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Abstract

Mild factor loading instability, particularly if sufficiently independent across the different
constituent variables, does not affect the estimation of the number of factors, nor sub-
sequent estimation of the factors themselves (see e.g. Stock and Watson (2009)). This
result does not hold in the presence of large common breaks in the factor loadings, how-
ever. In this case, information criteria overestimate the number of breaks. Additionally,
estimated factors are no longer consistent estimators of “true” factors. Hence, various
recent research papers in the diffusion index literature focus on testing the constancy of
factor loadings. One reason why this is a positive development is that in applied work,
factor augmented forecasting models are used widely for prediction, and it is important
to understand when such models are stable. Now, forecast failure of factor augmented
models can be due to either factor loading instability, regression coefficient instability,
or both. To address this issue, we develop a test for the joint hypothesis of structural
stability of both factor loadings and factor augmented forecasting model regression coef-
ficients. The proposed statistic is based on the difference between full sample and rolling
sample estimators of the sample covariance of the factors and the variable to be fore-
casted. Failure to reject the null ensures the structural stability of the factor augmented
forecasting model. If the null is instead rejected, one can proceed to disentangle the
cause of the rejection as being due to either (or both) of the afore mentioned varieties
of instability. Standard inference can be carried out, as the suggested statistic has a
chi-squared limiting distribution. We also establish the first order validity of (block)
bootstrap critical values. Finally, we provide an empirical illustration by testing for the
structural stability of factor augmented forecasting models for 11 U.S. macroeconomic
indicators.



1 Introduction

The issue of forecast instability arising because of structural instability has received con-
siderable attention in the forecasting literature, in recent years (see e.g. Clements and
Hendry (2002), Hendry and Mizon (2005), and Castle, Doornik and Hendry (2010)).
Among the main causes of instability, Hendry and Clements (2002) point out the im-
portance of intercept shifts, mainly arising because of shifts in the means of omitted
variables. Several ways to cope with forecast failure in regression models have been
suggested (see e.g. Clements and Hendry, (2006), and the references cited therein).
Moreover, among the different remedies proposed, there is some consensus that forecast
pooling is one of the most effective, as discussed in Stock and Watson (2004), where em-
pirical evidence supporting this view is provided. The intuition behind pooling is that,
if the intercept shifts are sufficiently uncorrelated across different regressions, then by
averaging forecasts we are also averaging out intercept shifts. Following this intuition,
Stock and Watson (2009) argue that similar logic should also apply to diffusion index
models. If factor loading coefficient instability is sufficiently independent across the dif-
ferent series, then the use of a large numbers of series in factor estimation can average
out such instability. In this sense, estimated factors can be quite robust to time varying
factor loadings. Indeed, Stock and Watson (2002) formally proved that estimated factors
are consistent even in the presence of mild time variation in factor loading coefficients.

However, in the presence of substantial factor loading instability three problems arise.
First, information criteria based procedures for detecting the number of breaks (see e.g.
Bai and Ng (2002)) overestimate the number of breaks, if implemented using the full
sample. This is because a factor model with breaks in the loadings is observationally
equivalent to a model with a larger number of factors and stable loadings. Second, the
variance of the estimated factors can be degenerate over subsamples. Third, estimated
factors are no longer consistent for the “true” ones, in general. Hence, it is not surprising
that testing for factor loading stability has received a great deal of attention in recent
years. For example, Breitung and Eickmeier (2011) propose tests for the null hypothesis

of a structural break in factor loading coefficients. Additionally, direct tests for con-
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stancy of all factor loadings, which allow for some spatial correlation, have recently been
suggested by Chen, Dolado and Gonzalo (2011) and by Han and Inoue (2012).

In this paper, we go one step further, and we jointly test for the structural stability
of factor loadings and of regression coefficients estimated when constructing a factor
augmented forecasting model. Heuristically speaking, stability of both factor loadings
and regression coefficients implies structural stability of factor augmented forecasting
models.

The forecast performance of diffusion index models in the presence of possible factor
loading instability has been analyzed by Banerjee, Marcellino and Marsten (2009) via
an extensive Monte Carlo. Stock and Watson (2009) disentangle instability into three
different components, factor loading instability, factor dynamics instability, and factor
model idiosyncratic component induced instability. They suggest using the full sample
for factor estimation and using susbamples, or time-varying parameter techniques, for
estimating regression coefficients in subsequent (forecasting) regression models. Castle,
Clements and Hendry (2012) use Autometrics to select the most accurate factor (aug-
mented) models. The use of recursive and rolling techniques for both factor estimation
and factor augmented forecasting model estimation is analyzed in a series of prediction
experiments by Kim and Swanson (2012).

To the best of our knowledge, there is no consistent test for the null hypothesis of
factor augmented forecasting model structural stability. The aim of this paper is thus
to fill this gap in the literature. We use the full sample for estimating the number of
factors and for factor estimation. We then construct a statistic based on the difference
between (i) the sample covariance of the target variable to be forecasted and the esti-
mated factors using a full sample estimation scheme and (ii) the sample covariance of
the target variable to be forecasted and the estimated factors using a rolling window
estimation scheme. Under the null hypothesis of structural stability, the statistic has a
normal limiting distribution. Under the alternative, the statistic diverges. In addition
to discussing standard inference using a normal limit distribution result, we also discuss
how to construct first order valid bootstrap critical values. In particular, we establish

that under the null hypothesis, the actual 2statistic and a proposed bootstrap statistic



have the same limiting distribution, while under the alternative, the actual statistic di-
verges and the bootstrap statistic has a normal limiting distribution. It is worth noting
that all of our asymptotic results assume only that /T /N — 0, where T is the number
of time series observations, and N is the number of variables used to construct factors.
This is important because, while in financial applications N is generally larger than T
in macroeconomic applications we typically have N < T (see e.g. Stock and Watson
(2002a,b)). If we fail to reject the null hypothesis, then the factor augmented forecasting
model is stable and can be reliably used, without worry about possible forecast failure
issues (see e.g. Giacomini and Rossi (2009)). On the other hand, rejection of the null
implies either instability of the factor loadings and /or instability of the forecasting model
regression coefficients. It thus follows that if we subsequently run a test for factor loading
stability and fail to reject the null, we then know that the rejection is due to regression
coeflicient instability. On the other hand, if we subsequently reject the null of factor
loading stability, we can proceed to identify and estimate the break points, estimate the
factors using the various subsamples, and implement a further test for the stability of
the forecasting model coefficients.

In an empirical illustration we test for the structural stability of factor augmented
forecasting models of 11 U.S. macroeconomic variables, including: the unemployment
rate, personal income less transfer payments, the 10 year Treasury-bond yield, the con-
sumer price index, the producer price index, non-farm payroll employment, housing
starts, industrial production, M2, the S&P 500 index, and gross domestic product, using
an extended version of the Stock and Watson macroeconomic dataset first examined in
Kim and Swanson (2012). In this illustrative example, we implement a simple version
of our test wherein critical values are constructed using the block bootstrap, and we
find that structural instability is prevalent for approximately one half of the variables
for which we construct factor augmented forecasting models. However, the dynamic
structure of the forecasting models that we construct is quite simple, with explanatory
variables consisting solely of diffusion indices; and hence our findings are meant only as
a starting point to a thorough empirical investigation.

The rest of this paper is organized as §ollows. In Section 2, we define the set-up



and introduce the test for joint structural stability. Section 3 establishes the asymptotic
properties of the suggested statistic. In Section 4, we establish the asymptotic first
order validity of block bootstrap critical values. Finally, Section 5 reports the findings
of our empirical illustration based on the use of a largescale macroeconomic dataset, and

Section 6 concludes. All proofs are gathered in an Appendix.

2 Set-Up

We begin by outlining the factor model used in the sequel. Let
Xt = po + Mo Fot + ug, (1)

where X; is a N x 1 vector, Ao is a N x r factor loading matrix, j is a N x 1 intercept
vector, Fp; is the unobserved r x 1 factor vector, and u; is an error term.

Our objective is to predict a scalar target variable, y;p, where h denotes the forecast
horizon. For the sake of simplicity, we develop our methodology in the context of predic-
tive models based only on diffusion indices. Namely, consider the following forecasting

model:

Yernh = a0 + Bo14F0,1,t + - + Bo e Fort + €tvn

=g+ F(l),t/BO,t + €tth- (2)

Needless to say, we can augment the model in (2) with both additional regressors and
lagged factors. As such generalizations do not change any of our results, we focus our
discussion on this simpler model. For a complete discussion of the usefulness of factor
augmented models for forecasting, see Banerjee, Marcellino and Marsten (2010), Dufour
and Stevanovic (2011), and the references cited therein.

We allow for two sources of potential structural instability. The first potential source
stems from the structural relation between the covariates X; and the factors Fp;, and is
captured by the loading factor matrix, Ag ;. The second source stems from the structural
relation between the factors and the variable to be predicted, and it is captured by ;.

In principle, there may be two additional source of instability. One concerns potential
4



shifts in the intercept term in either (1) or (2). Another arises because one can also
explicitly model factor dynamics (see e.g. Stock and Watson (2009)). For the sake of
simplicity, in the sequel we just focus on loading and regression coefficient stability. In

particular, we are concerned with testing the following hypotheses:
Hy: Aot = Ao and By, = B, for all t,

versus

A071 for t/T < Tg\l)

A072 fOl“T(l)—i-lSt TST@)
HAZAO’t: A . / A

Ag for T(A‘“)+1§t/T§1

»dN+-1
and/or

1
,8071 for t/T S T(B)

Bo,p for TS) +1<t/T <Y

/BO,t = 7

Bo,q; for T(ﬁqﬁ) +1<t/T<1

Note that both the case in which only a fraction alV, 0 < a < 1, of loadings have breaks,
and the case in which the first r; factors have constant loadings, say, while the remaining
r —ry factors have loadings which break, is covered by the alternative hypothesis above.

We proceed in three steps. First, we use the information criterion of Bai and Ng
(2002), say the BN statistic, to determine the number of breaks, using the full sample.
Second, we estimate the factors, again using the full sample. Third, we construct an
estimator of the sample covariance between ;15 and the estimated factors, using both
the full sample and rolling windows of observations. The difference between the full
sample and the rolling estimator of the covariance between y;15, and the estimated
factors is the key ingredient of our statistic.

If the “true” model has r factors, and if factor loadings are constant, then the in-
formation criterion used will detect r factors, with probability one. However, as already
pointed out by Breitung and Eickmeier (2011), Chen, Dolado and Gonzalo (2011), and

Han and Inoue (2012), in the presence of factor loading instability, the BN statistic will
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overestimate the number of factors. Suppose that, in the definition of H4, gy = 1, then

the model in (1) can be written as:
X = o + Ao Fil {1 <t < 7T} + Ao F{FIT < £ < T} +

and the BN statistic applied over the full sample will detect 27 factors. We then estimate

the 2r factors as:

More generally, G NT = F N7 is a T' x r matrix if Ag; = Ag for all ¢, otherwise G NT =

( ﬁLN’T ﬁ2,N,T o FyanT ), which is a T x (g\» + 1) x r matrix. Now, under
factor loading stability:
Gnr — ForHp = 0y(1),

while if there are gy breaks in the factor loadings, then
Gy — GrHY

= op(1),

where Hp and Hg are defined in the Appendix, and

(1)
FO’T1 .. 0
0 .. Fo(jl%qtl)

with F{, = (Fo, F|

/
/
(1) : (ax+1) _
07TT(;)> aT'T,’ Xr matrix and FO,T = FQTT(;M)H, For

ax

a (T — TTE\q*)) X 7 matrix.

We now construct a full sample estimator of the covariance between the factors and



the variable to be predicted. First, using the full sample, construct

1 I
= Z Gi-19t.
T t=1
Then, additionally construct a rolling estimator based on windows of R observations, as

follows:

¢

1 .

= E Gj-1yj, t > R.
j=t—R+1

The statistic is:

1 A 1 & (1 K -
ZP,R = \/ﬁ f ZGt—lyt - F - ' Z Gj—lyj s (4)
t=1 t=R+1 j=t—R+1

where P+ R =T, and P/R — 7, with 0 < 7 < co. Note that for simplicity, in the above
expression (and in the sequel) we assume that h = 1.

Note that in the above statistic, it is not our objective to examine the difference
between a full sample and a rolling estimator of the 3,. The reason is that we wish
to avoid degeneracy associated with breaks that occur after the first R observations.
For example, suppose that ¢y = 1 and TTf\l) = aR, with « > 1. In this case, for all

R <t<aR,
t
1 & A Yo O /
7 2 G "AHG< >HG7
Rj:tfRJrl 00

where g1 is r X r, and 0 denotes a r x 7 block of zeros. Then, %ZzszH @j_lé}l
is singular and cannot be inverted. For the same reason, we consider only a full sample
estimator of the factors. The reason is that in the above case, we would not be able to
identify two factors using rolling windows, [t — R+ 1,¢] for R <t < aR.

In summary, our suggested statistic is more in the spirit of a Hausman type test, than
in the spirit of tests for structural stability. Indeed, we are comparing two estimators
which converge to the same probability limit under the null, but to different probability
limits under the alternative. Furthermore, as shown in the Appendix, under the null,
the full sample estimator is the more efficient estimator.

Han and Inoue (2012) test the null of constancy of factor loadings using a sup-type
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statistic of the following sort:

T‘I')\ 17’)\

sup VT ZGt ea > GGy

1 -7
72€(0,1) ’\ t=T1\+1

Their statistic has optimality properties versus the alternative of one common break.
However, in our case, we cannot separately identify the contribution of breaks in factor
loadings from breaks in the regression coefficients.!. Finally, it is worth noting that
Chen, Dolado and Gonzalo (2011) propose a Lagrange Multiplier test for constancy of
loadings, in which they regress the first factors over the remaining factors. The logic
underlying their test is that under the null of structural stability, the estimated factors

are consistent for the “true” ones, and so are orthogonal to each other.

3 Asymptotics

Below we state the assumptions that are needed in order to establish the asymptotic
properties Zp g. As the number of estimated factors differs under Hy and under H 4, for
notational simplicity, we separately state the assumptions needed in order to establish the
limiting distribution under the null, and the assumptions needed under the alternative.

Hereafter, for a matrix B, ||B| = (tr (B’B))l/2 , and C denotes a generic constant.

Under the null hypothesis, we require the following assumptions.
Assumption AN:
AN1: (i) For i = 1,...,N, (Fo, uit) is a—mixing with size —4 (4 + 1) /¢, ¢ > 0. (ii)
Fori=1,..,N and j = 1,...,7, suptE(]ngjt|2k> < C, suptE(|uit|2k) < C, with k& >
2(2+), infydet (E (Fo Fg,)) > 0. (iii) For i = 1,..., N, j = 1,...,r, sup; ; [Ao.i5] < C.
(iv) E(uit) = 0, E(Fp sui) = 0.
AN2: Let 0i54s = E (uiruys), supy s |0ijes| = dij, sup; ; |oijts| = Ots, and vy = E (% Zf\il uisuit> )

'In principle, we could construct a statistic based on:

T(1-r)
sup \/_< Zth’ Z tht>.

t TT+1

However, in general this statistic does not have optimality properties versus either breaks in the loadings
or breaks in the coefficients, or both. g



(1) % Z'fil Zjvzl dij < C, %ZZ:I Zstl dts < C. (ii) % Zstl Zthl Vsl < C.

(iii) sup; E (N_1/2 le\il luituis — B (uituis)]4> < C. (iv) For all ¢, \/_IN Zf\il A0,iUit
satisfy a central limit theorem. (v) AjAg/N — ER = o(1), with ER of rank 7.

ANZ2’: (i) and (iii)-(v) as in AN2, (ii) 25 Z;ZFRH ST [7kj| = O (%) uniformly in
t.

2
AN3: (i) For each t, E H ﬁ 25:1 Zf\il Fo s (uiruis — E (uiruis)) H

<C.

(ii) E Hﬁ Zle FO,tAoutHQ < C, where up = (u1g, ..., unt) -

(i) B (F 270 | e T doaua]|) < €.

AN4: (i) y; is a—mixing, with size —4 (4 + 1) /1, ¢ > 0. (ii) sup; E <|yt|2k> < C, with
k> 2(2+1) and E(Fyser) = 0. (iii) E(e¥) < C and for i = 1,..., N, E(eyui) = 0.
ANS5: (i) For all ¢, E <‘ﬁ 25:1 Zf\il €st1 (Uiis — E (uituis))r) <C.

2
(i) B <’ﬁ Sl S Aos€s i ) <C.

2
ANS5’: (1) For all t, E (sup8>R ’% Zj‘:sz Zf\il €i+1 (uituij —-E (uztuw))‘ > < C.

(ii) For all ¢t, E (supS>R H% di=s R Zf\il N0,i€j1 Uit 2) <C.

Assumptions AN1-ANS5 are standard assumption on loadings and factors (AN1), spatial
and time dependence of u; (AN2), moment and weak dependence among factors, load-
ing, and idiosyncratic errors (AN3), moment and dependence of the variable to be fore-
casted and the regression error (AN4), and weak dependence between idiosyncratic and
regression errors (AN5). AN1-AN5 concern full sample estimation of factors and regres-
sion coefficients, and largely coincide with Assumptions A1-A5 in Goncalves and Perron
(2013). AN2’ and AN5’ state additional conditions on spatial and time dependence of
idiosyncratic and regression errors, and on weak dependence among idiosyncratic and
regression errors for the case of rolling estimation.

Turning now to the data generating process under the alternative, for notational sim-

plicity, suppose that we have gy common breaks in the factor loadings, and gg common



breaks in the regression coefficients, where max {qx, gz} > 1. Hereafter, let:

F ,0,..,0 |1 {1 <t< T(;)T}
N —
rxl gyrx1

Gt )

0,..,0, F, |1 {(qu*)TJr 1) <t< T}
—— =~

\ grx1l rx1

so that Gy is an (g + 1)r x 1 matrix. If ¢x = min{qgy,qs} = 0, then TE\]‘) = 1 and
Gy = Fyt, which is an 7 x 1 vector. We now state the assumptions required under the

alternative hypothesis.

Assumption AA:
AA1: (i) Fori =1,...,N, (Gy,ui) is a—mixing with size —4 (4 + ) /¥, ¥ > 0. (ii)
Fori=1,...N and j = 1,...,(q\ + D), suptE<|Gt|2k> <C, suptE<|uit|2k) < C, with

1) gy L O(q%fl) éq%ﬂ),
k> 2(24 1), and following the notation in (3), —20-20 2, 7'& )01, — P

(1 = 7)) Sog 1. (i) For i = 1,...,N, j = 1,..., (ax + Dr, sup;; oyl < C. (iv)
E(uy) = 0, E(Gyuy) = 0.

AA2: Let 015 = E (uiujs), supy ¢ |04j,1s] = 94y, sup; ; |oijts| = 1, and v = E (% Zfil uisuit> .
() %2 Zj‘vzl 0y < Cand 7301 3oy bes < C. (i) 73, Yoy bval < C.

(iii) sup;E <N*1/2 Zi\il |wirtis — E(uituis)\4> < C. (iv) For all® T&h) +1<¢t/T <
Tg\h+1), 0<h<q, \/Lﬁ Zfil Ao h,iti¢ satisfy a central limit theorem. (v) A;L()Ah?O/N -
Elh = o(1), with Zj\h of rank r.

AA2’: (i) and (iii)-(v) as in AA2. (ii) 2 Z;thRH ST, i = O (%) uniformly in
t.

AA3: (i) Foreach t, E Hﬁ Zstl Zf\il Gs (ujtuis — E (uituis))HQ <C.

(ii) For 0 < h < ¢y, E Hﬁ Z;f:l G puil {Tf\h) +1<t/T < TE\hH)}H2 < C, where
wp = (Utgy -y UNE) -

(i) For 0 < h < g1, B (3 SL4 | o T doguat {707 + 1 </7 <) <

2With an abuse of notation, we set T(Aq”'l) =1.
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AA4: (i) y is a—mixing, with size —4 (4 +) /¢, ¢ > 0. (ii) For® 0 < h < g,
2k
0 <h' <gg, sup, E <)yt { )+1<t/T<7'h+1 )SC with & > 2(2+ 1) and

2k
E(Gier) = 0. (iii) E<<et { (R") +1<¢t/T < T(h +1)}> <(C, and, fori=1,..., N,

Bt {707 +1<ym <A {F0 w1 <ym <70 o
AA5: (i) For all t, E (’ﬁ Z;F:l Zi:1 €s+1 (Uitis — E (uipuis))
H{rP+1<yr <A {0 1< < T(Bh,_'_l)}r) <C.

(ii) For all ¢,

E <‘ﬁ S Zi]\il A0,h,i€s+1Uit
C.

AA5’: (i) For all ¢,

E (SUPs>R ‘ Y R it €1 (wirugy — B (i)

1 {Tg ' f1<yT < Tth)} 1 {T(B Dr1<s/T< Ty *”}D <.

(ii) For all ¢, E <sups>R H% Zj:S,R Zf\il A0,k,i € 4+1 Wit
h h+1 b h+1) |2
N S I R Sl DL

1 { (h) +1< t/T < T(h+1)} 1 {T(Bh/) +1< s/T < T(Bh’+1)}> <

Assumption AA1 imposes restrictions on the pseudo true factors, Gy, and on the load-
ings Agp, 0 < h < ¢). Assumption AA2 perfectly mirrors AN2, while AA3 controls
moment and weak dependence among factors, loadings, and idiosyncratic errors, over
each subsample, TE\ ) +1<t/T < T(hH) Assumption AA4 imposes conditions on the
moments of the variable to be forecasted and on the regression error over each subsample,

(h) +1<¢/T < ’T(h +1) , 0 < B < gg. AA5 controls the dependence between idiosyn-
cratic and regression errors, over each subsample, TE\ ) +1<t)T < TE\ +1) , 0< h <qy,

and 7'( Tr1< s/T < T(h+1)

0<h < gp- Finally, AA2’ and AA5’ are related assump-
tions for the case of rolling estimation.

Theorem 1: (i) Let ANI-AN5, AN2’, and AN5’ hold, and let /T /N — 0, and P/R —
m > 0. Then, under Hy:

Zpr % N (0,9),

3With an abuse of notation, we set T(QBH) 1.

11



where

72 1 T
Qozl{ﬂ'gl} <7T—?> V50+1{7T>1} <1_3_7T> VBO_H—WVIBO
and
o0
Vi, =Hrp Y B(FouFgee)) Hp,
j=—00
with N
F'EFy AN'A
i . -1 0_
Hrp=p Jm Vir—= 7

with Vo an v x v diagonal matriz with the largest v eigenvalues of XX'/NT in de-

creasing order.

(ii) Let AAI-AA5, AA2’, and AA5’ hold, and let VT/N — 0, and P/R — 7 > 0.

Then, under H, there exists € > 0, such that:

Jim Pr (P*W 1Zp.kll > 5) ~1

Corollary 1: (i) Let ANI-AN5, AN2’, and AN5’ hold, and let \/T/N — 0, and
P/R — 7 >0. Then, under Hy:

I O—1r d 9
ZprSr Zp R = Xis

where
~ 2\ ~ 1\ ~ ~
Qr =1{r <1} 7'('—? VT750+1{TF> 1} 1_3_7T VT,BO_ 1+7TVT’BO
d
a | Tl Ir
Vg, =m D>, >, wiGtaGiy_ e, (5)

t=lp j=—Ilr

. i = A1 R 2 I~T A A Y ieT A
with wj =1 — ==, ¢ =y — G;_1 B and S = <T > i=1 Gt—1Gt,1> T 211 Gi—1Y-
(ii) Let AA1-AA5, AA2’, and AA5’ hold, and let /T/N — 0, and P/R — 7 > 0.
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Then, under H 4 there exists € > 0, such that:

lim Pr (P—l (Z}z RO 2, R) > 5> _ 1.

P—oo

Note that XA/TﬂO has to be constructed using residuals from a full sample estimator
of the regression coefficients. This ensures that under the alternative, ‘7T,507 though no
longer consistent for Vg, is nevertheless bounded in probability.

Note also that the statistic Zp g is constructed without recentering. Indeed, there

is no need to recenter, provided that agp in (2) is constant; in fact the contribution of
a non-zero intercept cancels out, both in finite and large samples. On the other hand,
if ap were time varying, then the statistic would diverge even if loadings and [, were
stable. To allow for possible shifts in the intercept in (2) one would have to recenter
yr+1 around the full sample and rolling sample estimators of the mean.
If instead the intercept in (1) were time varying, then the information criterion would
still detect the correct number of factors. However, the estimated factors would not be
consistent for the “true” ones, and in general inference based on Zpr would lead to
rejection of the null.

Suppose that instead of forecasting y:+1 using only the estimated factors, we also
have additional variables, say Wy, as well as lagged factors. In this case, we can still use
the same statistic as in (4), simply replacing G with Z; = (@t, @t—l, ey @t—pa Wt> . The
null is now that of joint stability of factors loadings and of all regression coefficients -
including coefficients on the factors, on their lags, and on additional variables.

In finite samples, the statistic Zp g depends on the choice of how to split 7" into R and
P (i.e. on the choice of 7). Heuristically, the smaller is 7, the better is the finite sample
size and the worse is the finite sample power, while larger 7 values lead to the reverse
trade-off. Rossi and Inoue (2012) suggest tests for out of sample predictive accuracy
that are robust to the choice of 7. In particular, they suggest viewing m as a nuisance
parameter, which can be integrated out by constructing appropriate summary statistics
over a range of 7 values. Along the same lines, Hansen and Timmermann (2012) suggest

minimizing related statistics over, say, # < m < 7. The same approach can be followed

13



in our set-up. Nevertheless, as shown in the proof of part (ii) of Theorem 1, what really
matters is the relative location of breaks in loadings with respect to breaks in regression
coefficients, and whether these break points are close or far from 7.

As discussed in the introduction, the limiting distribution in Theorem 1 is obtained
under the Assumption that v/7/N — 0. In fact, as shown in Bai and Ng (2006), if
VT /N — 0, one can ignore factor estimation error. The case of VT /N — ¢ > 0is
analyzed in Goncalves and Perron (2013) who have analytically derived the closed form
of the -bias term due to factor estimation error.

Finally, it should be noted that if the model in (1) and (2) is misspecified, then
provided loadings and regression coefficients are stable, we will not reject Hy. This is
because, while factor and regression coefficient estimators are no longer consistent for
the “true” ones, the full sample and rolling sample estimators of the covariance between
estimated factors and target variable still converge to the same probability limit. The
only exception would be the case in which misspecification is due to the omission of a
variable with a shift in the mean, say, as in this case the full sample and rolling estimators

no longer converge to the same object.

4 Bootstrap Critical Values

Inference based on asymptotic chi-squared critical values should be expected to be rela-
tively unreliable in medium and small samples, particularly in cases where the estimator
YA/TﬁO is not well behaved. Thus, it may be preferable to rely on simple to construct
bootstrap critical values.

Let W; = (yt, @t,l) ,t = 2,...,T, and resample b blocks of length [, bl = T, with
I = o(\/T). This yields a bootstrap sample, say, W; = (yf,@jf__l) , with W, ..., W7 =
Wiits oo s Whaots Wiy s Wi, oo, Wi g, where for ¢ = 0,...,T — [, I; is a discrete iid
uniform random variable on the interval [0,7° — [ — 1]. Note that resampling is done
only once, from the full sample. If we were to instead resample over rolling windows, we
would be imposing artificial independence in the sequence of bootstrap rolling estimators.

However, note that in the rolling estimation case, observations in the middle of the
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sample are used more frequently than observations at either the beginning or the end of
the sample. This introduces a location bias in any bootstrap statistic, as any block from
the original sample has the same probability of being selected. As explained in detail in
Corradi and Swanson (2006), the location bias problem is solved by simply recentering
the bootstrap statistic around the full sample. In the present context, this results in
simply recentering both % Z;‘:t— R4l ﬁj_ly]*f and % Zthl ﬁtilyj around % Zthl ﬁt_lyt,
and these two recentering terms clearly cancel out. Hence, the bootstrap statistic is

simply:

T t T
1 1 ~ 1 ~
HZJ*D,RH = lVP P E E E G§—1y; _fE Gf—ly;:k
t=R+1 j=t—R+1 t=1

Note that we have directly resampled the factors estimated using the full sample.
This is because, for /T /N — 0, factor estimation error is asymptotically negligible, and
thus we do not need to bootstrap estimated factors. If instead, T /N — ¢ > 0, then
factor estimation error matters, and results in asymptotic bias. Goncalves and Perron
(2013) establish sufficient conditions for the validity of a wild bootstrap procedure in

the case where ¢ > 0.
Theorem 2: (i) Let ANI-AN5, AN2’, and AN5’ hold, and as T,N,P,R — oo, let
VT/N =0, P/R — 7 >0,1,b— o0 and I/\T — 0. Then, under Hy:

P <w - sup |Pia (1274l < 0) — P(1Zl < )] > 5> o,
e
(i) Let AA1-AA5, AA2’, and AAS5’ hold, and as T,P,R — oo, let P/R — 7 > 0,
1,b— 0o and /T — 0. Then, under Hy:

P(w: (1Zprl —||Zbg]|) >¢) — 1.

The above result suggests proceeding in the following manner. Carry out B bootstrap
replications (B large), and compute the percentiles of the empirical distribution of the B

bootstrap statistics. Then, (do not) reject a1t5level a%, if || Zp gr|| is (smaller than or equal



to) larger than the (1 — «)th—percentile of the empirical bootstrap statistic distribution.

*
Zis |

we do not have to estimate the covariance matrix ‘77150 in (5). However, it should be

is that

As alluded to above, the main advantage of comparing ||Zp || with ’

stressed that our test is non-pivotal and hence bootstrap critical values, although first
order valid, cannot provide refinements. An alternative, proceeding as in Goncalves
and White (2004), is to compute the bootstrap counterpart of Z}, Rﬁ;lZgg > hamely

1 Ox—1 7%
Z]*;:RQT Zp g, where

O* 7 T 1 T T T
QT:1{7T§1} <7T—?> VT760+1{7[->1} <1—§> Tﬁo_ 1+7TVT760
- 1L 1 /A P 1 /a S
Vg, = 7 Z 7 <G1i+j (ylﬂrj - G1i+j/3T)> 7 (Gli+j (ylﬂrj - GI¢+jBT))
=1 =1 =

and € = yi — @}"_1337 By = (% ST G Azd,l)_l 1y Gr L yr. Needless to say,
because of ‘7T* 3, the computation of the empirical distribution of Zp Rﬁ}*lZ}i R 1s more
involved than that of HZI*D, RH . Also, because of factor estimation error, it is not easy to
assess whether and under which additional conditions inference based on Zp, RSA)*TleI’SC R

may provide refinements, when compared with the use of asymptotic critical values.

5 Empirical Illustration

We illustrate the implementation of the proposed test statistic, ||Zp r|| by carrying out
experiments where the objective is to construct predictions of the same 11 macroeco-
nomic variables examined in Armah and Swanson (2010), as summarized in Table 1.
Prediction models are assumed to be constructed according to the generic specification
given in equations (1) and (2). As discussed above, the number of factors is estimated
based on the full sample of data, using the approach of Bai and Ng (2002). Factors
are constructed using the macroeconomic dataset first introduced of Stock and Watson
(2002a,b), and extended by and Kim and Swanson (2012,2013). In total, we have 155
monthly variables for the period 1962:10 - 2009:5, so that N = 155 and T = 560. We

construct bootstrap critical values. In implementation of the bootstrap, block lengths
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of I = {2, 5, 10} were tried, and B = 300. Additionally, a variety of different values of
R (and hence P, given that T'= R + P) were tried, including R = {200, 240, 280, 320,
360, 400}, corresponding to values of P/R including {9/5, 4/3, 1, 3/4, 5/9, 2/5}.

A selected subset of our empirical findings are collected in Tables 2-4, based on
predictions constructed for h =1 (Table 2), h =3 (Table 3), and h =12 (Table 4).
Related results for other parameter permutations were qualitatively similar, and are
available upon request from the authors. In the tables, entries are given for: (i) the test
statistic; (ii) the 95th, 90th, and 50th percentiles of the empirical bootstrap distribution;
and (iii) the p-value based on the empirical bootstrap distribution.

A number of conclusions emerge from examination of the results in the tables. First,
results are largely the same, regardless of the value of | (with Panel A corresponding
to [ = 2, Panel B corresponding to | = 5, and Panel C corresponding to [ = 10), and
regardless of the forecast horizon (compare results in Tables 2,3, and 4). Across all of
these permutations, and for all values of R, the null of stability is rejected for personal
income less transfer payments, the consumer price index, non-farm payroll employment,
industrial production, M2, and gross domestic product.* Failures to reject the null of
stability occur in a similarly consistent manner across all experimental permutations,
for the unemployment rate, the 10 year Treasury-bond yield, the producer price index,
and housing starts. The only variable that consistently fails to reject the null for small
values of R and rejects for large values of R is the S&P 500 index. In conclusion, the
test appears to be performing as desired, in the sense that it is robust to values of R, h,

and [.

6 Concluding Remarks

We have developed a simple to implement test for the structural stability of factor
augmented forecasting models. Our null hypothesis involves jointly testing stability of
factor loading and forecast model coefficients. We estimate the number of factors and

the factors themselves using the full sample. Then, we construct a statistic based on

“More precisely, it should be noted that there are two or three cases (across all 9 block length -
forecast horizon permutations) where NPE and M2 fail to reject the null for the smallest values of R.
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the difference between a full sample and a rolling estimator of the sample covariance of
estimated factors and variable to be predicted. The statistic has a chi-squared limiting
distribution. Also, asymptotically valid critical values can be very simply constructed
using the block bootstrap. In an empirical illustration, we show that the test is robust
across various parameters of interest, such as block lengths, ex-ante prediction periods,

and forecast horizons.
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7 Appendix

The proof of Theorem 1 relies on Lemmas Al1-A4.
Lemma A1l: Given AN1-AN5, and recalling that, under Hy, (A;t = ﬁt,then:

(i)
r-1. 9 VT
%t_ HFt—HFFo,tH =0p (maX{WT’%}) ’

[y

(ii)

and
(iii)
T-1
1 - ; VT 1
_T - (Ft - HFFO,t> €t+1 = Op (max {W, —T}) .
with N
F'EyNA
Hy — —1
F V T N )

where V is an r x r diagonal matrix with the largest r eigenvalues of X X'/NT, in
decreasing order.

Lemma A2: Given AN1, AN2’, AN3, AN4 and AN5’, and recalling that, under Hy,
@t = ﬁt, then:

(i)

(ii)



Lemma A3: Given AA1-AA5:

(1) -
1 — |~ 2 vT 1
2 36 e - o, @{W_T})
(ii)
T-1
1 ~ ' VT 1
ﬁ ; HGGt (Gt - HGGt) = Op (max {W, ﬁ}) s
and
(iii)
-1
1 ~ ' VT 1
s 2 (Gt - HGGt> et+1 =0 (maX {77 ﬁ}) ;
with N
G'G AN Aq
_ 166G Ag
He=U"—==§—

where U is an (g) + 1)r x (¢\ + 1)r diagonal matrix with the largest (g) + 1)r eigenvalues
of XX'/NT, in decreasing order, and where Ag is an N X (g\ + 1)r matrix, defined as
Ac=(Aog - Aog., )-

Lemma A4: Given AA1, AA2’, AA3, AA4 and AA5”:

(i)
T
B4 E el ol 4F)
t=R+1 "~ j=t—R+1
and
(if)

T t
R e e e ]
Proof of Lemma A1: Assumption AN(i)-(ii) ensures that Assumption A in Bai and Ng
(2006: BNO6) is satisfied. In particular, given AN1(i)-(ii), = S FouFg, —Yr = op(1),
with ¥ of rank 7. Assumptions AN1(ii)-(iv) and AN2(v) ensure that Assumption B in
BNO6 is satisfied, AN2(i)-(iv) ensures their Assumption C holds, and AN3 ensures that
Assumption E in BNO06 is satisfied. Finally, AN3 and AN5 correspond to Assumptions
4 and 5 in Goncalves and Perron (2013: GP13). Indeed Assumption 4 in GP13 is

a slightly weakened version of Assumption D in BN06, who instead require loading
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factors, idiosyncratic errors, and regressor errors to be mutually independent. All other
assumptions in GP13 are the same as in BN06. The statements in (i) and (ii) thus follow
from Lemma A1l in BNO6, and the statement in (iii) follows from Lemma A1l in GP13.

Proof of Lemma A2: (i) From the proof of Theorem 1 in Bai and Ng (2002),

1

=l

T T
~ N . 1 .
_ -1
Fjt+r— Hplo; =V ( /;1 Frvwg + 7 k§1 FiCr;

1~ 1
"‘TZFknkj + TZFkékJ) ; (6)
k=1 k=1
where V is an 7 x r diagonal matrix containing the largest r eigenvalues of X X'/NR,

N N N
Yij = E <% Yot ulku”) y Crj = % Yot (uzjuzk - ij) » Mg = % dint )‘Io,z‘,tFO,kuij and
§j = % Zfil F6,j>\0,i,tuik~ Furthermore, from Bai and Ng (2002, p.213),

Now,

given that, as follows from AN2’(ii), % Zzzl Z;thRH fy%j =0, (%) uniformly in ¢,

2
by Lemma 1(i) in Bai and Ng (2002), and given that + ST, HFkH = 0p(1), as follows
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from AN1(i)-(iv) and AN2’(ii)-(iii). Additionally,

t R+1j=t+1—-R

T ¢ T T A
:ﬁ Z Z Zzﬁ k K CrjChrj

t=R+1 j=t+1—R k=1 k'=1

since,

t—1 2
E (( C]{:]Ck:/]) ) Z Z ij(k’j(kj’(k’ ')
j —R

j=t+1-Rj'—t+1—R
< R? %%XE (C%J) < R’N~2C,

which follows from AN2’(iii). Letting u; = (u14,...,un,;) ,

1 Tz‘l Xt: 1
VPR 4 ':HfRT
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given that lz; 1ﬁkﬁé = Op(1), as follows from ANI, AN2’(ii) and AN2’(v); and
given that J t R+1 H ujH2 =0, (%) uniformly in ¢, as follows from AN2(ii) and

~ 2
ARN(iv). Finally, \/_R Zt Rl z':tﬂ—R H% 25:1 Fyy; H can be treated analogously.
As V1 = = Op(1) the statement in (i) follows immediately.

(ii) The proof follows, using a similar argument as that used to prove (iii) below.

(iii) We modify the proof of Lemma Al in GP13. It is immediate to see that:

%R Z Z (E - HFFO,j> €j+1

| T L d T
_ -1 =~ ‘
X TR (5 A+ 1Y Ak
t=R+1 j=t+1-R k=1 k=1
L I T
+TZ kNkj€j+h T Z kt— Rfkj€j+h)
k=1 Lt
1 <
=— Y VL + 1L+ L +1V;).
\/]_thRH
Now,
| T ;T too T
—= Iy = —— > =D HeForvei
PSR PR T j—i1-R (it
;T to T
+—= > =3 (Fk - HFFO.k> Vij€i+1
PR, 5 - Tz
—R+1j=t+1-R "~ k=1
T—1 T—1
1 1
=P Iy + NGz Iy
t=R+1 t=R+1
and
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as 72 S5y pi1 Sohet [Vkj| = O (%), which follows by AN2'(ii)

. Hence, given AN1(ii)
T—h
and ANA4(iii), # Yoi—ri1 it =0y (%) . Now,
T—h

1
—= 24|

P t=R+1

T L d

< - F—HF)—
= Pt:%;rl T;( k FLok R Z Vkj€i+1

which follows from part (i), and since the term in the second bracket is O,(1), uniformly
in ¢, given AN2’(ii), AN1(ii), and AN4(ii). Now

L Il ;| I t 1 I
— > IL=—F Y == HrFoxleim
\/_t:R+1 P iR ThRi=
, 1T
+ 7 TZ Fk—HFF0k> Z Crj€i+1
t=R+1 " k=1 j=t—R+1
| Th | Th
—= > It —= Y Iy
\/]_Dt:RH \/ﬁt:R-&-l
Recalling the definition of (j;,
T-1
1
— 114
PR
, T T t N
_P TRZ Z Z FFOk: umuzk_E(Uz]uzk)) €j+h
t=R+1 k=1 j=t—R+1 i=1
1 1 1 zt:
. = €541,
PVNT 52, Rj:t—R+1
where mje = = 374y Yy HpFox (uijuin



Op(1), uniformly in ¢, thus implying that # Zr‘tr:_g+l I =0, <£> . Now,

VNT
. . 1/2 . 1/2
1 1 ) 1
= > mjseiin| < = > llmgal R > e
j=t—R+1 j=t—R+1 j=t—R+1
. —h 1/2
2
=z > llmgal Op(1),
j=t—R+1

because + Z;:t— R4l 6? 1+, = Op(1) uniformly in ¢, as it satisfies a uniform law of large

numbers, given AN1(i)-(iii) and ANA4(ii). Also,

¢ T N 2

1 ) 1

= Y Elmull <B|l—===>_> HrF (uijun — B (ujui))| = O(1),

R J=t=R+1 NT k=1i=1
given AN3(i). Recalling the statement in part (i),

T—1
1
—= [ 12|
VP t=R+1
2\ 1/2

L T T 21/21T1t
< 7B (TZHFk_HFFO,kH ) fz R Z Chj€j+h

as

T N
> E|sup BN > Z(Uz’juik — E (uijuir)) €j+n



given AN5’(i). Now,

T-1
1
— 111
Pt:R+1
=, t 1 I
—Pt Z ﬁ;HFFO,knkjﬁj+h

_I_
S
3|~
M“
B
pilg

t=R+1 " j=t+1-Rk=1
;I =
- I+ —— 11y,
P S P rh
and
= | T T
/ !/
N [y = TZHFFO,kFO W Hp
t=R+1 t=R+1" k=1
P
=0, N ’
RN
given AN5’(ii). Also
L I
—= 11 13]]
PR
L Tl T 1/2 T
< =3 || B~ e —
< 2 (pla-mnd) (7
t=R+1 \" k=1

where the 0,(1) term follows from AN5’(ii). Hence, \/— ST re1 111 = O (

Oy (max {‘/TJ_D, 3?}) op(1). Finally,

Tz

ﬂ\
&M? £

to T
Z BT > HpFyrépicivn
+1 j=1 k=1

26

Fr — HFFo,k> Mij€5+1

1/2

VP

RN

)+



1 T-1 1 t T
+ 7P RT Z Z (Fk - HFFO,k> Ekji€ith
t=R+1 j=t+1—-R k=1
1 T-1 1 T-1
—= Vit + —= IV,
P t=R+1 P t=R+1
where
1 T-1
75 2 Vi
t=R+1
T-1 t T
— i Z ﬁ Z ZHFFO,IC (F(;]HE;’T6]+}1>
t=R+1 j=t+1-R k=1
—1 T t
1 1 'LL;CAt 1 / ’
t=R+1 k=1 j=t+1-R

because of AN3(ii) and because supp<;<r )% Z;ZHPR (Fo/7jH}w€j+h>‘ = 0p(1), by the
uniform law of large numbers, given AN1(i)-(ii) and AN4(i)-(ii). Also,

, Tl
— > vl

t=R+1

L, T T 21/2 L 2 ¢ 2\ /2
< _Pt_R+1 (T;HFk_HFFO’kH ) TZ }_{ Z gkjej-q-h

2
T 2 t
1 1 u; Ao 1
< L ( Ly ) LS ke
N (T = VN Rj:tfRJrl
1
= Op(1)7
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because of AN3(iii). Hence, \/— Zt 1 IVor = Oy <%> op(1)+0, <max {%, %} X ﬁ) .
Thus,
| T=l =k ( )
=5 — HrplFoj) €jn
VPR t=R+1 j=t+1-R

ﬂ

@)

bS]

(4)- ()0 (2 7))
oonl$)

Proof of Lemma A3: Given AA1-AA5, the proof follows by Lemma 10 in Han and
Inoue (2012).

Proof of Lemma A4: The proof follows, using a similar argument as that used in the

proof of Lemma A2.

Proof of Theorem 1: (i) Recalling Lemma A1, we have that:

1T
T

ﬁj)

—1Yt

I
S| -
M=

T
. B 1 .
Fy1Fyy (HpHp By + T > Fiie

t=1

!
S| -
(]~

T T
_ 1 ~ _ 1 ~
(HrFoum1FyyyHp) Hi ' By + = > (Fios = HeFog1) By HpHE By + 72> Pt

t t=1

1

T
_ 1 1
= (HFEFFH}T) Hllp 1[30 + ? E HFF07t_16t + op <—)
t=1

VT
1 & 1
= Hglﬁo + = ZHFFO,tflﬁt + 0p (—) .
rs VT

t=1

Thus,

T
1 =~ -
\/ﬁ (? Z Ft—lyt - /BBHF1>
t=1

™
1—&-’7{'\/72HFF0t 1€t+0p(1)-
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Additionally, for all ¢ > R,

t
1 ~
= > i
j=t—R+1
t

t t
1 ~ =~ _ 1 ~ ~ o 1 ~
= > Fj—lF}qH}ﬂlﬁoJrﬁ > Fia (HFFovj—l—Fj—Q Hi'Bo+—+ >, Fjag
j=t—R+1 j=t—R+1 j=t—R+1
Hence, given Lemma A2(i)-(ii),
1 & [1 ¢
1
= > |z X Bwi—BoHr
t=R+1 j=t—R+1
1

R t
1
= > 5 D HrFojaei+op(1).
t=1"" j=t—R+1

This in turn ensures that:

T ¢ T
1 1 ~ 1 ~ d
VP B g I g Fj 1y — T E Fi 1y | — N(0,%),
t=R+1 " j=t—R+1 =1

T t T
1 1 ~ _ 1 ~ _
Qg = avar | VP B E I g Fi_1y; — 56HF1 + avar (\/P ( g A 1))

t=1

R
1
=1{r <1} <7r—%> Vs, +1{m > 1} <1——> Vs, — T Vs,

3T 1+7

T
1 =~ _ T
avar (\/P (f E V1Y — 56HF1)) = Vs,

T t T
1 1 s -1 /7 1 o -1
— 2acov | VP (ﬁ Zl R j_t_ZR+1 Fi_1y; — 56HF , VP (T Z t—1Yt — BE)H )

p 1+7
[e.e]
Vi, =Hrp Y B(FouFgee)) Hp,
j=—00
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and from Lemma 4.1 in West and McCracken (1998),

:1{wg1}<w—%2>v50+1{7r>1}<1—3iw>vﬁ0.

Finally,
1 I t T
acov \/ﬁ F Z E ‘ Z ijly] — H 160 ,\/ﬁ (T Zthlyt — H ﬁ())
t=R+1 " j=t—R+1 t=1
p 1 T 1 R T
= =E ZFo,t—1€t — ZFo,g—wj +.+—= Z Fpj-1€j +o(1)
T VR t=1 P R j=1 VR j=T—R+1
P m
==V = Vs .
T P~ T+qx Po

(ii) Without loss of generality, and just for notational simplicity, assume that Ag; =
A0711 {t/T S 7')\} B _ 60’11 {t/T S 7’5}
Nool {t/T > 1)} 70 Bo 21 {t/T > 15}

_( For O Ao,1
X_< 0 Fpo ) ( Ao ) +

where F01 = (F()J, ceny F07’7')\T)/ is T)\T xXr, F02 = (FO7T)\T7 ceny F()7T)/ is (T — T)\T) xXr, A(),l

and 7\ > 75. Thus,

and Ag2 are r x N. Finally, note that

Yer1 = Fo 1 B011{t/T < 73} + Fo 18021 {t/T > 75} + €141,

so that the variable to be predicted depends on r factors. As shown in the (unnumbered)
Proposition in Han and Inoue (2012), the criterion of Bai and Ng (2002), applied to the

full sample, will detect 2r factors. Hereafter, let

G_<F0,t1{t/T§7_)\} 0X1{t/T>T)\}>
PN ox1{t/T <7} Foul{t/T >7)} )’

and let @t be the principal component estimator of G;. By the same argument as in
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Lemma 10 in Han and Inoue (2012),
d 11
Z HGt 1 —HthH = 0p | maxq &, &
As we would detect 2r factors, and thus estimate 2r factors, when the alternative is true

the statistic is

t—1Yt

H
=
—
M“
Q
ié
Q>

VPP 2 R 3

Now, because of Lemma A3,

1 A
TZthlyt
t=1

T
1
= Z HGio1 (FoBoa 1 {t/T < 75} + Fy 1 Bo21{t/T > 75}) + €1+ 0p (ﬁ)

TT TT
g FOt / 1 2 FOt /
ZH FO,tBO,l—’_T Z Hg 0 F.480.2
t=TTﬂ+1
T T\ T
1 0 1 Fo 0
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We now turn to the rolling window “scheme” estimator. Given that we are considering
averaging over rolling windows of length R, the closed expression for the probability limit
depends on whether 757"+ R is smaller, equal to, or larger than T'. In the sequel, without
loss of generality, assume that 74T < R, 7\T' > R, 7\T — 73T < R, and 74T + R =T.

All other cases follow by exactly the same argument. Recalling Lemma A4, note that:
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It follows that:
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The statement in (ii) then follows.

Proof of Theorem 2: (i) Recalling that E* (ﬁ;‘_ly}‘) =2 Zgzl Fro_1yp + Op+ (%
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Assuming that P < R, and following West and McCracken (1998), we have that:
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Now, let b = by + by + b3, with byl = P, bol = (R— P), b3l = (T'— R—1). Then, following
the proof of Proposition 2 in Corradi and Swanson (2006),
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Via a similar argument, it follows that, up to an op,(1) terms, the second and third

terms on the RHS of (8) are equal to (7T — 772) Vg, and %ZVBO, respectively. The case of

P > R can be treated in a similar manner, following the proof of Lemma 4.1 in West

and McCracken (1998). Hence,
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Finally, note that the bootstrap analog of the covariance term mimics the sample co-

variance, up to a O,(I?/P) term, as required.

(ii) Recalling that E* (@;‘_1%*) T Zk 1 Gr_1yr + Op , we have that:
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By the same argument as that used in the proof of part (i), note that:
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Now, by the same argument used in part (i), and recalling (8),
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1> 1) (1-%) <TAHG< ‘gﬁ 8)H@+(1—U)HG<8 ‘96 )H@) +0,(1).

Hence, the bootstrap statistic has a well defined limiting distribution, under the alter-

native. The statement then follows immediately.
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Table 1: Target Forecasting Variables *

Series Abbreviation Yiin
Unemployment Rate UR Ziy1— Ly
Personal Income Less transfer payments PI In (Zt—f—l/Zt)
10-Year Treasury Bond TB Zii1— 2Ly
Consumer Price Index CPI In (Zt—f—l/Zt)
Producer Price Index PPI In(Zis1/%)
Nonfarm Payroll Employment NPE In (Zt+1/Zt)
Housing Starts HS In (Zt)
Industrial Production IPX In (Zt+1/Zt)
M2 M2 In(Zy41/2)
S&P 500 Index SNP In(Zy11/7)
Gross Domestic Product GNP In (ZtJr]_/Zt)

* Notes: Data used in model estimation and prediction construction are monthly U.S. figures for the
period 1962:10-2009:5. Data transformations used in prediction experiments are given in the last column
of the table.
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Table 2: Factor Test Statistic and Its Critical Values for h = 1%

Panel A. Block length, [ =2

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.7253 0.6456 0.6683 0.5703 0.0242 0.0220 1.0412 1.6649 0.0397 0.0976 0.0781

R = 200 95% 1.0599 0.0244 1.1617 0.0233 0.0285 0.0172 1.8973 0.0437 0.0237 0.1344 0.0214
90% 0.9376 0.0216 0.9921 0.0183 0.0255 0.0159 1.8062 0.0403 0.0186 0.1160 0.0159

50% 0.7584 0.0153 0.7195 0.0141 0.0177 0.0127 1.5093 0.0324 0.0087 0.0707 0.0101

p-value 0.5867 0.0000 0.6533 0.0000 0.1300 0.0100 1.0000 0.0000 0.0033 0.1833 0.0000

Statistics 0.6126 0.5249 0.6159 0.4243 0.0197 0.0187 0.8780 1.3643 0.0330 0.0873 0.0678

R = 240 95% 1.0071 0.0201 1.0399 0.0176 0.0256 0.0149 1.7067 0.0418 0.0178 0.1017 0.0160
90% 0.8919 0.0185 0.8936 0.0159 0.0215 0.0141 1.6376 0.0383 0.0149 0.0905 0.0138

50% 0.7038 0.0147 0.6660 0.0132 0.0163 0.0120 1.3904 0.0300 0.0079 0.0659 0.0094

p-value 0.7533 0.0000 0.6700 0.0000 0.2100 0.0000 1.0000 0.0000 0.0067 0.1300 0.0000

Statistics 0.5338 0.4708 0.5710 0.3550 0.0172 0.0165 0.7689 1.2119 0.0297 0.0805 0.0622

R = 280 95% 0.8502 0.0174 0.8882 0.0167 0.0223 0.0140 1.6409 0.0373 0.0156 0.1012 0.0152
90% 0.7959 0.0163 0.7896 0.0151 0.0201 0.0130 1.5652 0.0341 0.0133 0.0882 0.0125

50% 0.6444 0.0137 0.6098 0.0124 0.0151 0.0110 1.2998 0.0280 0.0070 0.0625 0.0088

p-value 0.8467 0.0000 0.5967 0.0000 0.2600 0.0000 1.0000 0.0000 0.0033 0.1500 0.0000

Statistics 0.4945 0.4439 0.5531 0.3189 0.0159 0.0154 0.7207 1.1344 0.0280 0.0774 0.0602

R =320 95% 0.8054 0.0158 0.8242 0.0151 0.0198 0.0124 1.4874 0.0340 0.0121 0.0825 0.0122
90% 0.7486 0.0147 0.7316 0.0137 0.0175 0.0119 1.4137 0.0323 0.0107 0.0752 0.0104

50% 0.6025 0.0120 0.5635 0.0113 0.0138 0.0102 1.1795 0.0259 0.0064 0.0558 0.0080

p-value 0.8700 0.0000 0.5433 0.0000 0.2200 0.0033 1.0000 0.0000 0.0000 0.0833 0.0000

Statistics 0.4837 0.4402 0.5604 0.3043 0.0156 0.0151 0.7169 1.1217 0.0278 0.0774 0.0604

R = 360 95% 0.7119 0.0142 0.6910 0.0135 0.0167 0.0116 1.3497 0.0299 0.0092 0.0733 0.0102
90% 0.6471 0.0136 0.6550 0.0125 0.0158 0.0110 1.3124 0.0287 0.0079 0.0677 0.0095

50% 0.5409 0.0109 0.5139 0.0104 0.0125 0.0092 1.1028 0.0232 0.0056 0.0492 0.0073

p-value 0.7167 0.0000 0.3133 0.0000 0.1133 0.0000 1.0000 0.0000 0.0000 0.0300 0.0000

Statistics 0.4977 0.4587 0.5918 0.3065 0.0160 0.0156 0.7543 1.1780 0.0288 0.0806 0.0629

R = 400 95% 0.6389 0.0132 0.6243 0.0116 0.0148 0.0104 1.2226 0.0274 0.0080 0.0649 0.0092
90% 0.5981 0.0124 0.5786 0.0109 0.0140 0.0099 1.1708 0.0257 0.0071 0.0594 0.0084

50% 0.4978 0.0100 0.4590 0.0092 0.0110 0.0084 0.9823 0.0207 0.0049 0.0450 0.0065

p-value 0.5033 0.0000 0.0967 0.0000 0.0200 0.0000 0.9833 0.0000 0.0000 0.0100 0.0000
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Panel B. Block length, [ =5

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.7253 0.6456 0.6683 0.5703 0.0242 0.0220 1.0412 1.6649 0.0397 0.0976 0.0781

R = 200 95% 1.2480 0.0264 1.5676 0.0289 0.0382 0.0191 2.0679 0.0503 0.0341 0.1730 0.0278
90% 1.0600 0.0224 1.1566 0.0234 0.0302 0.0166 1.9805 0.0463 0.0246 0.1306 0.0221

50% 0.7763 0.0159 0.7480 0.0151 0.0187 0.0128 1.5063 0.0320 0.0101 0.0730 0.0108

p-value 0.6233 0.0000 0.6833 0.0000 0.2067 0.0233 0.9800 0.0000 0.0133 0.2167 0.0000

Statistics 0.6126 0.5249 0.6159 0.4243 0.0197 0.0187 0.8780 1.3643 0.0330 0.0873 0.0678

R = 240 95% 1.1521 0.0257 1.3014 0.0232 0.0321 0.0169 1.9756 0.0494 0.0255 0.1574 0.0219
90% 0.9786 0.0221 1.0236 0.0193 0.0252 0.0148 1.8837 0.0428 0.0200 0.1247 0.0176

50% 0.7030 0.0143 0.6839 0.0138 0.0174 0.0119 1.4294 0.0310 0.0091 0.0689 0.0102

p-value 0.7300 0.0000 0.6633 0.0000 0.2767 0.0233 0.9900 0.0000 0.0200 0.2467 0.0000

Statistics 0.5338 0.4708 0.5710 0.3550 0.0172 0.0165 0.7689 1.2119 0.0297 0.0805 0.0622

R = 280 95% 0.9557 0.0209 1.0626 0.0240 0.0269 0.0149 1.7663 0.0413 0.0218 0.1047 0.0175
90% 0.8858 0.0186 0.8928 0.0186 0.0223 0.0142 1.6637 0.0381 0.0172 0.0855 0.0144

50% 0.6719 0.0136 0.6177 0.0129 0.0155 0.0114 1.3262 0.0280 0.0079 0.0606 0.0091

p-value 0.8000 0.0000 0.6367 0.0000 0.3500 0.0067 0.9967 0.0000 0.0167 0.1200 0.0000

Statistics 0.4945 0.4439 0.5531 0.3189 0.0159 0.0154 0.7207 1.1344 0.0280 0.0774 0.0602

R = 320 95% 0.8021 0.0191 0.9591 0.0163 0.0219 0.0135 1.6000 0.0407 0.0168 0.0952 0.0149
90% 0.7580 0.0166 0.8022 0.0154 0.0194 0.0129 1.4979 0.0360 0.0131 0.0778 0.0126

50% 0.6200 0.0121 0.5772 0.0118 0.0145 0.0105 1.2047 0.0260 0.0071 0.0548 0.0084

p-value 0.8400 0.0000 0.5500 0.0000 0.3800 0.0133 1.0000 0.0000 0.0100 0.1033 0.0000

Statistics 0.4837 0.4402 0.5604 0.3043 0.0156 0.0151 0.7169 1.1217 0.0278 0.0774 0.0604

R = 360 95% 0.7901 0.0166 0.7886 0.0157 0.0204 0.0124 1.4903 0.0340 0.0138 0.0831 0.0118
90% 0.7330 0.0146 0.6898 0.0139 0.0187 0.0118 1.3749 0.0309 0.0108 0.0730 0.0104

50% 0.5551 0.0110 0.5100 0.0106 0.0128 0.0093 1.0679 0.0233 0.0061 0.0510 0.0077

p-value 0.7067 0.0000 0.3367 0.0000 0.2333 0.0033 0.9967 0.0000 0.0000 0.0767 0.0000

Statistics 0.4977 0.4587 0.5918 0.3065 0.0160 0.0156 0.7543 1.1780 0.0288 0.0806 0.0629

R = 400 95% 0.6686 0.0137 0.6537 0.0131 0.0177 0.0109 1.3064 0.0308 0.0104 0.0672 0.0100
90% 0.6260 0.0130 0.5902 0.0120 0.0163 0.0103 1.2552 0.0279 0.0083 0.0587 0.0088

50% 0.4909 0.0100 0.4639 0.0093 0.0113 0.0082 0.9924 0.0208 0.0053 0.0451 0.0066

p-value 0.4800 0.0000 0.0967 0.0000 0.1100 0.0000 0.9700 0.0000 0.0000 0.0333 0.0000
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Panel C. Block length, [ = 10

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.7253 0.6456 0.6683 0.5703 0.0242 0.0220 1.0412 1.6649 0.0397 0.0976 0.0781

R = 200 95% 1.2776 0.0326 1.7352 0.0320 0.0459 0.0209 2.2660 0.0662 0.0399 0.2211 0.0367
90% 1.1570 0.0244 1.4092 0.0253 0.0326 0.0192 2.0950 0.0500 0.0324 0.1862 0.0252

50% 0.7968 0.0162 0.7798 0.0154 0.0189 0.0132 1.5115 0.0343 0.0115 0.0763 0.0114

p-value 0.6367 0.0000 0.7233 0.0000 0.2667 0.0400 0.9167 0.0000 0.0500 0.3000 0.0033

Statistics 0.6126 0.5249 0.6159 0.4243 0.0197 0.0187 0.8780 1.3643 0.0330 0.0873 0.0678

R = 240 95% 1.4478 0.0270 1.6100 0.0249 0.0362 0.0181 2.1170 0.0482 0.0325 0.1839 0.0294
90% 1.0965 0.0210 1.2684 0.0192 0.0278 0.0162 1.8663 0.0440 0.0250 0.1364 0.0215

50% 0.7442 0.0149 0.7206 0.0137 0.0174 0.0124 1.4030 0.0319 0.0109 0.0690 0.0101

p-value 0.7633 0.0000 0.7033 0.0000 0.3467 0.0400 0.9533 0.0000 0.0433 0.2767 0.0067

Statistics 0.5338 0.4708 0.5710 0.3550 0.0172 0.0165 0.7689 1.2119 0.0297 0.0805 0.0622

R = 280 95% 1.0591 0.0235 1.3153 0.0207 0.0321 0.0167 2.0439 0.0465 0.0231 0.1474 0.0231
90% 0.9523 0.0202 1.0145 0.0176 0.0256 0.0150 1.8224 0.0406 0.0199 0.1104 0.0165

50% 0.6990 0.0138 0.6593 0.0130 0.0160 0.0115 1.2710 0.0296 0.0089 0.0625 0.0095

p-value 0.8067 0.0000 0.7200 0.0000 0.4000 0.0533 0.9900 0.0000 0.0300 0.2000 0.0000

Statistics 0.4945 0.4439 0.5531 0.3189 0.0159 0.0154 0.7207 1.1344 0.0280 0.0774 0.0602

R = 320 95% 0.8998 0.0184 1.0600 0.0174 0.0249 0.0141 1.7473 0.0396 0.0228 0.1186 0.0208
90% 0.8550 0.0166 0.8624 0.0158 0.0219 0.0135 1.6330 0.0368 0.0166 0.0894 0.0153

50% 0.5940 0.0127 0.5821 0.0117 0.0144 0.0104 1.2221 0.0264 0.0075 0.0568 0.0086

p-value 0.7300 0.0000 0.5867 0.0000 0.3367 0.0133 0.9833 0.0000 0.0167 0.1667 0.0000

Statistics 0.4837 0.4402 0.5604 0.3043 0.0156 0.0151 0.7169 1.1217 0.0278 0.0774 0.0604

R = 360 95% 0.8491 0.0162 0.9731 0.0145 0.0204 0.0134 1.5684 0.0359 0.0141 0.0849 0.0140
90% 0.7682 0.0148 0.7776 0.0136 0.0173 0.0124 1.4256 0.0332 0.0122 0.0710 0.0120

50% 0.5474 0.0114 0.5388 0.0104 0.0131 0.0098 1.1005 0.0243 0.0062 0.0513 0.0075

p-value 0.6667 0.0000 0.4400 0.0000 0.2333 0.0100 0.9700 0.0000 0.0033 0.0733 0.0000

Statistics 0.4977 0.4587 0.5918 0.3065 0.0160 0.0156 0.7543 1.1780 0.0288 0.0806 0.0629

R = 400 95% 0.7108 0.0139 0.8282 0.0142 0.0166 0.0116 1.4185 0.0294 0.0126 0.0766 0.0109
90% 0.6601 0.0131 0.6546 0.0126 0.0153 0.0107 1.2934 0.0277 0.0095 0.0634 0.0098

50% 0.4966 0.0100 0.4790 0.0094 0.0112 0.0081 0.9511 0.0212 0.0056 0.0448 0.0066

p-value 0.4867 0.0000 0.1467 0.0000 0.0567 0.0033 0.8500 0.0000 0.0000 0.0467 0.0000

§ Notes: See notes to Table 1.

Entries denoted "Statistics" are of the proposed test statistic, || Zp r||,
and are reported for the 11 macroeconomic variables summarized in Table 1. Prediction models are
assumed to be constructed according to the generic specification given in equations (1) and (2). In total,
155 monthly variables for the period 1962:10 - 2009:5 are used in factor construction, so that N = 155
and T = 560. In implementation of the bootstrap, critical values based on block lengths of bT = [ =
2 (Panel A), 5 (Panel B), and 10 (Panel C) are reported, for 95th, 90th, and 50th percentiles of the
bootstrap empirical distribution (with B = 300). Additionally, standard p-values based on the empirical
bootstrap distribution are reported. Finally, note that a variety of different values of R (and hence P,
given that T'= R + P) are reported on, including R = 200, 240, 280, 320, 360, 400 , corresponding to
values of P/R including 9/5, 4/3, 1, 3/4, 5/9, 2/5 . See Section 5 for further details.
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Table 3: Factor Test Statistic and Its Critical Values for h = 3%

Panel A. Block length, [ =2

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.5913 0.6374 0.3155 0.2362 0.0204 0.0169 1.0157 1.5315 0.0314 0.0703 0.0532

R = 200 95% 0.9264 0.0214 1.2640 0.0176 0.0262 0.0160 1.8351 0.0402 0.0235 0.1120 0.0191
90% 0.8098 0.0193 0.7547 0.0153 0.0209 0.0145 1.7060 0.0364 0.0186 0.0867 0.0142

50% 0.6189 0.0134 0.3789 0.0114 0.0149 0.0118 1.4038 0.0270 0.0090 0.0436 0.0081

p-value 0.5800 0.0000 0.7100 0.0000 0.1100 0.0333 1.0000 0.0000 0.0300 0.1533 0.0000

Statistics 0.5079 0.5233 0.2801 0.1871 0.0168 0.0148 0.8728 1.2602 0.0262 0.0598 0.0467

R = 240 95% 0.7614 0.0183 0.7808 0.0148 0.0228 0.0138 1.6339 0.0346 0.0178 0.0943 0.0156
90% 0.7188 0.0162 0.5612 0.0135 0.0185 0.0130 1.5356 0.0318 0.0141 0.0666 0.0129

50% 0.5778 0.0127 0.3353 0.0105 0.0140 0.0111 1.2832 0.0250 0.0077 0.0385 0.0073

p-value 0.7667 0.0000 0.7100 0.0000 0.1800 0.0333 0.9967 0.0000 0.0167 0.1467 0.0000

Statistics 0.4527 0.4689 0.2538 0.1682 0.0147 0.0132 0.7809 1.1224 0.0236 0.0528 0.0421

R = 280 95% 0.6918 0.0162 0.7812 0.0140 0.0191 0.0129 1.4953 0.0297 0.0160 0.0765 0.0127
90% 0.6504 0.0149 0.5297 0.0121 0.0173 0.0123 1.4268 0.0283 0.0123 0.0576 0.0098

50% 0.5294 0.0115 0.3122 0.0099 0.0129 0.0105 1.2066 0.0230 0.0072 0.0343 0.0067

p-value 0.8100 0.0000 0.7133 0.0000 0.2167 0.0367 1.0000 0.0000 0.0133 0.1167 0.0000

Statistics 0.4260 0.4429 0.2452 0.1557 0.0137 0.0123 0.7448 1.0537 0.0222 0.0491 0.0400

R =320 95% 0.6720 0.0148 0.5967 0.0122 0.0165 0.0121 1.3922 0.0281 0.0118 0.0588 0.0100
90% 0.6127 0.0134 0.4441 0.0111 0.0151 0.0111 1.3166 0.0267 0.0101 0.0533 0.0089

50% 0.4906 0.0103 0.2839 0.0089 0.0118 0.0094 1.1060 0.0219 0.0064 0.0325 0.0061

p-value 0.7933 0.0000 0.6833 0.0000 0.1967 0.0333 1.0000 0.0000 0.0033 0.1467 0.0000

Statistics 0.4230 0.4391 0.2491 0.1529 0.0136 0.0121 0.7519 1.0441 0.0219 0.0478 0.0395

R = 360 95% 0.5531 0.0127 0.4828 0.0106 0.0141 0.0106 1.2606 0.0249 0.0090 0.0600 0.0085
90% 0.5348 0.0119 0.3854 0.0101 0.0132 0.0102 1.1983 0.0238 0.0076 0.0470 0.0077

50% 0.4443 0.0096 0.2594 0.0082 0.0107 0.0086 1.0256 0.0197 0.0054 0.0286 0.0055

p-value 0.6500 0.0000 0.5500 0.0000 0.0767 0.0033 0.9967 0.0000 0.0000 0.0933 0.0000

Statistics 0.4408 0.4558 0.2601 0.1580 0.0141 0.0125 0.7999 1.0995 0.0226 0.0482 0.0403

R = 400 95% 0.5104 0.0118 0.4919 0.0095 0.0128 0.0094 1.1226 0.0229 0.0072 0.0459 0.0078
90% 0.4831 0.0110 0.3383 0.0088 0.0120 0.0089 1.0866 0.0212 0.0066 0.0379 0.0069

50% 0.4048 0.0086 0.2284 0.0074 0.0095 0.0078 0.9036 0.0175 0.0049 0.0250 0.0049

p-value 0.2500 0.0000 0.3533 0.0000 0.0200 0.0000 0.8167 0.0000 0.0000 0.0433 0.0000
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Panel B. Block length, [ =5

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.5913 0.6374 0.3155 0.2362 0.0204 0.0169 1.0157 1.5315 0.0314 0.0703 0.0532

R = 200 95% 1.2046 0.0265 1.2989 0.0290 0.0342 0.0181 1.9957 0.0455 0.0307 0.1552 0.0230
90% 0.9429 0.0215 1.0159 0.0229 0.0279 0.0155 1.8502 0.0394 0.0250 0.1094 0.0178

50% 0.6507 0.0137 0.3970 0.0126 0.0160 0.0118 1.3987 0.0267 0.0099 0.0444 0.0085

p-value 0.6400 0.0000 0.7300 0.0000 0.2100 0.0700 0.9533 0.0000 0.0433 0.1900 0.0033

Statistics 0.5079 0.5233 0.2801 0.1871 0.0168 0.0148 0.8728 1.2602 0.0262 0.0598 0.0467

R = 240 95% 1.0432 0.0228 1.1510 0.0207 0.0287 0.0149 1.8692 0.0436 0.0235 0.1324 0.0190
90% 0.8765 0.0191 0.7879 0.0173 0.0233 0.0140 1.7493 0.0386 0.0181 0.1116 0.0151

50% 0.5837 0.0124 0.3582 0.0114 0.0147 0.0112 1.3131 0.0262 0.0090 0.0425 0.0079

p-value 0.7267 0.0000 0.7367 0.0000 0.2933 0.0633 0.9900 0.0000 0.0267 0.2700 0.0100

Statistics 0.4527 0.4689 0.2538 0.1682 0.0147 0.0132 0.7809 1.1224 0.0236 0.0528 0.0421

R = 280 95% 0.8284 0.0191 0.8136 0.0164 0.0209 0.0140 1.6536 0.0358 0.0208 0.0828 0.0183
90% 0.7496 0.0169 0.6066 0.0144 0.0186 0.0130 1.5454 0.0324 0.0157 0.0634 0.0129

50% 0.5454 0.0117 0.3316 0.0099 0.0133 0.0106 1.2294 0.0238 0.0076 0.0347 0.0072

p-value 0.7667 0.0000 0.7733 0.0000 0.3133 0.0867 0.9867 0.0000 0.0367 0.1700 0.0000

Statistics 0.4260 0.4429 0.2452 0.1557 0.0137 0.0123 0.7448 1.0537 0.0222 0.0491 0.0400

R = 320 95% 0.6954 0.0169 0.7038 0.0142 0.0188 0.0127 1.4520 0.0342 0.0152 0.0669 0.0130
90% 0.6365 0.0150 0.5439 0.0129 0.0165 0.0120 1.4070 0.0301 0.0124 0.0535 0.0106

50% 0.5088 0.0107 0.2871 0.0093 0.0124 0.0098 1.1050 0.0221 0.0071 0.0319 0.0064

p-value 0.8000 0.0000 0.6967 0.0000 0.3033 0.0767 0.9933 0.0000 0.0167 0.1300 0.0000

Statistics 0.4230 0.4391 0.2491 0.1529 0.0136 0.0121 0.7519 1.0441 0.0219 0.0478 0.0395

R = 360 95% 0.6380 0.0149 0.5801 0.0122 0.0186 0.0116 1.3701 0.0294 0.0135 0.0717 0.0108
90% 0.5978 0.0134 0.4730 0.0109 0.0151 0.0109 1.2589 0.0263 0.0112 0.0529 0.0085

50% 0.4509 0.0097 0.2658 0.0083 0.0109 0.0086 1.0001 0.0198 0.0063 0.0284 0.0058

p-value 0.6133 0.0000 0.5967 0.0000 0.2067 0.0333 0.9667 0.0000 0.0067 0.1400 0.0000

Statistics 0.4408 0.4558 0.2601 0.1580 0.0141 0.0125 0.7999 1.0995 0.0226 0.0482 0.0403

R = 400 95% 0.5644 0.0123 0.4661 0.0104 0.0146 0.0101 1.2230 0.0255 0.0101 0.0448 0.0089
90% 0.5103 0.0112 0.3728 0.0095 0.0133 0.0096 1.1671 0.0237 0.0083 0.0406 0.0074

50% 0.4042 0.0087 0.2328 0.0074 0.0098 0.0077 0.9143 0.0178 0.0056 0.0253 0.0050

p-value 0.3233 0.0000 0.3533 0.0000 0.0667 0.0033 0.7800 0.0000 0.0000 0.0367 0.0000

47



Panel C. Block length, | = 10

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.5913 0.6374 0.3155 0.2362 0.0204 0.0169 1.0157 1.5315 0.0314 0.0703 0.0532

R = 200 95% 1.1870 0.0297 1.7113 0.0295 0.0366 0.0203 2.1858 0.0635 0.0431 0.2251 0.0325
90% 0.9800 0.0229 1.1700 0.0211 0.0276 0.0174 1.9497 0.0443 0.0327 0.1595 0.0256

50% 0.6504 0.0138 0.4067 0.0126 0.0167 0.0122 1.4181 0.0284 0.0121 0.0492 0.0091

p-value 0.6367 0.0000 0.7467 0.0000 0.2567 0.1300 0.8867 0.0000 0.1033 0.3133 0.0067

Statistics 0.5079 0.5233 0.2801 0.1871 0.0168 0.0148 0.8728 1.2602 0.0262 0.0598 0.0467

R = 240 95% 1.2164 0.0255 1.3869 0.0198 0.0340 0.0183 1.9305 0.0407 0.0309 0.1901 0.0254
90% 0.9361 0.0200 1.1035 0.0163 0.0262 0.0158 1.7448 0.0365 0.0252 0.1217 0.0201

50% 0.6145 0.0132 0.4006 0.0110 0.0154 0.0115 1.2772 0.0266 0.0102 0.0430 0.0083

p-value 0.7333 0.0000 0.7867 0.0000 0.3933 0.1533 0.9433 0.0000 0.0867 0.2900 0.0033

Statistics 0.4527 0.4689 0.2538 0.1682 0.0147 0.0132 0.7809 1.1224 0.0236 0.0528 0.0421

R = 280 95% 0.9139 0.0203 1.2521 0.0193 0.0286 0.0157 1.8313 0.0422 0.0247 0.1156 0.0208
90% 0.8212 0.0169 0.7706 0.0156 0.0231 0.0139 1.6795 0.0374 0.0197 0.0797 0.0162

50% 0.5613 0.0117 0.3451 0.0105 0.0140 0.0106 1.1992 0.0241 0.0090 0.0384 0.0073

p-value 0.7400 0.0000 0.7933 0.0000 0.4267 0.1567 0.9567 0.0000 0.0600 0.2700 0.0033

Statistics 0.4260 0.4429 0.2452 0.1557 0.0137 0.0123 0.7448 1.0537 0.0222 0.0491 0.0400

R =320 95% 0.8373 0.0183 0.9350 0.0143 0.0244 0.0137 1.6510 0.0340 0.0212 0.1103 0.0188
90% 0.7387 0.0151 0.6764 0.0131 0.0181 0.0125 1.5642 0.0302 0.0167 0.0713 0.0144

50% 0.5034 0.0112 0.3031 0.0094 0.0122 0.0098 1.1265 0.0218 0.0077 0.0344 0.0070

p-value 0.6800 0.0000 0.7533 0.0000 0.3233 0.1267 0.9567 0.0000 0.0433 0.2167 0.0033

Statistics 0.4230 0.4391 0.2491 0.1529 0.0136 0.0121 0.7519 1.0441 0.0219 0.0478 0.0395

R = 360 95% 0.7371 0.0146 0.7124 0.0129 0.0170 0.0124 1.4830 0.0321 0.0143 0.0656 0.0138
90% 0.6712 0.0135 0.5569 0.0115 0.0153 0.0115 1.3245 0.0287 0.0116 0.0524 0.0102

50% 0.4510 0.0098 0.2616 0.0084 0.0112 0.0090 1.0297 0.0204 0.0063 0.0293 0.0057

p-value 0.5833 0.0000 0.5433 0.0000 0.2067 0.0600 0.8900 0.0000 0.0033 0.1300 0.0000

Statistics 0.4408 0.4558 0.2601 0.1580 0.0141 0.0125 0.7999 1.0995 0.0226 0.0482 0.0403

R = 400 95% 0.6338 0.0123 0.5667 0.0109 0.0154 0.0106 1.3362 0.0259 0.0110 0.0537 0.0107
90% 0.5769 0.0116 0.4202 0.0100 0.0133 0.0099 1.2179 0.0241 0.0093 0.0427 0.0089

50% 0.4108 0.0084 0.2294 0.0074 0.0100 0.0077 0.8748 0.0175 0.0058 0.0246 0.0054

p-value 0.3633 0.0000 0.3567 0.0000 0.0767 0.0033 0.6333 0.0000 0.0000 0.0667 0.0000

§ Notes: See notes to Table 2.
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Table 4: Factor Test Statistic and Its Critical Values for h = 128

Panel A. Block length, [ =2

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.3874 0.1918 0.1870 0.1424 0.0183 0.0135 0.6727 0.7601 0.0156 0.0329 0.0337

R = 200 95% 0.6504 0.0196 0.8830 0.0188 0.0250 0.0094 1.2573 0.0294 0.0224 0.1098 0.0178
90% 0.5279 0.0153 0.6580 0.0152 0.0194 0.0084 1.1279 0.0222 0.0170 0.0774 0.0139

50% 0.3313 0.0076 0.3127 0.0095 0.0118 0.0061 0.8661 0.0141 0.0077 0.0382 0.0054

p-value 0.2600 0.0000 0.9400 0.0000 0.1100 0.0033 0.9667 0.0000 0.1067 0.6733 0.0033

Statistics 0.3415 0.1565 0.1586 0.1004 0.0151 0.0118 0.6042 0.5730 0.0137 0.0292 0.0285

R = 240 95% 0.5208 0.0155 0.5901 0.0140 0.0188 0.0088 1.0108 0.0231 0.0186 0.1011 0.0145
90% 0.4173 0.0118 0.4601 0.0123 0.0160 0.0076 0.9603 0.0192 0.0145 0.0703 0.0100

50% 0.2987 0.0072 0.2973 0.0087 0.0108 0.0058 0.7972 0.0132 0.0071 0.0361 0.0050

p-value 0.2933 0.0000 0.9800 0.0000 0.1167 0.0133 0.9900 0.0000 0.1200 0.7133 0.0067

Statistics 0.3100 0.1405 0.1439 0.0755 0.0132 0.0101 0.5575 0.4661 0.0122 0.0261 0.0246

R = 280 95% 0.4747 0.0114 0.5831 0.0126 0.0157 0.0075 0.9219 0.0192 0.0141 0.0644 0.0106
90% 0.4015 0.0097 0.4676 0.0106 0.0135 0.0069 0.8758 0.0170 0.0118 0.0522 0.0086

50% 0.2886 0.0065 0.2684 0.0082 0.0100 0.0053 0.7416 0.0118 0.0065 0.0309 0.0045

p-value 0.3700 0.0000 0.9767 0.0000 0.1200 0.0133 0.9867 0.0000 0.0967 0.7033 0.0067

Statistics 0.2945 0.1320 0.1431 0.0555 0.0123 0.0091 0.5448 0.4009 0.0112 0.0248 0.0224

R =320 95% 0.3937 0.0099 0.4696 0.0109 0.0130 0.0068 0.8250 0.0169 0.0104 0.0481 0.0089
90% 0.3498 0.0082 0.3926 0.0096 0.0118 0.0062 0.7891 0.0150 0.0085 0.0418 0.0070

50% 0.2624 0.0059 0.2363 0.0076 0.0093 0.0049 0.6808 0.0110 0.0056 0.0287 0.0040

p-value 0.2967 0.0000 0.9700 0.0000 0.0700 0.0033 0.9667 0.0000 0.0400 0.6967 0.0067

Statistics 0.2947 0.1316 0.1514 0.0453 0.0120 0.0085 0.5632 0.3675 0.0108 0.0246 0.0213

R = 360 95% 0.3260 0.0083 0.3590 0.0089 0.0118 0.0059 0.7574 0.0143 0.0084 0.0478 0.0080
90% 0.3009 0.0074 0.3132 0.0082 0.0108 0.0056 0.7217 0.0130 0.0075 0.0384 0.0062

50% 0.2264 0.0055 0.2212 0.0067 0.0084 0.0045 0.6211 0.0098 0.0049 0.0254 0.0036

p-value 0.1100 0.0000 0.9100 0.0000 0.0433 0.0033 0.8000 0.0000 0.0133 0.5500 0.0000

Statistics 0.3082 0.1379 0.1644 0.0473 0.0123 0.0083 0.6138 0.3726 0.0107 0.0252 0.0211

R = 400 95% 0.3005 0.0066 0.3241 0.0078 0.0104 0.0054 0.6753 0.0124 0.0076 0.0388 0.0060
90% 0.2732 0.0059 0.2823 0.0074 0.0096 0.0050 0.6429 0.0118 0.0066 0.0319 0.0049

50% 0.2072 0.0047 0.1996 0.0061 0.0076 0.0040 0.5566 0.0086 0.0044 0.0231 0.0033

p-value 0.0233 0.0000 0.7600 0.0000 0.0167 0.0033 0.1700 0.0000 0.0100 0.3633 0.0000
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Panel B. Block length, [ =5

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.3874 0.1918 0.1870 0.1424 0.0183 0.0135 0.6727 0.7601 0.0156 0.0329 0.0337

R = 200 95% 0.8698 0.0255 1.1263 0.0257 0.0319 0.0121 1.3203 0.0396 0.0288 0.1634 0.0220
90% 0.7128 0.0176 0.8417 0.0192 0.0231 0.0098 1.1671 0.0279 0.0235 0.0937 0.0173

50% 0.3673 0.0082 0.3212 0.0101 0.0128 0.0066 0.8691 0.0143 0.0100 0.0389 0.0061

p-value 0.4500 0.0000 0.9600 0.0000 0.1700 0.0400 0.9233 0.0000 0.2367 0.6600 0.0133

Statistics 0.3415 0.1565 0.1586 0.1004 0.0151 0.0118 0.6042 0.5730 0.0137 0.0292 0.0285

R = 240 95% 0.6825 0.0181 0.9744 0.0178 0.0220 0.0104 1.2654 0.0277 0.0221 0.1048 0.0217
90% 0.5307 0.0134 0.6955 0.0137 0.0183 0.0090 1.0550 0.0238 0.0167 0.0854 0.0133

50% 0.3271 0.0073 0.2956 0.0092 0.0116 0.0061 0.7956 0.0140 0.0076 0.0381 0.0054

p-value 0.4500 0.0000 0.9800 0.0000 0.2100 0.0367 0.9400 0.0000 0.1900 0.7800 0.0200

Statistics 0.3100 0.1405 0.1439 0.0755 0.0132 0.0101 0.5575 0.4661 0.0122 0.0261 0.0246

R = 280 95% 0.5803 0.0149 0.7776 0.0165 0.0197 0.0085 1.0536 0.0250 0.0164 0.0953 0.0139
90% 0.4583 0.0116 0.5323 0.0126 0.0170 0.0076 0.9536 0.0193 0.0146 0.0731 0.0105

50% 0.3059 0.0070 0.2579 0.0083 0.0108 0.0055 0.7555 0.0129 0.0071 0.0315 0.0048

p-value 0.4733 0.0000 0.9733 0.0000 0.2500 0.0200 0.9500 0.0000 0.1733 0.7467 0.0133

Statistics 0.2945 0.1320 0.1431 0.0555 0.0123 0.0091 0.5448 0.4009 0.0112 0.0248 0.0224

R = 320 95% 0.4505 0.0114 0.7214 0.0111 0.0173 0.0079 0.9822 0.0221 0.0143 0.0643 0.0130
90% 0.4137 0.0092 0.4960 0.0098 0.0136 0.0072 0.9037 0.0179 0.0112 0.0506 0.0101

50% 0.2715 0.0062 0.2433 0.0076 0.0096 0.0051 0.7023 0.0113 0.0063 0.0285 0.0043

p-value 0.3667 0.0000 0.9300 0.0000 0.1733 0.0167 0.9267 0.0000 0.1000 0.6967 0.0033

Statistics 0.2947 0.1316 0.1514 0.0453 0.0120 0.0085 0.5632 0.3675 0.0108 0.0246 0.0213

R = 360 95% 0.3932 0.0107 0.5485 0.0116 0.0158 0.0066 0.8537 0.0185 0.0117 0.0699 0.0085
90% 0.3495 0.0081 0.3928 0.0095 0.0128 0.0060 0.8038 0.0151 0.0095 0.0485 0.0070

50% 0.2366 0.0057 0.2197 0.0069 0.0086 0.0044 0.6378 0.0105 0.0055 0.0251 0.0040

p-value 0.2300 0.0000 0.8533 0.0000 0.1233 0.0000 0.7633 0.0000 0.0667 0.5233 0.0000

Statistics 0.3082 0.1379 0.1644 0.0473 0.0123 0.0083 0.6138 0.3726 0.0107 0.0252 0.0211

R = 400 95% 0.3364 0.0084 0.3398 0.0097 0.0114 0.0053 0.7388 0.0146 0.0090 0.0399 0.0071
90% 0.3005 0.0068 0.2794 0.0084 0.0103 0.0051 0.6845 0.0129 0.0077 0.0325 0.0055

50% 0.2155 0.0049 0.1892 0.0061 0.0074 0.0041 0.5656 0.0089 0.0050 0.0218 0.0033

p-value 0.0833 0.0000 0.6800 0.0000 0.0400 0.0000 0.2900 0.0000 0.0200 0.3333 0.0000

50



Panel C. Block length, | = 10

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

Statistics 0.3874 0.1918 0.1870 0.1424 0.0183 0.0135 0.6727 0.7601 0.0156 0.0329 0.0337

R = 200 95% 1.0285 0.0245 1.9698 0.0254 0.0321 0.0158 1.4809 0.0392 0.0366 0.1920 0.0260
90% 0.7968 0.0162 1.2291 0.0207 0.0251 0.0118 1.2832 0.0314 0.0276 0.1281 0.0194

50% 0.4050 0.0081 0.3357 0.0106 0.0134 0.0068 0.8663 0.0153 0.0102 0.0428 0.0063

p-value 0.5800 0.0000 0.9400 0.0000 0.2400 0.0800 0.8367 0.0000 0.2800 0.7467 0.0333

Statistics 0.3415 0.1565 0.1586 0.1004 0.0151 0.0118 0.6042 0.5730 0.0137 0.0292 0.0285

R = 240 95% 0.8109 0.0191 1.1394 0.0194 0.0250 0.0114 1.2251 0.0410 0.0266 0.1503 0.0223
90% 0.6553 0.0147 0.7739 0.0145 0.0204 0.0094 1.1351 0.0284 0.0202 0.1145 0.0144

50% 0.3508 0.0074 0.3202 0.0096 0.0118 0.0061 0.8294 0.0142 0.0091 0.0402 0.0054

p-value 0.5200 0.0000 0.9767 0.0000 0.2367 0.0400 0.8967 0.0000 0.2533 0.7500 0.0167

Statistics 0.3100 0.1405 0.1439 0.0755 0.0132 0.0101 0.5575 0.4661 0.0122 0.0261 0.0246

R = 280 95% 0.6743 0.0160 1.1178 0.0190 0.0212 0.0097 1.1536 0.0278 0.0218 0.1194 0.0185
90% 0.5538 0.0125 0.8284 0.0134 0.0167 0.0085 1.0586 0.0229 0.0184 0.0812 0.0138

50% 0.3305 0.0071 0.2942 0.0087 0.0111 0.0057 0.7472 0.0134 0.0079 0.0330 0.0052

p-value 0.5600 0.0000 0.9500 0.0000 0.2567 0.0333 0.8800 0.0000 0.2067 0.7333 0.0333

Statistics 0.2945 0.1320 0.1431 0.0555 0.0123 0.0091 0.5448 0.4009 0.0112 0.0248 0.0224

R =320 95% 0.6238 0.0140 1.0127 0.0122 0.0201 0.0091 1.0235 0.0227 0.0161 0.1043 0.0116
90% 0.5140 0.0106 0.6466 0.0110 0.0165 0.0078 0.9333 0.0189 0.0127 0.0769 0.0097

50% 0.2871 0.0064 0.2458 0.0078 0.0097 0.0053 0.7193 0.0119 0.0067 0.0320 0.0045

p-value 0.4633 0.0000 0.9367 0.0000 0.2533 0.0500 0.8800 0.0000 0.1300 0.7500 0.0067

Statistics 0.2947 0.1316 0.1514 0.0453 0.0120 0.0085 0.5632 0.3675 0.0108 0.0246 0.0213

R = 360 95% 0.4473 0.0099 0.5954 0.0118 0.0147 0.0075 0.9043 0.0189 0.0136 0.0711 0.0099
90% 0.3912 0.0079 0.4876 0.0099 0.0129 0.0068 0.8177 0.0159 0.0106 0.0511 0.0082

50% 0.2493 0.0057 0.2165 0.0071 0.0089 0.0047 0.6424 0.0102 0.0057 0.0268 0.0041

p-value 0.3000 0.0000 0.8933 0.0000 0.1600 0.0233 0.7100 0.0000 0.0933 0.6033 0.0067

Statistics 0.3082 0.1379 0.1644 0.0473 0.0123 0.0083 0.6138 0.3726 0.0107 0.0252 0.0211

R = 400 95% 0.3699 0.0085 0.4499 0.0097 0.0132 0.0061 0.8082 0.0150 0.0104 0.0537 0.0092
90% 0.3026 0.0075 0.3654 0.0089 0.0114 0.0056 0.7490 0.0135 0.0093 0.0402 0.0077

50% 0.2173 0.0052 0.1942 0.0063 0.0076 0.0040 0.5584 0.0094 0.0051 0.0221 0.0035

p-value 0.0967 0.0000 0.7167 0.0000 0.0700 0.0000 0.3233 0.0000 0.0400 0.3000 0.0033

§ Notes: See notes to Table 2.
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