo method a factor close

to 10 will be sufficient. Second, the algorithm reduces total variation (in individ-

ual subregions) by iteratively dividing the interval of integration into subintervals

(i.e. iterative partition refinement) in the following way. At the beginning of each

iteration there are M subintervals [aj , bj] with ∪j [aj , bj ] = [0, 1]. The subinter-

vals are disjoint except at the boundaries. The interval k with the largest spread

(bj − aj)(maxx∈[aj ,bj ] y(x)−minx∈[aj ,bj ] y(x)) is chosen for subdivision. A cut c in this

subregion is chosen such that y(c) ≈ 1
2
(maxx∈[ak,bk] y(x)−minx∈[ak,bk] y(x)) and region

[ak, bk] is divided into [ak, c] and [c, bk]. The next iteration is conducted with the ob-

tained M+1 subregions. Iterations are repeated until the estimated integration error

(estimated by the sum of spreads) is sufficiently small. After this partitioning phase,

the subintervals are fixed. In the following integration phase, the same number of

points is sampled from each subinterval [aj, bj ]. For the multi-dimensional case, both

30Pseudo-random numbers are deterministically computed numbers that “behave like” random
numbers for most practical purposes. Quasi-random number sequences are a notion from number
theory. Such sequences are constructed to have a low discrepancy, at the price of not satisfying some
properties of random numbers (in particular they fail to be i.i.d.). See Judd (1998, p.309) for an
introduction to quasi-random numbers.
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the algorithm and the definitions of total variation and discrepancy are more complex

(the definitions are given in Judd (1998, p.309)). For the details of the workings of

the algorithm we refer interested readers to the above-mentioned papers.31

The Divonne algorithm works well if subdivisions along the axes help to reduce

variation. Correlated variables (which occurred in our problem) cause a problem as

the optimal subdividing cuts are diagonal to the axes. To avoid the resulting problems

and speed up computation, we do a first, low-precision pseudo-Monte Carlo compu-

tation of the mean µ̂θ and covariance matrix Σ̂θ of the distribution of θ. This allows

us to construct a transformed variable θ̂ = (θ − µ̂θ)L
−1 where L is the Cholesky

decomposition with LL′ = Σ̂θ. θ̂ has a mean of approximately 0 and the covari-

ance is approximately the identity matrix. As the distributions can be relatively

well approximated by a multivariate Gaussian in some directions, but not in oth-

ers (in particular fat tails and multiple local maxima), we chose a middle ground

for further transformation. We transform θ̂ to θ̃ by the inverse of the (fat tail)

student’s t distribution Hstudent. This has the advantage over a Gaussian transfor-

mation of avoiding numerical division by a number close to zero when computing
∫∞

−∞
y(θ)dθ =

∫ 1

0
y(H−1

student(θ̃)L+µθ) det(L)
−1(

∏

i hstudent(θ̂i))
−1dθ̃ at the tails, at the

same time making the integrand relatively flat in approximately Gaussian directions.

The Divonne algorithm can compute the integral quite efficiently using the trans-

formed variable θ̃.

The numerical evaluation of the optimal profit Πoptimal and the profit with optimal

linear fees Πlinear can be computed much faster using revenue equivalence results based

on mechanism design. In particular, the dominant strategy implementation of the

optimal mechanism gives the same expected revenue as the implementation using

optimal fees, but its revenue is much easier to compute numerically. The dominant

strategy implementation that results in Πoptimal is the following: let the seller report

his cost c and the buyer(s) report their valuations {vi}ki=1. If maxi Φ(vi) ≥ Γ(c), then

trade occurs, otherwise it does not. The seller receives a payment which equals the

31For d dimensions, the theoretical worst-case discrepancy is (lnN)d/N . In practice, the average
case discrepancy is typically much smaller. Further, the subdivision of intervals is replaced by the
subdivision of hyperrectangles, which adds the additional complexity of having to choose the right
dimension to cut.
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highest cost he could have reported while still selling the good, that is maxi Φ(vi). The

winning buyer i pays the lowest valuation he could have reported while still receiving

the good, that is max{maxj 6=i{vj},Γ(c)}. It can be shown by a Vickrey-type of

argument that it is a dominant strategy to report one’s type truthfully and that the

expected revenue is the same as charging a (possibly non-linear) fee ωoptimal(p). This

transformation is reflected in (8), which can be evaluated faster than the expression

that would result from plugging ωoptimal(·) into (9).

Further, we obtain a fast approximation of the incomplete Beta functionBx(α, β) =
∫ x

0
tα−1(1−t)β−1dt by using splines. First, we approximate g(x) = (1−w)x

α−1(1−x)β−1

B(α,β)
+

w by a monotone piecewise cubic Hermite spline, where w is the weight of the uniform

distribution that is mixed with the beta distribution in order to avoid division by zero

when computing the virtual cost Γ. Note that g can have a narrow peak at its modal

value x∗ = (α− 1)/(α+ β − 2) for α, β large. To deal with this, we take n points to

the left of x∗ and n points to the right and construct the interpolation data {(xi, yi)}
with yi = g(xi).

Second, we take a monotone piecewise cubic Hermite spline approximation (Fritsch

and Carlson, 1980) based on data {(xi, yi)}. A monotone spline ensures that, for

example, the approximating function cannot be negative with non-negative data {yi}.
This gives us the interpolating polynomial function ĝ(x) = ai(x− xi)

3 + bi(x−xi)
2+

ci(x− xi) + di for x ∈ [xi, xi+1). Ĝ(x) can be obtained from the closed-form solution

of the integral of the polynomial. ĝ′(x) can be obtained from the relation ĝ′(x) =

ĝ(x)((α − 1)/x+ (β − 1)/(1 − x)) (rather than the numerically imprecise derivative

of the approximating polynomial). F , f , and f ′ can be approximated in a similar

fashion.
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