
Mizrach, Bruce

Working Paper

Forecast Comparison in L2

Working Paper, No. 1995-24

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Mizrach, Bruce (1996) : Forecast Comparison in L2, Working Paper, No. 1995-24,
Rutgers University, Department of Economics, New Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/94277

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/94277
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Comments Solicited

Forecast Comparison in L2

Bruce Mizrach¤

Department of Economics
Rutgers University

First Draft: March 1991
This Draft: January 1995

Abstract:
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1. Introduction

Econometric models are frequently compared on the basis of forecast accuracy.1 Un-
fortunately, nearly all these evaluations rely upon heuristic approaches, devoid of any
formal statistical theory. This paper seeks to provide statistical foundations for fore-
cast comparisons when mean squared prediction error (MSPE) is the criterion for
predictive accuracy.

Applied forecasting exercises generally make comparisons with is a ratio of MSPEs,
often called the Theil (1966) U -statistic. I show below that if the forecast errors
are correlated, the U -statistic has very di®erent properties than the standard F -
distribution for the ratio of variances. This ratio can yield very misleading inference.

Granger and Newbold (1986) and Meese and Rogo® (1988) were among the ¯rst
papers to go beyond heuristic statistics like the Theil-U . Granger and Newbold
looked at a very restricted case, that of normally distributed, serially uncorrelated
and unbiased forecast errors. Meese and Rogo® (1988) then extended Granger and
Newbold's work to the time series case. This paper generalizes mean square norm
inference by relaxing all three assumptions.

I propose a new robust forecast comparison statistic that only assumes bounds on
the ¯rst four moments and mixing. The robust statistic performs admirably in ¯nite
samples. The statistic is properly sized in normal and non-normal populations, even
in the case of leptokurtosis that badly distorts statistics that assume normality.

I examine the power of the new statistic by comparing forecasts from a moving
average model with misspeci¯ed autoregressive alternatives. The robust statistic
rejects nearly q% of the time alternatives that increase the forecast error variance by
q% in a sample of 25. In a large sample of 250, these results are two to four time
better.

I state the decision problem formally in Section 2. For loss functions in L2 the risk
associated with the forecast is the MSPE. The null hypothesis is then to di®erentiate
sample measures of the risk. Section 3 takes up the case looked at by Granger and
Newbold. I begin by brie°y examining the workhorse of the empirical literature, the
Theil-U . Section 4 is the extension to the time series case. Section 5 discusses bias.
Section 6 develops the robust statistic. Sections 7 and 8 present the Monte Carlo and
power comparisons. A conclusion and guide to further research is in Section 9. Some
derivations involving bivariate moments and cumulants are relegated to an appendix.

2. Mean Squared Prediction Error

In many exercises in applied econometrics, the data analyst is interested in evaluating
a number of candidate models. Particularly with time series models, approximations

1Some representative examples include Armstrong's (1983) analysis of stock company earnings,
McNees' (1990) scorecard for macroeconometric models, and Mizrach's (1992b) e®ort to improve
upon the random walk in forecasting foreign exchange rates.
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to the data generating mechanism are compared based on their ability to predict
either in or out of sample. I will use the notation y to denote the vector of variables
to be forecasted, and let zi be the ith predictor of y. The corresponding forecast
errors will be denoted ei. In this paper, I follow the applied literature in looking at
loss functions in the mean square norm. Consider the function,

`(y ¡ zi) = hei; eii : (1)

where h:; :i denotes the inner product on Rn,

hei; eii =
Xn

j=1
e2ij: (2)

The risk function for the data analyst's problem is just the expectation of (2),

R(zi) = E
·Xn

j=1
e2ij

¸
: (3)

The objective of the analyst's statistical decision problem is to choose a predictor
that will minimize the risk (3). As is widely known, the conditional expectation of
y will minimize quadratic loss. The sample analog of (3) is commonly known as the
mean squared prediction error (MSPE) of the forecast zi,

MPSEi = 1=n
Xn

j=1
e2ij: (4)

Given two estimators of the conditional mean, z1 and z2, the data analyst faces
the question of whether the predictor with the lower risk, z1 by our convention, is
signi¯cantly better than the other. This problem can be stated as the null hypothesis,

H0 : R(z1) = R(z2): (5)

.
Typically, the data exercise will involve forecasts from rival predictors. H0 will be

used to evaluate whether the forecast improvement is statistically signi¯cant.2 The
next four sections are concerned with testing the hypothesis (5) under progressively
weaker distributional assumptions. Section 3 begins with a baseline case of a bivariate
normal, serially uncorrelated, zero mean population.

3. The Baseline Case

I initially assume that the two forecast errors are draws from a bivariate normal
population (E1; E2) with common means ¹1 = ¹2 = 0, own variances ¾21 and ¾22 and
covariance, ¾12 = ½E¾1¾2, where ½E is the correlation coe±cient. In part 1, I show

2Mean squared error as a forecast criterion has been criticized by Clements and Hendry (1992)
for ignoring the complete predictive density. As is typical in many statistical problems, we must
sacri¯ce e±ciency to develop a statistic robust to a large range of population assumptions.
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that the Theil-U can result in very misleading inference, and in parts 2, 3 and 4, I
introduce a number of tests for this baseline case. In part 5, I undertake a comparison
of ¯nite sample properties.

3.1 The Theil-U Statistic

A common way of representing the outcome of applied forecasting exercises is to
report the ratio of the MSPEs,

TU =
1=n

Pn
j=1 e

2
1j

1=n
Pn

j=1 e
2
2j

: (6)

If z2 is the no change forecast, then e2j = yj for all j, and (6) becomes the Theil
(1966) U -statistic.3

With unbiased errors, taking expectations in the numerator and denominator of
(6) yields the ratio of the population variances,

E
h
1=n

Pn
j=1 e

2
1j

i
E
h
1=n

Pn
j=1 e

2
2j

i = ¾21
¾22
: (7)

The null hypothesis (5) can be restated as

H0 : ¾
2
1 = ¾22: (8)

While the numerator and denominator of (7) are each distributed as chi-square
random variables with n degrees of freedom, the ratio (7) will only have the standard
F -distribution if the forecast errors are independent. When ½E 6= 0, the statistic
TU is distorted from the F -distribution by a factor proportional to the square of the
correlation between e1 and e2.

The joint frequency distribution of the sample forecast error variances, s1 and s2,
and correlation coe±cient, r, is proportional to (see e.g. Kendall and Stuart (1963)
p.385)

dF / exp

"
¡ n2

2(1 ¡ ½2E)

(
s21
¾21

¡ 2½2Ers1s2
¾1¾2

+
s22
¾22

)#
sn¡21 sn¡22 (1¡r2)(n¡4)=2ds1ds2dr (9)

.
Evaluating the Jacobian of the transformation gives us the constant term,

dF =
nn¡1

¼¾n¡1
1 ¾n¡1

2 (1 ¡ ½2E)
(n¡1)=2¡(n¡ 2)

exp[:]ds1ds2dr (10)

3I will refer throughout the paper to any ratio of MSPEs as the Theil-U . This matches Theil's
usage only in the case where z2 is the no change forecast.
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De¯ne the change of variables º = (s1=s2). Under the null, º is just the ratio of
the root mean squared errors, the square root of the Theil-U . (10) simpli¯es to

dF / ºn¡2(1¡ r2)(n¡4)=2

(1¡ 2½Erº + º2)n¡1
drdº (11)

Integrating out
R 1
¡1 rdr, Bose (1935) and Finney (1938) have obtained the result

dF =
2(1¡ ½2E)

(n¡1)=2

Beta f(n¡ 1)=2; (n¡ 1)=2g
ºn¡2

(1 + º2)n¡1

(
1 ¡ 4½2Eº

2

(1 + º2)2

)
dº: (12)

Mizrach (1992a) shows that as ½E ! 0, we approach the standard F -distribution,
but otherwise, dF in (12) is strictly less than the standard-F in the right tail of
the distribution, for ½E 6= 0. The empirical size is well below the nominal size of
the standard-F at traditional signi¯cance levels. Monte Carlo results in Mizrach
(1992a) indicate a high rate of Type II error for the typical 95% con¯dence test.
With ½E = 0:9, the F -statistic never rejects the null hypothesis in samples of 10,
25 and 50 observations. Although one could construct a conservative test using the
F -distribution, the Theil-U will not generally be very useful in data analysis, even
merely as a summary measure. We can now turn to more statistically rigorous testing
procedures.

3.2 Tests Relying on the Sample Covariance

Granger and Newbold (1986) and Meese and Rogo® (1988) noticed an easy way to
test the null through the following transformation. Let U = E1 ¡ E2, and V =
E1 + E2. Then, (U; V ) has a bivariate normal distribution with parameters E[U ] =
¹1 ¡ ¹2 = 0; , E[V ] = ¹1 + ¹2 = 0, var(U ) ´ ¾2U = ¾21 + ¾22 ¡ 2½E¾1¾2,
var(V ) ´ ¾2V = ¾21 + ¾22 + 2½E¾1¾2, and cov(U;V ) ´ ¾UV = ½¾U¾V . In terms of
the original population, ¾UV = ¾21 ¡ ¾22. If the mean squared prediction errors in the
original population are equal, then the covariance in the transformed population must
be zero. Now restate the null hypothesis in terms of the transformed population,

H0 : cov(U;V ) = 0: (13)

A direct way to test the null is to use the sample covariance around the population
means,

1=n
Xn

j=1
(uj ¡ [¹1 ¡ ¹2]) (vj ¡ [¹1 + ¹2]) = 1=n

Xn

j=1
ujvj ´ sUV ; (14)

where uj = (e1j ¡ e2j), vj = (e1j + e2j). The variance of this covariance is

var(sUV ) = 1=n2E

"µXn

j=1
ujvj

¶2#
¡ ¾2UV : (15)
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With independent draws from the transformed population, E[ujuj 6=k] = 0, E[vjvj 6=k] =
0, and E[ujvk] = 0, for all j; k = 1; ::::; n: This simpli¯es (15) to

var(sUV ) = 1=n2E
·Xn

j=1
u2jv

2
j

¸
: (16)

In terms of the original population,

var(sUV ) = 1=n2E
·Xn

j=1
e41j + 2e21je

2
2j + e42j

¸
=
h
3(¾21)

2 + 2(1 + 2½2E)¾
2
1¾

2
2 + 3(¾22)

2
i
=n

(17)
It follows that the statistic

sUVhPn
j=1 u

2
jv

2
j =n

2
i1=2 asy:

~ N(0; 1): (18)

Dealing with the sample means complicates things a bit. However, the asymptotic
variance of

¹sUV ´ 1=n
Xn

j=1
(uj ¡ ¹u)(vj ¡ ¹v) (19)

where ¹u = 1=n
Pn

j=1 uj, ¹v = 1=n
Pn

j=1 vj , is the same as that of sUV . The ¯nite sample

approximation is accurate to o(n¡1=2).
The standard precautions are called for in using a standard error to test a sta-

tistical hypothesis. It is only justi¯ed in the case where the test statistic tends to
normality. In ¯nancial applications, this may not be satis¯ed. Secondly, a test on
a moment depends on population moments of twice that order. Fourth moment
restrictions will often be needed to test the equality of the sample MSPEs.

3.3 Tests Using the Sample Correlation Coe±cient

Given our assumption of normality, a necessary and su±cient condition for cov(U; V ) =
0 is that ½ = 0. An asymptotically equivalent testing procedure can therefore be
devised around the sample correlation coe±cient in place of the covariance. The ad-
vantage here is that we have some existing ¯nite sample theory here to rely upon.
De¯ne the (noncentral) sample correlation coe±cient as

r ´
Pn

j=1 ujvjhPn
j=1 (uj)

2
Pn

j=1 (vj)
2
i1=2 : (20)

The statistic

r=
q
var(r); (21)

using the standard result, var(r) = 1=n(1 ¡ ½2)2, could be utilized to test the null,
but the use of a standard error is not recommended here as the sampling distribution
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of r tends to normality very slowly, particularly for large values of ½.4 For large values
of ½ and moderate sample sizes, the distribution is highly skewed. For the case ½ = 0,
Fisher (1915) derived the exact ¯nite sample distribution of r: Fisher showed that

T = r
p
n¡ 2=

p
1 ¡ r2; (22)

has the Student t-distribution, with n ¡ 1 degrees of freedom. 5 Meese and Rogo®
make use of this statistic. Granger and Newbold note that this test is uniformly most
powerful unbiased under our assumptions in this section. In the case where is non-
zero, Fisher (1921) has made use of a transformation6 of ½ which tends to normality
considerably faster than r. Let

´ = 1=2 log[(1 + r)=(1¡ r)] (23)

Fisher shows that in large samples that ´ is distributed N(¹´; ¾
2
´), where ¹´ =

1=2 log[(1 + ½)=(1¡ ½)] and ¾´ = 1=
p
n¡ 3. It follows that

(´ ¡ ¹´)=¾´
asy:

~ N (0; 1): (24)

To the best of my knowledge, the statistic (24) ¯rst appeared in Mizrach (1990).

3.4 A Likelihood Ratio Test

For completeness, I chose to include a likelihood ratio test. For the bivariate normal
case, the log likelihood is given by

logL(u; v; µ = (½; ¾U ; ¾V )) = ¡ log
h
2¼¾U¾V (1¡ ½2)¡1=2

in
+"

¡ 1

2(1 ¡ p)2

½Xn

j=1
u2j=¾

2
U ¡ 2½

Xn

j=1
ujvj=¾U¾V +

Xn

j=1
v2j=¾

2
V

¾#
; (25)

where I have used the population assumptions ¹1 = ¹2 = 0. The maximum likelihood
estimates, denoted with hats, are the sample moments. The null hypothesis is that
H0 : ¾U = ¾̂U ;¾V = ¾̂V ; ½ = ½̂; which I test against the alternative H1 : ¾U =
¾V =

p
2; ½ = 0; Denote the sample likelihood evaluated at the maximum likelihood

estimates as Ln(u; v; µ̂(½̂; ¾̂U ; ¾̂V )). Using (25), de¯ne

4See the example in Hoel (1954) p.123.
5By using the common population means in place of the sample means, we pick up a degree of

freedom.
6In Fisher (1921), the expansion actually made use of the hyperbolic tangents of ´. Let » =

1=2 log[(1 + ½)=(1 ¡ ½)]. Fisher showed that ¹01(´ ¡ ») = tanh(»)=2(n ¡ 1) and that var(´ ¡ ») =
1=(n¡1)+[4¡tanh2(»)=2(n¡1)2] which for small ½ and large n, 1=(n¡1) + 2=(n¡1)2 ¼ 1=(n¡3),
yielding the equation in the text.
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¤n ´
Ln(u; v; µ = (0;

p
2;
p
2))

Ln(u; v; µ̂ = (½̂; ¾̂U ; ¾̂V ))
: (26)

The statistic

¡2 log(¤n)
asy:

~ Â2(3): (27)

is distributed asymptotically, Â2 with 3 degrees of freedom.

3.5 Finite Sample Comparisons

Apart from the statistic (22) for the sample correlation coe±cient in an independent
bivariate normal population, the distribution theory obtained for our test statistics
is all asymptotic. I will need to examine the ¯nite sample properties of ¯ve statistics,
one for the covariance, (18), three for the correlation coe±cient, (21), (22), and (24),
and one for the likelihood ratio, (25). I included the exact ¯nite sample statistic (22)
as a check on our results. I generated 20,000 samples of size n = 10, 25, 50, 100 and
250 using the IMSL subroutines CHFAC and RMNVN. CHFAC obtains the Cholesky
factorization of the covariance matrix of the transformed errors,

cov(U; V ) =

"
¾2U ¾V U

¾UV ¾2V

#
: (28)

By choosing ¾2U = ¾2V = 1, the correlation coe±cient equals the covariance, ½ =
¾UV . I look only at the case in which ½ = 0. The subroutine RMNVN then generates
samples of random numbers using user supplied seed values. I found that choosing
the optimization level at 5 through the subroutine RNOPT was critical for even large
samples to closely approximate population values. The results of the Monte Carlo
simulation are in Tables 1.1 and 1.2. All of the statistics are within sampling error of
their nominal sizes, even in samples as small as 10. The skewness in ½ that sometimes
distorts (21) is apparently not a problem for small values of ½. The LR statistic (25)
performs as well as any of the statistics with any asymptotic normal distribution.
There is little basis to discriminate between the ¯ve statistics, but as we turn to more
complicated population assumptions, the choice between statistics will become more
sharp.

4. The Time Series Case

The statistics in Section 3 are in general only valid for one step ahead forecasts. In
multi-step prediction, even optimal forecasts will be serially correlated. An important
extension then will be to consider statistics for the time series case. In the case of
a (k + 1)-step ahead forecast, the data analyst can be relatively con¯dent of the
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autocorrelation structure of the forecast errors.7 I will proceed under the assumption
that the forecast errors are a dependent process of order k. This information will be
used to construct a consistent estimate of the variance of cov(U; V ). A large sample
result is then obtained. Without the orthogonality assumptions made in arriving at
(16), the variance of the covariance in the transformed population will include terms
involving cross products of lagged U 0s and V 0s.

var(sUV ) = 1=n2E
·Xn

j=1

Xn

m=1
ujvjumvm

¸
¡ E[sUV ]

2 (29)

The bracketed quadruple product in (29) will be crucial for the next three sections.
I expand this term in the Appendix. Normality enables me to drop out the ¯rst and
second lines of (A.8). Unbiasedness eliminates the fourth and ¯fth lines. After making
the change in variables, I ¯nd

var(sUV ) = 1=nE
·Xn

j=1
°UU (t)°V V (t) + °UV (t)°V U (t)

¸
; (30)

where for

t > 0 t · 0
°UU (t) ´ =n

Pn
j=t+1E[ujuj¡t]; °UU(t) ´ 1=n

Pn
j=¡t+1 E[uj+tuj];

°V V (t) ´ 1=n
Pn

j=t+1E[vjvj¡t]; °V V (t) ´ 1=n
Pn

j=¡t+1E[vj+tvj];
°V V (t) ´ 1=n

Pn
j=t+1E[ujvj¡t]; °UV (t) ´ 1=n

Pn
j=¡t+1E[uj+tvj];

°V U (t) ´ 1=n
Pn

j=t+1E[vjuj¡t]; °V U(t) ´ 1=n
Pn

j=¡t+1E[vj+tuj]:

The next equation is:

sUVh
1=n

Pk
t=¡k [1¡ (jtj =n)°̂UU (t)°̂V V (t) + °̂UV (t)°̂V U (t)

i asy:

~ N(0;1): (31)

Note that °UV (0) = ¾UV , °UU(0) = ¾2U , and °V V (0) = ¾2V . If the process fujvjg
is stationary, then °UU (t) = °UU(¡t), etc. Given our dependence assumptions, terms
for which t > k will be zero. Denoting with hats the sample analogs8 of equations
(31), it follows that

sUVh
1=n

Pk
t=¡k [1¡ (jtj =n)°̂UU(t)°̂V V (t) + °̂UV (t)°̂V U(t)

i asy:

~ N(0; 1) (32)

.
If the order of dependence is unknown, the analyst must use the robust procedures

described in Section 6. A closely related statistic for correlated normal populations

7It is a standard result that for a (k + 1)-step ahead forecast, the forecast errors will have a
moving average representation of order k. See e.g. Box and Jenkins (1976) p.158-60.

8I use the biased estimates of the autocovariances, e.g. °̂UU (t) = 1=n
Pn

j=t+1 ujuj¡t, and the
weighting structure (1¡ (jtj =n)) because then the expression in the numerator is a positive semi-
de¯nite function. See Priestley (1981) p.323-4 and the discussion at the end of Section 6. Although
not acknowledged notationally, clearly the ° are functions of the sample size, n
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is derived in both Meese and Rogo® (1988) and Diebold and Rudebush (1991). In
Sections 5 and 6, I move beyond the existing literature, progressively weakening the
two remaining baseline assumptions.

5. Biased Forecasts

Bias will arise in most cases because of misspeci¯cation. Although bias may be
ubiquitous, the adjustments needed are in general quite minor. Let E [e1] ´ ¹1 and
E [e2] ´ ¹2 and assume that ¹1 and ¹2 are not equal to zero. In the transformed
population, E[U ] ´ ¹U = ¹1 ¡ ¹2, and E[V ] ´ ¹V = ¹1 + ¹2: The covariance
of U and V becomes

cov(U; V ) = E
h
E2
1 ¡ E2

2

i
¡ ¹U¹V : (33)

We see there is no longer the one-to-one correspondence between the null hypoth-
esis (5) on the MSPEs in the original population, and the covariance, (13), of the
transformed population. Expanding the second term in (33),

¹U¹V = ¹21 ¡ ¹22: (34)

The covariance will equal zero in all cases for which ¹1 = ¹2; not simply when
both are equal to zero. The analysis of Section 3 would go through unmodi¯ed in this
instance.9 Even if ¹1 6= ¹2; we can still make use of much of the analysis of Section
3 by working with noncentral moments.10 We can restate the null hypothesis as

H0 : E [UV ] = 0: (35)

To test (35), begin by de¯ning the noncentral sample covariance,

s0UV = 1=n
·Xn

j=1
ujvj

¸
: (36)

Under the null, E[s0UV ] =
³
E
hPn

j=1 e
2
1j

i
¡ E

hPn
j=1 e

2
2j

i´
=n = 0. The variance of this

noncentral moment is given by,

var(s0UV ) = 1=n2E
·Xn

j=1

Xn

m=1
ujvjumvm

¸
¡ E[s0UV ]

2: (37)

which is identical to the unbiased case (29) since we chose the origin as the mean
of our baseline population. As with (29), normality eliminates the fourth cumulants

9Ashley, Granger and Schmalensee (1980) run the regression e1j ¡ e2j = ¯1 +
¯2

£
(§e1j)

2 ¡ (§e
2j)

2
¤
as a test for Granger causality. The equality of MSPEs in the biased case

implies that ¯1 = ¯2 = 0. Interpreting AGS's results when one or both ¯'s are found to be negative
can be tricky. Asymptotically, their approach is equivalent to the one I take in this section.

10I could also test the equality of the noncentral second moments in the untransformed population,
H

0

0 : ¾
0

1 = ¾
0

2, where E
£
e
2
i

¤
= ¾

0

i.
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and triple products in (A.8). The bias leaves in lines four and ¯ve, but only for the
on diagonal terms as E[ujuk] = E[vjvk] = E[ujvk] = 0, for all j 6= k. Noting that
under the null hypothesis, °2UV (0) = 0, (37) simpli¯es to

var(s0UV ) = 1=n
h
6¹2U¹

2
V ¡ 2°UU (0)¹

2
V ¡ 2°V V (0)¹

2
U + °UU(0)°V V (0)

i
: (38)

If we were still in the unbiased case, ¹U = ¹V = 0 and (38) would further simplify
to (30) with t = 0. Normality and the absence of serial correlation are helpful in
obtaining a simple expression for the variance. Having now developed the necessary
preliminaries, I am now ready to tackle the problem in full generality.

6. A Robust Test for Heteroscedastic Populations

In this section, I examine the general case where (e1; e2) are dependent draws from
a bivariate population, with joint density f(e1; e2; µ). As in the biased case, the ¯rst
moments are assumed stationary, E[e1j] = ¹1 and E[e2j] = ¹2 for all j. I relax the
assumption that the higher moments are stationary, allowing for heteroscedasticity.
For any given j then, E

h
e21j ¡ e22j

i
does not necessarily equal zero. On average though,

the mean squared prediction errors are assumed equal. We can restate the null as

H0 : E[s
0

UV ] ´ °UV (0) = 0: (39)

I will derive two heteroscedasticity and autocorrelation consistent (HAC) test
statistics. 11 The ¯rst statistic will be for the case in which the order of dependence
is known to be k, and the second case, the order of dependence will be unknown. To
test the null hypothesis (39), I will again need the variance of this noncentral moment.
In expression (A.8) of the appendix, I expand the quadratic from that arises in this
variance. Begin by de¯ning the non-central sample analog of °UV UV ,

s0UV UV (t) = 1=n
Xn

j=t+1
ujvjuj¡tvj¡t; 1=n

Xn

j=¡t+1
uj+tvj+tujvj: (40)

To obtain a statistic with a limiting normal distribution, I will only have to bound
the on diagonal terms of the variance and the degree of auto- and cross-correlation.

PROPOSITION 1: If supt¸1E keitk4º < 1, i = 1;2, for some º > 1, and
°UV UV (t) = 0 for some 1 > t > k, then

11Diebold and Mariano (1991) use an estimate of the spectral density at frequency zero to estimate
the variance of s0UV . Though not stated, the authors implicitly assume covariance stationarity,
making Proposition 2 below more general. Diebold and Mariano also do not prove asymptotic
normality.
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p
n

1=n
Pn

j=1 ujvjhPk
t=¡k s

0

UV UV (t)
i1=2 asy:

~ N(0; 1) (41)

This proposition is really a corollary to the more general Proposition 2 as the
k-dependence is a stronger condition than the -mixing assumption below.12 Hence, I
will forego any proof. A di±culty with implementing the statistic (41) is that there is
no guarantee that for a given k and ¯nite n that the variance estimate will be positive.
This is a well-known result for the sample autocovariance function that will apply to
the bivariate process fujvjg as well. The Bartlett window used by Newey-West (1987)
can easily handle this contingency, that is,

Pk
t=¡k (1 ¡ [jtj =(k + 1)])s0UV UV (t) > 0, for

all n; k. It follows that

p
n

1=n
Pn

j=1 ujvjhPk
t=¡k (1 ¡ [jtj =(k + 1)]) s0UV UV (t)

i1=2 asy:

~ N (0; 1): (42)

I can also relax the assumption that the order of dependence is known, replacing it
with a mixing condition. Accompanied with a rule for expanding k with the sample
size, we can extend Proposition 1 to the case of heteroscedasticity of unknown form.

PROPOSITION 2: Assume that:
(i) The processes feig, i = 1; 2, are an ®-mixing sequence of random variables,

satisfying: supt¸1E keitk4º <1; and
Pn

j=1 j
2®(j)(º¡1)=º for some º > 1;

(ii) The weights !(t; k); (k = 1; 2; :::; t = 1; ::; k) are ¯nite and for each t, lim
k!1

!(t; k) = 1;
Then if k(n) is chosen to be a function of sample size such that lim

n!1
k(n) = +1

and lim
n!1

k(n)=n1=2 = 0, it follows that

p
n

1=n
Pn

j=1 ujvjhPk(n)

t=¡k(n) (1¡ [jtj =(k + 1)]) s0UV UV (t)
i1=2 asy:

~ N(0; 1): (43)

Proof: H0,
p
n
³
1=n

Pn
j=1 ujvj ¡ 0

´
= Op(1). Consider now the term in the

denominator. Under the ®-mixing assumption, trivially satis¯ed if the process were
k-dependent), Andrews (1991) shows that

X1

j=¡1

X1

m=¡1
·UV UV (0; 0; j;m) <1;

X1

j=¡1

X1

m=¡1
°abc(0; j;m) <1; a; b; c 2 (U;V )

12The mixing coe±cients ®(j) determine how much dependence exists in two realizations of the
random sequence j-periods apart. By allowing for these coe±cients to approach zero as j grows
large, ®-mixing implies an asymptotic independence. For a k-dependent process, the coe±cients
®(j) are zero for j > k. For more discussion, see White (1984, p.45)
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X1

j=¡1

X1

m=¡1
°ab(j) <1; a; b 2 (U; V ):

With all of these terms bounded and ¯nite, then

lim
n!1

1=n
Xn

j=t+1
ujvjuj¡tvj¡t = °UV UV (t) <1; t ¸ 0

lim
n!1

1=n
Xn

j=¡t+1
uj+tvj+tujvj = °UV UV (t) <1; t < 0

With the Bartlett weights, clearly !(t; k)! 1 for each t, and [t=(k(n)+1)]1=2 ! 0
if t grows no faster than n1=2. A multivariate central limit theorem for dependent
processes (see e.g. Gallant (1987) Theorem 2, p. 519) completes the proof.

7. Robust Statistic: Finite Sample Properties

This section presents two Monte Carlo exercises. The ¯rst exercise compares the
Meese-Rogo® statistic and the new robust statistic in a time series example. I then
compare the robust statistic with a ¯xed number of autocorrelations k to the case in
which k grows with the sample.

7.1 A Time Series Example

In this section, I contrast the Meese and Rogo® (1988) statistic (32) to the robust
statistic (42). The data generating mechanism was the model,

"
e1t
e2t

#
=

"
0:50 ¡0:45 ¡0:15
0:05 0:00 0:35

# 264
"1t¡1
"1t¡2
"1t¡3

3
75+

"
0:25 0:00

¡0:35 0:50

# "
"2t¡1
"2t¡2

#
+

"
"1t
"2t

#

(44)
In the ¯rst design, the "0s were drawn from a standard normal distribution. Re-

sults are in Table 2.1 for samples sizes of n = 25; 50 and 250, with k = 3 in both
instances. Both statistics are properly sized in all three samples. There does not
seems to be any substantial loss in ¯nite sample accuracy in using the robust statis-
tic rather than Meese-Rogo®, even when the data satisfy our baseline assumption of
normality. In many applications in ¯nance though, this assumption is violated. De-
pendence in the ¯rst and second conditional moments and unconditional leptokurtosis
are stylized facts for many asset returns. Heteroscedasticity is also frequently encoun-
tered. I chose to capture these features in my second design by using a mixture of
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normals distribution.13 Every ¯fth observation, I had the random number generator
sample from a N(0; 4) distribution in place of an N(0;1). This produced an excess
kurtosis of around 3 in small samples and around 10 in large samples. Results for
20,000 replications are in the ¯rst two panels of Table 2.2. The HAC statistic (42)
is undersized in the small samples, but properly sized for n greater than 100. The
Meese-Rogo® statistic rejects anywhere from 3 to 5 times too often, with performance
deteriorating as sample size increases. While the HAC statistic works well in normal
and non-normal populations, the Meese-Rogo® statistic does not show a similar ver-
satility. Since non-normality is likely to matter in ¯nancial time series, the robust
statistic is clearly to be preferred in these applications.

7.2 Heteroscedasticity of Unknown Form

There is little basis on which to choose a rate of growth for k in practice. Newey
and West (1987) suggest that this is an important topic for future research. While
an exhaustive examination is beyond our scope here, I wanted to compare the robust
statistic with k known to the case in which k is unknown. To examine the implications
of heteroscedasticity of unknown form, I allowed k(n) to grow according to the rule
k = int[n1=3] + 1, where int[:]; denotes the integer part of the argument.14 This
obviously satis¯es the conditions of Proposition 2. For n = 25, k = 3; n = 50; k =
4; n = 250; k = 7. I again used the data generating mechanism (44). Results are in
the bottom panel of Table 2.2. Finite sample performance is essentially equivalent to
the case in which k is known. As long as the ratio of autocorrelations to data points
is fairly high, allowing k to grow with the sample size seems to have little impact
on the inference. Obviously though when k is known, one should incorporate that
population information.

8. Power of the Robust Statistics

Having now dealt with size, I take up the issue of power in this section. In 8.1, I
motivate a problem similar to that faced by data analysts in that I consider models
known to be misspeci¯ed. The power calculations using the robust statistic (42) are
in 8.2.

8.1 An Illustrative Example

In time series analysis, one often begins only with representation theory as a priori
knowledge. Given stationarity, a Wold representation exists; with invertibility, an

13An ARCH model or some member of the Paretian densities are the obvious alternatives, but
the former has rather restrictive moment conditions, and the latter family has no moments at all
for many parameterizations.

14Andrews (1991) presents evidence that this is the optimal rate of growth for the Bartlett window.
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autoregressive representation may also be obtained. Since the pioneering work of
Box and Jenkins (1976), time series analysts have re¯ned the art and science of
identifying time series models solely with data analysis. With either time series or
structural models, the primary goal of the data analysis is often prediction. Even
misspeci¯ed models may be considered if they are particularly useful in forecasting.
I consider as an illustrative example the MA(1) data generating mechanism

yt = "t ¡ 0:8"t¡1 (45)

where "t is a white noise disturbance. (45) is invertible and I can then re-write the
DGM as an in¯nite order autoregressive process,

yt(1¡ 0:8L)¡1 = "t (46)

Expanding the polynomial in the lag operator (1-0.8L),

yt = ¡0:8yt¡1 ¡ (0:8)2yt¡2 ¡ ¢ ¢ ¢ ¡ (0:8)nyt¡n ¡ ¢ ¢ ¢+ "t (47)

I consider forecasts of the process (46) from misspeci¯ed AR(p) alternatives. I
wish to compare mean squared prediction errors for k step ahead forecasts.

Davies and Newbold (1980) have tabulated percentage increases in forecast error
variances for k = 1; 2; 3; 4 and p = 1 to 8. For instance, the forecast error variance
using an AR(1) model for the one step ahead forecast (k = 1) is 25% larger than the
correctly speci¯ed MA(1) model. For four steps ahead though, the variance is only
0.3% larger. For an AR(4) model, the one step ahead variance increase is only 4.3%,
and for an AR(8), only 0.3%. With an 8th order model forecasting 8 steps ahead,
the models are virtually indistinguishable (0.1% increase in forecast error variance.)
With the misspeci¯ed model little is lost in large samples when forecasting either 4
steps ahead or with an 8th order AR model. Theoretically, power falls o® a little bit
more rapidly as we expand k than p.

8.2 The Robust Statistic: Power Against AR(p) Alternatives

I utilized the robust statistic (42) for all the power comparisons. I look at both
normal and mixture of normals distributions for the errors in the MA(1) model. I
look at models of p = 1; 4, and 8 and forecast horizons of k = 1; 4, and 8 periods,
and sample sizes of n = 25 and 250. All exercises have 20,000 replications. In Table
3.1, I use normally distributed errors, and in Table 3.2, a mixture of N(0;1) and
N(0;4) errors. The ratio of sample MSPEs is reported as a rough measure of the
percentage increase in the population forecast error variance. For the case of p =
1, k = 1, the MSPE ratio is 0.743, indicative of the 25% larger population forecast
error variance of the misspeci¯ed model. In both tables, for a given value of p, power
falls o® monotonically with the forecast horizon. Although the errors are correlated,
the Theil-U does describe the power fall o® for ¯xed p. For k = 1 and k = 4,
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power also falls o® as the order of the AR approximation increases. Interestingly
though, for k = 8 and n = 250, power increases slightly from p = 4 to p = 8 in
both Tables 3.1 and 3.2. This same phenomenon was noted by Davies and Newbold
(1980). Taking into account the imprecision of the parameter estimates, the forecast
error variances actually start to increase at all forecast horizons when p > 4. The
leptokurtosis of the mixture of normal errors, if anything, enhances the power of the
robust statistic. In the large sample, there are sizable power improvements at k = 1
and 4 for p = 1 and 4. The only substantial reduction occurs in the small sample
with k = 1and p = 1. Overall, the robust statistic proves its utility in the power
comparisons. In the small sample, it rejects nearly q% of the time alternatives that
increase the forecast error variance by q%. For example, with p = 4, and k = 4,
the theoretical increase is 0.9%, and the robust statistic rejects 1.1% of the time. In
large samples, (42) rejects 99% of the time against the alternative with the highest
variance increase (p = 1; k = 1; n = 250) with either normal or mixture errors. Even
at p = 4; k = 4, it still rejects almost 60% of the time. While power is considerably
lower against the AR(8) model, recall that this model's theoretical variance is only
0.6% larger than the correct model even at a one period horizon. The robust statistic
does the job of warning us about badly misspeci¯ed models in small samples. In large
samples, it does the job even against close alternatives.

9. Conclusion

I hope that this paper will help to close the distance between the applied and theo-
retical time series literature. Data analysts now can construct simple tests of the null
hypothesis of the equality of mean squared errors under extremely weak population
assumptions. In the ¯nance literature, this should help resolve questions like which
stock price newsletter is truly doing the best job or whether nonlinear models can
better the random walk.15 With macroeconometric models, it may help both model
builders and model critics to identify areas in need of improvement. The Monte Carlo
and power comparisons are useful diagnostics. Size and power depend critically in
our examples upon dependence assumptions and higher population moments. Our
¯nite sample analysis indicates that ignoring departures from the original Granger-
Newbold framework can result in misleading inference. The obvious extension of this
work is to the L1 norm (mean absolute deviations). Given the asymptotic normality
of most population fractiles, at least a few basic results should be obtainable.

15Mizrach (1992b) improved upon a random walk forecast for the Italian Lira by nearly 5% using
a nonparametric technique. Assuming normality, the statistic (24) indicated an improvement at the
95% critical level. Upon ¯nding excess kurtosis in the forecast errors though, I used the robust
statistic, and instead found a p-value of only 0.34.
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Appendix: Cumulants for Multivariate Distributions

There is a very simple relationship between univariate and multivariate moments
and cumulants. Consider the fourth cumulant of some random variable, ·4 = ¹4¡3¹22.
We can, following Kendall and Stuart (1963 p.83), treat this as a function of r,

·(r4) = ¹(r4)¡ 3¹(r2)2 (A.1)

Applying the operator s@·=@r, we obtain the corresponding bivariate cumulant,

4·(r3s) = 4¹(r3s)¡ 12¹(r2)¹(rs): (A.2)

After dividing through by 4, we obtain

·31 = ¹31 ¡ 3¹20¹11: (A.3)

A similar operator may be applied to the moments as well. The cumulant that
arises in the case of the non-normally distributed, noncentral covariance is ·1111. Us-
ing the operator from (A.2), ·31 = s@·4=@r, ·211 = t@·31=@s, and ·1111 = u@·2111=@t.
It is a well known result that the fourth cumulant of the univariate normal distri-
bution is zero. It follows that the ¯rst order quadravariate cumulant is zero as well.
From any order cumulant (or moment) in n variables, it is straightforward to com-
pute the corresponding expression in terms of the moments of the n-variates. Denote
the four variate cumulant as ·abcd. The expression for the cumulant in terms of the
moments is just a permutation of the underlying moments,

·abcd = ¹0abcd + ®2

X4
¹0a¹

0

bcd + ®2

X3
¹0ab¹

0

cd + ®3

X6
¹0a¹

0

b¹
0

cd + ®4¹
0

a¹
0

b¹
0

c¹
0

d: (A.4)

The superscript above the summation sign denotes the number of permutations of
the underlying indices, ®p = (p¡1)(¡1)p¡1, where p is the number of moments in the
expression, and ¹0i denotes the ¯rst noncentral moments of the variables i = a; b; c; d
and ¹0ab = E[ab], etc.

Having now developed these preliminaries, I can now expand the quadratic form
that arises in calculating the variance of the noncentral covariance in (29) and (37),

var(s0UV ) = 1=nE
·
1=n

Xn

j=1

Xn

m=1
ujvjumvm

¸
: (A.5)

By a change of variables, I can write (A.5) as

var(s0UV ) = 1=n
Xn¡1

t=¡n+1
°UV UV (t); (A.6)

where

°UV UV (t) ´ 1=n
Xn

j=t+1
E [ujvjuj¡tvj¡t]: 1=n

Xn

j=¡t+1
E [uj+tvj+tujvj]: (A.7)
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To describe the su±cient conditions for consistency of the estimated variance, we
must further analyze (A.7).

°UV UV (t) = ·UV UV (0; 0; t; t) + °UV U (0; 0; t)¹V + °UV V (0; 0; t)¹U

+°UUV (0; t; t)¹V + °V UV (0; t; t)¹U

+°2UV (0) + °UU(t)°V V (t) + °V U (t)°UV (t)

¡2¹U¹V [°UV (0) + °UV (t) + °V U (t) + °UV (0)] (A.8)

¡2
h
°UU (t)¹

2
V + °V V (t)¹

2
U

i
+ 6

h
¹2U¹

2
V

i
;

where ·UV UV (0; 0; t; t) denotes for t > 0;

1=n
Xn

j=t+1
E [(uj ¡ E[uj])(vj ¡ E[vj])(uj¡t ¡ E[uj¡t])(vj¡t ¡ E[vj¡t])];

for t · 0,

1=n
Xn

j=¡t+1
E [(uj+t ¡E[uj+t])(vj+t ¡ E[vj+t])(uj ¡ E[uj])(vj ¡E[vj])]; (A.9)

and for

t > 0 t · 0
°UV U (0; 0; t) ´ 1=n

Pn
j=t+1E [ujvjuj¡t] ; 1=n

Pn
j=¡t+1E [uj+tvj+tuj ] ;

°UV U (0; 0; t) ´ 1=n
Pn

j=t+1E [ujvjvj¡t]; 1=n
Pn

j=¡t+1E [uj+tvj+tvj];
°UV U (0; t; t) ´ 1=n

Pn
j=t+1E [ujuj¡tvj¡t]; 1=n

Pn
j=¡t+1E [uj+tujvj];

°UV U (0; t; t) ´ 1=n
Pn

j=t+1E [vjuj¡tvj¡t]; 1=n
Pn

j=¡t+1E [vj+tujvj]:

(A.10)

The remaining cross products, °UU etc., are de¯ned in the text as equations (31).
For the normal distribution, the fourth cumulant ·UV UV will be zero, and for sym-
metric distributions, the triple products (A.10) will be zero. In the unbiased case,
the fourth and ¯fth lines of (A.8) are zero. Under a dependence assumption of order
k, all terms for which t > k are zero.
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Table 1.1

Statistics for Bivariate Normal Populations¤

Sample Size n = 10
Size of

Fractiles 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

Variance of Covariance -2.056 -1.608 -1.340 1.336 1.595 2.056 0.03
Variance of Corr. -2.202 -1.693 -1.367 1.372 1.707 2.215 0.05
Corr. Exact Finite -2.745 -1.794 -1.356 1.362 1.813 2.777 0.05
Fisher's Transformation -2.276 -1.582 -1.225 1.229 1.597 2.298 0.04
Likelihood Ratio 0.124 0.367 0.610 6.262 7.881 11.729 0.05
Student T 9DF -2.764 -1.812 -1.372 1.372 1.812 2.764

Sample Size n = 25
Size of

Fractiles 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

Variance of Covariance -2.222 -1.629 -1.311 1.292 1.624 2.213 0.04
Variance of Corr. -2.448 -1.759 -1.395 1.382 1.759 2.437 0.07
Corr. Exact Finite -2.694 -1.803 -1.394 1.379 1.802 2.676 0.06
Fisher's Transformation -2.512 -1.724 -1.345 1.331 1.723 2.498 0.06
Likelihood Ratio 0.120 0.369 0.599 6.615 8.341 12.158 0.06
Student T 9DF -2.485 -1.708 -1.308 1.316 1.708 2.485

Sample Size n = 50
Size of

Fractiles 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

Variance of Covariance -2.243 -1.655 -1.293 1.300 1.651 2.278 0.05
Variance of Corr. -2.426 -1.747 -1.363 1.353 1.745 2.446 0.07
Corr. Exact Finite -2.531 -1.767 -1.361 1.351 1.765 2.554 0.06
Fisher's Transformation -2.452 -1.730 -1.338 1.329 1.728 2.473 0.06
Likelihood Ratio 0.123 0.363 0.594 6.534 8.283 12.188 0.06

Normal (0.1) -2.326 -1.645 -1.282 1.282 1.645 2.326
Â2(3) 0.114 0.352 0.584 6.251 7.816 11.345

¤The variance of the covariance is given by (18). The variance of the correlation coe±cient is
equation (21). Fisher's transformation of the sample correlation coe±cient is given by (24). These
all have Normal (0,1) distributions in large samples. The exact ¯nite sample statistic, (22) has a
Student-t distribution with n-1 degrees of freedom. The likelihood ratio statistic, (27) is distributed
Â
2 with 3 degrees of freedom. All exercises are based on 20,000 replications.
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Table 1.2

Statistics for Bivariate Normal Populations¤

Sample Size n = 100
Size of

Fractiles 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

Variance of Covariance -2.227 -1.627 -1.286 1.308 1.661 2.278 0.05
Variance of Corr. -2.306 -1.656 -1.302 1.330 1.700 2.349 0.05
Corr. Exact Finite -2.346 -1.663 -1.300 1.329 1.708 2.392 0.05
Fisher's Transformation -2.313 -1.647 -1.290 1.318 1.691 2.357 0.05
Likelihood Ratio 0.110 0.331 0.549 6.058 7.602 11.299 0.05

Sample Size n = 250
Size of

Fractiles 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

Variance of Covariance -2.307 -1.626 -1.288 1.292 1.652 2.286 0.05
Variance of Corr. -2.312 -1.606 -1.277 1.275 1.632 2.319 0.05
Corr. Exact Finite -2.328 -1.608 -1.276 1.274 1.635 2.335 0.05
Fisher's Transformation -2.315 -1.602 -1.272 1.270 1.628 2.322 0.05
Likelihood Ratio 0.113 0.364 0.594 6.248 7.813 11.161 0.05

Normal (0,1) -2.326 -1.645 -1.282 1.282 1.645 2.326
Â2(3) 0.114 0.352 0.584 6.251 7.815 11.345

¤The variance of the covariance is given by (18). The variance of the correlation coe±cient is
equation (21). Fisher's transformation of the sample correlation coe±cient is given by (24). These
all have Normal (0,1) distributions in large samples. The exact ¯nite sample statistic, (22) has a
Student-t distribution with n-1 degrees of freedom. The likelihood ratio statistic, (27) is distributed
Â
2 with 3 degrees of freedom. All exercises are based on 20,000 replications.
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Table 2.1

Statistics for the Sample Covariance: The Time Series Case

Bivariate Normal Populations¤

Fractiles of Meese and Rogo® (1988) Statistic

Size of
Sample Size 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

n = 25 -1.819 -1.404 -1.151 1.302 1.586 2.028 0.02
n = 50 -1.894 -1.390 -1.105 1.363 1.677 2.180 0.03
n = 250 -2.189 -1.515 -1.160 1.431 1.783 2.472 0.05

Fractiles of Robust Statistic
Size of

Sample Size 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

n = 25 -1.916 -1.563 -1.328 1.385 1.623 1.964 0.02
n = 50 -2.058 -1.559 -1.252 1.459 1.763 2.228 0.04
n = 250 -2.293 -1.581 -1.225 1.486 1.836 2.519 0.06

¤The Meese and Rogo® (1988) statistics is given by (32) with k = 3. the robust statistic is given
by (42), again for k = 3. The data generating mechanism is given by expression (44) in the text.
All exercises are based on 20,000 replications.
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Table 2.2

Statistics for the Sample Covariance in Heteroscedastic Populations

Mixture of Normals N(0,1) and N(0,4)¤

Fractiles of Meese and Rogo® (1988) Statistic

Size of
Sample Size 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

n = 25 -2.201 -1.793 -1.500 1.714 2.000 2.385 0.09
n = 50 -2.678 -2.083 -1.686 1.953 2.336 2.912 0.16
n = 250 -3.550 -12.584 -2.060 2.267 2.849 3.861 0.25

Fractiles of Robust Statistic, k= 3
Size of

Sample Size 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

n = 25 -1.809 -1.507 -1.311 1.332 1.509 1.785 0.01
n = 50 -1.956 -1.595 -1.338 1.418 1.645 2.001 0.02
n = 250 -2.348 -1.707 -1.352 1.400 1.755 2.335 0.06

Fractiles of Robust Statistic, k= int[n1=3]+1
Size of

Sample Size 0.01 0.05 0.10 0.90 0.95 0.99 .05 Test

n = 25 -1.809 -1.507 -1.311 1.332 1.509 1.785 0.01
n = 50 -1.918 -1.566 -1.322 1.406 1.629 1.969 0.02
n = 250 -2.242 -1.644 -1.302 1.361 1.708 2.280 0.05

¤The Meese and Rogo® (1988) statistics is given by (32) with k = 3. the robust statistic is given
by (42), again for k = 3. The data generating mechanism is given by expression (44) in the text.
All exercises are based on 20,000 replications.
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Table 3.1

Power Against AR(p) Alternatives

Robust Forecast Statistic

Bivariate Normal Errors¤

Sample Size n = 25
Forecast Horizon

Model 1 4 8

p = 1 0.230 0.027 0.000
(MSPE Ratio) (0.743) (0.883) (0.890)
p = 4 0.078 0.011 0.000
(MSPE Ratio) (0.921) (0.924) (0.992)
p = 8 0.043 >0.000 0.000
(MSPE Ratio) (0.986) (0.987) (0.988)

Sample Size n = 250
Forecast Horizon

Model 1 4 8

p = 1 0.999 0.758 0.176
(MSPE Ratio) (0.712) (0.859) (0.973)
p = 4 0.715 0.567 0.100
(MSPE Ratio) (0.905) (0.905) (0.989)
p = 8 0.176 0.148 0.130
(MSPE Ratio) (0.982) (0.983) (0.983)

¤In column 1, p stands for the order of the autoregressive approximation. The % rejection of
the null for forecasts at 1, 4 and 8 steps ahead are on each row. The MSPE ratio is reported in
parentheses below. The data generating mechanism is the MA(1) model yt = ¡0:8"t¡1 + "t: The
theoretical increases in forecast error variance are (from Granger and Newbold (1980)) for k = 1
and k = 4, with p = 1, (25.0%,0.3%), p = 4, (4.3%,0.9%), and p = 8, (0.6%,0.1%).
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Table 3.2

Power Against AR(p) Alternatives

Robust Forecast Statistic

Mixture of Normals N(0,1) and N(0,4)¤

Sample Size n = 25
Forecast Horizon

Model 1 4 8

p = 1 0.177 0.031 0.000
(MSPE Ratio) (0.678) (0.846) (0.976)
p = 4 0.066 0.005 0.000
(MSPE Ratio) (0.905) (0.941) (0.996)
p = 8 0.026 >0.000 0.000
(MSPE Ratio) (0.978) (0.985) (0.985)

Sample Size n = 250
Forecast Horizon

Model 1 4 8

p = 1 0.999 0.870 0.244
(MSPE Ratio) (0.706) (0.855) (0.972)
p = 4 0.835 0.697 0.064
(MSPE Ratio) (0.902) (0.904) (0.990)
p = 8 0.247 0.116 0.106
(MSPE Ratio) (0.982) (0.983) (0.983)

¤In column 1, p stands for the order of the autoregressive approximation. The % rejection of
the null for forecasts at 1, 4 and 8 steps ahead are on each row. The MSPE ratio is reported in
parentheses below. The data generating mechanism is the MA(1) model yt = ¡0:8"t¡1 + "t: The
theoretical increases in forecast error variance are (from Granger and Newbold (1980)) for k = 1
and k = 4, with p = 1, (25.0%,0.3%), p = 4, (4.3%,0.9%), and p = 8, (0.6%,0.1%).
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