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Abstract

This paper studies the English (progressive) auction for an exchange economy with multiple
objects. The English auction is a tâtonnement process and lasts multiple rounds. It is modeled
as a sequence of round games. Each round game is a normal form game in which an agent's
strategies are his bids and his payo� is his trading pro�ts of his winning bundle at that round.
Among these normal form games, all intermediary round games are in fact the \virtual" games
because the payo�s to agents are not �nalized unless the auction closes. We show that any
ascending price sequence obtained from the English auction converges to a Walrasian equilibrium
(if any) within �nite rounds when agents submit their bids that consist of a Nash equilibrium
in each round game.

We also provide a su�cient condition for the English auction to converge to a Walrasian
equilibrium in �nite rounds. But this condition is weaker than the Nash equilibrium. This
shows that the Nash equilibrium is not necessary (though su�cient) for the English auction to
converge to a Walrasian equilibrium.
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1 Introduction

The English auction and a variety of auction forms have been extensively studied in the auc-

tion literature since the pioneering works of Vickrey (1961) and Wilson (1969). The analysis of

an auction form is treated as a noncooperative game with the application of the Bayesian Nash

equilibrium. Milgrom and Weber (1982) provided a general framework for analyzing a number of

auction forms with symmetric Bayesian Nash equilibrium. The auction literature has been well

surveyed in McAfee and McMillan (1987), Milgrom (1985, 1987) and Wilson (1992).

An absolute English auction (Bulow and Klemperer (1996)) raises the price continuously until

one and only one bidder remains and this last bidder wins the object and pays his winning bid. This

English auction as an allocation mechanism has been widely used in practice for the sale of a single

object. The existing auction literature is mainly concerned with the sale of a single object and the

analysis of an auction form focuses on one normal form game. This paper studies an analogy of

the English auction for the sale of multiple objects and presents an analysis of the English auction

by a sequence of normal form games.1 The English auction in this paper is a tâtonnement process

and it captures some merits of the spectrum auction. The auction form works as follows. At the

beginning of each round agents submit their bid vectors and the price of an object at this round

equals the highest bid(s). Then the price vector is publicly announced and agents begin to conduct

their trade of objects under the announced prices.2 The auction stops whenever each object is

demanded by one and only one agent under the announced prices. Otherwise all objects become

open again for the next round in which each agent submits his new bids. These new bids determine

a new price vector which should be no less than the prior one and at least one object receives a

higher price bid. As the auction continues, it generates an ascending sequence of price vectors.

The problem is that not all ascending price sequences generated by the English auction converge

to a Walrasian equilibrium within �nite rounds. This motivates a natural question: what are the

conditions on the ascending price sequences such that every ascending price sequence generated by

the English auction converges to the Walrasian equilibria within �nite rounds.

To answer the question we formulate the English auction with a sequence of multiple round

normal form games. In each round game the strategies and payo�s for an agent are respectively his

bids and the \trading" pro�t of his winning bundle at that round. An agent's winning bundle at a

round is those objects for each of which he has submitted the highest bid. There is no tie-breaking

device used in this de�nition of the winning bundles and these winning bundles may overlap. Note

1The study of auctions with multiple objects is largely motivated by the novel spectrum auction adopted by the

Federal Communication Commission (FCC) to sell a few thousands of spectrum licenses. The spectrum auction is a

sequential auction form designed by Professors Paul Milgrom and Robert Wilson of Stanford University and Preston
McAfee of the University of Texas (Cramton (1995)). Cramton (1995) and McMillan (1994) provided a detailed

introduction of this auction.
2This trade can be implemented by the auctioneer if agents truthfully report their demand bundles at the an-

nounced prices.
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that all games but the one at the close of the auction are in fact the \virtual" games since the

assigned payo�s in the intermediary rounds are just the \virtual" payo�s and they are not �nalized

unless the auction closes. This framework is based on the idea that agents in a multiple round

auction do not know exactly when an auction closes. Therefore they may indeed play their bids in

each intermediary round as if that round were the close one. This feature that only the payo�s at

the close of the auction matter is similar to the noncooperative bargaining model as in Rubinstein

(1982). But the sequence of normal form games is modeled as in an in�nitely repeated game.

We show that any ascending price sequence obtained in the English auction converges to a

Walrasian equilibrium within �nite rounds when players submit their bids that consist of a Nash

equilibrium in each round game. Moreover, the auction can start with arbitrary price vectors below

Walrasian equilibrium price ones and the convergence result still holds. An implication of this is

that agents can submit arbitrary bids (say, switch bids, jump bids; see Cramton (1995)) at the

very beginning of the auction, the auction still converges to a Walrasian equilibrium within �nite

rounds once agents' bidding behavior conforms with the Nash equilibrium bids starting from some

round and thereafter.

In the above result we assume that agents are myopic and submit Nash equilibrium bids at

each round game. But this myopic Nash equilibrium (MNE) assumption is not necessary for the

result. We �nd one additional su�cient condition (C2) for the auction to converge to a Walrasian

equilibrium within �nite rounds. Intuitively C2 states that each agent is at least willing to buy his

winning bundle at each round if the auction stops at that round, though he may be willing to buy

those he is not winning. Alternatively this condition means that agents are not willing to withdraw

their winning bids after winning.

In the discussion section we introduce the second additional condition (C3). We say that an

agent \wins" an object if his bid for that object is no less than its prior price. Hence each agent

can determine in advance in each round which bundle he is going to \win" since the prior price

vector is public information. C3 says that each agent is at least willing to buy his \winning" bundle

at each round if the auction stops at that round. C3 is a special case of C2. A corollary of the

above result is that any ascending price sequence obtained from the English auction converges to

a Walrasian equilibrium in �nite rounds under C3.

We show the convergence result under condition C2. Because the MNE assumption satis�es

C2, the result under MNE is a corollary of the one under C2. The major di�erences among MNE,

C2 and C3 are the facts that bids under C2 and C3 may not be the Nash equilibrium bids. An

implication of this is that Nash equilibrium is not a necessary (though su�cient) condition (even

at the close of the auction) for the English auction to achieve a Walrasian equilibrium within �nite

rounds. C3 is di�erent from C2 by the fact that bids under C3 depend on the prior prices only

while bids under C2 may depend on the historic prices beyond the last round.
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When agents' utility functions satisfy the gross substitutes condition in Kelso and Crawford

(1982), an agent can ignore how and what the others may bid in the auction; as long as each agent

is willing to buy his \winning" bundle and pay his \winning" bids at each round, any ascending

price sequence obtained from the English auction converges to a Walrasian equilibrium within �nite

rounds.

Related Literature

We consider an exchange economy in which there are a �nite number of agents and objects.

Agents may consume as many objects as they wish. Therefore each agent's utility function is de-

scribed by a set function over all commodity bundles. This economy has been studied by Bikhchan-

dani and Mamer (1994) and G�ul and Stacchetti (1996b). A related version of it in which objects

are personalized has been studied in Ma (1996). It is analogous to the job-matching market in

Kelso and Crawford (1982) by identifying agents and objects in this paper with �rms and workers

respectively in theirs. The major issue in these papers is the existence of a Walrasian equilibrium.

In what follows we assume that a Walrasian equilibrium always exists.

There has been a growing interest of the studies of auction forms with multiple objects. A list

of lately studies of a variety of auction forms with multiple objects may be found in Bikhchandani

(1996). Our paper is perhaps mostly related to Demange, Gale and Sotomayor (1986), G�ul and

Stacchetti (1996a) and Kelso and Crawford (1982). Demange, Gale and Sotomayor (1986) designed

an auction form for the assignment problem (Shapley and Shubik (1972)) by the Hall Theorem.

Their auction form starts with zero bids. In each round, given the prior price vector, agents

report their demand objects to the auctioneer. The auctioneer stops the auction if each object

demanded by one and only one agent. Otherwise the Hall Theorem (Gale (1961) and Hall (1935))

is used to �nd out the minimum overdemanded bundle. The prices of those objects in the minimal

overdemanded bundle are each increased by a unit and the auction moves to the next round. They

showed that their auction converges to the minimum (discrete) Walrasian price vector within �nite

rounds. The unit of increments can be chosen such that their auction converges to the minimum

Walrasian price vector with any degree of approximation.

Kelso and Crawford (1982) generalized the job-matching market in Crawford and Knoer (1981)

to allow a �rm to hire as many workers as he wishes and to have more complex utility functions.

As in Crawford and Knoer (1981), they generalized the Gale and Shapley (1962) deferred proposal

algorithm to their job-matching market. In their algorithm each �rm starts with zero salary o�ers.

In each intermediary round each �rmmakes o�ers to a demand set of workers and this set of workers

includes those who accept its prior o�ers; Each worker rejects all but the most preferred o�er, which

he then temporarily accepts; The salaries of each rejected o�er is raised by a unit and the algorithm
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continues until each worker has one and only one o�er.3 Under their gross substitutes condition,

they showed that their algorithm must stop within �nite rounds with a (discrete) core outcome

(thus a discrete Walrasian equilibrium) and the unit of increments of salaries can be chosen such

that the algorithm converges to a (continuous) core outcome with any degree of approximation.

Their algorithm is in fact a version of the English auction.

G�ul and Stacchetti (1996a) studied the exchange economy with multiple objects and designed

an English auction by a generalization of the Hall Theorem. Their auction starts with zero vector.

Given the prior price vector, agents report their demand bundles to the auctioneer. The auction-

eer stops the auction if no minimal overdemanded bundle4 can be found. Otherwise the minimal

overdemanded bundle can be found and prices are equally increased for those objects in the min-

imal overdemanded bundle and these prices are increased beyond such a degree that the minimal

overdemanded bundles in two adjacent rounds are the same. They showed that under the gross

substitutes condition5 their auction converges to the minimumWalrasian price vector within �nite

rounds.

There are several features that distinguish our paper from these papers. First, the major

concern in these papers is to design one Walrasian equilibrium price path while our paper focuses

on the conditions under which every ascending price sequence generated by the English auction

is Walrasian. Therefore, there may exist in�nitely many Walrasian price paths that satisfy our

conditions for an economy. Second, the tie-breaking device often plays an important role in the

design and the study of an auction form. For example, the minimum overdemanded bundles in

Demange, Gale and Sotomayor (1986) and G�ul and Stacchetti (1996a) both play in part a role of

tie-breaking device. We bypass the tie-breaking problem by allowing the overlapping of the winning

bundles. Third, since we formulate the English auction by a sequence of normal form games, the bid

increments at each round become strategic variables and are endogenously determined by agents.

The auctioneer does not play a role in how agents may submit their bids. Fourth, we only assume

the existence of a Walrasian equilibrium and this assumption is minimal in the sense that if a

situation has no Walrasian equilibria then no auction form can achieve a Walrasian equilibrium.

Finally, Bikhchandani (1996) studied the exchange economy and the implementation of the

Walrasian allocations by a (static) English auction. He showed that pure strategy Nash equilibria

exist if and only if Walrasian equilibria exist. Moreover, the set of pure strategy Nash equilibrium

allocations coincides with the set of Walrasian allocations. These conclusions may not apply to the

3Their algorithm is asymmetric in the sense that only �rms make o�ers. But Roth (1984) found that this algorithm

can be made symmetric and its core has a surprising polarization property.
4Their de�nition is quite di�erent from the one in Demange, Gale and Sotomayor (1986).
5G�ul and Stacchetti (1996b) provided two new su�cient conditions, the no complementarities and the single

improvement property, for the existence of a Walrasian equilibrium. They showed that the set of Walrasian prices

forms a lattice under the common interests of sellers and the gross substitutes condition is equivalent to their two
new conditions.
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mixed Nash equilibria though. Bikhchandani's approach is static and it is quite di�erent from ours.

Outline of the Paper

The outline of this paper is as follows. Section 2 introduces the exchange economy. Section 3

introduces the English auction. Section 4 formulates the auction form by a sequence of normal form

games and introduces the �rst convergence result under the MNE assumption. Section 5 introduces

the main convergence theorem under the condition C2. Section 6 introduces one additional condi-

tion C3 and an application of the results when agents' utility functions satisfy the gross substitutes

condition in Kelso and Crawford (1982). We also show what may be the outcomes when agents

make their \mistakes". Section 7 provides the proofs of the two main results under condition C2

and MNE.

2 Exchange Economies

We use some notation and de�nitions from G�ul and Stacchetti (1996a,b). Let N = f1; 2; � � � ; ng

denote the set of agents. Denote 
 the set of all commodities in the economy and 2
 the set of

all commodity bundles. For an agent i 2 N , his utility function ui is a set function ui : 2

 ! R

satisfying ui(;) = 0. We assume that ui is weakly monotone, i.e., for all A;B � 
 such that A � B,

ui(A) � ui(B). Free disposal is a su�cient condition for this assumption.

A feasible allocation X is a partition (X(0); X(1); � � � ; X(n)) of 
, where X(i) is agent i's com-

modity bundle and X(0) is the unallocated bundle. An allocation X is optimal if
P

i2N ui(X(i))�
P

i2N ui(Y (i)) for all allocations Y . De�ne V (N) =
P

i2N ui(X(i)) for an optimal allocation X .

Given a price vector p 2 R
j
j
+ , agent i's trading pro�t function vi : 2


 �R
j
j
+ ! R is de�ned by

vi(A; p) = ui(A)�
X
a2A

pa

and his demand correspondence Di : R
j
j ! 2
 is de�ned by

Di(p) = fA � 
 : vi(A; p) � vi(B; p); 8B � 
g:

A pair (X; p) of an allocation X and a price vector p is a Walrasian (competitive) equilibrium if

pa = 0 for all a 2 X(0) and X(i) 2 Di(p) for all i 2 N:

3 The English Auction

We now present the English auction with multiple objects. Let t = 0; 1; 2; � � � be the in�nite time

horizon and each t represents a round.
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Round t = 0. The auction starts with any price vector below the equilibrium price vectors. For

example, the auction may start with the zero price vector.

Round t. Each agent submits bi(t) 2 Rm
+ . The price vector p(b(t)) at t is determined by

pa(b(t)) = max
i2N

bia(t) 8a 2 
:

An agent i's winning bundle is de�ned by

Wi(b(t)) = fa 2 
 : bia(t) � bi
0

a (t) 8i0 2 Ng:

p(b(t)) is publicly announced. Under p(b(t)) agents conduct trade of objects. The auction will

stop if there is a trade such that each object is demanded by one and only one agent under p(b(t)).

Otherwise, all objects become open again and the auction goes to the next round, t+ 1.

This English auction is a tâtonnement process and it is designed to obtain a Walrasian price

vector since as long as the price vector is Walrasian the trade conducted by agents will be Walrasian.

The stopping rule of the above auction is an analogy to the all-open-until-all-close rule in the

spectrum auction. But there is one signi�cant di�erence. In the spectrum auction each object

is awarded to its winner at the close. Since the winning bundles may overlap in this paper, the

awarded bundles at the close may be quite di�erent from the winning bundles in the above auction

form.

Is it possible for the auction to stop with a non-Walrasian price vector for the stopping rule

designed this way? The following result derived from the extension of the Hall Theorem provides a

negative answer to the question. For any non-Walrasian price vector with no object oversupplied,

there exists at least one object demanded by two agents.

Theorem 0: Let p 2 Rm
+ be a price vector. Suppose that p is not Walrasian. Then for any

collection C = fC1; C2; � � � ; Cng such that Ci 2 Di(p) for all i 2 N and [i2NCi = 
, there exists

S � N such that

j [i2SCi j<
X
i2S

j Ci j :

Proof: De�ne the biparte graph G(p) = (N; V2; E) such that V2 = fCi : Ci is an element in Cg.

(i; C) 2 E if and only if C = Ci. Since p is not Walrasian, there does not exist a perfect match of

the graph G(p). Therefore Theorem A in the appendix applies to the graph G(p) and provides the

desired result. Q.E.D.

Hence some commodity bundles must be overdemanded for a non-Walrasian price vector. Note

that Theorem 0 is true for any collection of commodity bundles in agents' demand correspondences.
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Therefore the English auction stops if and only if it stops with a Walrasian price vector. Because

of this, the English auction above may not work because not all price sequences generated by it

converge to a Walrasian equilibrium. Our task is to �nd the conditions such that every price se-

quence generated by the English auction converges to a Walrasian equilibrium within �nite rounds.

In other words we are looking for the enviornments such that the English auction designed this

way works. This is the main task in the next two sections.

Before we leave this section, we would like to introduce the ascending bid condition. Let

fp(b(t))gt=0;1;2;��� be a price sequence obtained from the English auction and de�ne At+1 = fa 2


 : pa(b(t+ 1)) > pa(b(t))g. The ascending bid condition is as follows.

C1: p(b(t+ 1)) � p(b(t)) and At+1 6= ; for each t.

Clearly the condition only applies to those rounds in which the auction does not stop. Since

C1 is conditioned on the price vector not on agents' bids, agents' bids may not be ascending. C1

should be embodied as an auction rule in the design of the English auction.

4 Nash Equilibrium Bids

We �rst formulate the English auction by a sequence of normal form games. We now de�ne the

round games, �(t). In each �(t), we assume that the strategies for an agent are his bids in Rm
+ .

Given a pro�le of bids b(t), b(t) = (b1(t); b2(t); � � � ; bn(t)) 2 Rmn
+ , the payo� for an agent i in the

game �(t) is the \trading" pro�t of his winning bundle de�ned by

vi(Wi(b(t)); p(b(t))):

Equivalently, vi(Wi(b(t)); p(b(t))) = vi(Wi(b(t)); b
i(t)).

Hence the English auction is considered as a sequence of normal form games �(t). We say that

b(t) = (b1(t); b2(t); � � � ; bn(t)) is a Nash equilibrium of the game �(t) if for all agents i 2 N

vi(Wi(b(t)); p(b(t)))� vi(Wi((b̂
i; b�i)(t)); p((b̂i; b�i)(t)))

for all b̂i(t) 2 Rm
+ .

We assume that agents are myopic: Each agent i 2 N submits his bids bi(t) at each round t

such that bi(t) is a best response to the others' bids, b�i(t), at that round. Precisely, we make the

following assumption on agents' bidding behavior:

Myopic Nash Equilibrium (MNE): fp(b(t))gt=0;1;2;��� satis�es the MNE assumption if for

each round t each pro�le of bids b(t) = (b1(t); b2(t); � � � ; bn(t)) is a Nash equilibrium of each round
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game �(t).

We often use p(t) for p(b(t)) and Wi(t) for Wi(b(t)).

Theorem 1: Let fp(t)gt=0;1;2;��� be any price sequence obtained from the English auction that

satis�es C1 and MNE. Then there exists a �nite T such that p(T ) is Walrasian.

We will show Theorem 1 in Section 7 after Theorem 2. Before we leave this section two remarks

are in order. Although the English auction does not award the winning bundles to each agent at

the close, the trading pro�t received by each agent at the close is equivalent to his trading pro�t

under the rule such that he is awarded with his winning bundle under the MNE assumption. To

see this, note that MNE implies that Wi(T ) 2 Di(p(T )) for all i 2 N ; see the proof of Theorem 1.

At the close T , p(T ) is Walrasian. Therefore we know that each agent is awarded with a bundle of

a Walrasian allocation X , say. Since X(i) 2 Di(p(T )), it follows that

vi(Wi(T ); p(T )) = vi(X(i); p(T));8i 2 N:

Even so, one may still wonder why not to award agents with their winning bundles at the close

as in the single object situation. The anwser is that the single object is a very special situation

in which the awarded object occidentally coincides with the Walrasian allocation (i.e., the highest

valuation bidder obtains the object with a price equal to the second highest valuation) and the �nal

bid by the winner turns out to be a Nash equilibrium bid. In the multiple objects situation, these

nice properties with the single object are no longer true. In fact as long as agents submit their Nash

equilibrium bids at the close, the winning bundles must overlap. Indeed one can easily show that

each object must receive at least two winning bids at the Nash equilibrium bids. Otherwise a bidder

can always lower his bid for an object but still wins it; With the new bids he gets strictly better o�

and this disputes the Nash equilibrium assumption. In fact the overlapping situation happens with

the single object in which the highest valuation and the second highest valuation bidders bid the

same. Unfortunately the overlapping winning bundles no longer coincide with Walrasian allocation

bundles in the multiple object situation.

An implication of this argument is that once agents are awarded with their winning bundles

their winning bids must not be Nash equilibrium bids. In order to conform the Nash equilibrium

with such an auction rule that awards agents with their winning bundles, complicated tie-breaking

rules must be imposed. The tie-breaking approach in Bikhchandani (1996) may provide a way how

to do this. However, we prefer not to use any tie-breaking device in this paper.
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5 Non-Nash Equilibrium Bids

This section presents a weaker assumption on agents' bidding behavior than the MNE one. The

reason for such a search comes from the fact that agents may not behave so rationally as the Nash

equilibrium predicts. Nonetheless this does not mean that agents behave in an arbitrary manner in

their bidding. For example, agents would at least like to \buy" what they win when they submit

their bids. We will show that this simple condition together with the ascending bid one in C1

provides a su�cient condition for the English auction to achieve a Walrasian equilibrium in �nite

rounds.

We start with an example and deliver some intuition behind. The following example is due to

Professor Preston McAfee and taken from McMillan (1994).

Suppose there are two licenses, 1 and 2. Hence 
 = f1; 2g. There are three bidders N =

fe; w; nwg, East, West and Nationwide. Bidders' utility functions or reservation values (in billions)

are as follows

ue(f1g) = 2; ue(f2g) = 1; ue(f1; 2g) = 3

uw(f1g) = 1; uw(f2g) = 2; uw(f1; 2g) = 3

unw(f1g) = 1:6; unw(f2g) = 1:6; unw(f1; 2g) = 3:3

These utility functions are clearly interdependent. We �rst �nd out all Walrasian equilib-

rium prices. Since the optimal allocation of licenses is such that X(e) = f1g, X(w) = f2g and

X(nw) = ;, we must have f1g 2 De(p), f2g 2 Dw(p) and ; 2 Dn(p) for any Walrasian price vector

p. Hence we obtain a system of linear inequalities

1:6 � p1 � 2; 1:6 � p2 � 2

�1 � p1 � p2 � 1; p1 + p2 � 3:3:

This system has a solution and therefore a Walrasian equilibrium exists. For examples, (1:6; 1:7)

and (1:7; 1:6) are Walrasian. Note that (1:6; 1:6) is not. This shows that not all exchange economies

with multiple objects have the minimumWalrasian equilibrium.

McMillan (1994) provided a detailed analysis of this example and noted that (arbitrary) open

auctions (that also allow bidders to submit combination bids) may not allocate the licenses e�-

ciently. Therefore, open auctions that also allow combination bids may not converge to a Walrasian

equilibrium. Nevertheless, we now use the English auction in Section 3 to �nd a price sequence that

does converge to a Walrasian equilibrium. Because the English auction provides in�nitely many

Walrasian price sequences. The analysis given below provides only one such price sequence.
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Round 0.

i e w nw

bi(0) (0; 0) (0; 0) (0; 0)

Wi(0) f1; 2g f1; 2g f1; 2g

Di(p(0)) ff1; 2gg ff1; 2gg ff1; 2gg

Round 1.

i e w nw

bi(1) (1; 1) (1; 1) (1; 1)

Wi(b(1)) f1; 2g f1; 2g f1; 2g

Di(p(1)) ff1g; f1; 2gg ff2g; f1; 2gg ff1; 2gg

Round 2.

i e w nw

bi(2) (1:7; 1) (1; 1) (1:6; 1)

Wi(b(2)) f1; 2g f2g f2g

Di(p(2)) ff1g; f1; 2gg ff2gg ff1; 2gg

Round 3.

i e w nw

bi(3) (1:7; 1) (1; 1:6) (1:6; 1:6)

Wi(b(3)) f1g f2g f2g

Di(p(3)) ff1gg ff2gg ff;g; f2g; f1; 2gg

The price sequence is (0; 0); (1; 1); (1:7; 1) and (1:7; 1:6). At (1:7; 1:6), there is an allocation X

such that X(e) = f1g; X(w) = f2g and X(nw) = ;. Therefore, the auction closes with (1:7; 1:6).

The importance of this price sequence is not the sequence itself because we know the set of

Walrasian equilibrium prices. One can design many such price sequences. What is important is

that this price sequence satis�es the following condition:

C2: At each round t and i 2 N 9Ai(t) 2 Di(p(t)) such that Wi(b(t)) � Ai(t).

That is the winning bundle at each round is included in one demand bundle for each agent in

each round. The intuition of this condition is as follows. Imagine that there is a clock setting up

for the auction. Suppose that the clock suddenly stops. Then the condition says that each agent is

at least willing to buy his winning bundle when the clock stops although he may want to buy those

objects that he is not winning. Equivalently this means that an agent does not want to withdraw

his winning bids after winning.

Theorem 2: Let fp(t)gt=0;1;2;��� be a price sequence obtained from the English auction that

satis�es C1 and C2. Then there always exists a �nite T such that p(T ) is Walrasian.

11



Note that C2 is di�erent from MNE because a pro�le of bids satisfying C2 may not be a Nash

equilibrium. For example, the bid pro�le ((1; 7; 1); (1; 1:6); (1:6; 1:6)) does not satisfy MNE at round

3. A MNE pro�le at round 3 could be ((1:7; 1); (1; 1:6); (1:7; 1:6)) or ((1:7; 1); (1; 1:5); (1:7; 1:5)).

Therefore as long as agents' bidding behavior conforms with the condition C2 the English

auction in Section 3 will work. It will close within �nite rounds with a Walrasian equilibrium.

We will show Theorem 2 in Section 7. In what follows we develop some intuition behind the

proof. We �rst introduce some useful notation and two preliminary results. Let p 2 Rm
+ . Since

vi(A; p) = vi(B; p) for all A;B 2 Di(p), we de�ne vi : R
m
+ ! R+ by vi(p) = vi(C; p) for C 2 Di(p)

and denote v(p) for (v1(p); � � � ; vn(p)).

Lemma 1: Let p 2 Rm
+ . Then

P
a2
 pa +

P
i2N vi(p) � V (N).

Suppose p is Walrasian. Then there exists a Walrasian allocation X such that

X
a2


pa +
X
i2N

vi(p) =
X
i2N

ui(X(i)) = V (N)

since a Walrasian allocation is optimal. What follows says that the above equality is in fact a

necessary and su�cient condition for a price vector to be Walrasian. This result is built on the

necessary and su�cient condition for the existence of Walrasian equilibrium in Bikhchandani and

Mamer (1994).

Theorem 3: Let p 2 Rm
+ . p is Walrasian if and only if

X
a2


pa +
X
i2N

vi(p) = V (N):

Now de�ne

G(t) =
X
a2


pa(t) +
X
i2N

vi(p(t)):

Lemma 1 shows that G(t) � V (N). Theorem 3 shows that if p(t) is a price vector such that

G(t) = V (N) then p(t) is Walrasian. Therefore we need to �nd conditions such that fG(t)gt=0;1;2;���

is decreasing since it is bounded below by V (N). Because fp(t)gt=0;1;2;��� is ascending, the �rst term

in G(t) is strictly increasing. Lemma 4 in Section 7 shows that G(t + 1) � G(t), i.e., the second

term in G(t) must be strictly decreasing. However this does not mean that the decrease in the

second term in G(t) strictly dominates the increase in the �rst term for every t, i.e., G(t+1) > G(t)

for every t, because it may be the case that G(t) = G(t + 1) for some t. What we have to make

sure is that a state t such that G(t) = G(t+ 1) will not last in�nitely many rounds, i.e., absorbing.

12



This is shown by Lemma 5 in Section 7. Therefore, we show that starting with any t such that

the auction is not closed there always exists a �nite T such that G(t+ T ) < G(t), i.e., the decrease

in the second term eventually strictly dominates the increase in the �rst term. This implies that

there must exist a �nite round such that fG(t)gt=0;1;2;��� reaches its bound V (N). Then Theorem 3

provides the result.

Without C1 Theorems 1 and 2 are not true. For example, each agent can submit 0 2 Rm
+ bids for

each round and this satis�es both C2 and MNE. But the price vector 0 is not Walrasian for some ex-

change economies, e.g., the McAfee example. Without C2 Theorem 2 is not true either because it is

possible that the increase in the �rst term dominates the decrease in the second term in G(t). For ex-

ample, consider such situation in which each agent i bids 0 2 Rm
+ in round 0 and (Bi; � � � ; Bi) 2 Rm

+

in round 1, where Bi > ui(
). Then G(0) =
P

i2N ui(
) but G(1) =
P

a2
maxi2N Bi
a, with

G(0) < G(1). By C1 it follows that G(t) > G(1) for every t = 2; 3; � � � : The auction never ends up

with a Walrasian equilibrium, by Theorem 3.

6 Discussions

Markovian Bidding

The winning bundles Wi(t) in C2 depend on how the other agents submit their bids. What follows

is to de�ne the \winning" bundles according to the prior price vector p(t� 1). The advantage for

such a de�nition is the fact that bidders can determine their \winning" bundles in advance since

the price vector p(t�1) is public information. One may consider such bidding behavior as a version

of the \Markovian" bidding, i.e., agents play their bids dependent on the prior prices only. The

bids under C2 may be depend on the prior prices and beyond. De�ne

~Wi(t) = fa 2 
 : bia(t) � pa(t� 1)g 8i 2 N:

C3: For each t and i 2 N 9Ai(t) 2 Di(p(t)) such that ~Wi(t) � Ai(t).

Since pa(t) = maxi2N bia(t) and p(t) > p(t�1), it follows thatWi(t) � ~Wi(t): By C3 there exists

Ai(t) 2 Di(p(t)) such that ~Wi(t) � Ai(t). Therefore, C3 satis�es C2.

Corollary 1: Let fp(t)gt=0;1;2;��� be a price sequence obtained from the English auction that

satis�es C1 and C3. Then there always exists a �nite T such that p(T ) is Walrasian.
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The Gross Substitutes Condition

Kelso and Crawford (1982) studied a job-matching market in which �rms may hire as many

workers as they wish and have interdependent utility functions over workers. The exchange economy

studied in this paper is analogous to theirs. But there is a signi�cant di�erence. A worker's utility

function in Kelso and Crawford (1982) depends on not only the salaries but also the �rm who hired

him. Therefore, their job-matching model is more complicated in the aspects of sellers' utility

functions. In the commodity markets we assume that objects (sellers) do not care about the names

of the buyers.

Given a utility function u and any two price vectors p; q 2 Rm
+ , de�ne T : 2
 ! 2
 by

T (A) = fa 2 A : A 2 D(p) and pa = qag:

Gross Substitutes (GS): For every i 2 N , if A 2 Di(p) and q � p, then there exists �A 2 Di(q)

such that Ti(A) � �A.

Intuitively, an agent demands an object at a price vector p and he still demands it if some other

objects' prices are increased. Under the gross substitutes, a Walrasian equilibrium always exists

in the current model. This follows from the fact that the core is nonempty (Kelso and Crawford

(1982)) and the equivalence theorem.

G�ul and Stacchetti (1996b) introduced a new condition, no complementarities (NC), and showed

that their NC condition is equivalent to GS.

No Complementarities (NC): A utility function u satis�es the NC condition if for each

price vector p, and all bundles A;B 2 D(p) and X � A, there exists a bundle Y � B such that

[A nX ][ Y 2 D(p).

Under the GS or NC condition agents have a simple way to bid.

C4: For each t and i 2 N 9Ai(t) 2 Di(b
i(t)) such that ~Wi(t) � Ai(t).

C4 states that agents submit bids on those objects that he demands at his bids, given the price

vector p(t�1). This condition depends on the information disclosed after each prior round. Hence,

under the gross substitutes condition, an agent can ignore how the others may submit their bids.

Indeed, what he needs to do is to decide which bundle he wants to win relative to the prior price
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vector. And the winning bundle is a bundle he really demands according to his own submitted

bids. He needs to know nothing about the others.

Suppose that ui satis�es the gross substitutes condition for all i 2 N . We show that C4 satis�es

C2. To see this, note that Wi(t) � ~Wi(t). C4 requires that there exist A 2 Di(b
i(t)) such that

Wi(t) � ~Wi(t) � A. On the other hand, for each a 2 Wi(t), pa(t) = bia(t). Since p(t) � bi(t) by def-

inition, the gross substitutes condition requires that there exist B 2 Di(p(t)) such that Wi(t) � B.

This is exactly C2. Thus, we obtain a useful corollary.

Corollary 2: Suppose that ui satis�es the GS or NC condition for each i 2 N . Let fp(t)gt=0;1;2;���

be any price sequence obtained in the English auction that satis�es C1 and C4. Then there always

exists a �nite T such that p(T ) is Walrasian.

Corollary 2 is also true if C4 takes the following form:

C40: For each t and i 2 N 9Ai(t) 2 Di(b
i(t)) such that Wi(t) � Ai(t).

\Mistakes"

In the close of this section we will discuss what will happen if agents do not conform with the

MNE assumption or the condition C2 for sometimes. Does the English auction still work by allow-

ing agents to make these \mistakes" occasionally? As long as agents do not make such mistakes for

in�nitely many times, the English auction will still end up within �nite rounds with a Walrasian

equilibrium. This follows from the following two versions of Theorems 1 and 2.

Theorem 10: Let fp(t)gt=0;1;2;��� be any price sequence obtained from the English auction and

fq(s)gs=0;1;2;��� be any subsequence of fp(t)gt=0;1;2;��� that satis�es C1 and MNE. Then there always

exists a �nite T such that q(T ) is Walrasian.

Theorem 20: Let fp(t)gt=0;1;2;��� be any price sequence obtained from the English auction and

fq(s)gs=0;1;2;��� be any subsequence of fp(t)gt=0;1;2;��� that satis�es C1 and C2. Then there always

exists a �nite T such that q(T ) is Walrasian.

The proofs of Theorems 10 and 20 directly follow from the proofs of Theorems 1 and 2. These

results show that \mistakes" are forgettable as long as agents do not make such \mistakes" so

often. This is especially useful at the very early stage of the auction.
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7 Proofs of Theorems 1 and 2

7.1 Preliminary Results

We �rst prove the two preliminary results, Lemma 1 and Theorem 3.

Lemma 1: Let p 2 Rm
+ . Then

P
a2
 pa +

P
i2N vi(p) � V (N).

Proof: vi(p) � ui(A)�
P

a2A pa for any A � 
. Hence

X
a2


pa +
X
i2N

vi(p) �
X

a2
nY (0)

pa +
X
i2N

vi(Y (i); p)

for any allocation Y . It follows that

X
a2


pa +
X
i2N

vi(p) �
X

a2
nX(0)

pa +
X
i2N

vi(X(i); p) = V (N)

for an optimal allocation X . Q.E.D.

Theorem 3: Let p 2 Rm
+ . p is Walrasian if and only if

X
a2


pa +
X
i2N

vi(p) = V (N):

Proof: It is su�cient to show the only if part. The value V (N) is computed according to the

following integer linear problem, as in Bikhchandani and Mamer (1994).

V (N) = max
xil

nX
i=1

2j
j�1X
l=1

ui(Sl)xil

s:t:

2j
j�1X
l=1

asl

nX
i=1

xil � 1; 8s = 1; 2; � � � ; j 
 j(1)

2j
j�1X
l=1

xil � 1; 8i = 1; 2; � � � ; n(2)

xil = 0 or 1; 8i; l(3)

where Sl � 
, asl is the elements in the matrix Aj
j�(2j
j�1) such that asl = 1 if s 2 Sl or 0

otherwise.
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Consider the following linear programming without the integer constrains.

�V (N) = max
xil

nX
i=1

2j
j�1X
l=1

ui(Sl)xil

s:t:

2j
j�1X
l=1

asl

nX
i=1

xil � 1; 8s = 1; 2; � � � ; j 
 j(4)

2j
j�1X
l=1

xil � 1; 8i = 1; 2; � � � ; n(5)

xil � 0; 8i; l(6)

It follows from the dual theorem that

�V (N) � min
xs;vi

j
jX
s=1

xs +
nX
i=1

vi(7)

s:t:

j
jX
s=1

aslxs + vi � ui(Sl); 8l(8)

xs � 0; vi � 0; 8s; i(9)

Now eq. (8) is equivalent to

vi � ui(Sl)�
X
s2Sl

xs; 8l:(10)

Therefore, it is binding for all l� such that Sl� 2 Di(x) and vi(x) = ui(Sl�)�
P

a2Sl�
xa. Substitute

this into �V (N), we obtain that

�V (N) = min
x2R

j
j

+

j
jX
s=1

xs +
nX
i=1

vi(x)

= min
(x;v(x))

X
a2


xa +
X
i2N

vi(x):

Clearly V (N) � �V (N). Thus, by the assumption that

X
a2


pa +
X
i2N

vi(p) = V (N);

it follows that V (N) = �V (N). Now Lemma 6 in Bikhchandani and Mamer (1994) showed that

there exists an allocation X such that (p;X) is Walrasian. Q.E.D.

The next two lemmas are useful for their own sakes.

Lemma 2: v(p) is convex, continuous and monotonely decreasing in p.
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Proof : (a). v is convex. Let p and q be two price vectors. Then vi(�p + (1 � �)q) �

�vi(p) + (1� �)vi(q) for all i 2 N since

max
A�


ui(A)�
X
a2A

[�pa + (1� �)qa] � �[max
A�


ui(A)�
X
a2A

pa] + (1� �)[max
A�


ui(A)�
X
a2A

qa]:

(b). v is continuous. v(p) is continuous because vi(A; p) = ui(A)�
P

a2A pa is continuous in p.

(c). v is monotonely decreasing. Suppose that p � q. Let i 2 N and A 2 Di(p) and B 2 Di(q).

Then

vi(p)� vi(q) = [ui(A)�
X
a2A

pa]� [ui(B)�
X
b2B

qb]

� [ui(A)�
X
a2A

pa]� [ui(A)�
X
a2A

qa]

=
X
a2A

qa �
X
a2A

pa

� 0:

Q.E.D.

De�ne F = f(p; v(p)) : p is Walrasiang.

Lemma 3: F is a convex set.

Proof: Let (p; v(p)) and (q; v(q)) in F . Then Theorem 3 shows that

X
a2


pa +
X
i2N

vi(p) = V (N)

and X
a2


qa +
X
i2N

vi(q) = V (N):

Therefore, by the convexity of v in Lemma 2,

X
a2


[�pa + (1� �)qa] +
X
i2N

vi(�p+ (1� �)q)

� �[
X
a2


pa +
X
i2N

vi(p)] + (1� �)[
X
a2


qa +
X
i2N

vi(q)]

= V (N):

It follows from Lemma 1 that

V (N) =
X
a2


[�pa+ (1� �)qa] +
X
i2N

vi(�p+ (1� �)q):

Therefore, (�p+ (1� �)q; v(�p+ (1� �)q)) 2 F , by Theorem 3. Q.E.D.
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7.2 Proofs of Theorems 1 and 2

We now turn to the proofs of Theorems 1 and 2. We need Lemmas 4 and 5. Lemma 4 shows

that G(t) is not increasing. Lemma 5 shows that those rounds t such that G(t+ 1) = G(t) are not

absorbing.

Lemma 4: For any ascending price sequence fp(t)gt=0;1;2;��� obtained from the English auction

that satis�es C2, we have that G(t+ 1) � G(t).

Proof: Let At+1 = fa 2 
 : pa(t + 1) > pa(t)g and �a = pa(t + 1) � pa(t). Let fA1(t +

1); � � � ; An(t+ 1)g be a collection such that Ai(t+ 1) 2 Di(p(t+ 1)) and Wi(t + 1) � Ai(t+ 1) for

all i 2 N . Denote I = fi 2 N :Wi(t+ 1)\At+1 6= ;g. Therefore [i2IWi(t+ 1)\At+1 = At+1 and

then [i2IAi(t+ 1) \At+1 = At+1. It follows that

X
a2At+1

�a �
X
i2N

X
a2Ai(t+1)

�a =
X

a2At+1

�a �
X
i2I

X
a2Ai(t+1)\At+1

�a � 0:

Let fA1(t); � � � ; An(t)g be any collection such that Ai(t) 2 Di(p(t)). Then
P

i2N [vi(Ai(t +

1); p(t))� vi(Ai(t); p(t))] � 0 and

G(t+ 1)� G(t) =
X
a2


[pa(t+ 1)� pa(t)] +
X
i2N

[vi(p(t+ 1))� vi(p(t))]

=
X

a2At+1

�a +
X
i2N

[vi(Ai(t+ 1); p(t+ 1))� vi(Ai(t); p(t))]

=
X

a2At+1

�a +
X
i2N

[vi(Ai(t+ 1); p(t))� vi(Ai(t); p(t))]�
X
i2N

X
a2Ai(t+1)

�a

�
X

a2At+1

�a �
X
i2N

X
a2Ai(t+1)

�a

� 0:

Q.E.D.

Lemma 5: Suppose that fp(t)gt=0;1;2;��� is an ascending price sequence obtained from the En-

glish auction that satis�es C2. If p(t) is not Walrasian, then there exists a �nite T such that

Di(p(t+ T )) 6� Di(p(t)) for some i 2 N .

Proof: Suppose on the contrary that for all s 2 ft; t+1; � � �g we have either (a) Di(p(s+1)) =

Di(p(s)) for all i 2 N or (b) Di(p(s+ 1)) � Di(p(s)) for all i 2 N and Di(p(s+ 1)) � Di(p(s)) for

some i. Since for any such round s the fact that p(s+1) is Walrasian implies that p(s) is Walrasian

as well under both cases (a) and (b), p(s) is not Walrasian for any s 2 ft; t + 1; � � �g. The auction

must continue forever. Let M = maxi2N ui(
). Clearly M is �nite. Because p(t) is ascending, it
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follows that there exist at least one object a and s 2 ft; t+1; � � �g such that pa(s) > M . Therefore,

a is not demanded by any agent with price pa(s). But by C2 there exist i 2 N and A 2 Di(p(s))

such that a 2 Wi(s) � A. This is a contradiction. Q.E.D.

Theorem 2: Let fp(t)gt=0;1;2;��� be a price sequence obtained from the English auction that

satis�es C1 and C2. Then there always exists a �nite T such that p(T ) is Walrasian.

Proof: Suppose the auction does not stop at t. We show that there exists a �nite T (t) and a

positive �(t) > 0 such that

G(t+ T (t)) + �(t) � G(t+ T (t)� 1) � � � � � G(t+ 1) � G(t):

Since �(t) is bounded away from zero and T (t) is �nite, there exists a �nite T such that G(T ) =

V (N) because V (N) is the lower bound of G(t) by Lemma 1 and Theorem 3. Therefore, there must

exist a �nite T such that X
a2


pa(T ) +
X
i2N

vi(p(T )) = V (N):

Theorem 3 shows that p(T ) must be Walrasian. The auction must stop at T .

Since p(t) is not Walrasian, Lemma 5 shows that there exists a �nite T (t) such that Di(p(t+

T (t))) 6� Di(p(t+ T (t)� 1)) for some i. We now show that there exists �(t) > 0 such that

G(t+ T (t)) + �(t) � G(t+ T (t)� 1):

Without loss of generality, suppose T (t) = 1. For each A 2 Di(p(t)) and B 62 Di(p(t)), there

exists � > 0 such that vi(A; p(t)) � �+ vi(B; p(t)). The fact that Di(p(t+ 1)) 6� Di(p(t)) for some

i implies that there exists A such that A 2 Di(p(t+ 1)) and A 62 Di(p(t)). Let fA1(t + 1); A2(t+

1); � � � ; An(t+ 1)g be the collection such that Ai(t+ 1) 2 Di(p(t+ 1)), Wi(t+ 1) � Ai(t+ 1) for all

i 2 N and Ai(t+1) 62 Di(p(t)) for some i. Also let fB1(t+1); � � � ; Bn(t+1)g and fA1(t); � � � ; An(t)g

be any collections such that Bi(t+1) 2 Di(p(t+1)) and Ai(t) 2 Di(p(t)) for all i 2 N . Then there

exists �(t) > 0 such that

G(t+ 1) =
X
a2


pa(t+ 1) +
X
i2N

vi(Bi(t+ 1); p(t+ 1))

=
X
a2


pa(t+ 1) +
X
i2N

vi(Ai(t + 1); p(t+ 1))

=
X
a2


pa(t) +
X

a2At+1

�a +
X
i2N

[vi(Ai(t + 1); p(t))�
X

a2Ai(t+1)

�a]

� ��(t) +
X
a2


pa(t) +
X

a2At+1

�a +
X
i2N

[vi(Ai(t); p(t))�
X

a2Ai(t+1)

�a]

= ��(t) + G(t) +
X

a2At+1

�a �
X
i2N

X
a2Ai(t+1)\At+1

�a

� ��(t) + G(t):
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In the �rst inequality above we use the fact that Di(p(t + 1)) 6� Di(p(t)) for some i. The last

inequality follows from the fact that

X
a2At+1

�a �
X
i2N

X
a2Ai(t+1)\At+1

�a � 0;

as shown in the proof of Lemma 4.

Hence it follows from Lemma 4 that there exists a �nite T (t) and a positive �(t) > 0 such that

G(t+ T (t)) + �(t) � G(t+ T (t)� 1) � � � � � G(t+ 1) � G(t):

Q.E.D.

Theorem 1: Let fp(t)gt=0;1;2;��� be any price sequence obtained from the English auction that

satis�es C1 and MNE. Then there exists a �nite T such that p(T ) is Walrasian.

Proof: We show that MNE satis�es condition C2. Then Theorem 1 follows from Theorem 2.

We need to show that Wi(b(t)) 2 Di(p(b(t)) for all i 2 N whenever b(t) is a Nash equilibrium of

the round game �(t). Suppose on the contrary that Wi(b(t)) 62 Di(p(b(t)) for some i 2 N . Then

vi(Ai(t); p(b(t)))> vi(Wi(b(t)); p(b(t))); 8Ai(t) 2 Di(p(b(t))):

Given Ai(t) 2 Di(p(b(t)), we construct a pro�le of bids �b
i(t) 2 Rm

+ as follows:

�bia(t) =

8>>><
>>>:

bia(t) 8a 2 Ai(t) \Wi(b(t))

pa(b(t)) 8a 2 Ai(t) nWi(b(t))

0 8a 62 Ai(t) and pa(b(t)) = 0

pa(b(t))� � 8a 62 Ai(t) and pa(b(t)) > 0

where � > 0.

Denote O = fa 2 
 : a 62 Ai(t) and pa(b(t)) = 0g. Hence,

Wi((b
�i;�bi)(t)) = Ai(t) [ O:

Since b(t) is a Nash equilibrium of the game �(t), there are at least two di�erent agents j and k

such that a 2 Wj(b(t))\Wk(b(t)) for any a 2 
. It follows that there exists j 2 N n fig such that

pa((b
�i;�bi)(t)) = bja(t) = pa(b(t))

for any a 62 Ai(t) such that a 2 Wi(b(t)) and pa(b(t)) > 0. Therefore, we have that p((b�i;�bi)(t)) =

p(b(t)).

Since ui is weakly monotone, it follows that

vi(Wi((b
�i;�bi)(t)); p((b�i;�bi)(t))) � vi(Ai(t); p((b

�i;�bi)(t)))

= vi(Ai(t); p(b(t)))

> vi(Wi(b(t)); p(b(t))):

This is a contradiction to the assumption that b(t) is a Nash equilibrium. Q.E.D.
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Appendix

In this appendix we introduce the extension of the Hall Theorem. Let G = (V1; V2; E) be

a bipartite graph with vertex classes V1 = fx1; x2; � � � ; xng and V2 = fy1; y2; � � � ; ymg and edges

E � V1� V2. Let �(S) denote the set of vertices adjacent to S for S � V1 and d(x) =j �(x) j. The

next de�nition is standard and a matching is often called a perfect match in the graph theory. A

subgraph H of G is called a many-to-one (one-to-one) matching if H : V1 [ V2 ! 2V1[V2 such that:

1. For all xi 2 V1, (j H(xi) j� 1 and) H(xi) � V2;

2. For all yj 2 V2, j H(yj) j� 1 and H(yj) 2 V1;

3. For all xi 2 V1 and yj 2 V2, H(yj) = xi if and only if yj 2 H(xi).

The Hall theorem and its extension are as follows. For a proof of Theorem A, see Bollob�as

(1979). Also see Gale (1960) and Hall (1935).

Theorem A (The Hall Theorem and its Extension): Let G be a bipartite graph with vertex

classes V1 = fx1; x2; � � � ; xmg and V2 = fy1; � � � ; yng. Then G contains a matchingH of G such that

dH(xi) = di and 0 � dH(yj) � 1 if and only if

j �(S) j�
X
xi2S

di

for every S � V1, where dH(x) denotes the number of edges connected with x in the matching H .
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