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THE 'AS IF' APPROACH TO GAME 
THEORY: 3 POSITIVE RESULTS AND 4 

OBSTACLES* 

Jörgen W. Weibullf 

27 September 1993 

Abstract 

The usual justifications of non-cooperative solution criteria are ra­
tionalistic in nature, building on individual rationality and expectation­
coordination postulates. In contrast, the" as if' approach to game-theoretic 
rationality is evolutionary, arguing that even if strategically interacting 
agents do not meet these epistemic conditions, their long-run aggregate 
behavior will nevertheless conform with them, because of the workings of 
biological or social selection processes. The present essay discusses three 
implications of evolutionary se1ection dynamics in favour of the "as if" 
paradigm, and four potential obstacles to the general validity of these im­
plications. 

1 Introduction 

Many economie models rely on solution concepts from non-cooperative game 
theory such as Nash equilibrium and its refinements. Game theorists have inves­
tigated the decision-theoretic foundations of these constructs. It has been shown 
that strong epistemic conditions are needed to justify Nash equilibrium behav­
ior, conditions which not only involve "rationality" of the interacting agents but 
also "consistency" between their beliefs about each other.1 An alternative to 

·Paper presented at the European Eeonomic Association Meeting in Helsinki, August 27-
29, 1993. The paper summarizes results from joint research with Abhijit Banerjee, Jonas 
Björnerstedt, Martin Dufwenberg, Peter Norman and Klaus Ritzberger, see references in text. 

f Department of Economics and Institute for International Eeonomic Studies, Stockholm 
University, 8-10691 Stockholm, Sweden. I thank Jonas Björnerstedt, Henrik Horn and Johan 
Stennek for helpful comments to an earlier version of this paper. This project was sponsored 
by the Industrial Institute for Economic and Social Research, Stockholm, Sweden. 

lSee e.g. Tan and Werlang [24], Aumann and Brandenburger [2]. 
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this rationalistic approach is to instead ask if evolutionary selection processes 
induce a tendency towards behavior which conforms with Nash equilibrium or 
other non-cooperative solution criteria. The processes in question can be some 
form of biological or social selection, or selection due to market competition. If 
the behaviors selected for by such evolutionary processes indeed do meet non­
cooperative solution criteria, one may claim that, even if the interacting agents 
are not "rational" and have "coordinated" beliefs, they nevertheless behave, at 
least in the aggregate and in the long-run, as ifthey did meet these epistemic as­
sumptions. In the context of perfectly competitive markets (hence non-strategic 
environments), the "as if" approach was earlier advocated by Alchian [1], Fried­
man [13] and Winter [27]. 

Recent developments in evolutionary game theory have established some pos­
itive results on the implications of evolutionary selection for" game theoretic ra­
tionality". One then imagines that individuals are randomly drawn from a large 
population, or from distinct large populations, to play the game in question, over 
and over again, and studies how the population distribution across pure strategies 
changes over time according to some evolutionary selection process. First, in a 
fairly wideclass of such evolutionary selection dynamics, dynamic stability implies 
Nash equilibrium. Secondly, in the same class of modeis, dynamic convergence 
implies Nash equilibrium, granted all pure strategies of the game are present in 
the initial population. Thirdly, strictly dominated pure strategies are wiped out 
in the long run, even if the evolutionary dynamic path doesn't converge, again 
granted all pure strategies are initially present. 

These positive results may sound comfortingj not only does dynamic evolu­
tionary selection justify the use of Nash equilibrium and the elimination of strictly 
dominated strategiesj these results even suggest that the ana.lyst should go beyond 
Nash equilibrium, viz. to those Nash equilibria which are robust to evolutionary 
selection pressures. However, this happy picture is somewhat clouded by certain 
obstacles to their general validity. The purpose of this essay is to discuss the 
above-mentioned three positive results in relation to four such obstacles. 

The first obstacle, below labelled "temporallumpiness" , refers to the volatil­
ity that may arise when large shares of the population simultaneously change 
behaviors. The second obstacle is related to the nature of the selection mech­
anismj if this is not biological but social or market-performance based, a.re the 
above-mentioned positive results then valid? The third obstacle is related to the 
"richness" of the "menu" of behaviors over which the evolutionary selection pro­
cess takes place: what if this "menu" contains some "sophisiticated" behaviors 
alongside more" simplistic" ones? The fourth obstacle has to do with the multi­
plicity of populations taking part in the interaction: do the positive results still 
apply if the dynamics is applied to interactions between individuals from distinct 
popula.tions? 
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2 Positive bench-mark results 

The basic dynamie model of evolutionary selection is the so-called continuous­
time single-population replicator dynamics. In this dynamics, one imagines that 
individuals in a large population interact pairwise, and the interaction takes the 
form of a finite and symmetric two-player game. Pairs of individuals are randomly 
matched to play the game, and payoffs represent fitness, Le., the expected number 
of offspring. Each individual is geneticallyor otherwise "programmed" to always 
play a certain pure strategy. Hence, at each instant, the population can be 
divided into sub-populations, one for each pure strategy i of the game. The non­
negative population shares Xi sum up to one, so the vector X of population shares, 
the population state, is formally identical with a mixed strategy in the game in 
question. 

It is assumed that each offspring inherits its (single) parent's strategy. Conse­
quently, the growth-rate of each sub-population is its strategy's current expected 
payoff, implying that the growth rate of the population share Xi programmed 
to pure strategy i equals the difference between its current payoff Ui( x) and the 
current population average payoff u( x). 2 This is the so-called replicator dynamics 
(Taylor and Jonker [25]): 

:i:i(t) = [Ui(X(t» - ii(x(t»] Xi(t) for t ;::: O, (1) 

where the dot signifies the time derivative. Note that the first of these two payoffs, 
Ui(X), equals the expected payoff to pure strategy i when played against mixed 
strategy x, and the second, ii(x), equals the expected payoffto mixed strategy x 
when played against itself. A strategy pair, or profile, (x,y) constitutes a Nash 
equilibrium if x is a best reply to y and y is a best reply to x. 

The above-mentioned three positive results on the connection between evolu­
tionary selection dynamics and game-theoreticrationality apply to this particular 
evolutionary selection dynamics. More exactly: 

• H a population state x is Lyapunov stable in (1), Le., such that solution 
trajectories starting near x remain forever near x, then (x,x) constitutes a 
Nash equilibrium (Bomze [9]) . 

• H (a) the initial population state x(O) is interior, i.e., all population shares 
x;(O) are positive, and (b) the state x(t) converges to some state x* as time 
t goes towards plus infinit y, then (x*, x*) constitutes a Nash equilibrium 
(Nachbar [17)). 

2Note that the tirst of these two payoffs equals the (e.xpected) payoff to pure strategy i when 
played against mixed strategy z, and the second equals the (e.xpected) payoffto mixed strategy 
z when played against itself. 
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• If (a) the initial population state x(O) is interior, and (b) a pure strategy i 
is iteratively strictly dominated, then its population share Xi(t) converges 
to zero as time t goes towards plus infinitity (Samuelson and Zhang [22]). 

At a first glance, the third positive result, that strictly dominated strategies 
vanish, may appear obvious. However, it is not. For even a strictly dominated 
strategy can earn more than average in some population states, so the suh­
population programmed to such a strategy may, at least temporarily, increase 
over time in the replicator dynamics. 

3 Temporal lumpiness 

In some hiological models, evolutionary selection is modelled in discrete time 
where each time period represents a generation. If, for each t = 0,1,2, ... , 
Uj [x(t)] ~ O is the expected numher of offspring to an individual in genera­
tion t programmed to pure strategy i, and il [x(t)] > O is the average numher of 
offspring in that generation, then the following discrete-time replicator dynamics 
results: 

udx(t)] 
Xi(t + 1) = il [x(t)] Xi(t) for t = 0,1,2, ... (2) 

As shown by Nachhar [17J, the first two positive results above do hold also in 
this dynamics, i.e., dynamic stahility, and likewise dynamic interior convergence, 
implies Nash equilibrium play. Note, however, that the sets of stable population 
states and convergent interior dynamic paths, respectively, may differ from the 
corresponding sets in the continuous-time dynamics (1). Most likely, these sets 
are smaller in discrete time - due to the possibility of "over-shooting" - so the 
predictive power of these two links hetween evolution and Nash equilihrium may 
be weaker in (2) than in (1). 

Nachbar also estahlished the following weaker version of the third postive 
result: if the iterated elimination of pure strategies which are strictly domi­
nated hy some pure strategy results in a single pure strategy, then the dynamics 
(2) converges from any interior initial population state towards the population 
state in which all individuals use that strategy. That the stronger result for the 
continuous-time repIicator dynamics does not carry over to (2), was shown, by 
way of a counter-example, by Dekel and Scotchmer [11]. 

This example is hased on the Rock-Scissors-Paper (RSP) game; a constant­
sum, symmetri c 3 x 3 game with a unique Nash equilibrium. In equiIibrium, both 
players randomize uniformly over the three pure strategies. Dekel and Scotchmer 
[11] modify somewhat the payoffs in this game and add a fourth pure strategy. 
The payoff matrix of the expanded RSP-game is 
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A = (2.t 
1.1 

2.35 
1 
O 

1.1 

O 
2.35 

1 
1.1 

0.1 ) 0.1 
0.1 
O 

(3) 

The fourth pure strategy is strictly dominated by x* = (i, i, l, O), and the 
symmetric strategy-profile (x*, x*) is the unique Nash equilibrium of this game. 
Since strategy 4 is strictly dominated, its population share shrinks towards zero 
along all interior solution paths to the continuous-time replicator dynamics (1). 
In contrast, Dekel and Scotchmer [11] prove that this population share does not 
tend to zero in the discrete-time version (2), except when the initial state is 
perfectly symmetric with respect to the three first strategies. 

As pointed out by Cabrales and Sobel [10], the reason why this counter­
example works is not temporal discreteness per se, but its special form (2). In­
deed, they show that if the time discretization is made sufIiciently "fine", so that 
onlyasmall batch of individuals change strategy each time, then the third pos­
tive result is restored: all strictly dominated strategies are wiped out along all 
interior solution paths. 

Björnerstedt et al [8] establish this for a dass of games containing the Dekel­
Scotchmer example in an alternative, overlapping-generations (OLG) model of 
biological reproduction in which a randomly drawn population share S reproduces 
simulaneously (see Appendix). First, we show that, on the sub-simplex where 
X4 is zero, the OLG-dynamics spirals inwards, towards the Nash equilibrium 
strategy x*, when S is small enough, and outwards, towards the boundary of the 
sub-simplex, when S is large, see Figure 1 below. 

I Figure 1: The OLG replicator dynamics for game A when X4 = 0.1 
Secondly, in the full mixed-strategy simplex, strategy 4 earns less than average 

inside an egg-shaped region containing x*, and more than average outside this 
region. If the share S of simultaneously revising individuals is sufIiciently large, 
then the dynamics leads the population state out of this egg-shaped region and X4 

does not converge to zero, while if S is sufIiciently small, then all interior solution 
trajectories sooner or later enter the egg-shaped region and converge to the Nash 
equilibrium strategy x*. 

In sum: temporal lumpiness, as modelled in discrete time, is a threat to 
the "as if" paradigm. First, the explanatory power of evolutionary selection 
for Nash equilibrium behavior may be reduced. Secondly, the elimination of 
strictly dominated strategies is not guaranteed. However, if the population share 
of simultaneously switching individuals is sufIiciently small, then the positive 
continuous-time result is restored. 

Note also that these problems for the" as if" paradigm do not arise at all in 
continuous time, even if one assumes temporal "lumpiness" in the sense that the 
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over-all rate at which reproduction takes place vanes strongly over time. To see 
this, suppose each right-hand side in (1) is muItiplied by some positive factor 
).(t) which varies (Lipschitz) continuouslyover time t. For instance, the rate ).(t) 
may be very large when t is a non-negative integer and elose to zero most of the 
time inbetween, in this sense mimicking the discrete-time replication model (2). 
However, irrespective how ).(t) varies with time t, the associated continuous-time 
solution curves in the mixed-strategy space are idenlical with those of (1), since 
the effect of ). is equivalent to a mere ch ange of time scale. 

Temporallumpiness thus appears to be largerly an artificial obstacle to the 
"as if" paradigm. 

4 N on-biological selection 

For applications to economics, biological reproduction is not always a compelling 
parable for how behaviors (pure strategies) spread in a population; for such mod­
elling purposes, imitation of succesful behaviors, experimentation with alterna­
tive behaviors, search for optimal behaviors etc, seem more appropriate. A few 
examples of such boundedly rationai dynamic seIection processes will here be 
sketched. In these models of "social evolution" , the basic data are the game, the 
random matching interaction scheme, and the "switching technology", i.e., the 
mechanism whereby individuals change strategy. 

Abasic ingredient in the selection dynamics to follow is the assumption that 
a revising individual makes a noisyobservation of the current expected payoff of 
one or more pure strategiesi. Let the observed payoffvalue be Vj(x) = Uj(x)+Cj, 
where the first term is the expected payoff value and the second arandom error 
term. For any pair of pure strategies i and i, let Pij( x) denote the probability that 
the observed payoff value for i exceeds that of i, Le., Pij(X) = Pr [v.(x) > Vj(x )]. 

One can model a process of imitation as follows (Weibull [26]): each revising 
individual samples at random another individual from the population, with equal 
probability for all other individuals. Hence, the probability that the sampied in­
dividual uses pure strategy j is Xj. The conditionai probability that the sampied 
individual's payoff will be observed to be higher than the sampling individual's 
own strategy is Pji(X), in which case the sampling individual switches to the sam­
pIed individual's strategy. Hence, the probability that the sampling individual 
will switch from his strategy i to another strategy i is Xjpji(X). This results in 
the following continuous-time imitation dynamics: 

Xi = LXj [Pij (x) - Pji (x)] Xi· 
j 

(4) 

Under mild regulanty conditions on the probability functions Pij(X), such a 
dynamics is payoff monotonic in the sense that a pure strategy i with higher 
current payoff Ui( x) than another pure strategy has a higher current growth rate 
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Xi/Xi than the latter (see [8]). Because of this monotonicity, the above positive 
results on the connections between continuous-time evolutionary selection and 
Nash equilibrium are easily established. However, for other monotoni c selection 
dynamics than the replicator dynamics (1), such as (4), the implication for strict 
dominance is weaker: pure strategies which are strictly dominated by other pure 
strategies vanish along such solution paths (Samuelson and Zhang [22]). Whether 
a strictly dominated strategy which is not strictly dominated by any pure strategy 
may survive the particular dynamics (4) has not yet been investigated.3 Hence, 
more research is needed before we know the implications of evolutionary selection 
by imitation for" game-theoretic rationality" . 

An individual who imitates successful individuals in the way described above 
may do very weIl. If she samples of ten and with little noise, she can much of 
the time play a best reply to the current population mixture, and rarely be using 
poorly performing strategies. Another dass of selection dynamics arises if we 
instead assume that each revising individual makes noisy observations of all pure 
strategies' expected payoffs, and shifts to the strategy with the highest observed 
payoff. Unlike in the case of imitation, the conditionai switching probabilities for 
an individual now is functionaIly independent of her own current strategy (unless 
the sampling scheme is biased towards or against this). Despite its kinship in 
spirit with game-theoretic rationality, the induced noisy best-replydynamics turns 
out to be non-monotoni c with respect to payoffs. Again, more reseach is needed 
before we know whether such selection mechanisms are "threats" or "promises" 
to the "as if" paradigm (see Björnerstedt et al [8] for a preliminary investigation). 

A dynamics with a fiavor of market selection, and which in a sense is a dual 
to the noisy best-reply dynamics, is suggested in Björnerstedt [7]. Here one 
can imagine some outside observer, a " bank" , who regularly samples a small 
fraction of the population of "firms", observes their payoffs, or " profits" , with a 
small random error, and abandons all firms who use the pure strategy which is 
observed to have the lowest observed payoff. Again invoking reasonable regularity 
properties of the underlying probability functions Pij( x), the induced continuous­
time cut-off dynamics can be shown to be payoff monotonic and hence the two 
first positive results apply, while the third, on strictly dominated strategies, need 
not hold. In fact, Björnerstedt [7] shows that the strictly dominated fourth pure 
strategy in Dekel's and Scotchmer's [11] example can survive in the long run. 
Hence, the harsh policy of abandoning the weakest need not weed out strictly 
dominated strategies - if these give a fairly stable payoff while other strategies' 
payoffs are volatile. 

Conclusion: while some positive "as if" results are known to be valid for 
all payoff monotonic selection dynamics, not all "plausible" selection dynamics 
are such. More research on specific social and market-performance based selec-

3See Björnerstedt [7] for a study of a dass of generalized imitation-experimentation 
dynamics. 
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tion mechanisms is needed before we know whether these constitute threats or 
promises to the "as if" paradigm. 

5 Rich menu of behaviors 

Robson [21], Dekel and Scotchmer [11J, Banerjee and Weibull [31, [4], [5] and Stahl 
[23] have pointed out that the "as if" approach to game-theoretic rationality 
may be in serious trouble if the population is heterogeneous with respect to 
"sophistication". In particular, none of the mentioned three positive results on 
game-theoretic rationality then need not hold even under the standard replicator 
dynamics (1). 

For illustration, consider the following thought-experiment: a biologist studies 
evolutionary selection in a large population of "programmed" individuals who are 
randomly matched to play some finite and symmetri c two-player game. Without 
the biologist's knowledge, an economist comes by and injects a few individuals 
of the species homo oeconomicus in the population. These" new" agents are 
endowed with the capacity to recognize the type of agent they meet. In particular , 
they correctly predict at each encounter the strategy to be used by each of their 
biological "opponents". They also recognize each other, and then play some 
iteratively strictly undominated (pure or mixed) strategy. In contrast, the original 
"biological" agents go on using their pre-programmed pure strategies as before. 
What will happen? 

Borrowing an example from Banerjee and Weibull [3],[4], suppose the payoff 
matrix of the game is 

(3 1 6) 
A= O O 4 • 

125 
(5) 

This game is strictly dominance solvable: strategy 2 is strictly dominated, 
both by strategy 1 and 3, and, once strategy 2 has been eliminated, strategy 3 
is strictly dominated by strategy 1. Hence, the biologist expects, by the third 
positive result above, the population to converge from any interior initial state 
to the monomorphic population state in which all agents use strategy 1 in every 
encounter. Note also that had instead all agents in the population belonged to the 
precious species homo oeconomicus, then these would all instantly have chosen 
strategy 1. 

What if the initial population is mixed, and, for instance, contains many 
biological agents programmed to the strictly dominated strategy 2, few biological 
agents programmed to strategies 1 and 3, and some homo oeconomicus? The 
lat ter would earn payoff 3 when meeting each other and payoff 2 when meeting 
biological agents of "type 2", i.e., programmed to strategy 2. In contrast, type-
2 agents would earn zero when meeting each other but 4 when meeting homo 
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oeconomicus. The type-2 agent so to speak benefit from their "cornmitment" 
to the strictly dominated but "aggressive" strategy 2. Hence, for a sufliciently 
large population share of homo oeconomicus, and low shares of biological agents 
programmed to strategies 1 and 3, biological agents programmed to strategy 2 
do welli they may even eam more than homo oeconomicus. 

In fact, one can show that, starting from any intial populationmixture con­
taining positive shares of all three types of biological agents, and of homo oeco­
nomicus, the population share of biological agents of type 3 vanishes asymptot­
ically in the continuous-time replicator dynamics. Once this population share is 
small, two things can happen, depending on the initial state. Either the popula­
tion state moves towards a continuum of states in which all agents use strategy 
1, as predicted by evolutionary and non,:,cooperative game theory alike. In this 
case, the survivors are some homo oeconomicusmixed with some biological agents 
programmed to strategy 1. As put by Stahl [23]: "being right is just as good 
as being smart". Alternatively, the population state moves towards the state at 
which ~ of the population belong to homo oeconomicus and l are programmed to 
the strictly dominated strategy 2. In the lat ter case, the three pure strategies of 
the game are used in proportions ~, l and ~, respectivelYi definitely at variance 
with the biologist's expectation. Moreover, even if the distressed biologist per­
turbs this population state by injecting, say, a few "good" agents, programmed to 
strategy 1, the replicator dynamics leads the population back towards its "bad" 
habit of, in aggregate, playing the strictly dominated mixed strategy (~,~, ~). 
In fact, this out come is asymptotically stable in the replicator dynamics 1, as 
applied to this situation.4 

To see how this can be established, first note that the situation in the biol­
ogist's lab is equivalent to letting a population of programmed agents play the 
following 4 x 4 game: 

(
3 1 6 3) 

A* = O O 4 4 
1 2 5 1 . 
3 2 6 3 

(6) 

For, to be a homo oeconomicus in the original game is equivalent to being 
programmed to strategy 4 in this expanded game, since this strategyeams the 
best-reply payoff against all strategies, and all other strategies eam that payoff 
against strategy 4 which they get when meeting their best replies. The rest of 
the argument is a standard application of the replicator dynamics (1). As shown 
in Banerjee and Weibull [4], the population share X3(t) decreases to zero along 

4 A state z is aSllmptotåcallt stable (in any given dynamics) if it is Lyapunov stable, i.e., such 
that solution trajectories starting near z remain forever near z and, moreover, asymptotically 
approach z as time goes towards plus infinity. 
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any interior solution path, and the dynamics on the sub-simplex where strategy 
3 is extinct looks as in Figure 2 helow. 

I Figure 2: The replicator dynamics (1) for game A* when X3 = 0.1 

The ahove example can he emhedded in a richer model framework, and then 
it tums out that the three initial positive hench-mark results on evolution and 
rationality are restored, alheit in a somewhat weaker and more complex form. 
In a sense, we emhed the example in a model in which hiological evolutionary 
selection operates at the level of "decision procedures" rather than on the level 
of "decisions" or "actions" . 

First, sup pose we have, as usual, a population of individuals who are randomly 
matched to playa symmetric two-player game. However, now each individual has 
one of finitely many ohservahle physical traits, or, equivalently, at each matching 
sends one and the same of finitely many possihle "signalS' or "messageS' hefore 
playing the game. In such a richer world, individuals can he genetically or oth­
erwise "programmed" to rules prescrihing which strategy to play depending on 
the signal received from their" opponent". Mathematically, such a hehavior rule 
is a function f from the finite set C of possihle signals (traits, messages ) to the 
pure-strategy set of the game in question: if my rule is f and my opponent's 
signal (trait, message) is e, then I use pure strategy i = f(e), etc. 

Applied to the ahove thought-experiment, the set C could consist of four 
distinct signals, one for each type of hiologically programmed agent (strategies 
1,2,3) and one for homo oeconomicus. In that example, each agent of type c = 
i 5 3 is programmed to the constant rule which prescrihes strategy i for all 
encounters, and each agent of type e = 4 (homo oeconomicus) is programmed to 
the "hest reply" rule whieh prescrihes the unique hest reply to each signal e < 3 
and the unique iteratively undominated strategy to signal e = 4. 

Given a set C of signals, messages or ohservahle traits, a model of evolutionary 
selection should allow for all possihle choice rules, rather than, as in the ahove 
example, only a few special rules. But once this generalization is made, one 
ends up in an equivalent "meta game" , in which a pure strategy is a pair (e, f) 
(much in the same wayas the matrix A* was construed from the payoff matrix 
A ahove). Formally, sueh a meta-game is identical with a cheap-talk game with 
(pre-play) message space C. Moreover , the three ahove-mentioned positive results 
on evolutionary selection and rational play apply to the meta-game. Evolutionary 
selection thus has the "usual" positive implications when applied at the level of 
"dedsion procedures" or "cognitive designs". The implications of this cognitive 
evolution for the resulting "decisions" or "actions" , i.e., the pure strategies used 
in the hase game, are a hit less direct. 

Expressed in terms of the underlying "hase game" , the main results are the 
following (for details, see Banerjee and Weibull [5J). First, each Lyapunov sta-
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ble population state in the replicator dynamics (1), applied to the meta game, 
corresponds to some convex combination of symmetri c and/or asymmetri c Nash 
equilibria of the base game. Secondly, if an interior solution trajectory to the 
replicator dynamics converges, then its limit state is again some convex combi­
nation of Nash equilibria. In both of these results, there thus is a possibility that 
aggregate behavior (" actions") does not conform with play of a single symmetric 
Nash equilibrium. However, in such cases it is as if the sub-aggregatE:! of all indi­
viduals with the same trait (signal, message) play some symmetri c or asymmetric 
base-game Nash equilibrium with every other such sub-aggregate of individuals, 
and each such sub-aggregate plays some symmetric Nash equilibrium with itself. 
Thirdly, if one observes the relativefrequencywith which some strictly dominated 
base-game strategy is used in the matchings, one will find that this frequencey 
converges to zero over time, along any interior dynamic solution trajectory to 
the replicator dynamics for the meta-game. In this sense, evolution does select 
"rational play" even in this more complex setting of strategy choice rules. 

Why did this not happen in the above laboratory experiment? The answer is 
simply that the initial population state was not interior. With 3 pure strategies 
and 4 types, there are 34 = 81 possible strategy-choice rules, and we only allowed 
for 4. For instance, a small injection of agents "looking" exactly like those pro­
grammed to strategy 2, but using the rule which prescribes strategy 1 against 
all opponents, would do better than the "original" type 2 agents etc. H such 
mutations were allowed for, or the initial state was interior , the process would 
eventually move towards a population state in which only strategy 1 was used in 
every matching. 

Conclusion: the "as if" paradigm does not apply to all situations of "rich 
menus of behavior". However, if applied at the associated level of " decision pro­
cedures" or "cognitive designs" , the paradigm does apply, albeit with somewhat 
weaker and more complex implications at the "base level" of actual decisions. 
(See also the hierarchical model in Stahl [23].) 

6 Multiple populations 

A fourth potential difliculty for the "as if" a.pproach to non-cooperative game 
theory anses if the interacting individuals do not all come from one and the same 
population. For instance, suppose that in a symmetric or asymmetric two-player 
game the row-player is drawn from one population (of, e.g., "buyers") and the 
column-player from another (e.g. "sellers"). This modification of the set-up is 
evidently needed for evolutionary analyses of arbitrary finite n-player games, but 
is also relevant for certain symmetric games. Indeed, this identification of each 
player "role" or "position" with a distinct population was suggested aIready by 
Nash when he first developed his equilibrium concept: 
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"It is unnecessary to assume that the participants have full knowledge 
of the total structure of the game, or the ability and inelination to 
go through any complex reasoning processes. But the participants 
are supposed to accumulate empirical information on the relative ad­
vantages of the various pure strategies at their disposal. To be more 
detailed, we assume that there is a population (in the sense of statis­
tics ) of participant s for each position of the game. Let us also assume 
that the "average playing" of the game involves n participants se­
lected at random from the n populations, and that there is a stable 
average frequency with which each pure strategy is employed by the 
"average member" of the appropriate population." (Nash [18], p. 21.) 

In this setting for an n-player game, a population state x is formally identical 
with a mixed-strategy profile, each component x k of which is a mixed strategy 
for player (position) k, where k = 1, .. , n. Just as in the single-population repli­
cator dynamics, its n-population counterpart assumes that each individual in the 
population associated with player position k is "programmed" to one of the pure 
strategies available to that player position. The n-population continuous-time 
replicator dynamics becomes 

for t ~ O, (7) 

where Uki( x) is the payoff to player k when using pure strategy i against mixed­
strategy profile x, and Uk(X) is the same player's payoff when x is played. In 
terms of player-populations, Uki( x) is the payoff to all those individuals in the 
k:th player population who are programmed to strategy i, and Uk (x) is the average 
payoff in that player population.5 

It is easily shown that our three positive results for the single-population 
continuous-time replicator dynamics (1) all carry over to their n-population ver­
sions (7). The results now read as follows. First, if a population state x is 
Lyapunov stable in (7), then x is a Nash equilibrium (Nachbar [17], Friedman 
[12]). Secondly, if (a) the initial population state x(O) is interior, i.e., all popula­
tion shares x~(O) are positive, and (b) the state x(t) converges to some state x* 
as time t goes towards plus infinit y, then x* is a Nash equilibrium (Nachbar [17]). 
Thirdly, if (a) the initial population state x(O) is interior, and (b) a pure strategy 
i for player k is iteratively strictly dominated, then its population share xt(t) 
converges to zero as time t goes towards plus infinit ity (Samuelson and Zhang 
[22]). 

On the surface, thus, the mere multiplicity of populations seems to be no 
obstaele, per se, to the "as if" paradigm. However, a eloser examination re­
veals that the above positive results may become virtually vacuous when the 

!lJust as in the single-population setting, one can of course elaborate alternative dynam­
ies based on social or market-oriented seleetion. However, we here try to isolate the role of 
population multiplieity per se, and hence stick to the replicator dynamies. 
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player populations are distinet. For instance, in certain symmetric two-player 
games (such as the so-called Hawk-Dove game) there are symmetric Nash equi­
libria which are asymtotically stable in the single-population dynamics (1) but 
unstable in the corresponding two-population dynamics (7). The reason is the 
possibility that the two populations "polarize", i.e., abandon asymmetri c states 
near a symmetric equilibrium. Consequently, although dynamic stahlility implies 
Nash equilibrium, fewer population states are stable in the multi-population set­
ting. More generallyand exactly: a population state x is asymptotically stable in 
the multi-population replicator dynamics (7) of an n-player game if and only if x 
is a striet Nash equilibrium, Le., if and only if each strategy Xi is the unique best 
reply to x (Ritzberger and Vogelsherger [19]; see also Hofhauer and Sigmund [14], 
Samuelson and Zhang [22], and Ritzberger and Weibull [20]). Since many games 
of interest for economics lack striet Nash equilibria, this is a serious problem for 
the "as if" justification of Nash equilibrium play. (The predietive power of the 
result on the elimination of strictly dominated strategies is unaffected by this 
observation, since it presupposes neither stability nor convergence.) 

One way to restore asymptotic stability, and thereby hopefully re-establish 
some non-vacuous positive link between evolutionary selection and Nash equilih­
rium play, is to consider sds X of population states (mixed strategy profiles), 
rather than individual population states x.6 It tums out that, for a certain dass 
of such sets X, there is a simple necessary and sufficient condition for their asymp­
totic stability in the replicator dynamics (7). This eondition can be expressed 
in terms of the so-called better-reply correspondence I ([20]), the correspondence 
whieh for each player k maps any mixed-strategy profile x to those pure strategies 
i for the player which give him at least the payoff he gets under x. Formally: 7 

(8) 

The dass of subsets X in question are the (finitely many) "subspaces" of the 
space of mixed-strategy profiles which one obtains by restrieting each player's 
mixed strategies to a fixed subset of his pure strategy set. Such a "subspace" is 
thus the set of those mixed strategy profiles which assign no probability mass to 
pure strategies outside the subsets in question. In terms of population states: it 
is the set of population states in which all indidviduals in each player population 
use only those pure strategies which are in the corresponding subset. One special 
such subspace X is evidently the full mixed-strategy space itself, other special 
spaces are the singleton-sets whieh contain a pure-strategy profile. 

6Such a dosed and non-empty set X (a special ease being X = {z} for some state z) is 
ealled 48ymptotically stable in the replieator dynamies (7) if solution trajeetories to (7) starting 
near X remain forever near to X and eonverge over time to X. 

7 ef. the usual (pure strategy) best-reply eonespondenee pit: which assigns to any strat­
egy profile z those pure strategies i whieh are optimal for player J: against z: plt:(z) = 
{i: Ult:i(Z) ~ Ult:j(z) Vj}. 
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A subspace X is said to be closed under the better reply correspondence if 
every strategy profile x in X is mapped by "Y to pure strategies in the subsets 
defining ("spanning") X. Clearly the full mixed-strategy space is closed in this 
sense, and a singleton set X containing a strict (and hence pure) Nash equilib­
rium, if such exists, is also closed under "Y. The result alluded to above is two-fold. 
First, a subspace X is asymptotically stable in the multi-population replicator 
dynamics (7) if and only if it is cIosed under "Y (Ritzberger and W~ibull [20]). 
Hence, cIosure under "Y, which is easy to verify in simple games, implies that 
the associated subsets of pure strategies together constitute an attractor in the 
replicator dynamics, Le., even if not all agents in the population use strategies 
in the subsets, eventually they will, granted the not too many deviated initially. 
Secondly, each such cIosed subspace contains a subset Y which is strategically 
stable in the sense of Kohlberg and Mertens [161, i.e. a minimal closed and 
nonempty set Y of Nash equilibria with the propert y that all slightly perturbed 
games (in the sense of "trembling hands") have some Nash equilibrium near to Y 
. This is one of the most stringent re:finements in non-cooperative game theory. 
Hence, there is a link, here expressed in terms of set inclusion, between set-wise 
dynamie evolutionary stability and stringent non-cooperative set-wise robustness 
requirements. 

Since every game possesses at least one subspace which is closed under "Y, and 
there are finitely many such subspaces, there exists at least one minimal subspace 
X with this property. In some games, the only minimal subspace closed under "Y is 
the full mixed-strategy space itself, and hence the present set-valued evolutionary 
approach has no "cutting power". In other games, some such minimal subspaces 
contain few pure strategies for each player, and the model's cutting power is 
accordingly stronger. 

The conclusion concerning the e:ffect of population mulitiplicity for the "as 
if" approach is that all three positive results remain formally correct, but the 
predictive power of the first two, on Nash equilibrium, is much reduced, due to 
lost stability. The power of the discussed set-valued apporach is game dependent, 
and requires more research. 

7 Conclusions and directions for further re­
search 

The first studied obstacIe to the" as if" justification of game-theoretic rational­
ity, temporal "lumpiness" , was argued to be essentiallyartificial. The second 
obstacle, that the selection dynamics may be social or market-performance based 
rat her than biological, was seen to require more research. The third obstacle, that 
selection may operate over "decision rules" or "coginitive designs", was shown 
not to constitute a real problem in its simplest formulation, once the implications 
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were somewhat relaxed. The fourth obstacle, that the interaction may involve 
individuals from distinct populations, was seen to weaken the predictive power 
of the evolutionary approach towards set-valued inclusions. 

Evidently, these are not the only obstacles or complications which have to 
be faced before one can claim that we have a robust evolutionary foundation 
for game-theoretic rationality. Among other relevant obstacles, one can mention 
the random-matching, large population format of the evolutionary $et-up. For 
manyapplications to economics, this is not so natural a framework. Moreover, 
one may ask what are the implications from asymptotic, i.e., very "long-run" 
properties such as those discussed above, for predictions in the "medium" term. 
Also, such elements as "mutations" and "mistakes" are treated only implicitly 
in the discussed modeIs, viz. in terms of dynamic stability criteria. Explicit 
stochastic models of "evolutionary noise" are here needed. Finally, the strategic 
interaction in question was here represented by a game in normal form, and one 
may ask if evolutionarily relevant aspects of the associated extensive forms are 
weIl captured in the normal form. 

Several of these additional complications are currently being researched, some 
results have already been obtained, but more research is needed. The interested 
reader is ad~iced to consult e.g. Binmore and Samuelson [6], Kandori, Mailath 
and Rob [15], Young [28], to mention a few examples of fine research along some 
of these lines. 

Nash equilibrium and other non-cooperative solution concepts have become 
almost indispensible tools for economics. Further research on the rationalistic 
and evolutionary foundations of these are therefore highly relevant. Evolutionary 
game theory has supplied us with some powerful analytical tools for this, tool 
which we need to sharpen and apply, but, perhaps more importanly, we need to 
create new tools designed for the institutionaI framework and cognitive machinery 
of human beings who interact strategically in markets and within organizations. 

8 Appendix: an OLG-model of biological re­
production 

Suppose that reproductionj death takes place r times per time unit, each time 
involving a randomly drawn population fraction of size 6 = ~, all individuals 
having equal chance of being drawn. Let the times of reproductionj death be 
t = 0,6,26, .... H Ui [x (t)] is the number of offspring of an individual reproducing 
at time t, then the corresponding overlapping-generations replicator dynamics 
becomes 

-(t + 6) _ -(t) = Ui [x(t)] - fl [x (t)] -(t) 
x, x, r-l + fl [x(t)] x, for t = 0, 6, 26, ... (9) 
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The discrete-time replicator dynamics (2) evidently corresponds to the special 
case of one reproduction time per time unit, r = 1, and the continuous-time 
replicator dynamics (1) is obtained in the limit as the number r of reproduction 
times per time units tends towards plus infinit y, or, equivalently, as the population 
fraction 6 = ~ of simultaneously reproducing individuals tends to zero. 
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